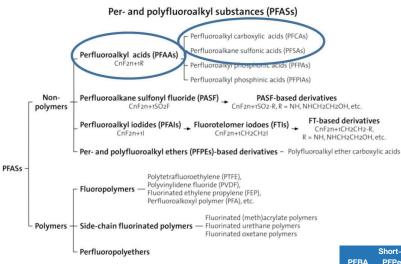
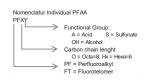


Élaboration d'un concept d'assainissement d'un site contaminé par des PFAS suite à l'utilisation de mousses d'extinction

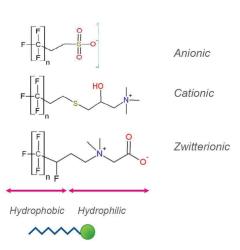
1er Symposium Sites pollués Suisse


12 novembre 2019 Doreen Mäurer


Au programme

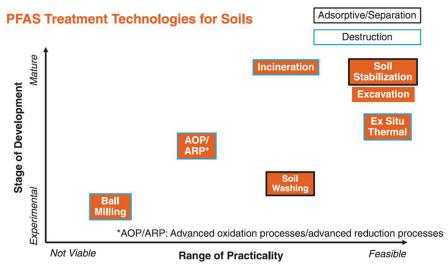
- Structure des PFAS
- PFAS Propriétés physiques et comportement dans le sol
- PFAS Techniques de traitement de l'eau et du sol
- Exemple pour le cas d'un site contaminé par des PFAS suite à l'utilisation de mousses d'extinction
- Perspectives

Structure des PFAS (OCDE, 2013)

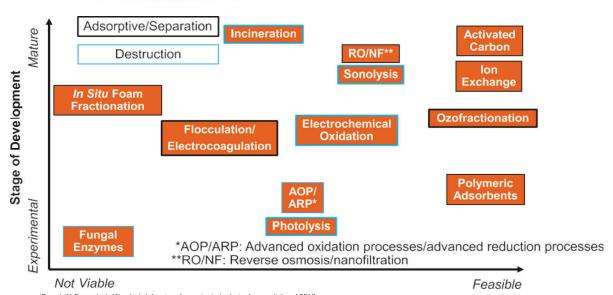


Short-chain PFCAs				Long-chain PFCAs					
PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFDoA	
PFBS	PFPeS								
Short-ch	ain PFSAs								
								Geosyntec	

OECD Directive of the European Parlament and of the Council on the Quality of water intended for human

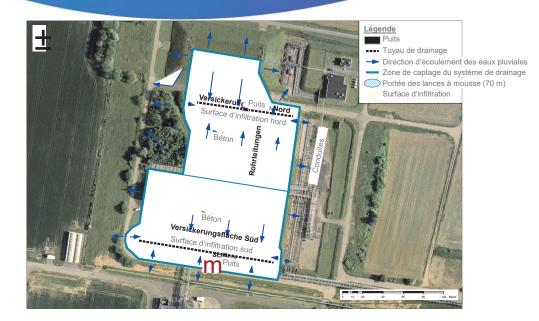

PFAS - Propriétés physiques et comportement dans le sol

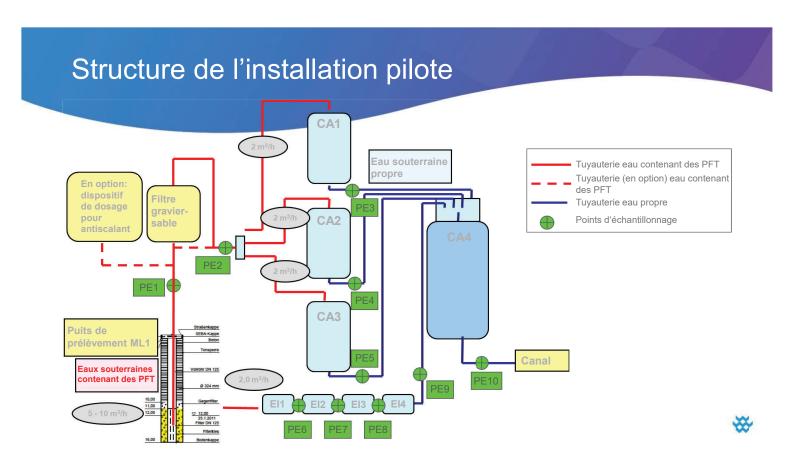
- · Hydrophobes et hydrophiles
 - · Actifs à la surface
- · Anioniques, cationiques et zwittérioniques
- Solubilité relativement élevée
- Le comportement en matière de mobilité/sorption dépend de la structure des PFAS
- Mobilité des PFOS p. ex. supérieure à celle des MTBE (réf. litt.)
- · Précurseurs :
 - · Biotransformation (aérobie) des PFAS
 - Produit final PFAA (PFCA et PFSA)
 - Les précurseurs se transforment sans qu'on le remarque :
 - La sorption des précurseurs à l'entrée (dépend de la structure) peut être plus importante que la transformation des produits
 - · Mobilisation après transformation en PFAA


PFAS - technologies de traitement des sols

(Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs. Remediation. 2018;28:101–126.)

₩,


PFAS - technologies de traitement de l'eau


(Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs. Remediation. 2018;28:101–126.)

Situation des points d'introduction

Résultats de l'installation pilote

Paramètre	Unité	CA N°1	CA N°2		Echangeur d'ions
Concentration moyenne PFAS dans l'eau brute	[ng/l]	21.070	22.031	23.205	30.695
Durée de fonctionnement jusqu'à la percée	[jours]	85	124	150	7
Quantité d'eau traitée Etat de la technique 2012/2013	[m³]	4.084	5.957	7.200	43

- Le charbon actif est l'adsorbant idéal pour ce cas de pollution
- Sur les trois types de charbon actif testés, le CA N°1 s'est avéré être le meilleur
- Pendant l'essai pilote, on n'a pas observé de modifications significatives des paramètres anorganiques ni de précipités de carbonate

Configuration des débits pour différentes directions d'écoulement des eaux souterraines

Configuration des débits pour différentes directions d'écoulement des eaux souterraines

Direction d'écoulement des eaux souterraines	Période	Débit de pompage des puits [m3/h]					
des caux souterraines	1997 – 2011	Pu1	Pu2	Pu3	Pu4	Pu5	Total
Est	22%	0	0	20	20	20	60
Nord-est	37%	0	20	25	0	15	60
Nord	28%	40	20	0	0	0	60
Nord-ouest	12%	40	20	0	0	0	60
Ouest	1%	40	20	0	0	0	60

Plan de situation de la zone d'assainissement

Perspectives

- · Remplacement annuel du charbon actif
- Vérification de l'efficacité de technologies d'assainissement alternatives
- Gestion des risques

+49 15 20 93 95 67 2

Doreen.maeurer@tauw.com

www.tauw.com