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A B S T R A C T   

Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 
mortality. However, literature on the associations between air pollution exposure and COVID-19 severe 
morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were 
applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term 
exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population sub
groups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering 
the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of par
ticulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were produced for the 6 years preceding the 
pandemic using Bayesian geostatistical models. Air pollution exposure for each patient was measured by the 
long-term average concentration across the municipality of residence. The models were adjusted for the effects of 
individual characteristics, socio-economic, health-system, and climatic factors. The variables with an important 
association to COVID-19 case-severity were identified using Bayesian spatial variable selection. The results have 
shown that the individual-level characteristics are important factors related to COVID-19 morbidity and mor
tality in all the models. Long-term exposure to air pollution appears to influence the severity of the disease only 
when analyzing data during the first wave; this effect is attenuated upon adjustment for health-system related 
factors during the entire study period. Our findings suggest that the burden of air pollution increased the risks of 
COVID-19 in Switzerland during the first wave of the pandemic, but not during the second wave, when the 
national health system was better prepared.   
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1. Introduction 

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), 
which causes the coronavirus disease 2019 (COVID-19) (Zhu et al., 
2020a), continues to be an important global public health problem. 
COVID-19 infections can manifest in a variety of ways, from asymp
tomatic to very severe forms. The latter usually require mechanical 
ventilation, cause the admission to the intensive care unit (ICU), and 

might lead to death. Older age and comorbidities have consistently been 
reported as risk factors for an unfavorable COVID-19 prognosis; how
ever, younger patients without known risk factors are also being 
admitted to ICU, although in smaller numbers and with different 
symptoms. Comorbidities that have been reported include hypertension, 
obesity, diabetes, cardiovascular disease, chronic obstructive pulmonary 
disease, chronic kidney disease, and cancer (Guan et al., 2020; Bourdrel 
et al., 2021). 

Air pollution is one of many determinants that have received addi
tional attention since the start of the COVID-19 pandemic as a factor that 
may facilitate the spread, the severity, and the mortality of the disease 
(Brunekreef et al., 2021). There is a large body of literature in envi
ronmental epidemiology that includes well-established methods and 
findings on the effects of air pollution on health issues, similar to the 
ones found for coronavirus. For example, exposure to air pollution 
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contributes to the development of diabetes, high blood pressure, heart 
and lung diseases (Cohen et al., 2017), decreases immunity (Mostafavi 
et al., 2019) and induces inflammation (Chen and Schwartz, 2008). An 
increasing number of studies suggest that exposure to elevated air pol
lutants also contributes to enhanced susceptibility and severity of the 
course of a COVID-19 infection (Copat et al., 2020; Marquès and Dom
ingo, 2022). 

The majority of publicly available COVID-19 outcome data are area- 
level counts. As a result, most of the studies assessing the effects of 
exposure to air pollution have applied an ecological study design; i.e., 
the air pollution estimates were averaged over the same level of spatial 
aggregation as the COVID-19 data and these aggregates were compared 
to the COVID-19 incidence, deaths, and/or case fatality rates. Examples 
include descriptive analyses based on several correlation indices (such 
as Pearson and Spearman) between the COVID-19 outcomes and the 
exposures to different air pollutants in separate cities or countries 
around the world (Bashir et al., 2020; Daes et al., 2021; Fatorini and 
Regoli, 2020; Telo-Leal and Macías-Hernandez, 2021; Zoran et al., 
2020a; Zoran et al., 2020b), regression analyses evaluating the associ
ation between air pollution exposures and COVID-19 incidence, 
severity, and lethality, such as simple linear regression models (Li et al., 
2020), multivariate Poisson (Jiang et al., 2020) and negative binomial 
(De Angelis et al., 2021; Aloisi et al., 2022) regression models that ac
count for demographic, socio-economic, and meteorological variables; 
generalized additive models (GAM) (Zhu et al., 2020b) and hierarchical 
multiple regression models (Coccia, 2020). 

The main advantage of the ecological regression analysis is that it 
offers a simple and cost-effective approach for examining potential as
sociations between past air pollution exposure and greater susceptibility 
to COVID-19 in large representative populations. The disadvantage is 
that it is not designed to account for individual-level risk factors such as 
age and comorbidities (Wu et al., 2020). In the context of COVID-19, this 
is a severe limitation, as individual-level risk factors are known to highly 
affect the health outcomes of the disease, leading to ecological fallacy 
(Wakefield, 2008). A critical assessment of the methodological consid
erations for epidemiological studies of air pollution and COVID-19 
concluded that ecological analyses are susceptible to important sour
ces of bias (Villeneuve and Goldberg, 2020). 

To alleviate the effect of ecological bias, Konstantinoudis et al. 
(2021) (Konstantinoudis et al., 2021) proposed downscaling the coarse 
spatial resolution of COVID-19 deaths data in the UK. This allowed 
exploiting the variability of air pollution exposure at high geographical 
resolution and a more adequate adjustment of the effects of the con
founders. The findings provided some evidence of an association be
tween average exposure to NO2 during 2014–2018 and the COVID-19 
mortality, whereas the role of PM2.5 was more uncertain. 

Until today, only a limited number of studies analyzing individual- 
level data have been published. In one of the studies, a regression 
probit model was used to evaluate the effects of long- and short-term 
exposure to PM2.5 on the probability of dying from COVID-19 in 
Mexico City (López-Feldman et al., 2021). To adjust the effect of air 
pollution exposure for potential confounders, a set of individual- and 
municipal-level covariates were used. The results revealed a positive 
relationship between PM2.5 and the mortality risk after contracting 
COVID-19. A different study investigated the risk factors (including air 
pollution) for COVID-19 mortality using the community-based UK Bio
bank cohort (Elliott et al., 2021). Univariate, multivariate logistic, and 
penalized (LASSO) regression models were fitted to COVID-19 deaths. 
Demographic, social, lifestyle, biological, medical, and environmental 
risk factors were evaluated. The results have shown that there was a 
small effect of PM pollution on the risk of death due to COVID-19 in the 
univariate analyses, but this effect was attenuated upon adjustment for 
other factors in multivariate models. Analyzing data from the Italian 
IQVIA Longitudinal Patient Database, researchers have found a positive 
association between PM10 levels and the likelihood of experiencing 
pneumonia due to COVID-19 (Pegoraro et al., 2021). A multiple 

mixed-effects logistic regression model was employed accounting for 
sex, age, and comorbidities. A more recent retrospective, 
individual-level study on hospitalized patients in Catalonia (Spain) 
revealed that long-term exposure to PM10 levels increased the number of 
severe COVID-19 cases and COVID-19 deaths (Marquès et al., 2022). 

Most of the previous studies based on individual-level data have 
focused on the associations between air pollution exposure and the 
mortality from COVID-19, rather than the severe morbidity. Addition
ally, the majority of these studies have been performed in regions with 
rather high air pollution levels and have focused on exposure to par
ticulate matter. Here, we study the differential effects of long-term 
exposure to PM2.5 and NO2 on severe morbidity and mortality risks 
from COVID-19 in various population subgroups in Switzerland – a 
country known for low air pollution levels when compared to other 
regions worldwide. To date, only one study has investigated the evolu
tion of COVID-19 in-hospital mortality in Switzerland while also ac
counting for risk factors (Roelens et al., 2021), but air pollution exposure 
was not considered. Our work aims to evaluate whether even small 
changes in air pollution levels affect the severity and lethality of the 
infection. We propose a Bayesian spatial logistic model fitted to 
individual-level data. In particular, we investigate the risk factors for 
COVID-19 case-severity and mortality during the first two major waves 
of the pandemic in Switzerland (February 2020–April 2021), focusing 
on the effect of the long-term exposure to PM2.5 and NO2 concentrations 
estimated at high spatial resolution using Bayesian geostatistical models 
for the years 2014–2019. Our modelling endeavors improve the un
derstanding of the effect of air pollution exposure on COVID-19 
morbidity and mortality. 

2. Materials and methods 

2.1. Data sources 

2.1.1. Individual level COVID-19 data 
The COVID-19 dataset covering the period: 25/02/2020–30/04/ 

2021 was obtained from the Swiss Federal Office of Public Health 
(FOPH). The dataset represents individual-level information on patients 
that were confirmed SARS-CoV-2 positive (through a PCR test) 
including: the dates of positive registered case, dates of hospitalization, 
admission to ICU, and death; sex, gender, age, smoking status, and the 
comorbidities of the patient (including diabetes, cardio, hypertension, 
chronic respiratory disease, cancer, immunosuppression, adiposity, and 
chronic kidney disease). There were only two levels for each comor
bidity: a) patient has underlying disease; and b) patient does not have 
underlying disease or is not filled. We therefore assumed that if a 
particular disease was not filled then the patient did not have it. Addi
tionally, we received information on the municipality of residence of the 
patient. 

To isolate the effect of exposure to air pollution from other con
founding factors, in addition to the individual-level patient character
istics, we extracted three categories of aggregated-level variables: (i) 
climatic data (at municipality-level); (ii) socio-economic factors (at 
municipality-level); and (iii) health-system-related factors (at cantonal 
level). There were a total of 2205 municipalities and 26 cantons in 
Switzerland in 2020. 

2.1.2. Air pollution and climatic data 
For each year between 2014 and 2019, air pollution data (PM2.5 and 

NO2 concentrations) were modelled on a European scale at 1 km2 spatial 
resolution. A Bayesian geostatistical modelling framework was applied 
following our earlier works (Beloconi et al., 2018; Beloconi and Vou
natsou, 2020, 2021). The analyses incorporated information from the 
pan-European in-situ monitoring network (Eionet), the Swiss national 
observations network (NABEL), simulations of the surface pollutant 
concentrations from the state-of-the-art chemical transport models, 
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high-resolution satellite-based proxies of PM and NO2, as well as addi
tional high-resolution products related to land-use/cover, meteorology 
and climate. More information on the models and data used is provided 
in the Supplementary Information (SI). The accuracy of the exposure 
models was evaluated using the 5-fold-cross-validation method, as dis
cussed in Beloconi and Vounatsou (2020, 2021) (Beloconi and Vou
natsou, 2020, 2021); the results for each year are presented in table A1 
(in SI). Averaged concentrations of both pollutants at 1 km2 spatial 
resolution over the period 2014–2019 are shown in Fig. 1 (top). The data 
was aggregated on a municipality scale (Fig. 1 bottom) and assigned to 
each patient living in that particular municipality. 

To adjust for potential effects of climate on the seasonality of the 
disease, we accessed the average monthly climatic data for the period 
February 2020–April 2021. In particular, we used the Google Earth 
Engine API (Gorelick et al., 2017) to process and extract the near-surface 
air temperature and the near-surface specific humidity data from the 
Famine Early Warning Systems Network (FEWS NET) Land Data 
Assimilation System (Amy McNally NASA/GSFC/HSL, 2018; McNally 
et al., 2017), as well as the precipitation from Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015). 
The climatic proxies were aggregated on a municipality scale and were 
assigned to each patient that got tested positive in the particular mu
nicipality and month. 

2.1.3. Socio-economic and health-system factors 
The socio-economic data with information available in the years 

closest to the years of the COVID-19 pandemic (i.e., 2020–2021) were 
extracted for each municipality from the Statistical Atlas of Switzerland 
compiled by the Federal Office of Statistics (FSO) (Swiss Federal office of 
statistics). The information consists of indices related to the distribution 
of the population (i.e., population count, population density, 
age-structure, and proportion of the permanent foreign population), the 
predominant national language, the urbanization status, the living 
conditions (i.e., average household size and share of households with 
five or more people), the distribution of deaths, and the economic 

indicators across municipalities (i.e., income per resident, social assis
tance rate, and number of employees in different economic sectors). 

The Statistical Atlas of Switzerland was also used to extract factors 
related to the healthcare system. This information, available only at 
cantonal level, was assigned to individuals according to their residence. 
The data is related to the capacities of the hospitals (i.e., hospitalization 
rate in acute care, number of hospital beds, length of hospital stay, 
number of patients in nursing homes, average length of stay in a nursing 
home), and the number of workers in the health sector (i.e., density of 
doctors in the outpatient sector, nursing home staff, number of em
ployees in the hospital and spitex facilities). Table A2 in the SI provides a 
detailed description of each variable. 

2.2. Statistical modelling 

The individual-level analyses were based on the subset of the pa
tients that were hospitalized; therefore, those who died outside the 
hospital were excluded from the analyses. Missing hospitalization cases 
were imputed based on the contextual information, i.e., the hospitali
zation date and the date of the admission to ICU, when available. 

Two outcomes were considered to measure the COVID-19 severity: 
(i) ICU – whether the patient went to the intensive care unit after hos
pitalization (1 – yes, 0 – no); and (ii) Death – whether the patient died 
after hospitalization (1 – yes, 0 – no). Bayesian spatial conditional 
autoregressive (CAR) logistic regression models were fitted. For patient 
i = 1,…, n and municipality j = 1,…,M , we assume that: 

yij ∼ Bernoulli
(
πij
)

log
(

πij

1 − πij

)

=XT
ij β+ωj + εj (1)  

where X is a set of the selected covariates, β are the regression co
efficients, and ωj is a random effect quantifying spatial variation among 
municipalities. We assigned a CAR prior distribution to ω =

Fig. 1. Average PM2.5 and NO2 exposure in Switzerland during 2014–2019 at 1 km2 spatial resolution (top) and aggregates at the municipality level (bottom).  
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(ω1,ω2,…,ωM)
T such as ωj

⃒
⃒
⃒
⃒ω− j ∼ N

(

ωδj ,
σ2

ω
mδj

)

, where ωδj = m− 1
δj

∑

δj∈∂j

ωj , ∂j 

and mδj represents the set of neighbors and the number of neighbors of 
municipality j, and εj is a random effect quantifying non-spatial varia
tion, εj ∼ N(0, σ2

ε ). This formulation is known as the Besag-York-Mollié 
(BYM) model (Besag et al., 1991). The deviance information criteria 
(DIC) was used to compare the goodness-of-fit of the models to their 
corresponding non-spatial analogues (i.e., the same formulation as in 
Eq. (1) but excluding the spatial random effect ωj). 

First, univariate analyses were performed to evaluate the associa
tions of ICU and death with the individual-level characteristics of the 
patients. For the multivariate modelling, several additional data clean
ing steps were undertaken. The patients with missing sex characteristics 
(3 patients) and missing municipality information (350 patients) were 
excluded. Only ~45% of the patients reported their smoking status (No/ 
Yes); therefore, this variable was excluded from the multivariate ana
lyses. The ages were grouped into four categories: (i) ≤39; (ii) 40–59; 
(iii) 60–79; and (iv) 80+ years. The comorbidities were grouped as 
follows: (i) 0; (ii) 1; (iii) 2; and (iv) 3 or more comorbidities. The 
elapsing time variable was calculated as the difference between the date 
of hospitalization and the case date (usually the date of test); if the pa
tient was already in the hospital, a value of zero was assigned. All the 
variables were standardized to reduce the computational time and to 
allow direct comparison of the covariate effects. 

The development over time of the laboratory-confirmed COVID-19 
deaths in Switzerland (depicted in Fig. 2) reveals two major waves of 
deaths due to the pandemic in 2020–2021. The first wave starts a few 
weeks after the identification of the first case, and the second one starts 
around October 1st, 2020. In order to understand the differences and 
similarities between the unexpected first wave and the second wave 
when the country’s health system was better prepared, two separate 
analyses were performed using: (i) data covering only the first wave (i. 
e., before October 2020); and (ii) the entire time series. 

To identify the factors that have an important association to each of 
the outcomes, Bayesian variable selection (BVS) was applied using sto
chastic search (George and McCulloch, 1996) and adopting a spike and 
slab prior distribution for the regression coefficients (Chammartin et al., 
2013). This method identifies regressors with a non-zero effect and it 
was chosen because it can account for potential spatial correlation in the 
data (Scheipl et al., 2012). For each predictor Xk, a binary indicator 
parameter γk is introduced with Bernoulli probability pk corresponding 
to the inclusion of the Xk in the model. For the coefficient βk, we assume 
a prior distribution to be a mixture of two normal distributions, βk ∼

δ(γk− 1)N
(
0, τ2

k
)
+ (1 − δ(γk− 1))N

(
0, ϑ0τ2

k
)
, where δ(.) is the Dirac delta 

function, that is a non-informative Normal prior distribution if Xk is 
included in the model, i.e., βk ∼ N(0, τ2

k) (slab) and an informative 
normal prior shrinking βk to zero (spike) if Xk is excluded from the 
model, i.e., βk ∼ N(0, ϑ0τ2

k), where ϑ0 = 105 is a very large number 
shrinking the variance to zero. A Beta(1,1) hyperprior was adopted for 
pk and a Gamma(0.01,0.01) for the precision parameter τ2

k . 
The BVS analyses were performed separately for each of the two 

periods defined in the previous subsection. To avoid multi-collinearity, 
when two or more predictors had an absolute correlation coefficient of 
>0.8, only one was used in the model selection. In the case of the air 
pollution estimates, also strongly intercorrelated, a separate Bayesian 
variable selection was performed, i.e., the probability of PM2.5 and NO2 
inclusion in the multivariate models was separately evaluated when 
accounting for the other predictors. 

The BVS was implemented in Just Another Gibbs Sampler (JAGS) 
(Plummer, 2003). For each analysis, 50′000 iterations and two chains 
were used. The initial iterations, equivalent to 10 per cent of the total 
iterations utilized in each chain, were discarded as burn-in. The pre
dictors with a posterior mean inclusion probability E(γk) greater than 
0.5 were selected for the final models, which were fitted using the In
tegrated Nested Laplace Approximation (INLA) algorithm (Rue et al., 
2009; Lindgren et al., 2011) implemented in the R-INLA package (Rue 
et al., 2013), available within the R software (R Core Team, 2021). 

3. Results 

3.1. Descriptive statistics and univariate analyses 

We analyzed 28540 patients hospitalized with COVID-19 infection 
from the start of the pandemic at the end of February 2020 until the end 
of April 2021. Out of these, 5849 (20.5%) patients were admitted to ICU 
and 5234 (18.3%) died. The spatial distribution of the percentage of 
people admitted to ICU and of those that died out of those hospitalized in 
each municipality is depicted in Fig. 3. 

The results of the logistic regression models measuring the univariate 
associations between the individual level characteristics and the risks of 
admission to the ICU and mortality are shown in Table 1. As expected, 
there is a gradual increase in the odds of ending up in ICU, or dying, with 
the increasing age of the patients; being male also increases these odds. 
The analysis of the comorbidities reveals that there is a significant in
crease in the odds ratios of both outcomes when a patient possesses at 
least one disease. These odds are lower for adiposity and diabetes and 
higher for cardiovascular and chronic kidney diseases as well as cancer. 
Patients that reported no previous disease had 70% lower odds of being 

Fig. 2. Development over time of the laboratory-confirmed COVID-19 deaths in Switzerland per 100′000 inhabitants.  
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in ICU and 80% lower odds of dying. The analysis on the smoking status, 
based on 45% of patients that reported it, indicated an increase in the 
odds of both outcomes, although marginally in the case of death. 

There was a difference in the severe COVID-19 outcomes during the 
first wave of the disease compared to the entire period. In particular, the 
mortality risk (MR) in the hospitalized patients during the first wave of 
the pandemic MR = 20.0% (95% CI: 18.9%, 21.2%) was higher than 
during the entire study period MR = 18.3% (17.9%, 18.8%). Similarly, 
the ICU risk was: 25.1% (23.9%, 26.3%) during the 1st wave and 20.5% 
(20.0%. 21.0%) overall. There were differences also in the potential risk 
factors. For example, the average elapsing time from the case-date to 
hospitalization date in the first wave was shorter: 1.55 (95% CI: 1.42, 
1.67) days when compared to the analyses of all the time series: 2.60 
(2.53, 2.66) days. The air temperature, calculated based on the time 
when the people were hospitalized with coronavirus, was higher on 
average during the first period: 8.89 ◦C (95% CI: 8.73 ◦C, 9.05 ◦C) versus 
5.90 ◦C (5.85 ◦C, 5.96 ◦C). 

3.2. Multivariable analysis 

Eight separate Bayesian variable selection models were fitted, cor
responding to the combination of two pollutants (PM2.5 and NO2), two 
study periods (Feb 20–Apr 21 and Feb 20–Sept 20), and two outcomes 
(admission to ICU and mortality risks). The resulting probabilities of 
inclusion for NO2 and PM2.5 variables are shown in Fig. 4; the inclusion 
probabilities for the other variables are presented in the SI 
(Tables A3–A4). Fig. 4 shows, for example, that the posterior inclusion 
probability for NO2 in modelling the admission to ICU during the 1st 
wave is 0.89, suggesting that NO2 was included in 89% of all possible 
models (around half a billion models) generated from our predictors. 

Bayesian variable selection indicates similarities between the esti
mated inclusion probabilities for some of the variables (Tables A3–A4 in 
SI). In particular, sex, age, comorbidities, and language of the region 
play an important role in modelling both outcomes for both study pe
riods. However, a few other variables are important when analyzing 
only the first period and are not important during the entire study 
period, and vice versa. Thus, the number of hospital beds, the elapsing 

Fig. 3. The percentage of patients admitted to the intensive care unit (top) or died (bottom) out of all hospitalized patients in each municipality.  
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time, and the number of spitex staff are important variables in modelling 
both outcomes only when analyzing all cases, i.e., during the entire 
study period. Similarly, the number of nursing home staff is selected to 
be important in modelling deaths only during the entire study period. 
On the other hand, the climatic and air pollution variables do not seem 
important when analyzing all cases, as indicated by the low inclusion 
probability; however, the BVS reveals their importance when modelling 

the data covering only the first period. In particular, both NO2 and air 
temperature were selected as important predictors for ICU and Deaths, 
whereas the PM2.5 variable had high probability of inclusion when 
modelling the mortality risk. 

Most socio-economic variables, besides the language of the region, 
are not statistically important (Tables A3–A4 in SI). From the indices 
related to the distribution of the population, the urbanization status, and 

Table 1 
Estimates of the univariate associations between the risks of admission to the intensive care unit (ICU) or death and individual level characteristics of the patients based 
on logistic regression. OR – odds ratio; BCI – Bayesian credible intervals.  

Variable Category Total ICU ICU OR [95% BCI] Deaths Deaths OR [95% BCI] 

Age(years) ≤39 1862(6.5%) 75(4%) 1.00 13(0.7%) 1.00  
40–59 5362(18.8%) 439(8.2%) 2.12 [1.65, 2.73] 186(3.5%) 5.11 [2.91, 8.99]  
60–79 12103(42.4%) 2470(20.4%) 6.11 [4.83, 7.73] 2025(16.7%) 28.58 [16.53, 49.41]  
80+ 9213(32.3%) 2865(31.1%) 10.75 [8.5, 13.6] 3010(32.7%) 69.02 [39.93, 119.29] 

Sex Male 16357(57.3%) 3885(23.8%) 1.00 3401(20.8%) 1.00  
Female 12180(42.7%) 1963(16.1%) 0.62 [0.58, 0.66] 1833(15%) 0.67 [0.63, 0.72] 

Diabetes Unknown 22081(77.4%) 3994(18.1%) 1.00 3566(16.1%) 1.00  
Yes 6459(22.6%) 1855(28.7%) 1.82 [1.71, 1.94] 1668(25.8%) 1.81 [1.69, 1.93] 

Cardio Unknown 18216(63.8%) 2464(13.5%) 1.00 1907(10.5%) 1.00  
Yes 10324(36.2%) 3385(32.8%) 3.12 [2.94, 3.31] 3327(32.2%) 4.07 [3.82, 4.33] 

Hypertension Unknown 15362(53.8%) 2203(14.3%) 1.00 1842(12%) 1.00  
Yes 13178(46.2%) 3646(27.7%) 2.28 [2.15, 2.42] 3392(25.7%) 2.54 [2.39, 2.71] 

Chronic Unknown 24314(85.2%) 4517(18.6%) 1.00 3978(16.4%) 1.00 
Respiratory Disease Yes 4226(14.8%) 1332(31.5%) 2.02 [1.88, 2.17] 1256(29.7%) 2.16 [2.01, 2.33] 
Cancer Unknown 25669(89.9%) 4794(18.7%) 1.00 4181(16.3%) 1.00  

Yes 2871(10.1%) 1055(36.7%) 2.53 [2.33, 2.75] 1053(36.7%) 2.98 [2.74, 3.23] 
Immunosup- Unknown 27196(95.3%) 5412(19.9%) 1.00 4813(17.7%) 1.00 
pression Yes 1344(4.7%) 437(32.5%) 1.94 [1.72, 2.18] 421(31.3%) 2.12 [1.88, 2.39] 
Adiposity Unknown 26291(92.1%) 5262(20%) 1.00 4731(18%) 1.00  

Yes 2249(7.9%) 587(26.1%) 1.41 [1.28, 1.56] 503(22.4%) 1.31 [1.18, 1.46] 
Chronic Unknown 24218(84.9%) 4255(17.6%) 1.00 3613(14.9%) 1.00 
Kidney Disease Yes 4322(15.1%) 1594(36.9%) 2.74 [2.56, 2.94] 1621(37.5%) 3.42 [3.19, 3.67] 
Other Unknown 21784(76.3%) 3886(17.8%) 1.00 3408(15.6%) 1.00 
Disease Yes 6756(23.7%) 1963(29.1%) 1.89 [1.77, 2.01] 1826(27%) 2.00 [1.87, 2.13] 
No Disease Unknown 24717(86.6%) 5538(22.4%) 1.00 5035(20.4%) 1.00  

Yes 3823(13.4%) 311(8.1%) 0.31 [0.27, 0.35] 199(5.2%) 0.21 [0.19, 0.25] 
Smoking No 10883(85.1%) 1480(13.6%) 1.00 1242(11.4%) 1.00  

Yes 1907(14.9%) 303(15.9%) 1.20 [1.05, 1.37] 246(12.9%) 1.15 [0.99, 1.33]  

Fig. 4. Probability of inclusion for NO2 and PM2.5 variables based on the Bayesian variable selection process in modelling the admission to the intensive care unit 
(ICU) and death during the 1st wave of the pandemic and during the entire study period. The solid horizontal line corresponds to a probability of inclusion of 50%. 
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the economic indicators across municipalities, only the variable indi
cating the share of households with five or more people in total private 
households appears to have an inclusion probability higher than 50% 
when modelling admission to ICU. 

A total of 16 distinct models were fitted, corresponding to the com
bination of two pollutants, two temporal scales of the analysis, two 
outcomes, and two types of models (independent and spatial) with 
predictors selected via BVS. The results of the spatial BYM models are 
shown in Tables 2 and 3, for models including either the NO2, or PM2.5 
predictor, respectively. The results of the independent (i.e., the non- 
spatial model) formulations are presented in the SI (Tables A5–A6). As 
indicated by the lower DIC values, all the spatial models outperform the 
independent formulations. 

The inferences on the individual level characteristics in the multi
variate spatial conditional autoregressive models are similar to the 
univariate analysis. Thus, in each model, irrespective of the temporal 
scale or the included pollutant, the male sex and the higher age of the 
patients indicate increased odds of entering the intensive care unit and 
of dying after contacting coronavirus infection (Tables 2 and 3). 
Furthermore, the same tables show that the higher the number of 
comorbidities, the higher the risks, as indicated by a gradual increase in 
the odds ratios for 1, 2, and 3 or more comorbidities when compared to 
none. The odds ratios in the French regions are higher than in the 
German part of Switzerland, whereas the differences with the Italian 
region are not statistically important. 

As already mentioned above, the other factors, selected as important 
in the BVS models, differ between the analyses of only the 1st wave of 
the pandemic and the entire time series. Thus, higher NO2 concentra
tions increase the odds of being in the ICU and of dying during the first 
study period, whereas increased PM2.5 levels increase only the mortality 
risks. The magnitude of the air pollution-related regression coefficients 
is lower than that of the individual risk factors. The analyses based on 
the data covering only the first wave of COVID-19 show that higher air 
temperature leads to decreased risks of both outcomes and that in mu
nicipalities where the share of households with five or more people in 
total private households is high, the odds of ICU stay increase. On the 
other hand, the models for the entire time series show the important 
associations with the health-system factors. In particular, the higher the 
elapsing time and the number of hospital beds in a particular canton, the 
higher the odds of ICU stay and mortality, whereas there is a negative 
association between the number of employees in spitex and in nursing 
homes with the odds of the above outcomes (Tables 2 and 3). 

4. Discussion 

The present study assesses the relationship between the long-term 
exposure to air pollution and the morbidity and mortality risk of the 
COVID-19 infection in Switzerland. The country represents a low-level 
air pollution setting and has low population density, which may affect 
the pandemic impact. Analyzing individual level data, we quantify the 
effects of air pollution during different waves of the pandemic, taking 
into account individual-level risk factors and climatic, socio-economic, 
and health system determinants. The results indicate that the long- 
term exposure to PM2.5 and NO2 was related to the severity of the dis
ease only during the first major wave of the infection when the national 
health system was not fully prepared to face the pandemic. 

Bayesian variable selection, performed separately for each outcome, 
pollutant and study period, identified predictors that are associated with 
the severity of the disease in each case. The individual-level character
istics are important factors related to the COVID-19 morbidity and 
mortality in all the models. In particular, consistently with the other 
studies worldwide (Bourdrel et al., 2021), we estimated a gradual in
crease in the odds of entering the intensive care unit after contacting 
coronavirus infection and the odds of dying, with the increasing age of 
the patients; being male also increases these odds. The analysis of the 
comorbidities reveals that there is a significant increase in the odds 

ratios of both ICU and death when the patient has at least one disease, 
whereas the multivariate models show that the higher the number of 
comorbidities, the higher the odds of COVID-19 severity. 

In contrast to the effects of the individual level characteristics, which 
are statistically important in all the tested models, the other predictors 
are related to the severity and the lethality of the disease differently 
during various time points. In particular, long-term exposure to air 

Table 2 
The parameter estimates (posterior medians and 95% Bayesian credible in
tervals of odds ratios) of the BYM models fitted to the intensive care unit (ICU) 
and death data during the first study period (i.e., 1st wave of the pandemic) and 
during the entire study period, based on the Bayesian variable selection per
formed with the inclusion of the NO2 covariate. Ref – reference value; DIC – 
deviance information criteria.  

Variable All cases 
(ICU) 

All cases 
(Deaths) 

1st wave 
(ICU) 

1st wave 
(Deaths) 

Number of hospital beds 
(in canton of residence) 

1.09 
(1.02, 
1.16) 

1.08 (1.00, 
1.16)   

Average length of hospital 
stay (in canton of 
residence) 

1.13 
(1.02, 
1.25)    

Number of nursing home 
staff employees (in 
canton of residence)  

0.95 (0.87, 
1.04)   

Number of spitex staff 
employees (in canton of 
residence) 

0.89 
(0.80, 
0.99) 

0.98 (0.88, 
1.10)   

Elapsing time between the 
case date and the 
hospitalization 

1.07 
(1.04, 
1.11) 

1.09 (1.05, 
1.12)   

Share of households with 
five or more people in 
total private households 
(in municipality of 
residence)   

1.17 
(1.06, 
1.29)  

Average air temperature 
during hospitalization 
(in residence 
municipality)   

0.75 
(0.69, 
0.82) 

0.71 
(0.64, 
0.78) 

Average NO2 exposure 
during 2014–2019 (in 
residence municipality)   

1.17 
(1.05, 
1.30) 

1.15 
(1.03, 
1.27) 

Sex: Male 1.75 
(1.63, 
1.87) 

1.67 (1.55, 
1.79) 

1.87 
(1.60, 
2.19) 

1.68 
(1.41, 
2.00) 

Age groups: Ref (Age ≤ 40) 
40–59 1.51 

(1.16, 
1.99) 

2.91 (1.72, 
5.41) 

1.70 
(1.09, 
2.78) 

1.56 
(0.67, 
4.50) 

60–79 2.88 
(2.25, 
3.75) 

10.30 
(6.22, 
18.85) 

2.75 
(1.79, 
4.42) 

5.52 
(2.49, 
15.31) 

80+ 4.78 
(3.73, 
6.25) 

24.16 
(14.58, 
44.23) 

4.12 
(2.66, 
6.68) 

14.54 
(6.54, 
40.41) 

Number of comorbidities: Ref (Comorbidities = 0) 
1 1.69 

(1.48, 
1.94) 

2.10 (1.77, 
2.50) 

1.48 
(1.14, 
1.94) 

2.91 
(1.92, 
4.59) 

2 2.57 
(2.26, 
2.94) 

3.43 (2.92, 
4.07) 

2.42 
(1.86, 
3.17) 

5.64 
(3.76, 
8.82) 

3 or more 5.51 
(4.86, 
6.26) 

7.91 (6.76, 
9.32) 

5.51 
(4.25, 
7.21) 

13.14 
(8.82, 
20.48) 

Main language of the 
residence municipality: 

Ref (Language = German) 

French 1.63 
(1.28, 
2.08) 

1.67 (1.25, 
2.22) 

1.32 
(1.01, 
1.77) 

1.35 
(1.02, 
1.70) 

Italian 1.04 
(0.62, 
1.72) 

1.18 (0.64, 
2.16) 

1.00 
(0.63, 
1.42) 

1.05 
(0.72, 
1.40) 

DIC 23530.98 20627.46 4439.24 3534.78  
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pollution appears to be an important risk factor for the severity of the 
disease only when analyzing data during the first major wave of infec
tion in Switzerland (i.e., before October 2020), as indicated by the high 
inclusion probabilities estimated using Bayesian variable selection 
models only during this period. Multivariate BYM spatial models indi
cate that long-term exposure to both NO2 and PM2.5 is associated with an 
increased risk of dying after contracting COVID-19, while exposure to 

NO2 also increases the odds of entering ICU. On the other hand, the BYM 
models indicate that during the first wave, the increase in the surface air 
temperature decreases the odds of both ICU and death. However, the 
magnitude of air pollution and climate effects is lower than that of 
known individual risk factors. For PM2.5 the result is consistent with 
findings put forth in the study based on individual-level data in Mexico 
City (López-Feldman et al., 2021), which estimated a positive relation
ship between PM2.5 and the probability of dying from COVID-19 
adjusting for individual- and municipal-level characteristics. Nonethe
less, the study conducted in Catalan hospitals discovered that long-term 
exposure to PM10 is a more important predictor of COVID-19 severity 
and mortality than some of the comorbidities, such as COPD/asthma, 
diabetes, or obesity (Marquès et al., 2022). As for the ambient temper
ature, a significant negative association between the increased temper
ature levels and the subsequent COVID-19 mortality was also previously 
estimated in China (Zhu et al., 2021) and the US (Christophi et al., 
2021). 

The inference regarding the important associations with the air 
pollution and the air temperature when modelling the entire time series 
(i.e., February 2020–April 2021) is different to the one discussed in the 
previous paragraph. The results of the variable selection have shown 
that, when modelling both major waves of the pandemic in Switzerland, 
these important associations are attenuated. In this case, the BVS has 
indicated a higher inclusion probability in the models of the parameters 
related to the health-system of the country. In particular, we estimated 
higher odds of ICU stay or dying in cantons with a higher number of 
hospital beds; a plausible explanation is that some specific hospitals 
were designated to treat patients infected with the coronavirus infec
tion. On the other hand, the cantons with more employees in the spitex 
and in the nursing homes appear to be associated with lower odds of 
both outcomes. This may be explained by the fact that, in this case, 
people were dying in these facilities without being hospitalized, and 
therefore they were not included in our analyzed dataset. Additionally, 
we found that an increase in the elapsing time, which on average was 
higher during the entire study period, increased the risks of ICU and 
mortality, an association that was not found important when modelling 
only the 1st wave of the pandemic. These findings suggest that changes 
in disease management during the second wave of the pandemic, 
including changes in notification and testing criteria, in the probability 
of getting diagnosed and hospitalized, or in people’s health seeking, are 
likely to confound the effects of climate or air pollution on the severity of 
COVID-19. Interestingly, the estimated odds ratios for the individual 
level characteristics remained stable during the two study periods. Non- 
significant association between the NOx, PM2.5 or PM10 and the risk of 
the COVID-19 deaths, when adjusting for other patient characteristics, 
was estimated in the individual-level analysis of the UK Biobank cohort 
(Elliott et al., 2021). 

Similarly to our estimates, Roelens et al. (2021) found that the 
overall COVID-19 in-hospital mortality in Switzerland was lower during 
the second wave than in the first wave, a decrease that was not explained 
by changes in the demographic characteristics of the patients. The au
thors attributed these temporal differences to the development of case 
management, treatment strategy, hospital burden, and 
non-pharmaceutical interventions in the country (Roelens et al., 2021). 

Our results suggest that very few socio-economic factors at the mu
nicipality level are important in modelling the severity of the COVID-19 
infection. A possible explanation is that assigning the municipality level 
averages to each individual living in this municipality may not reflect 
the true status of the particular patient. In fact, of the indices related to 
the distribution of the population, the urbanization status, and the 
economic indicators, only the variable quantifying the share of house
holds with five or more people in total private households is statistically 
important when modelling admission to ICU. Besides that, the language 
of the region is related to both outcomes. Thus, in the French region of 
Switzerland, the odds of dying or ending up in ICU after hospitalization 
with COVID-19 are higher than in the German part. Different language 

Table 3 
The parameter estimates (posterior medians and 95% Bayesian credible in
tervals of odds ratios) of the BYM models fitted to the intensive care unit (ICU) 
and death data during the first study period (i.e., 1st wave of the pandemic) and 
during the entire study period, based on the Bayesian variable selection per
formed with the inclusion of the PM2.5 covariate. Ref – reference value; DIC – 
deviance information criteria.  

Variable All cases 
(ICU) 

All cases 
(Deaths) 

1st wave 
(ICU) 

1st wave 
(Deaths) 

Number of hospital beds 
(in canton of residence) 

1.08 
(1.02, 
1.15) 

1.08 (1.00, 
1.16)   

Number of nursing home 
staff employees (in 
canton of residence)  

0.95 (0.87, 
1.04)   

Number of spitex staff 
employees (in canton of 
residence) 

0.93 
(0.85, 
1.03) 

0.98 (0.88, 
1.10)   

Density of doctors in the 
outpatient sector (in 
canton of residence)   

1.07 
(0.92, 
1.22)  

Elapsing time between the 
case date and the 
hospitalization 

1.07 
(1.04, 
1.11) 

1.09 (1.05, 
1.12)   

Share of households with 
five or more people in 
total private households 
(in municipality of 
residence) 

1.03 
(0.98, 
1.08)  

1.12 
(1.01, 
1.23)  

Average air temperature 
during hospitalization 
(in residence 
municipality)   

0.78 
(0.71, 
0.84) 

0.70 
(0.63, 
0.77) 

Average PM2.5 exposure 
during 2014–2019 (in 
residence municipality)    

1.16 
(1.04, 
1.28) 

Sex: Male 1.74 
(1.63, 
1.87) 

1.67 (1.55, 
1.79) 

1.88 
(1.61, 
2.20) 

1.68 
(1.41, 
2.00) 

Age groups: Ref (Age ≤ 40) 
40–59 1.51 

(1.16, 
1.99) 

2.91 (1.72, 
5.41) 

1.72 
(1.10, 
2.80) 

1.55 
(0.66, 
4.47) 

60–79 2.88 
(2.25, 
3.75) 

10.30 
(6.22, 
18.85) 

2.75 
(1.79, 
4.42) 

5.49 
(2.48, 
15.24) 

80+ 4.79 
(3.73, 
6.26) 

24.16 
(14.58, 
44.23) 

4.12 
(2.66, 
6.68) 

14.45 
(6.50, 
40.16) 

Number of comorbidities: Ref (Comorbidities = 0) 
1 1.69 

(1.48, 
1.94) 

2.10 (1.77, 
2.50) 

1.50 
(1.15, 
1.96) 

2.93 
(1.93, 
4.62) 

2 2.57 
(2.26, 
2.94) 

3.43 (2.92, 
4.07) 

2.44 
(1.87, 
3.20) 

5.66 
(3.78, 
8.86) 

3 or more 5.50 
(4.86, 
6.26) 

7.91 (6.76, 
9.32) 

5.51 
(4.25, 
7.22) 

13.21 
(8.86, 
20.58) 

Main language of the 
residence municipality: 

Ref (Language = German) 

French 1.70 
(1.33, 
2.15) 

1.67 (1.25, 
2.22) 

1.27 
(0.95, 
1.82) 

1.29 
(0.99, 
1.62) 

Italian 1.24 
(0.77, 
1.99) 

1.18 (0.64, 
2.16) 

0.90 
(0.53, 
1.37) 

0.94 
(0.67, 
1.27) 

DIC 23536.84 20627.46 4442.47 3533.90  
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regions in Switzerland reflect cultural and lifestyle differences and have 
been shown to be related to the geographical variation of other health 
outcomes in the country, including cancer (Jürgens et al., 2013) and 
other cause-specific mortality (Chammartin et al., 2016). Another 
plausible explanation is that people in the French-speaking part were 
more likely to die at the hospital rather than at the nursing home. 

The analyses performed here are based only on the individuals that 
were hospitalized. Many COVID-19 deaths in Switzerland occurred 
either at home or at nursing homes and were not included in the current 
analyses. To investigate potential selection bias due to missing deaths, 
we assessed the relationship between the geographical distribution of 
the proportion of deaths outside the hospital and the distribution of NO2 
and PM2.5 concentrations. This analysis was only possible during the 1st 
major wave because there is almost a 2-year delay in the publication of 
the cause-specific mortality data in Switzerland. For each municipality, 
we used the total number of COVID-19 deaths from the FSO database 
and removed the deaths in the hospital (from the hospital database) to 
calculate the proportion of deaths outside the hospital. Logistic regres
sion models were fitted to the above proportion, with independent 
variables being the average concentrations (at municipality level) of 
NO2, PM2.5, or both pollutants together. The findings show that during 
the 1st wave of the pandemic, approximately 46.7% of people died in 
hospitals; however, the distribution of the excluded deaths is unrelated 
to the distribution of the exposure(s), and thus should not lead to any 
selection bias (Table A7 in SI). 

A comparison between the statistical models with and without the 
structured spatial random effect revealed that all the spatial models 
outperformed (in terms of DIC) the corresponding independent formu
lations. When analyzing spatially varying exposures that do not have 
replicates over time, incorporation of the spatial random effect could 
generally bias the fixed effects of interest (Hodges and Reich, 2010). 
Several methods have been proposed to address this so-called spatial 
confounding, such as the restricted geostatistical regression (Hanks 
et al., 2015) or the spatial orthogonal centroid “k”orrection model 
(Prates et al., 2019). However, in our case, the regression coefficients 
estimated using the spatial models (Tables 2 and 3) were very similar to 
the ones estimated using the models without the spatial random effects 
(Tables A5 and A6 in SI) for both PM2.5 and NO2 concentrations, indi
cating no evidence of spatial confounding. 

Many variable selection methods, including some spike and slab 
approaches, may under select covariates that are correlated with each 
other (Delattre et al., 2022). Following up on a suggestion made by a 
reviewer, we have fitted additional models, that included all the cova
riates (full models) and compared them to the results obtained using 
BVS. We focused on the deaths and ICU outcomes during the first wave, 
where a non-zero effect of pollutants was estimated. The results have 
shown that, indeed, there was some under selection of the covariates. In 
particular, NO2 models fitted to the death outcome identified three 
statistically important covariates (i.e., the 95% BCIs did not include 
zero) in the full formulation that were not selected by BVS, namely: (1) 
number of employees in the 1st economic sector; (2) proportion of the 
permanent foreign population in the total permanent resident popula
tion; and (3) social assistance rate. The first two had an important 
positive association with the probability of dying from COVID-19, and 
the third one had a negative association (i.e., a protective effect). To 
ensure that no statistically important covariate was excluded from the 
final models, we fitted a third set of models that incorporated variables 
selected through BVS and the ones identified by the full model (as 
mentioned above). The results (Table A8 in SI) have shown that, despite 
the fact that DIC slightly improved when compared to BVS analysis 
(3530.7 vs. 3534.8), out of these three additional covariates, only one 
(the social assistance rate) maintained a statistically important effect. 
Furthermore, the average effect of NO2 (and most of the other variables) 
did not change, but only the uncertainty increased (i.e., wider 95% 
BCIs), as more parameters were used to estimate the effect. Very similar 
results were observed in the NO2 models fitted to the ICU outcome 

(Table A9 in SI), and in the PM2.5 models fitted to both death (Table A10 
in SI) and ICU (Table A11 in SI) outcomes during the 1st wave of 
COVID-19. 

It is important to note that the individual-level demographic, social, 
and biological characteristics, which are typically available in cohort 
data analyses (Elliott et al., 2021), were not recorded in the current 
COVID-19 dataset. In addition, due to the lack of information on pa
tients’ home addresses, we have assigned to each individual the average 
air pollution exposure in the reported municipality of residence during 
the 6 years preceding the pandemic. This is a strong limitation since we 
do not know whether the patient was living in that municipality during 
all this time. Furthermore, here we looked at the long-term air pollution 
exposure preceding the pandemic and ignored the short-term exposure, 
which has a clear seasonal pattern in Europe, both before and during the 
pandemic (Beloconi et al., 2021; Barré et al., 2021). It was previously 
shown that COVID-19 exhibits seasonal behavior and that both air 
pollution and climate can influence the transmission of the disease 
(Coccia, 2022). Nonetheless, in the absence of individual exposures, this 
is among the very few studies that assess the association of COVID-19 
severity and air pollution using individual information on the infec
tion course, demographic characteristics, and comorbidities. 

In conclusion, our study of the ongoing COVID-19 epidemic identi
fied differences in the associations between the severity of the disease 
and various risk factors during the first wave. The findings suggest that 
air pollution burden has increased the risks of COVID-19 in the begin
ning of the pandemic but not during the whole period, which is influ
enced by the second wave, when the national health system was better 
prepared to treat the patients. The results of this work can lead to an 
improved understanding of the effect of air pollution exposure on 
COVID-19 morbidity and mortality in Switzerland and beyond. 
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Borrallo, R.M., Miret, M., Näf, S., Pardo, A., Perea, V., Pérez-Bernalte, R., Ramírez- 
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