
– 

 

 

Soil Organic Carbon Stocks in 

Forests of Switzerland  

Update of soil organic carbon stock estimation for the 

national greenhouse gas inventory  

 

 

for the Federal Office for the Environment FOEN 

Order number: 110012004 / 8T20/19.0102PJ/0001 

Project grant number: A200.0001  

Contract number: 19.0102.PJ / 1DE550693 

 

 

Dr. Madlene Nussbaum, Prof. Dr. Stéphane Burgos 

18 August 2021 (revised version) 

Bern University of Applied Sciences (BFH) 

School for Agricultural, Forestry and Food Sciences (HAFL) 

 



Contents

Abstract 2
1 Introduction 3
2 Materials and Methods 4

2.1 Mapping target area and 100x100m AREA block cells 4
2.2 SOC stock data 4
2.3 Selection of validation set 4
2.4 Environmental covariates 5
2.5 Model fitting 5
2.6 Validation statistics 6
2.7 Regional means and standard errors 6

3 Results and Discussion 8
3.1 Models for SOC stock in 0–30 cm and 0–100 cm depth 8
3.2 Evaluation of model performance 9
3.3 Predictions of SOC stock 10

4 Conclusion 16
List of Figures 17
List of Tables 17
Literature 18

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 1



Abstract

TheSwiss greenhouse gas inventory (GHGI), submitted under theUnitedNations FrameworkConvention onClimate
Change and under the Kyoto Protocol, reports annually on soil organic carbon (SOC) stock in forests. First SOC stock
estimates were published for Swiss forests by Perruchoud et al. (2000) and later by Nussbaum et al. (2012, 2014a)
based on the extensive soil data base of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).
Since then additional 1 060 sites were either sampled by WSL or soil profile data of comparable quality were as-
sembled from projects of Cantons. The substantially larger dataset allowed to update the SOC stock currently used
by GHGI.

Based on the new dataset, we modelled SOC stock in the mineral soil for two depth compartments: 1) mineral soil
0–30 cm and 2) mineral soil 0–100 cm. We used a comprehensive set of 177 covariates representing terrain, climate,
vegetation and geological variation throughout the forests of Switzerland. Relations between SOC stock and cov-
ariates were established by amachine learning procedure called random forest (RF). A previous study showed good
predictive performance of RF for other soil properties from the same forest soil dataset. RF is a procedure that com-
bines a large number of regression trees and is capable of handling correlated covariates and of building non-linear
dependencies. We used a covariate selection approach that removed covariates with low importance and high cor-
relation to other important covariates. The final models retained 40 and 45 covariates for SOC stock in 0–30 cm and
0–100 cm, respectively. These models were used to compute SOC stock prediction maps for the forested area at a
resolution of 25 m pixel width.

Model prediction accuracy compared to the same independent validation dataset of 175 sites used in 2012 remained
about the same. Coe�icient of determinationR2was 0.30 (0–30 cm) and0.40 (0–100 cm) indicatingmoderatemodel
performance.

GHGI reports regionalmeanSOCstock estimates alongwith standard errors for altitude stratifiedproduction regions
of theNational Forest Inventory (NFI). Theses regionswere further split by the categories productive and unproduct-
ive forests of Swiss Land Use Statistic (AREA). Besides, each 100x100 m block cell of the AREA forest categories were
also used.

SOC stock estimates per stratified NFI region and for each AREA block cell were computed as mean of the predicted
25 m-pixels within this region. Standard errors had to be approximated because RF does not consider the local
similarities of predicted values (spatial autocorrelation) within a region. We used an approximation approach that
corrects the RF standard errors by a simulation of spatial autocorrelation.

The total SOC stock for Swiss forests was estimated to 81.4 t ha−1 (SE 3.0) in 0–30 cm and to 123.3 t ha−1 (SE 4.9) in
the first 100 cm of the mineral soil. These estimates compared well to the previous study of 2012. Estimates for the
altitude stratified NFI regions di�ered where there were a large number of newly sampled sites (Central Plateau) or
where large SOC stock and simultaneously low observation density was found (Southern Alps).
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1 Introduction

TheSwiss greenhouse gas inventory (GHGI), submitted under theUnitedNations FrameworkConvention onClimate
Change and under the Kyoto Protocol, reports annually on changes of organic carbon (OC) stock in forests. The
National Forest Inventory (NFI) o�ers comprehensive data to quantify the living and dead forest biomass and its
change in time. Estimating stockof soil organic carbon (SOC) in forests ismoredi�icult because the variablesneeded
to quantify stock vary strongly in space and precise quantification of some of them is very costly. First SOC stock
estimateswere published for the Swiss forests by Perruchoud et al. (2000) and later byNussbaumet al. (2012, 2014a)
based on the extensive soil data base of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

Since then additional sites were sampled by WSL and soil profile data of comparable quality from projects of Can-
tons have been assembled. Additional 1 060 locations became available to allow an update of the calculations by
Nussbaum et al. (2012, Table 5 based on 1 033 locations) currently used in the GHGI.

The project BOWA-CH (Walthert et al., 2015; Hertzog, 2017; Nussbaum et al., 2019; Baltensweiler et al., 2021, submit-
ted) used this data set to create overviewmaps of a wide range of soil properties at a resolution of 25m pixel width.
The soil properties relevant to calculate SOC stock were: SOC content, gravel content and density of the fine soil
fraction (≤ 2 mm) all predicted at depth intervals of 0–5, 5–15, 15–30, 30–60 and 60–100 cm.

The spatial prediction were finally computed by machine learning (ML) approaches. The used ML methods were
able to handle large sets of correlated covariates and allowed for batch processing for many responses. Moreover,
superior model performance was expected (e.g. Nussbaum et al., 2018) compared to the external-dri� kriging used
by Nussbaum et al. (2012). Baltensweiler et al. (2021, submitted) compared six ML approaches and the combination
of these in a model averaging scheme. Among these six approaches was an automatic model selection procedure
for the same type of external-dri� kriging as used in 2012. The algorithm random forest (RF) overall outperformed
the other approaches somewhat, hence RFmodels were used to computed the predictive maps.

RF allowed directly to quantify local uncertainty by using quantile regression forest, a generalization of RF (Mein-
shausen, 2006). Baltensweiler et al. (2021, submitted) computed 90 %-prediction intervals for each predicted grid
node (pixel) of the final map. GHGI reporting needs regional aggregation of these pointwise uncertainties. Nuss-
baum et al. (2012) applied block kriging that integrated local variances predicted by external-dri� kriging. Block
kriging mean and standard error estimates allowed to consider the spatial autocorrelation within the regions.

Opposed tokrigingapproaches, RF isnotper seaspatialmethodanddoesnotdirectlymodel spatial autocorrelation.
Each prediction and its predictive distribution is generated independently from nearby locations. To overcome the
lack of modelled spatial autocorrelation an approximation to estimate regional standard errors had to be found.

The current study aimed to

1. create spatial predictions for SOC stock for 0–30 and 0–100 cm for the Swiss forested area following the approach
of Baltensweiler et al. (2021, submitted) and by using the soil dataset used therein,

2. aggregate mean predictions of the following regions

– production regions of the national forest inventory (NFI) stratified by altitude as in Nussbaum et al. (2012),
– NFI production regions subdivided into the GHGI reporting classes ’productive forests’ (CC12) and ’unproduct-
ive forests’ (CC13),1

– each 100 m-raster cell of the Swiss Land Use Statistic (AREA) assigned to GHGI classes ’reforestations’ (CC11),
’productive forests’ (CC12) and ’unproductive forests’ (CC13),

3. approximate standard errors to the regional mean predictions from quantile regression forest predictive distri-
butions for the same regions as in (2).

In the subsequent text we refer to the previous GHGI SOC stock estimates described in the technical report by Nuss-
baum et al. (2012), then published as peer-reviewed article (Nussbaum et al., 2014b) and eventually included in a
PhD thesis (Nussbaum, 2017, chapter 5) by study or estimates from 2012.

1The GHGI reporting class CC11 (reforestations) was dropped due to its small area covered.
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2 Materials and Methods

2.1 Mapping target area and 100x100m AREA block cells

The study area represented the forested area of Switzerland as definedby theNational Forest Inventory (NFI, Brändli
et al., 2020) covering about 30% of the surface of Switzerland. A brief pedological description of the study area can
be found in Nussbaum et al. (2012, 2014b) and Baltensweiler et al. (2021, submitted).

Spatial predictions were calculated on a 25 m grid with the centres of these grid nodes being inside the NFI forest
definition. Theaggregationon100x100mblockcellswasdonebasedon theSwissLandUseStatisticVersionAREA04/09
for the Kyoto09-Codes CC11 (919 cells), CC12 (1 132 603 cells) and CC13 (106 130 cells, data delivery Martin Linden-
mann, Sigmaplan, 02.09.2020, filename AREA_sample_Befliegung3_Juli_2020.csv). As the forest definition of NFI
and AREA di�er, not each AREA cell contained predictions, hence no mean SOC stock could be calculated (2.8 % of
AREA cells).

2.2 SOC stock data

The 1 033 locations used in Nussbaum et al. (2012) were complemented by 1 060 locations (Hertzog, 2017; Baltens-
weiler et al., 2021, submitted). About 45 % of new sites (475) were located on the Central Plateau below 600 m asl
(Figure 1, Table 4). Another 80–100 sites were each at medium altitudes on the Central Plateau, lower altitudes in
the Jura mountains and above 1 200 m asl in the Alps. Although a majority of new locations was on lower altitudes
the dataset had been complemented throughout the forested area of Switzerland includingmany remote locations.

On average, there were about 16.5 observations per 100 km2 forested area. Soil sampling locations are, however,
clustered on the Central Plateau while for example Western parts of Jura and upper valleys in Ticino remain under-
represented in the dataset.

SOC stockwas again calculated for each soil profile location as described inNussbaumet al. (2012, section 2.2.1). For
a description of the soil properties SOC content, density of fine soil fraction and gravel content we refer to Baltens-
weiler et al. (2021, submitted). Organic horizons (L, O, F, H) were excluded from the SOC stock calculations. Only few
new samples with SOC measurements were available to allow for a renewal of stock estimates compared to 2012.
Sites with peat layers (T horizons) were rare as well (12 sites) and were excluded.

Table 1 shows summary statistics for the validation and calibration sites of each response. As in 2012 the calibration
datasets had a wider data range compared to the SOC stock used for model validation. The mean of the calibration
set was smaller compared to 2012. Stocks in both depth were strongly correlated (Spearman correlation r = 0.90).
Both responses were positively skewed (skewness 2.2 and 3.1, respectively).

We refrained from response transformationwith e.g. natural logarithm. Random forest (RF, subsection 2.5) does not
assume Gaussian error distributions and is less sensitive to skewed data than linear regression based approaches.
Tests on similar data sets showed no advantage of log-transformation (Spiess, 2016) and correct unbiased back-
transformation remains unclear for RF predictions.

Table 1: Descriptive statistics of SOC stock calculated for themineral topsoil (0–30 cm) and themineral soil to 100 cmdepth [t ha−1] (vs: validation
data set n = 175, cs: calibration data set n = 1 918).

SOC 0–30 cm SOC 0–100 cm

cs vs cs vs

minimum 0.00 26.56 0.00 27.95

maximum 394.05 226.01 963.92 569.68

mean 63.52 80.91 92.91 132.92

median 52.89 73.01 76.47 111.84

standard deviation 41.54 41.23 67.79 83.30

2.3 Selection of validation set

Baltensweiler et al. (2021, submitted) used the validationdataset formedbyHertzog (2017). The validation siteswere
chosen from the enlarged dataset with the same approach as in Nussbaum et al. (2012). Isolated profile locations
had higher probability to be selected as opposed to spatially clustered soil profile sites.
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Figure 1: Locations of the 2 093 soil profiles and Swiss forest area (green) subdivided into previous and new calibration and validation sets.

To allow for a direct comparison of the model results to the previous estimates for the GHGI we decided to use the
same validation set of 175 locations as employed in the study of 2012. The dataset for model calibration comprised
the remaining n = 1 918 sites.

In 2012 themodel selection was based on the calibration sites. Once themodel structure had been found themodel
parameter (regression coe�icients and variogram parameters) were re-estimated with the combined data of calib-
ration and validation sites. We refrained from using the validation sites for parameter re-estimation in the present
study. RF selected the covariates and built the model structure directly from the calibration data. Using the com-
bineddatasetwould result in di�erent non-validatedmodel structure. For two subregions in the SouthernAlps there
were less calibration sites available than in 2012 (Table 4) by omitting the validation sites for model re-calibration.

2.4 Environmental covariates

Acomprehensive set of environmental covariates todescribe themost important soil forming factorswasassembled
by Baltensweiler et al. (2021, submitted). We used the exact same covariates as model input as Baltensweiler et al.
(2021, submitted) and refer to this article for more details.

The numerous derivates calculated led to 88 covariates representing topography, 52 with climate information, 18
characterizing vegetation and 14 representing parent material, soil legacy information and landscape types. With
including rotated coordinate axis and the sampling year we started model building with 177 covariates.

All covariates were prepared as raster datasets at a resolution of 5x5 m, regardless of the original resolution. The
predictions were then calculated for every fi�h pixel resulting in a 25m-grid allowing to retain the detail of the high
resolution covariates (e.g. terrain model).

2.5 Model fitting

Baltensweiler et al. (2021, submitted) predicted the input soil properties to calculate SOC stock. We refrained from
combining these maps and compute SOC stock at each pixel. We calculated SOC stock at each soil profile loca-
tion and fitted models directly to SOC stock for the following reasons: 1) Due to the di�erent validation set these
mapswere calibrated on a di�erent dataset. 2) The combination of non-parametric error distributions computed by
quantile regression forest for each soil property is not straightforward and requires a simulation approach. Direct
estimation of predictive distributions of SOC stock for each prediction grid node (pixel) is preferred. Hence, mod-
els were directly fitted to two responses calculated at each profile location: 1) SOC stock in 0–30 cm soil depth and
2) SOC stock in 0–100 cm soil depth.
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In Baltensweiler et al. (2021, submitted) six di�erent statistical predictionmethodswere tested on the same soil data
set. Moreover, amodel averaging schemewas implemented that combined the predictions of these six approaches.
Model averaging o�en outperforms predictions from a single method (e.g. Nussbaum et al., 2018). Baltensweiler
et al. (2021, submitted) did not find overall evidence for model averaging being an advantage and decided to use
predictions computed by the best single method which was random forest (RF). We followed this conclusion and
decided to use random forest to compute predictions for the present study.

Random forest combines a large number of regression trees. Two mechanisms are used to de-correlate trees and,
consequently, reduce the variance of the predictions: 1) bootstrap sampling (bagging) creates a di�erent responses
datasets for each tree by repeatedly drawing a random sample with replacement from the calibration set and, 2)
at each node only a predefined number of covariates (mtry) randomly selected of all covariates (p) are tested as
candidates for binary splittingof the calibrationdata. The regression trees are fully grownup tonnodesize observations
le� in each leaf. Predictions are simple means of all ntree fitted regression trees (Gareth et al., 2017).

To reduce the large number of covariates we applied sequential recursive backward elimination (Brungard et al.,
2015; Hertzog, 2017) based on node-impurity covariate importance (Hastie et al., 2009b).

This approachevaluates the covariate importance for eachRF fit and covariateswith lowest importance are removed
for the next smaller model fit. To speed up computation, we removed 5 to 10 covariates at each step fitting models
with 167, 157, ..., 107, 102, ..., 7, 2 covariates. Optimal number of covariates was found by evaluating out-of-bag (OOB,
see subsection 2.6) model error for each of these RF fits and using the model with lowest error. To additionally re-
duce the covariates we applied an ad-hoc decorrelation procedure that was performing similarly to amore complex
approach (Hertzog, 2017).

The main tuning parameter of the algorithm is the numbermtry of covariates tested at each split. For covariate re-
moval we used as a default mtry = p/3. To find optimal mtry for the final covariate set we minimized OOB RMSE by
iterating throughmtry = 1, 2, .., p.

The implementation of RF di�ered in one aspect from Baltensweiler et al. (2021, submitted): we used the computa-
tionalmore e�icient R package ranger instead of randomForest and quantregForest. Inmeantime, ranger supported
the estimation of prediction intervals by quantile regression forest (Meinshausen, 2006).

2.6 Validation statistics

We used Bias (Nussbaum et al., 2018, formula 3), root-mean squared error (RMSE, Nussbaum et al., 2018, formula 4),
the squared Pearson’s correlation coe�icient (r2) and the coe�icient of determination computed as mean squared
error skill score (R2, equals SSmse in Nussbaum et al., 2018, formula 5) to evaluate model performance. Nussbaum
et al. (2012) calculated R2 as the squared Pearson’s correlation coe�icient (r2) which report the linear relationship
while R2 reflects the relation to the 1:1-line indicating a perfect fit. The larger the di�erence between R2 and r2, the
larger the bias.

The statistics were computed for predictions calculated at the validation sites and for so called out-of-bag (OOB)
predictions. OOBpredictionsoriginate fromthebootstrapprocedure that is part of RFalgorithm. For each treeabout
30 % of the observations are omitted (out-of-bag) because of the repeated random sampling (with replacement) of
the original calibration data. This tree is then used to compute predictions for the omitted 30 % of the sites. OOB
predictions are comparable to cross-validation predictions Hastie et al. (2009a) reported in 2012.

Additionally, we computed the coverage of the 90%-prediction intervals compared to the observed SOC stock at the
validation sites. Ideally 90 % of the SOC stock of the validation dataset were inside the intervals (e.g. Jiang et al.,
2008).

2.7 Regional means and standard errors

Regional SOC stock mean estimates were calculated as in block kriging (Nussbaum et al., 2012) by averaging the
values of each pixelwithin the specified region. Regionswere either theNFI production regions stratified by altitude,
these regions additionally stratified by productive and unproductive forests (CC12, CC13) or the 100x100 m AREA
block cells.

We approximated regional standard errors to the mean estimates under the assumption of spatially varying model
errors as in Wadoux et al. (2018). The pointwise standard deviations derived from quantile regression forest were
scaledby a factor generatedby a geostatistical simulation. The simulation resulted in amap representing the scaling
factor for each response and took the spatial autocorrelation into account. Depending on the degree of autocorrel-
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ation the pointwise standard deviation was then reduced accordingly and was aggregated over the region needed.

Based on a recommendation from G. Heuvelink (Wageningen University Research WUR, Emails January 2021) we
used the following steps to approximate standard errors to the regional mean estimates from quantile regression
forest:

1. We established full predictive distributions for each predicted location by computing 100 quantiles from α = 0 to
1 by steps of 0.01. From these distributions we computed a standard deviation map and standard deviations for
all calibration sites.

2. We derived residuals for the calibration sites by subtracting the di�erence of the RF prediction from the observed
SOC stock value. Next, we standardized the residuals by dividing by the standard deviation computed in step (1).

3. An ordinary kriging model (Webster and Oliver, 2007) was fitted to the standardized residuals (step 2) with re-
stricted maximum likelihood parameter estimation (REML, R Package georob). The standardized residuals (step
2) had nearly Gaussian distribution, thus no transformation by e.g. logarithmwas performed. Spatial autocorrel-
ation of standardized residuals was weak. For both responses the geostatistical model fit resulted in variogram
close to pure-nugget.

4. The estimated variogram parameters were used to perform a Gaussian simulation (Webster and Oliver, 2007)
with 50 realisations resulting each in a map of simulated standardized residuals. To speed up computations the
neighbourhoodwas limited to 300 observations to be used to create the simulated predictions (R Package gstat,
function krige).

5. The 50 realisations of simulated standardized residuals were averaged and multiplied with the quantile regres-
sion forest standard deviationmaps (step 1). The simulated spatial autocorrelation of the standardized residuals
is so used to scale the local standard deviations.

6. For each region the mean of absolute values of scaled standard deviations (step 5) within this region was com-
puted as standard error approximation.
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3 Results and Discussion

3.1 Models for SOC stock in 0–30 cm and 0–100 cm depth

The recursivebackwardeliminationanddecorrelationprocedure removeda large amountof covariates. Themodels
comprised a remainder of 40 and 45 covariates for SOC stock in 0–30 cm and 0–100 cm, respectively. The optimal
number of covariates tested at each split (tuning parameter mtry) was set to 3 and 5 for the two models as these
values resulted in the lowest OOBmodel errors.

Figure 2 shows the remaining covariates for SOC stock in 0–100 cm depth. For SOC stock in 0–30 cm similar covari-
ates have been selected. As in 2012 precipitation and the physiographic units of the overview soil map (BEK) were
amongst themost important covariates. Precipitation showedagain amostly linear positive e�ect onSOCstock (Fig-
ure 3). RF was able to handle large amount of covariates without becoming unstable, therefore many other climate
covariates were included in the model. Terrain attributes rank somewhat less important, but were still selected to
represent a wide terrain variation at di�erent scales. In 2012 a near-infrared bandwas selectedwhile only one Land-
sat derivate (average summer normalized di�erenced vegetation index) remained among the relevant covariates
now. The spatial autocorrelation was attributed to rotated spatial coordinate axis. Three of these axis were among
the 10 most important covariates (Figure 2) and showed strong non-linear e�ects (Figure 3).

terrain texture (ls)
slope legnth (ls)

mass balance index (ss)
valleydepth (ss)

dissection (ls)
profile curvature (ls)

topogr. headload (ss)
smooth planar curvature (ss)

topogr. moisture index (ss)
smooth slope length (ls)

cloud cover July
melton ruggness index (ls)

topograph. wetness index (ls)
planar curvature (ls)
cross−curvature (ss)
catchment area (ls)

global radiation
minimal curvature (ls)

average NDVI summer Landsat
planar curvature (ss)

flow direction (ss)
flow accumulation (ls)

maximal curvature (ss)
minimal curvature (ss)

smooth topogr. moisture index (ss)
precipitation July

potential evapotranspiration
geological units

ridge top flatness (ls)
valley bottom flatness (ls)

trend in direction WNW−ESE
global radiation July

trend in direction SSW−NNE
trend in direction W−E

terrain roughness 6x6 m
NH3 immissions

trend in direction S−N
trend in direction SSE−NNW

temperature variance (Jan−Jul, Daymet)
10 biogeographic regions

trend in direction WSW−ENE
physiograpic units BEK

continentality index
temperature variance (Jan−Jul, Meteotest)

precipitation October

0 25 50 75 100
Relative covariate importance (maximum importance = 100 %)

Figure 2: Covariates ordered according to their covariate (impurity) importance of 45 covariates selected by random forest for the response SOC
stock in 0–100 cm soil depth (ss: terrain attribute calculated at small scale, ls: large scale terrain attribute; trend in directions based on rotated
spatial coordinate axis by 30◦ and 60◦, e.g. WSW-ENE: cardinal direction west-south-west to east-north-east).
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Figure 3: Partial dependenceplots for three selected covariates to illustrate thenon-linear response-covariate relationship establishedby random
forest for SOC stock 0–100 cm. The solid curve is created by moving through the values of a covariate to be analysed while keeping all other
covariate e�ects fixed. The larger the range of the SOC stock on y-axis the larger the capacity of a covariate to di�erentiate the SOC values. The
large decrease at temperature variance from 17 to 18.5 ◦C (centre panel) indicates thatmost data splits of the random forest regression trees have
beenmade in this range when this covariate was used for splitting the calibration data.

3.2 Evaluation of model performance

Model performance remained moderate. r2 reported in 2012 were 0.34 and 0.40 for SOC stock 0–30 cm and 0–100
cm, respectively, and were hence similar to the performance achieved now by amuch larger data set (Table 2). Pre-
dictedplottedagainst observedSOCstock values formedaconsiderable scatter around the 1:1-line indicatingperfect
prediction (Figure 4). The prediction error computations on the validation data set reflected an overall accuracy for
the very variable Swiss forested area. The validation set stressed isolated locations (subsection 2.3). Increased es-
timation accuracy for areas with larger point densities is expected.

Table 2: Statistics of prediction errors of soil organic carbon stock (SOC) for two depth compartments for out-of-bag predictions (OOB, only cal-
ibration set of n = 1 918) and the validation set (n = 175)

Bias [t ha−1] RMSE [t ha−1] r2 R2

OOB predictions 0–30 cm 0.89 35.21 0.28 0.28

0–100 cm 2.06 57.72 0.28 0.28

predictions for validation set 0-30 cm 0.72 34.49 0.31 0.30

0–100 cm -10.24 64.52 0.43 0.40

Internal OOB prediction R2 were lower than external validation R2. This indicates that the models did not over-fit
the data. Marginal bias was very small for SOC stock 0–30 cm, however, SOC stock in 0–100 cm was on average
underestimatedby 10 t ha−1 at the validation sites. Thepresenceof Bias inmodel validationwasonly partly reflected
by the overall SOC stock estimate for the total Swiss forested area. The SOC stocks in 0–100 cmwere estimated to be
lower by only 2.5 t ha−1 compared to the estimate of 2012 where only a small marginal Bias was reported (Table 4).
The overall mean SOC stock in 0–100 cmwas estimated to be 2.5 t ha−1 smaller than the previous estimate (Table 4).

The 90%-prediction intervals computed by quantile regression forest slightly overestimated the magnitude of pre-
diction errors (Figure 5). Of the expected 10 % of validation sites only 4 % and 5.7 % were outside the intervals. In
2012 kriging variances were also somewhat too large. RF was not able to fully correct for this overestimation.
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Figure 4: Scatter plots of observed against predicted soil organic carbon (SOC) stock in a) 0–30 cm and b) 0–100 cm of themineral soil computed
for the sites of the validation data set (solid line: lowess scatterplot smoothers, dashed line: 1:1-line, n: number of sites)
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90 %−prediction interval RF
prediction (n = 175)
observation within interval (n = 168)
observation outside interval (n = 7, 4%)
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b)  SOC stock 0−100 cm

90 %−prediction interval RF
prediction (n = 175)
observation within interval (n = 165)
observation outside interval (n = 10, 5.7%)

Figure 5: Predictions of SOC stock for the validation sites ordered increasingly with 90 %-prediction intervals (vertical grey lines). Observed SOC
stocks inside the intervals were plotted by open circles, those outside by red filled symbols.

3.3 Predictions of SOC stock

Figure6, 7 and 10 showanoverviewof thepredictedSOCstockat the 1haAREA resolution. Theoverall spatial pattern
of SOC stock for 0–30 and 0–100 cm remains similar to 2012.

The regional mean estimates for the stratified NFI production regions (Table 3) as well remained in the same range.
The total SOC stock for Swiss forests was estimated to 81.4 t ha−1 (SE 3.0) in 0–30 cm and to 123.3 t ha−1 (SE 4.9)
in the first 100 cm of the mineral soil. In 2012 these estimates were 79.9 t ha−1 (SE 1.5) and 125.8 t ha−1 (SE 2.4),
respectively.

Di�erences become evident in areas where the calibration sites were strongly complemented. For example, in the
eastern Jura foothills≤600mSOCstock seems tohavebeenoverestimated in2012by the lownumberof soil profiles
available. This is further reflected in the large di�erence between the regional estimates of 2012 and 2021 displayed
in Table 4. Further, considerable di�erences were observed in the Southern Alps where large SOC stocks are found
and few calibration sites were available for both studies.

The new regional mean SOC stock estimates were beyond an interval established by the 2012 mean estimate ±
1.96*SE (95 % interval) for seven regions for 0–30 cm. Only for Jura ≤ 600 m and Southern Alps ≤ 600 m the new
mean estimates were clearly outside this interval. For SOC stock in 0–100 cm there were four new estimates outside
an 95%-interval of± 1.96*SE of 2012. Well outsidewere Alps≤ 600mandSouthern Alps> 1 200m. For both regions
SOC stockwasdi�icult to estimatebecauseof fewobserved sites. The first subregion covers only a small but variable
area and in the latter generally large magnitude of SOC stocks are observed.
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The first was complemented with about 100 new soil profiles and in the latter region generally large SOC stock were
di�icult to estimate because of few observed sites.

The new approximations of standard errors range similar to the standard error estimates of 2012. There is no gen-
eral trend for either larger nor smaller standard errors to the new mean estimates. The standard errors for whole
Switzerland were estimated to be slightly larger compared to the previous estimates (Table 4). The standard errors
calculated for each 100x100m AREA block cell (Figure 8 and 9) reflect themagnitude of SOC stock and the low point
density of calibration sites.

Table 5 reports the mean SOC stocks and associated standard errors for the same altitude stratified NFI regions as
in Table 3, but additionally split by productive (CC12) and unproductive (CC13) forests. Depending on environmental
factors for each of the CC12 and CC13 sub-region the mean estimates di�er compared to the full regions. Standard
errors are similar; they are slightly smaller if the split in CC12 and CC13 resulted in a more homogenous region or
larger for more heterogeneous regions in relation to their size.

Although there are only 13 and 9 calibration sites for 0–30 cm and 0–100 cm, respectively, we were able compute
estimations for the unproductive forest areas (CC13). These estimates are only valid under the assumption that pro-
ductive vs. unproductive forests are not the main driving factor for the spatial distribution of SOC stocks. It is as-
sumed that themain factors explaining SOC stocks are represented by the environmental covariates included in the
model and that suchmodels allow for spatial prediction of CC13 areas.

We would like to point out that a validation sampling design targeting CC13 areas would be needed to verify this
assumption (currently onlyonevalidation sitewithinCC13). Moreover, samplingof new locationswithinCC13 chosen
to optimally calibrate models would be desirable to support estimates in Table 5.

Figure 6: Mean random forest predictions for each 100x100 m AREA block cell for SOC stock in 0–30 cm of the mineral soil of Swiss forest soils
(smoothed for small scale visualisation with mean per 3x3 pixel width = 300m).
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Figure 7: Mean random forest predictions for each 100x100 m AREA block cell for the soil organic carbon (SOC) stock in 0–100 cm of the mineral
soil of Swiss forest soils (smoothed for small scale visualisation with mean per 3x3 pixel width = 300m).

Figure 8: Standard errors for each 100x100m AREA block cell for SOC stock in 0–30 cm soil depth.
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Figure 9: Standard errors for each 100x100m AREA block cell for SOC stock in 0–100 cm soil depth.

Table 3: Random forest predictions of themean SOC stock in themineral topsoil (0–30 cm soil depth) and in themineral soil form0–100 cmdepth
of the five production regions of the National Forest Inventory, stratified by altitude, and of Switzerland as a whole (n: number of soil profiles in
cs: calibration dataset and vs: validation data set;Ŝc: mean random forest predictions; SE[Ŝc]: standard error approximation).

Region Altitude SOC 0–30 cm SOC 0–100 cm

cs vs Ŝc SE[Ŝc] cs vs Ŝc SE[Ŝc]

[m] n n [t ha−1] [t ha−1] n n [t ha−1] [t ha−1]

Jura ≤600 112 9 56.55 1.80 112 9 92.90 2.99

600–1200 108 20 101.29 2.95 108 20 139.49 4.23

>1200 6 0 128.44 3.47 6 0 164.10 4.82

Central Plateau ≤600 674 18 50.67 1.58 673 18 76.40 2.68

600–1200 187 18 64.11 2.19 187 18 90.70 3.07

>1200 1 0 127.56 4.20 1 0 165.23 5.32

Pre-Alps ≤600 59 1 63.34 2.44 59 1 96.24 3.94

600–1200 222 24 79.88 3.00 222 24 117.09 4.59

>1200 80 18 103.34 3.42 81 18 149.84 5.45

Alps ≤600 6 0 69.61 3.57 6 0 109.69 4.93

600–1200 109 11 77.41 3.48 109 11 118.28 5.41

>1200 261 33 75.29 3.50 261 33 115.34 5.73

Southern Alps ≤600 16 8 118.48 3.15 16 8 186.44 7.88

600–1200 38 10 111.66 3.17 38 10 188.86 7.61

>1200 39 5 98.10 3.37 39 5 173.18 7.16

Switzerland 1918 175 81.35 2.95 1918 175 123.28 4.93
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Figure 10: Boxplots to illustrate the distribution of mean SOC stock of all 100x100 m AREA block cells (the box corresponds to the interquartile
range with the lower end of the box being the first quartile [25 % percentile] and the upper end the third quartile [75 % percentile], the solid line
covers 1.5 times the interquartile range. Values beyond the solid line are considered outliers).
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Table4:Blockkrigingpredictions reportedbyNussbaumetal. (2012) anddi�erences topredictions reported inTable3. Therewere less calibration
sites (cs) in 2021 for certain regions because the validation set was not used for re-estimation of model parameters (∆ = 2021 minus 2012, for
abbreviations see Table 3).

Region Altitude SOC 0–30 cm SOC 0–100 cm

2012 ∆ 2021 2012 ∆ 2021

cs Ŝc SE[Ŝc] cs Ŝc cs Ŝc SE[Ŝc] cs Ŝc
[m] n [t ha−1] [t ha−1] n [t ha−1] n [t ha−1] [t ha−1] n [t ha−1]

Jura ≤600 22 82.65 3.34 90 -26.10 22 104.77 6.51 90 -11.87

600–1200 68 102.03 3.57 40 -0.74 68 145.89 5.02 40 -6.40

>1200 5 121.34 5.39 1 7.10 5 168.10 7.52 1 -4.00

Central Plateau ≤600 199 55.40 1.55 475 -4.73 199 81.36 2.11 474 -4.96

600–1200 102 62.12 1.68 85 1.99 102 92.22 2.11 85 -1.52

>1200 1 122.00 7.07 0 5.56 1 171.04 10.29 0 -5.81

Pre-Alps ≤600 50 66.10 2.06 9 -2.76 50 93.24 2.38 9 3.00

600–1200 184 75.91 2.00 38 3.97 184 112.92 2.95 38 4.17

>1200 66 95.78 3.27 14 7.56 66 153.78 4.98 15 -3.94

Alps ≤600 4 66.47 2.44 2 3.14 4 99.58 2.86 2 10.11

600–1200 64 74.39 2.42 45 3.02 64 120.89 3.62 45 -2.61

>1200 163 69.48 1.85 98 5.81 163 115.30 3.19 98 0.04

Southern Alps ≤600 22 102.37 4.07 -6 16.11 22 196.26 9.84 -6 -9.82

600–1200 40 108.99 4.09 -2 2.67 40 209.50 9.83 -2 -20.64

>1200 32 107.08 4.11 7 -8.98 32 192.37 8.04 7 -19.19

Switzerland 1 022 79.9 1.52 896 1.45 1 022 125.8 2.41 896 -2.52

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 14



Table 5: Random forest predictions of themean SOC stock in themineral topsoil (0–30 cm soil depth) and in themineral soil form0–100 cmdepth
of the five production regions of the National Forest Inventory, stratified by altitude and additionally by productive (CC12) and unproductive
forests (CC13) according to Swiss Land Use Statistic (AREA, n: number of soil profiles in cs: calibration dataset and vs: validation data set, the
smallernare causedby thedi�erent forest definitionofNFI andAREA; Ŝc: mean random forest predictions; SE[Ŝc]: standard error approximation).

Region Altitude CC SOC 0–30 cm SOC 0–100 cm

cs vs Ŝc SE[Ŝc] cs vs Ŝc SE[Ŝc]

[m] n n [t ha−1] [t ha−1] n n [t ha−1] [t ha−1]

Jura ≤600 12 106 9 56.54 1.79 106 9 92.67 2.97

13 0 0 57.08 1.74 0 0 93.71 3.05

600–1200 12 101 20 101.16 2.95 101 20 139.98 4.22

13 0 0 106.91 2.90 0 0 138.66 4.31

>1200 12 6 0 129.46 3.50 6 0 165.96 4.85

13 0 0 123.61 3.35 0 0 155.14 4.72

Central Plateau ≤600 12 642 18 50.30 1.56 641 18 75.74 2.64

13 1 0 52.49 1.74 1 0 80.36 3.01

600–1200 12 183 18 64.13 2.19 183 18 90.58 3.06

13 0 0 65.35 2.31 0 0 94.01 3.35

>1200 12 1 0 128.23 4.17 1 0 166.22 5.32

13 0 0 125.59 4.26 0 0 161.68 5.17

Pre-Alps ≤600 12 54 1 63.42 2.42 54 1 96.31 3.93

13 1 0 61.82 2.84 1 0 95.15 4.14

600–1200 12 209 23 80.18 3.01 209 23 117.52 4.61

13 1 0 80.81 3.07 1 0 117.88 4.68

>1200 12 75 17 103.28 3.42 75 17 149.26 5.44

13 2 0 103.24 3.41 3 0 149.93 5.39

Alps ≤600 12 5 0 69.96 3.60 5 0 110.91 4.93

13 0 0 70.90 3.86 0 0 110.36 5.48

600–1200 12 102 11 77.51 3.47 102 11 118.56 5.39

13 1 0 77.52 3.65 1 0 116.90 5.58

>1200 12 235 32 73.68 3.44 235 32 112.51 5.67

13 6 0 82.29 3.68 6 0 127.89 5.95

Southern Alps ≤600 12 13 8 119.86 3.14 13 8 189.65 7.94

13 0 0 100.90 2.79 0 0 170.74 6.55

600–1200 12 36 9 112.91 3.15 36 9 190.59 7.63

13 0 1 99.71 3.22 0 1 173.34 7.30

>1200 12 36 5 97.05 3.26 36 5 170.91 7.02

13 1 0 102.48 3.68 1 0 184.37 7.65
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4 Conclusion

This study provided new SOC stock estimates for the GHGI based on 1918 calibration sites compared to 858 calibra-
tion sites used for building themodel structure and validation in 2012. The overallmodel performance computed on
the same validation sites did however not increase. Since themodel fits were based on amuch broader data source
we assume overall more reliable estimates. Generally, regional estimates compared well to the previous study of
2012. Estimates for the altitude stratified NFI regions di�ered to 2012 and were likely improved where there were a
largenumber of newly sampled sites (Central Plateau) orwhere large SOC stock and simultaneously lowobservation
density was found (Southern Alps).

Forests in Switzerland span over a large variety of soil forming factors with a wide range of parent materials and cli-
matic conditions. The sampled locations have not been determined in view of this large variability, but have been
chosen by purposive sampling on a project by project basis. A analysis of model performance by region and relat-
ing performance results to sampling densities was beyond this study. We nevertheless assume an increased map
accuracy for regions nowmore densely populated with soil profile sites.

We did not perform a detailed analysis of the overall representativeness of the soil profile sites for the main factors
determining SOC stock. But, Figure 1 shows areaswith diverse topography and very few samples. The Southern Alps
– having in general large SOC stock – seem undersampled. Currently, WSL in collaboration with BFH-HAFL conducts
an analysis to complement the dataset with soil profile sites. The new sampling locations will be chosen based on
soil property uncertainty maps (Baltensweiler et al., 2021, submitted) and their potential to complete the coverage
of soil forming factors.

The non-spatial nature of RF was circumvented by introducing rotated coordinate axis as covariates. The approxim-
ation of standard error to regional mean estimates used a geostatistical approach able to integrate relative location
of each site. The standard errors resulted in a similar value range as block kriging standard errors published in 2012.
Although the approximation was a workaround we conclude that the standard errors are of similar accuracy.

AbovewepresentednewSOC stock estimates for altitude stratifiedNFI regions basedona larger soil sampling basis.
In addition we provided a further regional subdivision into productive and unproductive forests. The larger soil
sample did not improvemodel performancemeasures, but we still attribute larger reliability and recommend to use
the present estimates for GHGI reporting until an even broader data source becomes available.
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Appendix

Table 6: List of files in data delivery.

Filename File formats Description

SOC_stocks_nfi_region_alti_update2021 csv, xlsx, gpkg Table 3 as data tables and as Geopackage contain-
ing the vector geometries of the altitude stratified
forest production regions.

SOC_stocks_nfi_regions_CC12-13 csv, xlsx Table 5 as data tables.

SOC_stocks_AREA_100m csv, tif Tablewith a row for each 100x100mAREA block cell
of the codes CC11, CC12 and CC13. If a cell is empty,
then theblockmean couldnot be calculatedmainly
because of missing predictions. Predictions were
only calculated for the forested area as defined
according to subsection 2.1.

columns:
x, y: spatial coordinates in LV03 / EPSG:21781
kyoto09: CC code
SOC30_mean and SOC100_mean: block cell mean
SOC stock in 0–30 cm and in 0–100 cm
SOC30_se and SOC100_se: block cell standard error
of SOC stock in 0–30 cm and in 0–100 cm.
.
Corresponding spatial raster files (GeoTi�):
SOC30_mean_AREA.tif, SOC30_se_AREA.tif,
SOC100_mean_AREA.tif, SOC100_se_AREA.tif
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