

Atmosphärische Stickstoff-Deposition in der Schweiz 2000 bis 2019

Im Auftrag des Bundesamtes für Umwelt BAFU, der OSTLUFT, der WSL, des Fürstentums Liechtenstein, der UNESCO Biosphäre Entlebuch und der Kantone AG, BE, BL, FR, GE, GR, LU, NE, SO, TI, VD, VS, ZG und ZH

Autoren: Eva Seitler, Mario Meier, Zaida Ehrenmann

Januar 2021

Impressum

Auftraggeber

BAFU	Bundesamt für Umwelt Abteilung Luftreinhaltung und Chemikalien; Sektion Luftqualität Rudolf Weber, Reto Meier, Richard Ballaman
OSTLUFT	Zusammenschluss der Ostschweizer Kantone und des Fürstentums Liechtenstein zur gemeinsa- men Überwachung der Luftqualität, Projektgruppe N-Deposition: Jörg Sintermann, AWEL Amt für Abfall, Wasser, Energie und Luft Kanton Zürich Hanna Herich, Amt für Umwelt Kanton St. Gallen Franz Ludwig, Amt für Umwelt Kanton Thurgau
WSL	Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf: Messungen auf LWF-Flächen (Langfristige Waldökosystemforschung) Maria Schmitt, Anne Thimonier, Peter Waldner Stickstoffdynamik Alpthal Patrick Schleppi
FL	Fürstentum Liechtenstein, AU Amt für Umwelt Veronika Wolff
UBE	UNESCO Biosphäre Entlebuch Florian Knaus, Theo Schnyder
Kt. AG	Departement Bau, Verkehr und Umwelt, Abteilung für Umwelt Franziska Holzer Küng
Kt. BE	Amt für Umwelt und Energie, Immissionsschutz Stefan Schär
Kt. BL/BS	Lufthygieneamt beider Basel Markus Camenzind, René Glanzmann
Kt. FR	Amt für Umwelt (AfU)
	Bernard Sturny
Kt. GE	SABRA Service de l'air, du bruit et des rayonnements non ionisants Bennoît Lazzarotto
Kt. GR	ANU GR Amt für Natur und Umwelt Hanspeter Lötscher
Kt. LU	uwe Umwelt und Energie, Abteilung Energie, Luft und Strahlen Peter Bucher, Christian Ruf
Kt. NE	Service de l'énergie et de l'environnement, énergie& immissions Denis Jeanrenaud
Kt. SO	AfU SO Amt für Umwelt Rolf Stampfli
Kt. TI	Ufficio dell'aria, del clima e delle energie rinnovabili Ticino Ivan Maffioli
Kt. VD	Direction générale de l'environnement (DGE) Adeline Niquille, François Coquoz, Alodie Defferrard
Kt. VS	SEN Service de l'environnement Jean-Marc Fracheboud
Kt. ZG	AFU ZG Amt für Umwelt, Abteilung Luft und Energie Raphael Felber, Nathanael Lottenbach
Kt. ZH	AWEL Amt für Abfall, Wasser, Energie und Luft Kanton Zürich, Abteilung Lufthygiene Jörg Sintermann, Roy Eugster

Beteiligte Institutionen

Dübendorf, Abteilung Luftfremdstoffe/Umwelttechnik: Christoph Hüglin, Claudia Zellweger
Institut für Angewandte Pflanzenbiologie, Schönenbuch Sabine Braun
Bern Beat Rihm
Umwelt- und Gesundheitsschutz Zürich, Messung Luftqualität Elodie Celine Gillich, Barbara Siegfried
Departement Umweltwissenschaften, Forschungsgruppe Physiologische Pflanzenökologie Erika Hiltbrunner

Autoren

Eva Seitler, Mario Meier, Zaida Ehrenmann FUB – Forschungsstelle für Umweltbeobachtung Alte Jonastrasse 83 CH – 8640 Rapperswil E-Mail: fub@fub-ag.ch, www.fub-ag.ch

Der Dank

Der Dank geht an die Empa, welche Daten aus dem NABEL-Netzwerk sowie an die WSL, welche Daten aus dem LWF-Programm zur Verfügung gestellt haben, an die UGZ für NO2-Daten, an René Locher ZHAW-IDP für Unterstützung bei der statistischen Auswertung und an alle Personen, welche die Sammler installiert und gewechselt haben oder auf eine andere Art die Untersuchungen unterstützt haben.

Hinweis

Dieser Bericht wurde im Auftrag des Bundesamtes für Umwelt (BAFU) verfasst. Für den Inhalt ist allein der Auftragnehmer verantwortlich.

Titelbild

Standort Lengwiler Weiher, TG, 30.1.2014

Zitierung

Seitler E., Meier M., Ehrenmann Z., 2021: Atmosphärische Stickstoff-Deposition in der Schweiz 2000 bis 2019. FUB – Forschungsstelle für Umweltbeobachtung, Rapperswil. 131 S.

PDF-Download

https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/studien.html

Eine gedruckte Fassung liegt nicht vor.

Inhaltsverzeichnis

Α	Abstract1		
1	Zusa	mmenfassung, Résumé	2
	1.1	Zusammenfassung	2
	1.2	Résumé	14
2	Einle	itung	
	2.1	Ausgangslage	
	2.2	Projektrahmen	
	2.3	Zielsetzung	
3	Meth	odik	
	3.1	Stickstoffkomponenten	
	3.2	Probesammlung und Analvtik im Überblick	
	3.3	Messstandorte im Überblick	32
	3.4	Berechnung der Gesamtstickstoff-Einträge	
	_		
4	Resu	ltate	
	4.1	Konzentrationen der einzelnen Komponenten	
	4.1.1	Ammoniak	
	4.1.3	Ammonium und Nitrat in der Gravitationsdeposition	
	4.2	Atmosphärische Stickstoff-Deposition 2019	45
	4.2.1	Einträge in verschiedene Ökosystemtypen – Vergleich Critical Loads	
	4.2.2	Anteile der sieben N-Komponenten am Stickstoffeintrag	
	4.3	Atmosphärische Stickstoff-Deposition – alle Jahre	51
	4.3.1	Fortlaufende Messungen seit 2000	
	4.3.2	4 bis 6 Messjahre	
	4.3.3	2 bis 3 Messjanie, 2000, 2014 und 2019 2019 nicht beprobte Standorte	
	44	Verteilung der Deposition innerhalb des Jahres	60
	4.5	Gesamtstickstoff-Deposition – Vergleich mit modellierten Werten	
5	Diek		65
5			
6	Fach	teil	66
	6.1	Sammelmethoden	
	6.1.1 6.1.2	Gravitations-Depositionssammlung Passiveammler zur Messung von Ammoniak	66 وع
	6.1.3	Passivsammler zur Messung von Stickstoffdioxid	
	6.1.4	Passivsammler zur Messung von gasförmiger Salpetersäure	
	6.1.5	Minidenuder / -filter (Midefix) für Gase und Aerosole	71
	6.1.6	Summenfilter (Sufix) für Gase und Aerosole	73
	6.2	Probevorbereitung und Spurenanalytik	74

	6.3	Qualitätssicherung	74
	6.3.1	Vergleich mit zertifiziertem Referenzmaterial	75
	6.3.2	EMEP laboratory intercomparison	75
	6.3.3	Transport-Blindwerte	77
	6.3.4	Nachweis- und Bestimmungsgrenzen	77
	6.3.5	Vergleich mit anderen Messverfahren	78
	6.3.6	Rückhalt von Ionen im Trichter	82
	6.4	Vervollständigung von Datensätzen	83
	6.4.1	"Wet" zu Bulk	83
	6.4.2	Schätzwerte von Salpetersäure, Nitrat- und Ammonium-Aerosolen	85
	6.5	Von Konzentration zu Fracht	88
	6.5.1	Gravitationsdeposition	88
	6.5.2	Interzeption und Gasdeposition – Depositionsgeschwindigkeiten	88
	6.5.3	Gesamtstickstofffracht	91
	6.6	Waldrand – über Wald	92
	6.7	Organischer Stickstoff im Niederschlag	93
	6.8	Abschätzung der Qualität der Gesamtstickstoff-Resultate	94
7	Anha	ng	96
	711	Standortbeschreibung und Resultate	96
	7.1.2	Statistische Betrachtung der langiährigen Messreihen	125
Li	teratur		126
۵	hkürzung	en und Definitionen	130
	Shuizully		

Abstract

Übermässige Stickstoffeinträge in empfindliche Ökosysteme tragen zur Bodenversauerung bei und bewirken eine Überdüngung, welche langfristig u.a. zu einer Verschiebung der Artenzusammensetzung führt. Um die Bedeutung dieser Prozesse in der Schweiz abschätzen zu können, wurden an ausgewählten, meist nahe bei Wiesen, Mooren oder Wäldern gelegenen Standorten in den Jahren 2000, 2014 und 2019 – sowie an einigen Standorten während weiteren Jahren – die atmosphärische Stickstoff-Deposition bestimmt und mit den Critical Loads für Stickstoff (CLN) verglichen. Dazu wurden Ammonium (NH4⁺) und Nitrat (NO3⁻) in der Gravitationsdeposition, d.h. Nassdeposition und sedimentierender Staub, sowie die Konzentrationen von Ammoniak (NH3) und Stickstoffdioxid (NO2) in der Luft gemessen. An einigen Orten wurden zudem auch Ammonium und Nitrat in Aerosolen und Salpetersäure (HNO3) erfasst.

Die Resultate zeigen, dass die Stickstoffeinträge in der Schweiz weitgehend um oder über den CLN liegen und dies unabhängig der betrachteten Ökosysteme, wobei in der Nähe von intensiver Landwirtschaft beträchtliche Überschreitungen festgestellt wurden. Im langjährigen Vergleich (2000 - 2019) wurde zwar eine Abnahme der oxidierten Stickstoffkomponenten, aber nicht der gesamten Stickstoffeinträge festgestellt.

Les apports excessifs d'azote dans les écosystèmes sensibles contribuent à l'acidification du sol et provoquent une surfertilisation qui conduit, à longue échéance, entre autres, à une modification de la composition des espèces. Afin de pouvoir estimer l'importance de ce processus en Suisse, on a procédé lors des années 2000, 2014 et 2019, et en partie aussi entre celles-ci, à la détermination de la déposition atmosphérique de l'azote sur des sites sélectionnés, principalement à proximité de prairies, marais ou de forêts, et comparé les valeurs obtenues avec les charges critiques pour l'azote (Critical loads for Nitrogen, CLN). Pour cela, on a mesuré l'ammonium (NH4+) et le nitrate (NO3-) dans la déposition gravitationnelle (les retombées humides et les poussières sédimentées) ainsi que les concentrations d'ammoniac (NH3) et de dioxyde d'azote (NO2) dans l'air. Sur quelques sites, on a de plus procédé à la détermination de l'ammonium et du nitrate dans les aérosols et de l'acide nitrique (HNO3).

Les résultats montrent qu'en Suisse les apports d'azote se situent en majeure partie aux alentours ou sont supérieurs aux CLN et ceci indépendamment des écosystèmes considérés, avec des dépassements massifs au voisinage d'exploitations agricoles intensives. En comparaison à long terme (2000 - 2019), on constate une diminution des composés azotés oxydés mais pas des apports d'azote totaux.

1 Zusammenfassung, Résumé

1.1 Zusammenfassung

Stickstoffemissionen in die Luft haben seit der Industrialisierung und vor allem durch die Intensivierung der Landwirtschaft stark zugenommen. Diese Emissionen führen zu bedeutenden Stickstoffeinträgen aus der Luft in empfindliche Ökosysteme wie Wälder, naturnahe Wiesen und Moore, was zur Bodenversauerung beiträgt und eine Überdüngung bewirkt, welche langfristig u.a. zu einer Verschiebung der Artenzusammensetzung führt.

Die atmosphärische Stickstofffracht wird seit 2000 an sechs Standorten jährlich erfasst. Für ein umfassenderes Bild der Situation wurden in einzelnen Jahren zusätzliche Standorte beprobt: Im Jahr 2000 wurde die Stickstofffracht an total 20 Standorten, meist nahe von sensiblen Ökosystemen, erfasst. 2014 wurde die Untersuchung an 18 Standorten wiederholt und weitere 20 Standorte hinzugefügt. 2019 wurden total 48 Standorte erfasst, darunter alle 20 Standorte von 2000. 33 der 48 Standorte von 2019 wurden ebenfalls im Jahr 2014 gemessen (Abbildung. Z1). Es wurden meistens Standorte berücksichtigt, an denen bereits Stickstoffkomponenten gemessen werden, z.B. NABEL- und WSL-LWF-Stationen.

Abbildung Z1 Standorte an denen die Stickstoff-Deposition erfasst wurde

Rot: Messnetz 2019

rosa Standorte an denen nur in früheren Jahren gemessen wurde J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Im Rahmen dieser Studie werden folgende Ziele verfolgt:

• Erfassung der Stickstoffbelastung in Gebieten mit unterschiedlichen Quelleneinflüssen und Vergleich mit Critical Loads für Stickstoff (CLN) für empfindliche Ökosysteme

- Erfassung der zeitlichen Veränderung der Stickstoffeinträge an Orten, an denen in früheren Jahren gemessen wurde
- Vergleich mit räumlich hoch aufgelösten, modellierten Daten
- Ermittlung von atmosphärischen N-Einträgen für andere Forschungsprojekte bei empfindlichen Ökosystemen
- Bereitstellung von Daten als Instrument zur Erfolgskontrolle im Zusammenhang mit den eingeleiteten Massnahmen der Umwelt- und Agrarpolitik

Die Stickstoffkomponenten wurden einerseits in der Gravitationsdeposition (Ammonium NH_4^+ und Nitrat NO_3^- im Regen und Staubniederschlag) mit Bulk-Regen- und -Schneesammlern (durch WSL, FUB) oder Wet-Sammlern¹ (durch Empa, FUB), sowie in der Luft (Gasdeposition) mit Passivsammlern (Ammoniak NH_3 und Stickstoffdioxid NO_2) gemessen (Tab. Z1). An einigen Standorten wurden auch Ammonium und Nitrat in Aerosolen (Interzeption) und Salpetersäure (HNO₃) erfasst. Die Messungen von Aerosolen und von HNO₃ wurden verwendet, um Schätzwerte für Standorte/Jahre ohne solche Messungen abzuleiten. An einzelnen Standorten mussten auch für NO_2 Schätzwerte beigezogen werden. Zur Bestimmung der Stickstofffracht wurden die Konzentrationen der stickstoffhaltigen Gase und die Ammonium- und Nitratkonzentrationen aus den Aerosolen mit Depositionsgeschwindigkeiten für die Interzeption multipliziert und die einzelnen Komponenten aufsummiert.

Tabelle Z1 Sieben erfasste Stickstoff-Komponenten

In den Grafiken dieses Berichtes sind die reduzierten N-Komponenten Ammoniak und Ammonium rot, die oxidierten N-Komponenten Stickstoffdioxid, Salpetersäure und Nitrat blau dargestellt.

Art der Deposition	Stickstoffkomponente
Gravitationsdeposition Regen, Schnee, Hagel, sedimentierender Staub	Ammonium NH ₄ + Nitrat NO ₃ -
Gasdeposition	Ammoniak NH ₃ Stickstoffdioxid NO ₂ Salpetersäure HNO ₃
Interzeption Aerosole	Ammonium NH ₄ + Nitrat NO ₃ -

Resultate der Erhebung 2019

Bei der Interpretation der Resultate muss berücksichtigt werden, dass die meteorologischen Verhältnisse eines Jahres die Deposition von Stickstoff beeinflussen. Erhöhte Niederschlagsmengen führen in der Regel zu mehr Nassdeposition, wärmere Temperaturen zu höheren Ammoniakkonzentrationen in der Luft.

¹ Die wet-only-Sammler (Empa/NABEL) und der wet&dry-Sammler (FUB) im "wet"-Modus sammeln nur während Niederschlagsereignissen (Kap. 6.1.1). Die Stickstofffrachten aus "Wet" wurden durch Vergleichsmessungen mit "Bulk" und daraus berechneten Faktoren zu Gravitationsdeposition umgerechnet (Kap. 6.4.1)

Ammoniakkonzentration

Die Ammoniakkonzentrationen sind stark abhängig von der landwirtschaftlichen Tätigkeit in der Umgebung des jeweiligen Standortes. So sind die NH₃-Konzentrationen über Wiesen und Mooren im Mittelland, wo die landwirtschaftliche Aktivität am ausgeprägtesten ist, oft höher als jene im Jura oder in den Nordalpen; die niedrigsten Konzentrationen werden an den hochgelegenen zentralalpinen Standorten gemessen (Abbildung Z2).

Abbildung Z2 Ammoniakkonzentration: links über Wiesen, rechts über Hoch- oder Flachmooren Wiesen = Wies- und Ackerland, Trockenwiesen und alpines/subalpines Grasland J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Gravitationsdeposition

Auch bei den Stickstoff-Gravitationsdepositionen (Summe NH₄⁺-N und NO₃⁻-N) zeigen die Zentralalpen tendenziell die tiefsten Werte (<10 kg N ha⁻¹ a⁻¹). Der höchste Wert wurde mit 25 kg N ha⁻¹ a⁻¹ im Mittelland, der zweithöchste mit 22 kg N ha⁻¹ a⁻¹ in den Südalpen gemessen (Abbildung Z3).

Regen, Schnee usw. mit Bulkregensammler gesammelt. Die Wet-only-Proben der NABEL-Stationen wurden mit einem Faktor multipliziert, um den trockenen Gravitationseintrag miteinzubeziehen. J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Stickstoff-Einträge in empfindliche Ökosysteme und Vergleich mit den Critical Loads für Stickstoff

In den Abbildungen Z4 und Z5 sind die Gesamtstickstoffeinträge als Säulen auf der Schweizerkarte dargestellt. An Standorten mit empfindlichen Ökosystemen ist zum Vergleich die kritische Eintragsgrenze (Critical Load) für Stickstoff (CLN) der Ökosystemtypen direkt bei resp. innerhalb 200 m der Messstationen eingezeichnet. Es wird der Mittelwert des jeweiligen CLN-Bereichs gemäss UNECE 2010, Bobbink et al. 2011 angezeigt. Dazu als Beispiel: Der CLN-Bereich für Hochmoor weist eine Spanne von 5 – 10 kg N ha⁻¹ a⁻¹ auf. Der angegebene Wert in der entsprechenden Abbildung beträgt demnach 7.5 kg N ha⁻¹ a⁻¹. Für Standorte bei Wies- und Ackerland sind keine CLN definiert. Die Stickstofffrachten an einem bestimmten Standort müssen nicht für die ganze Region repräsentativ sein, da vor allem die Ammoniakkonzentration räumlich stark variieren kann.

Die Erhebungen zeigen, dass die CLN für alpines/subalpines Grasland bzw. Trockenwiesen (Abbildung Z4) und für Moore (Abbildung Z5 oben) mit Ausnahme der Standorte in den östlichen Zentralalpen überschritten sind. Da aber nicht alle Stickstoffkomponenten erfasst werden, und beim Sammeln der Gravitationsdeposition bei starken Winden und/oder Schneefall Verluste auftreten, kann auch ein Überschreiten der CLN an den hoch gelegenen zentralalpinen Standorten nicht ausgeschlossen werden. Die stärksten Überschreitungen finden sich bei den Flachmooren im Wauwilermoos (WAU) und in Altstätten Bannriet im Mittelland, sowie im Moor nahe der NABEL-Station Magadino (MAG).

Abbildung Z4 Wiesen: Vergleich der Stickstofffrachten 2019 mit den Critical Loads Bei den CLN (gelb) ist der Mittelwert des Bereiches der empirischen CLN nach UNECE eingezeichnet. Die dargestellten Stickstoffdepositionen gelten für die eingezeichneten Standorte (Kreise). Für Standorte bei Wies- und Ackerland sind keine CLN definiert.

Abbildung Z5 Moore (oben) und Wälder (unten): Vergleich der Stickstofffrachten 2019 mit den Critical Loads (CLN) Bei den CLN (gelb) ist der Mittelwert des Bereiches der empirischen CLN nach UNECE eingezeichnet. Die dargestellten Stickstoffdepositionen gelten für die eingezeichneten Standorte (Kreise).

In Abbildung Z5 unten sind die N-Einträge und die CLN für Wälder abgebildet, welche im Umkreis von 200 m um die Messstationen stehen. Nur bei den zentralalpinen Standorten Davos (DAV), Celerina (CEL) und Nationalpark (NAT), Kt. GR ist die Stickstofffracht an der unteren Grenze des CLN-Bereichs. Wird aber berücksichtigt, dass nicht alle Stickstoffkomponenten erfasst werden, und beim Sammeln des Niederschlags bei starken Winden und/oder Schneefall Verluste auftreten, kann ein Überschreiten der CLN an den hoch gelegenen zentralalpinen Standorten nicht ausgeschlossen werden. An allen anderen Orten liegen die Frachten im Bereich des CLN oder werden überschritten. Starke Überschreitungen sind an vielen Mittellandstandorten zu finden, am stärksten im Mischwald in Holderhus (HOL). Es muss davon ausgegangen werden, dass praktisch alle Wälder im Mittelland zu viel Stickstoff aus der Luft erhalten.

Form des Stickstoff-Eintrags

Ausser im Mittelland überwiegt meistens der Stickstoffeintrag aus der Gravitationsdeposition und damit der Eintrag durch Niederschläge. Im Allgemeinen sind die reduzierten Stickstoffeinträge, welche hauptsächlich aus der Landwirtschaft stammen, grösser als die oxidierten, welche hauptsächlich durch Verbrennungsprozesse (Verkehr, Industrie und Haushalte) emittiert werden. Der Anteil an oxidiertem N überwiegt an den östlichen zentralalpinen Standorten DAV und NAT. In Abbildung Z6 werden die prozentualen Anteile der Gravitationsdeposition (links), respektive die prozentualen Anteile der reduzierten Komponenten (rechts) in Bezug auf die Gesamtstickstofffracht für die Ökosystemtypen Grünland gezeigt.

Jede Markierung entspricht einem Standort bei den Ökosystemtypen Grünland (Wiese, alp./subalp. Grasland und Moore) Links: Prozentualer Anteil der Gravitationsdeposition an der Gesamtstickstofffracht (= Gravitationsdeposition + Gasdeposition + Interzeption)

Rechts: Prozentualer Anteil der reduzierten Komponenten an der Gesamtstickstofffracht (= reduzierte Komponenten + oxidierte Komponenten).

In den Abbildungen Z7 und Z8 wird an Beispielen die Eintragsform der Stickstofffrachten aus der Gravitationsdeposition (dunkel) resp. Gasen und Aerosolen (hell) sowie die Aufteilung auf reduzierte (rot) und oxidierte (blau) Komponenten aufgezeigt. Die Säulenflächen sind dabei proportional zur Stickstofffracht.

Abbildung Z7 Ökosystemtypen Wies- und Ackerland, Trockenwiese / alpines/subalpines Grasland und Flachmoor. Eintragsform der Stickstofffrachten

Die Säulenflächen sind proportional zur N-Fracht. Grav. = Gravitationsdeposition, Interz. = Interzeption Naturräume unter den Standortcodes: J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalp., SA = Südalpen

Abbildung Z8 Ökosystemtypen Hochmoor, Laubwald, Mischwald & Nadelwald. Eintragsform der Stickstofffrachten Die Säulenflächen sind proportional zur N-Fracht. Grav. = Gravitationsdeposition, Interz. = Interzeption Naturräume unter den Standortcodes: J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalp., SA = Südalpen

Abbildung Z7 (oben) zeigt die Einträge in Wies- und Ackerland. In Chaumont (CHA) und Rigi (RIG) sind die Stickstoffanteile ähnlich hoch: N aus der Gravitationsdeposition 57 % und 62 %, reduzierter N-Anteil 72 % und 68 %. An den Mittelland-Standorten schwanken die N-Einträge aus der Gravitationsdeposition von 32 % in Ap. Steinegg (APS) bis 57 % auf dem Bachtel (BA) ebenso wie die reduzierten Anteile von 51 % in Jussy (JUS) bis 88 % in APS; die Ammoniak-Anteile in der Fracht betragen 22 % in JUS bis 62 % in APS. Magadino (MAG) und APS haben ähnlich hohe N-Frachten, in MAG beträgt die Gravitationsfracht jedoch fast 50 % (in APS 32 %).

Bei den Standorten in Trockenwiesen – d.h. Randen und Tablat (RAN, TAB) – oder alpinem/subalpinem Grasland (andere Standorte, Abbildung Z7 Mitte) überwiegt meist der Einfluss der Gravitationsdeposition (45 bis 83 %). Der Anteil des reduzierten Stickstoffs beträgt in allen Naturräumen zwischen 59 % in Bettlachstock (BET) und 70 % in RAN (beide Jura), nur am Standort NAT (Zentralalpen) überwiegt der oxidierte Anteil (53 %).

Auch bei Flachmooren (Abbildung Z7 unten) ist die Eintragsform einerseits geographisch und andererseits durch die landwirtschaftlichen Tätigkeiten in der Umgebung bedingt. An den Standorten im Mittelland, in der Südschweiz, aber auch im Ruggeller Ried (RRI) in den Nordalpen, betragen die reduzierten Stickstoffanteile zwischen 70 und 90 %. In Altstätten Bannriet (ALB) beträgt allein der Ammoniakanteil über 70 %. An den über 1000 m gelegenen Standorten Alpthal (ANA B) und Davos (DAV) ist der Ammoniakanteil mit 18 bzw. 12 % tief, dadurch überwiegen die Frachten durch die Gravitationsdeposition. Da an diesen Standorten die Konzentrationen der gasförmigen reaktiven Stickstoffverbindungen sehr klein sind, ist davon auszugehen, dass Aerosole nicht lokal gebildet, sondern durch atmosphärischen Transport herangeführt werden. An allen anderen, unter 550 m Höhe gelegenen Flachmoorstandorten überwiegen die Anteile durch Gase.

Die Beispiele aus Hochmooren (Abbildung Z8 oben) zeigen, dass die geographische Lage einen grossen Einfluss auf die Frachten hat. In Sörenberg (SOER) im luzernischen Entlebuch wird der Stickstoff vor allem durch die hohen Niederschlagsmengen eingetragen. Im zentralalpin gelegenen Celerina (CEL) mit wenig landwirtschaftlichem Einfluss sind die oxidierten und reduzierten Stickstoffanteile gleich hoch, während an den Jura- und Mittelland-Standorten sowie auf dem Zugerberg (ZB) der reduzierte Anteil über 70 % beträgt.

In landwirtschaftlich geprägten Regionen im Mittelland werden die N-Einträge in Laubwälder (Abbildung Z8 Mitte links) durch Ammoniakeinträge dominiert. Der Anteil in Lausanne (LAU) beträgt 66% und in Ottenbach (OBI) 61 %, während in Jussy (JUS) auf einer Waldlichtung, abgeschirmt von landwirtschaftlicher Exposition, der Ammoniakanteil nur 34 % beträgt. Die Gase und Aerosole überwiegen die Gravitationsdeposition mit Ausnahme am regenreichen Standort Novaggio (NOV).

An den hochgelegenen zentralalpinen Standorten beim Ökosystemtyp Nadelwald im Osten der Schweiz sind die Anteile reduzierter und oxidierter Komponenten gleich hoch (DAV), während Oberschrot (OS) 88 % reduzierte N-Anteile aufweist. Der Gravitationsdepositionsanteil beträgt bei Visp (VIS) nur 14 %. In den Nordalpen hingegen beträgt er 59 % in Sörenberg (SOER), im Tessin 67 % in Chironico (CHI) (Abbildung Z8 Mitte rechts).

Die N-Einträge in den Mischwald in Holderhus (HOL) werden zu 78 % durch NH₃ bestimmt, und die NH₃-Anteile an der Gesamtdeposition betragen an keinem der Mischwaldstandorte weniger als 36 % (Abbildung Z8 unten). Die Standorte Randen (RAN) und Sagno (SARE) weisen mit 44 % die höchsten Anteile aller Mischwaldstandorte für den Eintrag durch die Niederschläge auf. Bei Othmarsingen (OTH) ist der Einfluss nahegelegener Strassen bemerkbar, was sich durch den relativ hohen Anteil an Einträgen durch NO₂ von 19 % zeigt.

Im Gegensatz dazu betragen die NO_2 -bedingten Einträge an allen anderen Standorten nahe Mischwald 11 % oder weniger.

Veränderung des Stickstoffeintrags von 2000 bis 2019

Die Verläufe an den sechs Standorten, an denen jährliche Stickstoffeinträge seit 2000 vorliegen, zeigen zwar eine Abnahme für die oxidierten Stickstoffkomponenten, nicht aber für die gesamten Stickstoffeinträge (Abbildung Z9; Kap.4.3.1 Abb. 23). Es ist zu beachten, dass jährliche Variationen stark durch meteorologische Bedingungen eines Jahres beeinflusst sind.

Abbildung Z9 Verlauf der jährlichen Gesamtstickstofffrachten 2000 – 2019

Vergleich mit Ausbreitungsmodell von Meteotest

Die berechneten/abgeschätzten Frachten von 2019 wurden mit den modellierten Werten aus Emissionserhebungen (Datengrundlage 2015) verglichen (Abbildung Z10). Die Übereinstimmung ist gut, wobei vor allem die modellierten Werte der reduzierten Komponenten tendenziell höher liegen. Dies kann zum Teil daran liegen, dass verschiedene Jahre verglichen werden. Zudem hat die Jahreswitterung einen Einfluss auf die Messwerte und beim Modell wird eine gemittelte Witterung berücksichtigt. Auch basieren die abgeschätzten Frachten von 2019 auf Punktmessungen, die Modellwerte beziehen sich hingegen auf eine Fläche (500 x 500 m).

Abbildung Z10 Vergleich der aus Messungen abgeschätzten und den modellierten jährlichen Gesamtstickstoff-Frachten Datengrundlage der Messung: 2019, der Emissionserhebung für das Modell: 2015.

Fazit

- Die Stickstoffeinträge in naturnahe Wiesen, Wälder und Moore der Schweiz sind vielerorts zu hoch und können so die Biodiversität sowie die Stabilität der Wälder negativ beeinflussen (z.B. erhöhtes Windwurfrisiko durch Nährstoffungleichgewicht).
- Ausser bei den zentralalpinen Standorten überwiegen meist die reduzierten N-Komponenten, wobei dies umso stärker ausgeprägt ist, je näher ein Standort bei landwirtschaftlichen Quellen liegt.
- An sechs Standorten mit langjährigen Messungen zeigen die oxidierten Stickstofffrachten eine signifikante Abnahme. Für die reduzierten Stickstofffrachten und die Gesamtstickstofffrachten ist jedoch keine deutliche Ab- oder Zunahme zu beobachten.

Empfehlung und Ausblick

Die detaillierten Messungen von Stickstoffkomponenten an 48 Standorten haben gezeigt, dass bei allen Standorten und den dort vorhandenen Vegetationstypen über 80 % der atmosphärischen Stickstoffdeposition durch die Summe von Ammonium und Nitrat aus der Gravitationsdeposition und Ammoniak- und Stickstoffdioxid-Gasdeposition bedingt sind. Die Messung dieser vier Komponenten erlaubt es deshalb, die Entwicklung der gesamten Stickstoffdeposition in die Vegetation in guter Näherung zu verfolgen. Dies gilt insbesondere dann, wenn flankierend dazu an einigen Standorten in der Schweiz die weiteren Komponenten (Ammonium und Nitrat in der Interzeption sowie Salpetersäure in der Gasdeposition) bestimmt werden und für schweizweite Abschätzungen, analog zu den meisten Standorten im hier vorliegenden Projekt, verwendet werden können. Um Änderungen der regionalen Ammoniakemissionen zu beobachten, ist die Summenmessung von Ammoniak und Ammonium aussagekräftiger als die Messung von Ammoniak allein, da das Gasphasen-Partikelgleichgewicht stark von der Witterung abhängt. Solche Messungen werden im Rahmen des europäischen Messprogramms EMEP an mehreren NABEL-Standorten fortgeführt.

An drei NABEL-Stationen werden die langjährigen Messungen aller sieben Stickstoffkomponenten weitergeführt. Im Jahr 2024 ist die Folge-Messkampagne des vorliegenden Projektes geplant. OSTLUFT beginnt 2021 Dauermessungen der Gesamtstickstoffdeposition mit Messung der vier Komponenten (Ammonium und Nitrat aus der Gravitationsdeposition, Ammoniak- und Stickstoffdioxid-Gasdeposition) an sechs Standorten, und am langjährigen Standort Bachtel werden die Messungen aller sieben Stickstoffkomponenten weitergeführt. Somit werden in der Schweiz ab 2021 die Stickstoffeinträge an 10 Standorten kontinuierlich gemessen und an vier dieser 10 Standorte werden auch die Komponenten der Interzeption ermittelt.

1.2 Résumé

Les émissions d'azote dans l'air ont fortement augmenté depuis l'industrialisation et surtout suite à l'intensification de l'agriculture. Ces émissions conduisent à des apports aériens importants dans des écosystèmes sensibles tels que les forêts, les prairies à l'état semi-naturel et les marais, ce qui contribue à l'acidification du sol et provoque une surfertilisation qui entraine à long terme entre autres une modification de la composition des espèces.

La charge d'azote atmosphérique est enregistrée annuellement sur 6 sites depuis 2000. Pour une image plus complète de la situation, des sites supplémentaires ont été échantillonnés au cours des années individuelles : En 2000, on a mesuré les charges d'azote sur 20 sites, le plus souvent situés à proximité d'écosystèmes sensibles. En 2014, cette étude a été renouvelée sur 18 de ces sites et 20 autres sites ont été ajoutés. En 2019, on a mesuré sur 48 sites y compris tous les sites de l'année 2000. 33 des 40 sites de l'année 2019 ont également été mesurés en 2014 (figure Z1). Les sites retenus étaient presque toujours des sites où l'on procédait déjà à des mesures de composés azotés, tels que les stations NABEL et WSL-LWF.


```
      Figure Z1
      Sites sur lesquels la déposition d'azote a été déterminée

      Rouge : Réseau de mesure 2019
      Rose : Sites où les mesures n'ont été prises que des années précédentes

      J = Jura, M = Plateau, NA = Alpes du Nord, ZA = Alpes centrales, SA = Alpes du Sud
```

Cette étude poursuivait les buts suivants:

- Détermination de la charge d'azote dans des régions soumises à l'influence de différentes sources et comparaison avec les charges critiques pour l'azote nutritif (CLN) pour les écosystèmes sensibles
- Détermination de l'évolution temporelle des apports d'azote sur des sites où des mesures avaient déjà été effectuées par le passé

- Comparaison avec les données d'un modèle de simulation à haute résolution spatiale
- Détermination des apports d'azote atmosphérique pour d'autres projets sur les écosystèmes sensibles
- Mise à disposition de données comme instrument de contrôle de l'efficacité des mesures prises dans le domaine de la politique environnementale et agricole.

Les composés azotés ont été mesurés dans la déposition gravitationnelle (ammonium NH_4^+ et nitrate NO_3^- dans les poussières sédimentées et les précipitations) soit avec des pluviomètres et des nivomètres de type Bulk (par WSL, FUB) soit avec les collecteurs wet² (par l'Empa, FUB), ainsi qu'avec des capteurs passifs (ammoniac NH_3 et dioxyde d'azote NO_2) dans l'air (déposition du gaz) (table Z1). L'ammonium et les nitrates dans les aérosols (interception) et l'acide nitrique (HNO₃) ont aussi été mesurés sur quelques sites. Les mesures des aérosols et de HNO₃ ont été utilisées pour déterminer des valeurs estimées pour les années/sites ou de telles mesures n'avaient pas été effectuées. Sur quelques sites, il a aussi fallu recourir à des valeurs estimées pour NO_2 . Pour la détermination de l'apport d'azote, les concentrations des gaz azotés et les concentrations d'ammonium et de nitrate dans les aérosols pour l'interception ont été multipliées par les vitesses de déposition et les valeurs obtenues pour les différents composés ont ensuite été additionnées.

Table Z1 Sept composés azotés détectés

Dans les graphiques de ce rapport les composés azotés réduits (ammoniac et ammonium) sont indiqués en rouge et les composés azotés oxydés (dioxyde d'azote, acide nitrique et nitrate) sont indiqués en bleu

Type de déposition	Composés azotés
Déposition gravitationnelle	ammonium NH₄+
pluie, neige, grêle, poussière sédimententée	nitrate NO₃⁻
Déposition de gaz	ammoniac NH ₃ dioxyde d'azote NO ₂ acide nitrique HNO ₃
Interception	ammonium NH ₄ +
aerosols	nitrate NO ₃ -

Résultats de l'enquête 2019

Dans l'interprétation des résultats, il faut tenir compte du fait que les conditions météorologiques au cours de l'année exercent une influence sur la déposition de l'azote. Des précipitations augmentées conduisent à une déposition humide plus élevée et des températures plus chaudes conduisent à des concentrations d'ammoniac plus élevées dans l'air.

² Les collecteurs wet (Empa/NABEL) et les collecteur wet&dry (FUB) en mode "wet" ne collectent que lors des événements de précipitations (section 6.1.1). Les charges d'azote de "wet" ont été converties en déposition gravitationnelle en utilisant des facteurs calculés obtenu par mesures comparatives avec le collecteur type Bulk (section 6.4.1).

Concentrations d'ammoniac

Les concentrations d'ammoniac dépendent fortement de l'activité agricole au voisinage des sites considérés. Les concentrations de NH₃ sont plus élevées au-dessus des prairies et marais du Plateau, que sur ceux du Jura ou des Alpes du Nord; les concentrations les plus basses sont mesurées sur les sites en haute altitude des Alpes centrales (figure Z2).

Figure Z2 Concentrations d'ammoniac : à gauche au-dessus des prairies, à droite au-dessus des hauts ou bas-marais Prairies = pâturages et terres arables, prairies sèches et herbages alpin/subalpin J = Jura, M = Plateau; NA = Alpes du Nord; ZA = Alpes centrales, SA = Alpes du Sud

Déposition gravitationnelle

Pour la déposition gravitationnelle d'azote (somme NH_4^+ -N et NO_3^- -N), les Alpes centrales présentent aussi tendanciellement les valeurs les plus basses (<10 kg N ha⁻¹ a⁻¹). La valeur la plus élevée, 25 kg N ha⁻¹ a⁻¹, a été trouvée sur le Plateau et la deuxième valeur la plus élevée, 22 kg N ha⁻¹ a⁻¹, dans les Alpes du Sud (figure Z3).

Figure Z3 Charge en azote dans la déposition gravitationnelle

Pluie, neige, etc. collectés avec des collecteurs type Bulk. Les valeurs des échantillons Wet-Only des stations NABEL ont été multipliées par un facteur pour inclure les apports secs par gravitation.

J = Jura, M = Plateau, NA = Alpes du Nord, ZA = Alpes centrales, SA = Alpes du Sud

Apports d'azote dans les écosystèmes sensibles et comparaison avec les charges critiques pour l'azote nutritif (CLN)

Les figures Z4 et Z5 représentent les apports d'azote totaux sous forme de barres sur la carte de la Suisse. Sur les sites avec des écosystèmes sensibles, on a indiqué, à titre de comparaison, la charge critique d'azote – Critical Load for Nitrogen (CLN) – de l'écosystème correspondant soit directement sur la station soit dans les 200 mètres autour de celle-ci, en utilisant pour cela la moyenne du domaine de CLN correspondant selon UNECE 2010 et Bobink et al. 2011. A titre d'exemple, la CLN des hauts-marais présente un intervalle de 5 – 10 kg N ha⁻¹ a⁻¹. La valeur indiquée sur l'illustration est donc ici de 7.5 kg N ha⁻¹ a⁻¹. Pour les sites sur prairies et grandes cultures, aucune CLN n'est définie. Les charges en azote sur un site déterminé ne sont pas forcément représentatives d'une région entière car les concentrations d'ammoniac peuvent varier fortement spatialement.

Figure Z4 Prairies: Comparaison des charges en azote 2019 avec les charges critiques Pour les CLN (jaune) on a indiqué la moyenne du domaine du CLN empirique selon l'UNECE. Les dépositions d'azote représentées s'appliquent au site indiqué (cercle). Il n'y a pas de CLN pour les prairies et les grandes cultures.

Figure Z5 Marais (en haut) et forêts (en bas): Comparaison des charges en azote 2019 avec les charges critiques. Pour les CLN (jaune) on a indiqué la moyenne du domaine du CLN empirique selon l'UNECE. Les dépositions d'azote représentées s'appliquent au site indiqué (cercle)

Les analyses révèlent que les CLN pour les herbages alpins/subalpins respectivement les prairies sèches (fig. Z4) et pour les marais (fig. Z5, en haut) sont partout dépassées, sauf sur les sites à l'est des Alpes centrales. Cependant, tous les composés azotés ne sont pas pris en compte et il se produit des pertes lors de la collecte de la déposition gravitationnelle par fort vent et/ou lorsqu'il neige, un dépassement des CLN sur les sites situés à haute altitude dans les Alpes centrales n'est pas totalement à exclure. Les plus forts dépassements ont été enregistrés près des bas-marais à Wauwilermoos (WAU) et à Altstätten Bannriet (ALB) sur le Plateau tel que dans le marais à proximité de la station NABEL de Magadino (MAG).

La figure Z5 (bas) donne les apports d'azote et les CNL pour les forêts qui se situent dans un périmètre de 200 m autour des stations de mesure. La charge en azote n'est située à la limite inférieure du domaine des CLN que sur les sites des Alpes centrales à Davos (DAV), à Celerina (CEL) et au Parc national (NAT) dans le canton des Grisons. Cependant si l'on tient compte du fait que tous les composés azotés ne sont pas pris en compte et qu'il se produit des pertes lors de la collecte des précipitations par fort vent et/ou lorsqu'il neige, un dépassement des CLN sur les sites situés en haute altitude dans la Alpes centrales n'est pas à exclure. Sur tous les autres sites, les charges se situent dans le domaine des CLN ou sont supérieures à celles-ci. On constate de forts dépassements sur de nombreux sites du Plateau, les plus élevés dans la forêt mixte à Holderhus (HOL). Il faut ainsi admettre que pratiquement toutes les forêts du Plateau subissent un apport aérien d'azote trop élevé.

Formes de l'apport d'azote

Mis à part sur le Plateau, il y a dominance des apports d'azote en provenance de la déposition gravitationnelle, et donc des apports par les précipitations. D'une manière générale, les apports des composés azotés réduits, qui proviennent principalement de l'agriculture, sont plus importants que ceux des composés azotés oxydés dont les émissions proviennent essentiellement des processus de combustion (trafic routier, industrie et ménages). Le pourcentage des composés azotés oxydés domine sur les sites à l'est des Alpes centrales (DAV et NAT). La figure Z6 montre les pourcentages de déposition gravitationnel (à gauche) et les pourcentages des composés réduits (à droite) par rapport à la charge totale d'azote pour les sites herbagers.

Figure Z6 Pourcentages des apports d'azote

Chaque marqueur correspond à une site herbager (prairies, herbages alpins/subalpins et marais).

A gauche le pourcentage de la déposition gravitationnelle à l'apport total (= déposition gravitationnelle + déposition de gaz + interception). A droite, le pourcentage des composés réduits à l'apport total (= composés réduits + composés oxydés). J = Jura, M =Plateau, NA =Alpes du Nord, ZA =Alpes centrales, SA = Alpes du Sud

Les surfaces de colonnes sont proportionnelles à l'apport d'azote. D. grav. = Déposition gravitationnelle ; Interc = Interception. J = Jura, M =Plateau, NA =Alpes du Nord, ZA =Alpes centrales, SA = Alpes du Sud

Figure Z8 Types d'écosystèmes "hauts-marais", "Forêt de feuillus ", Forêt de résineux " et " Forêt mixte". Forme d'apports des charges d'azote

Les surfaces de colonnes sont proportionnelles à l'apport d'azote. D. grav. = Déposition gravitationnelle ; Interc = Interception. J = Jura, M =Plateau, NA =Alpes du Nord, ZA =Alpes centrales, SA = Alpes du Sud Les figures Z7 et Z8 illustrent à l'aide d'exemples les formes d'apport en azote provenant de la déposition gravitationnelle (foncé), des gaz et des aérosols (clair) ainsi que leur subdivision en composés réduits (rouge) et oxydés (bleu). Les surfaces des colonnes sont proportionnelles aux charges en azote.

La figure Z7 (en haut) montre les apports sur les prairies et grandes cultures. A Chaumont (CHA) et Rigi (RIG), les proportions d'azote sont similaires : 57 % et 62 %, pour le N provenant de la déposition gravitationnelle et 72 % et 68 % sont des composés réduits. Aux sites du Plateau, les apports N provenant de la déposition gravitationnelle varient de 32% à Ap. Steinegg (APS) jusqu'à 57 % sur le Bachtel (BA) ainsi que les proportions réduites de 51 % à Jussy (JUS) à 88 % à APS. Les proportions d'ammoniac dans les charges varient entre 22 % à JUS et 62 % à APS. Magadino (MAG) et APS ont des valeurs égales pour la charge d'azote totale, mais à MAG, la charge gravitationnelle est proche de 50% (à APS 32 %).

Aux sites des prairies sèches, c'est-à-dire à Randen et Tablat (RAN, TAB), où les herbages alpins / subalpins (autres sites, figure Z7 au centre) la déposition gravitationnelle prédomine le plus souvent (45 % à 83 %). Le pourcentage d'azote réduit est entre 59 % à Bettlachstock (BET) et 70 % dans le RAN (les deux dans le Jura) pour toutes les zones paysagères. L'azote oxydé prédomine (53 %) uniquement sur le site NAT (Alpes centrales).

Pour les bas-marais (figure Z7, en bas), la forme d'apport résulte d'une part de la situation géographique et d'autre part des activités agricoles à proximité. Le pourcentage d'azote réduit est entre 70 % et 90 % sur les sites du Plateau, les Alpes du Sud, mais aussi au site Ruggeller Ried (RRI) dans les Alpes du Nord. A Altstätten Bannriet (ALB) la teneur en ammoniac uniquement est déjà supérieure à 70 %. Sur les sites au-dessus que 1000 m, Alpthal (ANA B) et Davos (DAV), le pourcentage d'azote. Comme les concentrations des composés azotés réactifs gazeux sont très faibles, il est supposé que les aérosols ne se forment pas localement mais sont apportés par transport atmosphérique. Sur tous les autres sites de bas-marais au-dessous de 550 m/mer, les apports du gaz prédominent.

Les exemples des hauts-marais (figure Z8, en haut) montrent que la situation géographique a une grande influence sur les apports. A Sörenberg (SOER) dans l'Entlebuch, l'azote est avant tout apporté par les fortes précipitations. À Celerina (CEL), située dans les Alpes Centrales, avec peu d'influence agricole, les pourcentages d'azote oxydé et réduit sont pareils, tandis qu'aux sites du Jura et du Plateau, les pourcentages d'azote réduits sont supérieurs à 70 %.

Pour les régions agricoles du Plateau, les apports d'azote dans les forêts de feuillus (Figure Z8, au centre gauche) sont dominés par les apports d'ammoniac dans les régions agricoles. Le pourcentage à Lausanne (LAU) est 66 % et à Ottenbach (OBI) 61 %, tandis qu'à Jussy (JUS) dans une clairière, à l'abri de l'exposition agricole, la proportion d'ammoniac n'est que de 34 %. Les gaz et les aérosols l'emportent sur la déposition gravitationnelle à l'exception du site pluvieux de Novaggio (NOV).

Sur les sites d'altitude élevée des Alpes centrales à l'Est de la Suisse près des forêts de résineux, les pourcentages pour les composés réduits et oxydés sont les mêmes (DAV), tandis qu'à Oberschrot (OS) une teneur en azote réduite de 88% a été déterminée. Le pourcentage de la déposition gravitationnelle n'est que de 14% à Viège (VIS). D'autre part, la déposition gravitationnelle contribue avec 59 % à Sörenberg (SOER) dans les Alpes du Nord et avec 67 % à Chironico (CHI) au Tessin (Figure Z8, centre droit).

Les apports d'azote dans la forêt mixte à Holderhus (HOL) sont déterminés à 78 % par NH₃, et ne sont pas inférieurs à 36% de la somme des dépositions azotées sur n'importe quel site

de mesure avec des forêts mixtes (figure Z8, en bas). Les sites de Randen (RAN) et Sagno (SARE) présentent avec 44 % les pourcentages les plus élevés de tous les sites forestiers mixtes pour l'apport par les précipitations. A Othmarsingen (OTH), l'influence des routes à proximité est perceptible, ce que montre l'apport relativement élevé de NO₂, 19%. Contrairement à cela, les émissions liées au NO₂ à tous les autres sites près des forêts mixtes sont de 11 % ou moins.

Variations des apports d'azote entre 2000 et 2019

Les courbes des six sites sur lesquels des mesures annuelles ont été réalisées sans interruption depuis 2000 montrent une diminution pour les composés oxydés, par contre pour les apports d'azote totaux, aucune diminution n'a pu être observée (Figure Z9 et Kap. 4.3.1 Abb. 23 + 24). Il convient de noter que les variations annuelles sont fortement influencées par les conditions météorologiques d'une année à l'autre.

Figure Z9 Courbes des apports d'azote totaux annuels 2000 – 2019

Comparaison avec le modèle de diffusion de Meteotest

Les charges mesurées / estimées à partir des mesures de déposition de 2019 ont été comparées avec les valeurs modélisées à partir des inventaires des émissions (base des données 2015) (figure Z10). La concordance est bonne, avec cependant des valeurs modélisées tendanciellement plus élevées avant tout pour les composés réduits. Ceci peut être dû en partie au fait que l'on compare entre elles des années différentes. De plus, les conditions météorologiques au cours de l'année exercent une influence sur les valeurs de mesure alors que le modèle prend en compte des conditions météorologiques moyennes. En outre, les charges estimées de 2019 reposent sur des mesures ponctuelles alors que les valeurs modélisées se rapportent à une surface (500x500 m).

Figure Z10 Comparaison entre les apports d'azote totaux estimés à partir des mesures avec ceux obtenus par modélisation. Base des données des mesures: 2019 ; inventaire des émissions pour le modèle: 2015.

Conclusions

- En maints endroits, les apports d'azote dans les prairies à l'état semi-naturel, les forêts et les marais de Suisse sont trop élevés et ils peuvent ainsi exercer une influence négative sur la biodiversité et la stabilité des forêts (p. ex. risque accru de chablis dû au déséquilibre de l'apport en substances nutritives).
- Mis à part sur les sites des Alpes centrales, ce sont le plus souvent les composés azotés réduits qui dominent, ceci étant d'autant plus marqué que le site est plus proche d'une source agricole.
- Sur six endroits où les mesures s'étendaient sur plusieurs années, les charges d'azote oxydé montrent une diminution significative. Cependant, aucune augmentation ou diminution significative ne peut être observée pour les charges d'azote réduites et les charges d'azote totales.

Recommandation et perspective

Les mesures détaillées sur 48 sites et leurs différents types de végétation ont montré que plus de 80% de la déposition d'azote atmosphérique est dû à la somme de la déposition des gaz (ammoniac et dioxyde d'azote) et de la déposition gravitationnelle (ammonium et nitrate). La mesure de ces quatre composés permet donc une bonne approximation de l'évolution de la déposition d'azote totale dans la végétation. Cela s'applique en particulier si les composants supplémentaires (ammonium et nitrate de l'interception et acide nitrique de la déposition de gaz) sont déterminés sur quelques sites pour faire des estimations à l'échelle nationale, comme c'était le cas pour la plupart des sites de mesure dans ce projet.

Afin d'observer les changements dans les émissions régionales d'ammoniac, la mesure de la somme de l'ammoniac et de l'ammonium est plus appropriée que la mesure de l'ammoniac seule, puisque l'équilibre des particules en phase gazeuse dépend fortement de la météo. Ces

mesures se poursuivent sur plusieurs sites NABEL dans le cadre du programme de mesure européen EMEP.

Les mesures à long terme des sept composés d'azotés se poursuivent dans trois stations NA-BEL. La campagne de suivi de ce projet est prévue pour 2024. OSTLUFT commencera à mesurer en continu à six endroits la déposition d'azote totale en 2021 avec quatre composés (ammonium et nitrate provenant de la déposition gravitationnelle ; déposition de gaz d'ammoniac et de dioxyde d'azote) et les mesures des sept composés azotés se poursuivront sur le site de Bachtel. Ainsi, à partir de 2021, les apports d'azote seront mesurés en continu sur 10 sites en Suisse et les composés de l'interception seront également déterminées sur quatre de ces 10 sites.

2 Einleitung

2.1 Ausgangslage

Stickstoffemissionen haben bedingt durch die Industrialisierung, der starken Zunahme des Verkehrs und der Intensivierung der Landwirtschaft stark zugenommen. Seit den 1980er Jahre haben die Emissionen aufgrund der unter der Genfer Konvention ergriffenen Massnahmen wieder abgenommen, sind aber immer noch hoch. Diese Emissionen führen zu bedeutenden Stickstoffeinträgen in empfindliche Ökosysteme wie Wälder, Moore und oligotrophe Stillgewässer, was langfristig eine Bodenversauerung, eine Überdüngung und eine Verschiebung der Artenzusammensetzung verursacht (BAFU 2014 Animationsfilm, Guntern et al. 2020). Die ökologisch kritischen Eintragsgrenzen von Stickstoff für naturnahe Ökosysteme (Critical Loads für Stickstoff, CLN) werden weiträumig überschritten, selbst an quellenfernen Standorten (UNECE 2010; Bobbink & Hettelingh 2011; Thimonier et al. 2005; Waldner et al. 2007). In der Schweiz werden die Critical Loads für Stickstoff auf fast 90 % der Waldflächen, einem Drittel der Trockenwiesen, fast allen Hochmooren und drei Viertel der Flachmoore überschritten (BAFU 2018).

Bei der Emission von Stickoxiden spielt die Verbrennung von Brenn- und Treibstoff die wichtigste Rolle. Diese Emissionen haben sich nach der Einführung des Katalysators für Autos und Low-NOx-Feuerungen von 42.6 kt NO_x-N (1990) auf 20.4 kt NO_x-N (2018) halbiert (FOEN 2020).

Die Ammoniakemissionen betrugen im Jahr 2018 in der Schweiz rund 45 kt NH₃-N (FOEN 2020). Die "Land- und Forstwirtschaft" verursachte davon 94 % und ist damit die wichtigste Stickstoffquelle. Weitere Ammoniak-Emittenten sind Verkehr, Industrie/Gewerbe und Haushalte mit je 2% Anteil (BAFU 2020a). Die NH₃-Emissionen aus der Landwirtschaft in der Schweiz sanken zwar zwischen 1980 und 2000 – vor allem wegen der Reduzierung der Tierbestände – von 64 auf 44 kt Stickstoff pro Jahr (FOEN 2020). 2018 betrugen sie immer noch rund 42'000 Tonnen Stickstoff und nahmen demnach seit 2000 nur noch wenig ab. Somit liegen die Ammoniakemissionen aus der Landwirtschaft nach wie vor deutlich über der Zielsetzung von 25'000 Tonnen Stickstoff pro Jahr (Rihm & Achermann 2016).

Emittiertes Ammoniak wird teilweise in der näheren Umgebung der Emissionsquellen deponiert, es bildet jedoch auch mit Säuren – vor allem Salpetersäure – Aerosole, die über weite Strecken transportiert werden können (EKL 2005). Im Feinstaub ist Ammonium (die konjugierte Säure von Ammoniak) das weitaus wichtigste beteiligte Kation. Während winterlicher Inversionen konnte gezeigt werden, dass Ammoniumnitrat- und Ammoniumsulfat-Anteile im PM10 etwa die Hälfte (Empa 2006) und im PM1 bis zu zwei Drittel (PSI & uwe 2007) betragen.

Sowohl die direkte Belastung der Vegetation mit gasförmigem Ammoniak als auch die durch Ammoniak und Ammoniumsalze zusammen mit oxidierten Stickstoffverbindungen verursachten Stickstoffeinträge in empfindliche Ökosysteme haben schädliche Auswirkungen. Diese grossflächige und teilweise massive Überdüngung mit Stickstoff führen neben Verschiebungen in der Artenzusammensetzung auch zu einer Reduktion der Artenvielfalt (BAFU 2011, Roth et al. 2013, 2015).

Im Anhang 7 der Luftreinhalte-Verordnung (LRV) sind für NO₂ Immissionsgrenzwerte vorgegeben. Im Rahmen der von der Schweiz ratifizierten UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung sind Critical Loads für Stickstoff (CLN) und Critical Levels für Ammoniak (CLe-NH₃) für verschiedene Typen von empfindlichen Ökosystemen festgelegt (UNECE 2010; Bobbink & Hettelingh 2011). Eine für die Schweiz wichtige Auswahl ist in Rihm & Achermann (2016, S. 24) angegeben (Tabelle 1). Critical Loads für Stickstoff und Critical Levels für Ammoniak sind von der Bedeutung her mit Immissionsgrenzwerten der LRV gleichwertig (BAFU 2020b). Bei deren Überschreitung müssen die Immissionen demnach als übermässig bezeichnet werden. Damit sind die Behörden gemäss LRV verbindlich aufgefordert, Massnahmen zur Reduktion der massgeblich durch Ammoniak und NO_x verursachten übermässigen Stickstofffrachten zu treffen (EKL 2014).

Die Gesamtstickstofffrachten (ableitbar aus den gemessenen Konzentrationen von Ammoniak, Stickstoffdioxid und Ammonium und Nitrat in den Gravitationsfrachten) liegen in der Umgebung von intensiv landwirtschaftlich genutzten Gebieten weit über den Critical Loads für empfindliche Ökosysteme, welche im Rahmen der UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung festgelegt sind (EKL 2005; EKL 2014). Der Anteil des von der Landwirtschaft stammenden Ammoniaks/Ammoniums macht dabei je nach Standort 60–90 % des gesamten Stickstoffeintrags aus.

Tabelle 1 Empirische Critical Loads für Stickstoff

Stickstoff-Belastungsgrenzen für verschiedene Ökosysteme (Auszug aus Rihm & Achermann 2016 und gemäss UNECE 2010)

Ökosystemtyp	Critical Loads Bereich kg N ha ⁻¹ a ⁻¹
Hochmoore	5—10
Flachmoore	10—15
Alpines/subalpines Grasland	5–10
Trockenwiesen TWW	7—15
Laubwälder	10—20
Nadelwälder	5—15

2.2 Projektrahmen

Im Jahr 2019 sind die Gesamtstickstoffeinträge an 48 Standorten geschätzt worden. Darunter sind sechs Standorte mit Dauermessungen aller Stickstoffkomponenten (4 NABEL, 1 WSL-LWF & 1 FUB-Standort). Einige WSL-LWF-Stationen mit bestehenden Dauermessungen der Gravitationsdeposition sowie Standorte der Ammoniak-Immissionsmessungen wurden 2019 durch zusätzliche Messungen ergänzt. Diese Zusatzmessungen wurden von OSTLUFT, BAFU, WSL, Uni Basel, Kantone: AG, BE, BL, FR, GE, GR, LU, NE, SO, VD, VS, TI, ZG und ZH, Fürstentum Liechtenstein, UNESCO Biosphärenreservat Entlebuch in Auftrag gegeben. Im Jahr 2000 wurden die Gesamtstickstoffeinträge an 20, im Jahr 2014 an 38 Standorten erfasst und an einzelnen Standorten wurden Messungen auch in anderen Jahren durchgeführt. Es liegen Messungen von insgesamt 54 Standorten vor.

2019 wurde an allen 48 Standorten mindestens Ammonium und Nitrat im Bulkregensammler (oder Wet-) sowie NO_2 und NH_3 mit Passivsammlern gemessen. An den NABEL-Stationen

CHA, MAG, PAY und RIG wird Stickstoff im Regen (Wet only) sowie NH_3 und NO_2 mindestens seit 20 Jahren gemessen, für BA und SCH liegen 19 Messjahre vor. Diese Daten werden für eine Zeitreihen-Auswertung genutzt. An den OSTLUFT-Standorten (APS, HÄG, HUD, sowie bei TAE) wurden in weiteren Jahren ebenfalls mehrere N-Komponenten erfasst. Auch für diese Standorte kann eine gewisse zeitliche Entwicklung gezeigt werden.

2.3 Zielsetzung

Im Rahmen dieses Projektes werden folgende Ziele verfolgt:

- Stickstoffbelastungen in Gebieten mit unterschiedlichen Quelleneinflüssen erfassen, Vergleich mit Critical Loads (CLN) für empfindliche Ökosysteme
- An den Orten, an denen in früheren Jahren gemessen wurde, zeitliche Veränderung der Stickstoffeinträge erfassen
- Vergleich mit räumlich hoch aufgelösten, modellierten Daten
- Ermittlung von atmosphärischen N-Einträgen für andere Forschungsprojekte bei empfindlichen Ökosystemen³
- Bereitstellung von Daten als Instrument zur Erfolgskontrolle im Zusammenhang mit den eingeleiteten Massnahmen der Umwelt- und Agrarpolitik

³AlpGrass Experiment: Wirkung von Klimawandel und Luftverschmutzung auf subalpine Weiden, Forschungsflächen in Ardez GR, Agroscope Zürich, matthias.volk@agroscope.admin.ch

Alpfor: Wirkung atmosphärischer Stickstoffdeposition auf die alpine Vegetation in drei verschiedenen alpinen Lebensraumtypen, Forschungsflächen KLE, TIE & FUR, Bot. Inst., DUW, Uni Basel, erika.hiltbrunner@unibas.ch

Stickstoffdynamik Alpthal, WSL, patrick.schleppi@wsl.ch

3 Methodik

3.1 Stickstoffkomponenten

Verschiedene Stickstoffkomponenten tragen zum Gesamtstickstoffeintrag bei (Tabelle 2, Abbildung 1). Wegen Kosten und Aufwand können nicht alle Komponenten erfasst werden, z.B. werden okkulte Depositionen (aus Nebel), Lachgas (N₂O) und organische Stickstoffeinträge (z.B. gelöster organischer Stickstoff DON, Peroxiacetylnitrat PAN) in dieser Studie nicht berücksichtigt. Erfasst werden die Gravitationsdeposition von NH₄⁺ und NO₃⁻, die Gasdeposition von NH₃, NO₂, HNO₃ und die Interzeption von NH₄⁺ und NO₃⁻ in Aerosolen. Die Summe dieser Komponenten wird als Gesamtstickstoffeintrag bezeichnet. Weil diese Stickstoffverbindungen über unterschiedliche Pfade aus der Luft abgelagert werden, müssen verschiedene Techniken zur Sammlung und Messung benutzt werden. Unter Verwendung von Bulkregensammlern (resp. Wet mit Umrechnungsfaktor) für die Erfassung der Gravitationsdeposition, von Passivsammlern zur Messung von NH3 und NO2 und Denuder-Filter-Systemen zur Messung von HNO₃ und Aerosolen (NH₄⁺, NO₃⁻) kann der Gesamtstickstoffeintrag in Ökosysteme unter Beizug von Depositionsgeschwindigkeiten mit relativ kleinem messtechnischem Aufwand abgeschätzt werden. Die Denuder-Filter-Messungen wurden nur an einzelnen, ausgesuchten Orten durchgeführt und die dort gemessenen Werte wurden als Schätzwerte für alle anderen Standorte eingesetzt.

Tabelle 2 Erfasste und nicht erfasste Stickstoffkomponenten

Reduzierte N-Komponenten Ammoniak und Ammonium rot, oxidierte N-Komponenten blau dargestellt.

Art der Deposition	Stickstoffkomponente
Erfasste Stickst	offkomponenten
Gravitationsdeposition Regen, Schnee, Hagel, sedimentierender Staub	Ammonium NH ₄ + Nitrat NO ₃ -
Gasdeposition	Ammoniak NH ₃ Stickstoffdioxid NO ₂ Salpetersäure HNO ₃
Interzeption Aerosole, Schwebestaub	Ammonium NH ₄ + Nitrat NO ₃ -
Nicht erfasste Stickstoffkomponenten (Aufzählung unvollständig)	
Gravitationsdeposition gelöster organischer Stickstoff DON	
Gasdeposition	Stickstoffmonoxid NO salpetrige Säure HONO Lachgas N ₂ O PeroxiacetyInitrat PAN
Interzeption Nebel (nicht vollständig erfasst)	Ammonium NH₄+ Nitrat NO₃⁻

Abbildung 1 Stickstoffeinträge aus der Atmosphäre Deposition durch Gravitationsdeposition, Gasdeposition oder Interzeption
Probesammlung und Analytik im Überblick 3.2

In Tabelle 3 sind die eingesetzten Methoden kurz dargestellt. Genauere Beschreibungen befinden sich im Fachteil (Kapitel 6.1).

Verwendete Sammelgeräte und Methoden Sammel- und Messmethoden; Institutionen, welche die im Bericht verwendeten Daten erhoben haben.

Art der Deposition	Komponenten	Sammelverfahre	n	Analytik		
Gravitationsdeposition Regen, Schnee, sedimentierender Staub etc.	Ammonium, Nitrat		Bulk Regensammler FUB WSL		Ionenchromatografie (IC), Fliessinjektionsanalyse (FIA) / Segmented Flow Analysis (SFA)	
	Ammonium, Nitrat		Schneesammler	WSL	lonenchromatografie (IC), Fliessinjektionsanalyse (FIA)	
Nassdeposition Regen, Schnee → daraus Abschätzung Grav'dep.: Kap. 6.4.1	Ammonium, Nitrat		"Wet only" Sammler Wet-Fraktion aus "wet&dry"	Empa FUB	IC, FIA / SFA	
Gasdeposition Gase	Ammoniak, Salpetersäure		Denuder	FUB Empa	IC, FIA / SFA	
	Ammoniak		Passivsammler (2 Bauweisen)	FUB	FIA / SFA	
	Salpetersäure		Passivsammler	FUB	IC	
	Stickstoffdioxid		Passivsammler	FUB UGZ	Photometrie	
	Stickstoffdioxid		Kontinuierlich	Empa	Chemolumineszenz	
Interzeption Aerosole	Ammonium, Nitrat		Aerosolfilter Summenfilter	FUB Empa	IC, FIA / SFA	

Tabelle 3

3.3 Messstandorte im Überblick

Bei der Auswahl der Standorte wurden verschiedene Regionen und Ökosystemtypen berücksichtigt. Die Wahl fiel vor allem auf Standorte mit schon bestehenden Messungen der Nassresp. Gravitationsdeposition, welche z.B. durch die Empa an NABEL- oder durch die WSL an LWF-Stationen durchgeführt werden. Einige Standorte, an denen seit Jahren Ammoniak gemessen wird, wurden mit Bulk- und NO₂-Passivsammlern ergänzt. 13 Standorte bei sensiblen Ökosystemen wurden neu ins Messprogramm aufgenommen (rote Kreise), 6 Standorte aus früheren Messkampagnen wurden 2019 nicht beprobt (Standorte ohne rot) (Abbildung 2).

In Tabelle 4 werden die Standorte und Messzeitpunkte beschrieben. Die Werte von 2000 sind meist von Herbst 1999 bis Herbst 2000 ermittelt worden. In den anderen Jahren wurde von in der Regel von Januar bis Dezember gemessen. Die Standortinformationen sind ausführlicher im Anhang sowie in den Standortdatenblättern (Seitler et al. 2020) dokumentiert.

In Abbildung 3 werden die Ökosystemtypen direkt am Standort, in Abbildung 4 die empfindlichen Ökosystemtypen innerhalb von 200 m um die Messstandorte dargestellt.

 Abbildung 2
 Die Standorte, an denen Gesamtstickstoffeinträge ermittelt wurden

 Die Farben zeigen die Jahre mit Messkampagnen am Standort.
 "Andere Jahre" = Messkampagnen an einzelnen oder mehreren Jahren 2001 bis 2018 ohne 2014

 Die eingezeichneten grauen Linien sind Naturraumgrenzen.
 Die Verschlutzen 2001 bis 2018 ohne 2014

 Tabelle 4
 Standorte, an denen aus Messungen Gesamtstickstoff-Depositionen abgeschätzt wurden

Zuweisung der Ökosystemtypen nach map.geo.admin.ch, Geokatalog: Waldmischungsgrad LFI, Flach- + Hochmoore, Trockenwiesen und -weiden (TWW), vereinfachte Bodennutzung

Standort Name	Code	Kt./	Natur-	Höhe	Ökosystemtyp	Messungen		
		Land	raum	m ü. Meer	an Station	Innerhalb 200 m von Station¹	N-Komponenten	
Knonau Ägelsee	AEG	ZH	М	449	Hochmoor	Mischwald	2019	
Altstätten	ALB	SG	М	420	Flachmoor		2019	
Alpthal	ANA B	SZ	NA	1190	Flachmoor	Nadelwald	2014, 2019	
ApSteinegg	APS	Al	М	820	Wies- und Ackerland		2003, 2008, 2014, 2019	
Ardez Szen. 2	ARD 02	GR	ZA	2180	Alpines/subalpines Grasland		2014	
Ardez Szen. 6	ARD 06	GR	ZA	1680	Alpines/subalpines Grasland	Nadelwald	2014	
Bachtel	BA	ZH	М	930	Wies- und Ackerland	Mischwald	2001 - 2019	
Beatenberg	BEA	BE	NA	1560	Alpines/subalpines Grasland	Nadelwald	2000, 2014, 2019	
Bettlachstock	BET	SO	J	1076	Alpines/subalpines Grasland	Mischwald	2000, 2014, 2019	
Bilten Niederriet	BIN	GL	М	411	Flachmoor		2019	
Beromünster NABEL	BRM	LU	М	796	Wies- und Ackerland	Mischwald	2019	
Celerina	CEL	GR	ZA	1760	Hochmoor	Nadelwald	2000, 2014, 2019	
Chaumont	CHA	NE	J	1137	Wies- und Ackerland	Mischwald	2000 - 2019	
Chironico	CHI	TI	SA	1479	Alpines/subalpines Grasland	Nadelwald	2014, 2019	
Davos	DAV	GR	ZA	1629	Flachmoor	Nadelwald	2014, 2019	
Furka	FUR	UR	ZA	2440	Alpines/subalpines Grasland		2014, 2019	
Gänsemoos	GMO	BE	М	797	Hochmoor	Nadelwald	2019	
Häggenschwil	HÄG	SG	М	555	Wies- und Ackerland		2003, 2008, 2014, 2019	
Holderhus 1	HOL	LU	М	590	Wies- und Ackerland	Mischwald	2000, 2019	
Hudelmoos 0	HUD	TG	М	520	Hochmoor	Mischwald	2000, 2001, 2014, 2019	
Jussy	JUS	GE	М	501	Wies- und Ackerland	Laubwald	2000, 2014, 2019	
Kirchberg	KIT	SG	М	740	Flachmoor	Mischwald	2019	
Klewenalp	KLE	NW	NA	1722	Alpines/subalpines Grasland	Nadelwald	2014	
Lägeren WSL	LAE F	AG	М	508	Wies- und Ackerland	Laubwald	2014, 2019	
Lausanne	LAU	VD	М	790	Wies- und Ackerland	Laubwald	2000, 2014, 2019	
Lengwiler Weiher 1	LEN	TG	М	505	Flachmoor	Laubwald	2000, 2014, 2019	
Magadino-Cadenazzo	MAG	TI	SA	204	Wies- und Ackerland	Flachmoor	2000 - 2019	
Mauren 1	MAU	TG	М	439	Wies- und Ackerland		2000, 2019	
Muri 1	MU	AG	М	470	Waldlichung	Mischwald	2014	
Nationalpark	NAT	GR	ZA	1900	Alpines/subalpines Grasland	Nadelwald	2000, 2014, 2019	
Les Ponts-de-Martel	NE 01	NE	J	1000	Hochmoor	Mischwald	2014, 2019	
Nenzlingen	NENZ	BL	J	500	Trockenwiesen	Laubwald	2014, 2019	
Novaggio	NOV	TI	SA	1075	Alpines/subalpines Grasland	Laubwald	2000, 2014, 2019	
Ottenbach Bibelaas	OBI	ZH	М	386	Flachmoor	Laubwald	2019	
Oberschrot 1	OS	FR	М	900	Wies- und Ackerland	Nadelwald	2019	
Othmarsingen	OTH	AG	М	462	Waldlichung	Mischwald	2000, 2014, 2019	
Payerne	PAY	VD	М	489	Wies- und Ackerland		2000 - 2019	
Merishausen Hagenturm	RAN	SH	J	900	Trockenwiesen	Mischwald	2019	
Rigi-Seebodenalp	RIG	SZ	NA	1031	Wies- und Ackerland	Mischwald	2000 - 2019	
Wetzikon Robenhuserriet	ROB	ZH	М	539	Hochmoor, Flachmoor		2019	
Rothenturmer Hochmoor	ROHO	SZ	М	905	Hochmoor, Flachmoor		2014	
Ruggell Riet	RRI	FL	NA	432	Flachmoor		2019	
Sagno Reservoir	SARE	TI	SA	820	Waldlichung	Mischwald	2014, 2019	
Schänis	SCH	SG	NA	630	Wies- und Ackerland	Mischwald	2000, 2002 - 2019	
Sörenberg Husegg	SOER	LU	NA	1450	Hochmoor, Flachmoor	Nadelwald	2014, 2019	
Stein Sägehüsli	SSH	AR	М	722	Wies- und Ackerland	Mischwald	2019	
Turbenthal Tablat	TAB	ZH	М	641	Trockenwiesen	Mischwald	2019	
Tänikon	TAE	TG	М	539	Wies- und Ackerland		2000, 02, 03, 08, 14, 19	
Tiefenbach	TIE	UR	ZA	2127	Alpines/subalpines Grasland		2014, 2019	
Visp	VIS	VS	ZA	664	Waldlichung	Nadelwald	2014, 2019	
Vordemwald	VOR	AG	М	486	Wies- und Ackerland	Mischwald	2000, 2014, 2019	
Wauwil 16	WAU	LU	М	499	Flachmoor		2000, 2014, 2019	
Schimmelstrasse	WIE	ZH	М	415	Siedlung		2008	
Zugerberg 1	7B	ZG	NA	990	Hochmoor Flachmoor	Mischwald	2014 2019	

¹ Die Stickstoffdeposition wurden für Ökosysteme im Umkreis von 200 m zu Stationen mittels gesammelten Gravitationsfrachten, Gasund Aerosolkonzentrationen, aber mit ökosystemspezifischen Depositionsgeschwindigkeiten ermittelt.

Abbildung 3 Ökosystemtypen direkt an den Messstandorten

Abbildung 4 Ökosystemtypen im Umkreis von 200 m der Messstandorte Es werden nur diejenigen Standorte dargestellt, bei denen im Umkreis von 200 m ein zusätzliches, empfindliches Ökosystem vorhanden ist.

Für die Auswertung wurden die Naturräume Jura (J), Mittelland (M), Nordalpen (NA), Zentralalpen (ZA) und Südalpen (SA) nach Gutersohn (1973) beigezogen (Abbildung 5), da sich vor allem die Jahres-Niederschlagssummen dieser Regionen unterscheiden und sich diese auf die Stickstofffrachten auswirken. Tiefenbach (TIE) und Furka (FUR) im Urserental wurden zu den zentralalpinen Standorten gezählt, da diese ebenfalls von direkter Anströmung von Norden und Süden geschützt sind.

Abbildung 5 Naturräume in der Schweiz

Jura (J), Mittelland (M), Nordalpen (NA), Zentralalpen (ZA), Südalpen (SA) (nach Gutersohn 1973) Die roten Punkte markieren die Messstandorte

3.4 Berechnung der Gesamtstickstoff-Einträge

Zur Abschätzung des Eintrags von Stickstoffkomponenten in der Gravitationsdeposition kann pro Sammelperiode die gemessene Konzentration der nassen Deposition mit der Niederschlagsmenge direkt in Fracht umgerechnet werden. Für gasförmige und Aerosol-Stickstoffkomponenten müssen die Konzentrationen mit empirischen, rezeptorspezifischen Depositionsgeschwindigkeiten (v_d) multipliziert werden, um die Fracht zu berechnen. Diese Annäherung an die Eintragsmenge wird als "inferential technique" bezeichnet (Schmitt et al. 2005). Vor allem für Ammoniak werden in der Literatur unterschiedliche Depositionsgeschwindigkeiten aufgeführt, (z.B. in der "Review of recent studies" von Schrader & Brümmer 2014 zusammengestellt). Für diese Arbeit werden die vom BAFU gemeinsam mit Experten zusammengestellten v_d verwendet (SAEFL 1996, Thimonier et al. 2005). Für Ammoniak werden die v_d in den Bergen verkleinert, da bei langer Schneebedeckung kleinere v_d zu erwarten sind (siehe auch Fachteil 6.5.1, Tabelle 14). Zur Berechnung der gesamten Einträge werden die Frachten der erfassten und geschätzten Komponenten aufsummiert. Einträge in Wälder werden über die ermittelten Konzentrationen im Freiland nebenan berechnet. Die Ermittlung der Gesamtstickstoffeinträge ist mit Unsicherheiten behaftet. Im Kapitel 6.8 im Fachteil sind diese diskutiert.

Für den Vergleich mit den Critical Loads wurden sowohl der Ökosystemtyp am Standort als auch im Umkreis von 200 m beigezogen. Die Ökosystemtypen wurden mit dem Geokatalog (Kartenebenen Waldmischungsgrad LFI, Flach- + Hochmoore, Trockenwiesen und -weiden (TWW), vereinfachte Bodennutzung) des Bundesamtes für Landestopografie zugeordnet (map.geo.admin.ch). Die jeweiligen Ökosystemtypen sind in Tabelle 4 und die dazugehörigen Depositionsgeschwindigkeit v_d im Fachteil (Kapitel 6.5.2) aufgelistet.

4 Resultate

Die Messwerte sind im Anhang (Konzentrationen: Tabelle 19, Frachten: Tabelle 20) aufgeführt.

Bei der Interpretation der Resultate muss berücksichtigt werden, dass die Deposition von Stickstoff durch die meteorologischen Bedingungen beeinflusst wird. So steigt z.B. die Ammoniakkonzentration mit der Temperatur an und die nasse Deposition folgt der Niederschlagsmenge.

4.1 Konzentrationen der einzelnen Komponenten

4.1.1 Ammoniak

Jahreswerte 2000, 2014 und 2019

Abbildung 6 NH₃-Konzentrationen der Jahre 2000, 2014 und 2019, verglichen mit den Critical Levels von Ammoniak CLe NH3 = graue Linie resp. Bereich innerhalb grauer Linien, gelb zeigt die Überschreitung. Einheit: $\mu g m^{-3}$

In Abbildung 6 sind die Jahresmittelwerte von 2019 und wo vorhanden von 2000 und 2014 dargestellt, so dass sie mit dem Critical Level für Ammoniak (CLe–NH₃: graue Linie resp. Bereich innerhalb grauer Linien; gelb unterlegt = Überschreitung) für den jeweiligen Ökosystemtyp verglichen werden können. An den Standorten mit alpinem/subalpinem Grasland oder Trockenwiesen, den Waldlichtungen, sowie in den höher gelegenen Mooren von Alpthal, Celerina, Davos und Sörenberg (ANA B, CEL, DAV, SOER) werden die CLe-NH₃ nicht überschritten, hingegen sind die NH₃-Konzentrationen in den Mooren im Flachland und im Hügelgebiet sowie im Jura (NE 01) z.T. deutlich über der CLe-NH₃, vor allem in Altstätten (ALB) und dem Wauwilermoos (WAU), welche von intensiver Landwirtschaft umgeben sind.

Für Wiesen, welche gedüngt werden, gibt es keinen CLe-NH₃. In Abbildung 7 sind die Standorte nach der Höhe der modellierten Emission (Summe aller Quellgruppen) im Umkreis von 500 m sortiert. Die Standorte Jussy (JUS) und Schänis (SCH), in grossen Waldlichtungen gelegen, liegen von der Landwirtschaft abgeschirmt, während Appenzell-Steinegg (APS) und Beromünster (BRM) in Gebieten mit intensiver Landwirtschaft liegen. Die in der Mitte der Aufstellung liegenden Standorte befinden sich in Ackerbaugebieten und/oder Gebieten mit wenig intensiver Viehwirtschaft.

Abbildung 7 NH₃-Konzentrationen der Jahre 2000, 2014 und 2019 und modellierte NH₃-N-Emission Die Standorte sind nach ihrer NH₃-N-Emission im 500 m-Radius sortiert, Bezugsjahr modellierte Emission 2015. link Achse: NH₃-Konzentration, Einheit: μg m⁻³; rechte Achse: NH₃-N-Emission. Einheit: kg N ha⁻¹a⁻¹

Ergebnisse von Ammoniakmessungen an einigen dieser Standorte sind im Bericht von Seitler und Meier (2020) ausführlich dargestellt.

Die gemessenen Ammoniakkonzentrationen und die modellierten Emissionen sind gut vergleichbar. Abweichungen sind erklärbar mit lokalen Einflüssen (z.B. Kaltluftabflüsse, Änderung der Emissionssituation etc.) und meteorologisch unterschiedlichen Jahren.

Jahreswerte von 2000 bis 2019 an ausgewählten Standorten

In Abbildung 8 sind die Ammoniakkonzentrationen derjenigen Standorte dargestellt, an denen an einigen oder allen Jahren zwischen 2000 und 2019 weitere Stickstoffkomponenten gemessen wurden. In den Jahren 2003 (wärmster Sommer seit Messbeginn 1864), 2011 (drittwärmstes Jahr seit Messbeginn), 2018 (wärmstes Jahr) und 2019 (fünftwärmstes Jahr, drittwärmster Sommer) wurden schweizweit hohe Werte gemessen (MeteoSchweiz 2020). Einerseits wird bei höheren Temperaturen mehr Ammoniak emittiert, andererseits bei trockenen Bedingungen weniger deponiert. Magadino, Rigi und Chaumont (MAG, RIG, CHA) weisen über die gesamte Zeitperiode eine signifikante⁴ Zunahme auf. Die anderen drei Standorte zeigen über die 20 Jahre keine signifikante Veränderung (Tab. 22).

Abbildung 8 NH₃-Konzentrationen der Jahre 2000 bis 2019

4.1.2 Stickstoffdioxid

Jahreswerte 2000, 2014 und 2019

Die NO₂-Konzentrationen an den beprobten Standorten sind in Abbildung 9 dargestellt. An keinem Standort wurde der LRV-Jahresgrenzwert von 30 μ g/m³ überschritten. Am niedrigsten waren die Werte in den Alpen, am höchsten an der NABEL-Station Magadino (MAG). An Standorten mit früheren Messwerten waren die Messwerte 2000 meist am höchsten, 2019 meist am niedrigsten.

⁴ Für eine Aussage bezüglich Signifikanz wurden die P-Werte mittels dem R-Package «robustbase» ermittelt. Ausgehend von einem Signifikanzniveau von 5 % werden die Ab-, respektive Zunahme als statistisch signifikant bezeichnet, wenn der P-Wert ≤ 0.05 ist.

Abbildung 9 NO₂-Konzentrationen der Jahre 2000, 2014 und 2019 Einheit: µg m⁻³

Jahreswerte von 2000 bis 2019 an Standorten mit fortlaufenden Messungen

In Abbildung 10 sind die NO₂-Konzentrationen derjenigen Standorte dargestellt, an denen an einigen oder allen Jahren zwischen 2000 und 2019 gemessen wurde. Alle Standorte ausser Schänis zeigen eine signifikante Abnahme der NO₂-Konzentration (Tabelle 22).

Abbildung 10 NO₂-Konzentrationen der Jahre 2000 bis 2019

4.1.3 Ammonium und Nitrat in der Gravitationsdeposition

In Abbildungen 11 und 12 sind die Jahres-Stickstofffrachten von Ammonium resp. Nitrat durch Gravitationsdeposition sowie die Jahres-Niederschlagssummen an den verschiedenen Standorten dargestellt. Die Grafiken sind auf die Ökosystemtypen aufgeteilt, obwohl die Frachten aus der Gravitationsdeposition direkt aus der Ammonium- bzw. Nitratkonzentration und der Niederschlagsmenge berechnet werden und somit unabhängig vom Ökosystemtyp sind.

Die Frachten schwanken stark: In zentralalpinen Tälern mit relativ geringen Niederschlagsmengen sind sie meist am niedrigsten (Celerina CEL, Davos DAV, Furka FUR, Nationalpark NAT, Tiefenbach TIE, Visp VIS), in der Südschweiz mit häufig hohen Niederschlagsmengen sind sie am höchsten (Novaggio NOV, Sagno Reservoir SARE, Magadino MAG, nicht in Chironico CHI). Bei hochgelegenen Standorten sind die Niederschlagsmengen oft höher als gemessen (Kapitel 6.8). Bei FUR und TIE kam es zusätzlich zu Minderbefunden der Bulk-Sammlung, da im Winter wegen Lawinengefahr nicht gewechselt werden konnte. Vor allem bei der Station Furka, welche relativ stark windexponiert ist, wurde 2014 mit dem Bulk nur 67 % Niederschlagsmenge aufgefangen, gegenüber der in drei Meter Distanz aufgestellten automatischen Wetterstation (persönliche Mitteilung E. Hiltbrunner, www.alpfor.ch). Deshalb ist davon auszugehen, dass die Stickstoffeinträge unterschätzt werden.

Die eingebrachte Jahres-Stickstofffracht aus Nitrat steht in direktem Zusammenhang mit der Jahres-Niederschlagssumme (2019: R^2 0.52), für die Jahres-Stickstofffracht aus Ammonium ist dieser Zusammenhang schwach (R^2 0.05) (Abbildung 13).

Abbildung 12 Jährliche Nitrat-Frachten als Stickstoff in der Gravitationsdeposition Werte 2000, 2014 und 2019 Die Jahres-Niederschlagssummen (NS) sind mit schwarzen Linien gekennzeichnet. Naturräume unter den Standortcodes: J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalp., SA = Südalpen

Abbildung 13 Stickstofffracht (N) in der Gravitationsdeposition im Vergleich mit der Niederschlagsmenge Links: Ammonium, rechts: Nitrat, Jahreswerte

Jahreswerte von 2000 bis 2019, ausgewählte Standorte

In Abbildung 14 sind die Jahres-Niederschlagssummen und die Stickstoff-Jahresfrachten derjenigen Standorte dargestellt, an denen für einige oder alle Jahre zwischen 2000 und 2019 die Stickstoffkomponenten gemessen wurden.

Die Nitratfrachten in der Gravitationsdeposition nahmen zwischen 2000 und 2019 signifikant ab. Die Ammoniumfrachten nahmen tendenziell ab, die Abnahme ist signifikant für die Stationen MAG und SCH (Tabelle 22).

Abbildung 14 Niederschlagssummen und Ammonium- und Nitrat-Frachten als Stickstoff in der Gravitationsdeposition Jahre 2000 bis 2019 als Jahreswerte

4.2 Atmosphärische Stickstoff-Deposition 2019

4.2.1 Einträge in verschiedene Ökosystemtypen – Vergleich Critical Loads

Hohe atmosphärische Stickstoffeinträge in Wies- und Ackerland (Annahme: gedüngt) (Abbildung 15) treten vor allem in Gebieten mit intensiver Landwirtschaft auf. In Holderhus (HOL) und Ap.-Steinegg (APS) betragen diese über 40 kg N ha⁻¹ a⁻¹ und werden durch die trockene Deposition von Ammoniak dominiert. An Standorten mit extensiver Landwirtschaft sind die Einträge immer noch um die 10 kg N ha⁻¹ a⁻¹. In Magadino (MAG), ebenfalls mit Einträgen über 40 kg N ha⁻¹ a⁻¹, wird wenig intensiv gewirtschaftet, aber durch die hohen Niederschläge gelangt sehr viel Stickstoff in den Boden.

Abbildung 15 Stickstofffeinträge an Standorten im Ökosystemtyp Wies- und Ackerland im Jahr 2019 Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Grav. = Gravitationsdeposition, Interz. =Interzeption. Naturräume unter den Standortcodes: J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalp., SA = Südalpen Die Standorte sind nach Naturraum, dann nach ihrer Gesamtstickstofffracht sortiert.

Die empirischen Critical Loads für Stickstoff (CLN), welche im Rahmen der UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung festgelegt sind, sind nicht als feste Zahlen, sondern als Bereich angegeben (UNECE 2010). Die konkrete Anwendung der Critical Loads erfordert deshalb eine Einschätzung der lokalen Umstände durch Experten, um zu entscheiden, wann der untere, mittlere resp. obere Bereich beim Vergleich mit den N-Einträgen berücksichtigt werden soll. Eine Hilfestellung wurde anlässlich der UN-ECE Expertenworkshops gegeben (UNECE 2003, UNECE 2010). Zum Beispiel soll in den Bergen (kalte Temperaturen, lange Frostperiode) mit dem unteren Teil, im Mitteland eher mit dem mittleren Bereich verglichen werden.

An den Standorten im alpinen/subalpinen Grasland (Abbildung 16, links), welches gegenüber Stickstoffeinträgen relativ empfindlich ist, sind nur die hochgelegenen zentralalpinen Standorte (ZA) unter den CLN oder im unteren Bereich. Allerding ist bei Berücksichtigung aller N-Komponenten und der wahrscheinlichen Mindererfassung des Niederschlags bei starken Winden und/oder Schnee auch hier von einer Überschreitung der CLN auszugehen. Die CLN von Novaggio (NOV) und Chironico (CHI) in den Südalpen sind deutlich überschritten bzw. zu stark belastet. Die Standorte in Trockenwiesen (Abbildung 16, Mitte) sind ebenfalls stark belastet.

Abbildung 16 N-Frachten an Standorten im Ökosystemtyp alpines/subalpines Grasland, Trockenwiesen und Waldlichtung im Jahr 2019, Vergleich mit CLN

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für diesen Ökosystemtyp. Der gelbe Hintergrund zeigt die Überschreitung des CLN. Grav. = Gravitationsdeposition, J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen Die Frachten an den hochgelegenen Standorten sind aufgrund unterschätzter Niederschlagmengen vermutlich etwas zu tief berechnet.

Der N-Eintrag in Waldlichtungen (Abbildung 16, rechts) liegt am Standort Visp (VIS) bei 12 kg ha⁻¹ a⁻¹, in Sagno Reservoir (SARE) als Folge der hohen Niederschläge bei 25 kg ha⁻¹ a⁻¹.

Moore sind empfindlich auf zu hohe Stickstoffeinträge. Ausser in Davos (DAV) sind bei allen beprobten Flachmoor-Standorten die CLN überschritten. Speziell stark belastet sind die Flachmoore Bannriet im Rheintal (ALB), Wauwilermoos (WAU) im Kt. Luzern und Demanio nördlich der NABEL-Station MAG im Tessin (Abbildung 17 links).

Nur gerade die N-Einträge in die zentralalpinen Hochmoore von Celerina (CEL) liegen innerhalb der CLN. Bei allen anderen Hochmoorstandorten sind die CLN mehr oder weniger deutlich überschritten (Abbildung 17 rechts).

Von den 18 Moor-Standorten führen bei 14 (ausser Alpthal ANA B, Davos, Sörenberg SOER und Celerina) allein die Stickstoffeinträge durch Ammoniak zur Überschreitung der CLN.

Abbildung 17 Stickstofffrachten an Moor-Standorten im Jahr 2019, Vergleich mit CLN Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für die Ökosystemtypen "Flachmoor " und "Hochmoor". Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition,

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Die Wälder sind ebenfalls empfindlich auf zu viel Stickstoffeintrag. In Abbildung 18 ist der Eintrag in Wälder dargestellt, die innerhalb von 200 m um die Messstation gelegen sind. Dabei wird angenommen, dass die Gas- und Aerosolkonzentrationen am Waldrand ähnlich deren an der Station selbst sind. Bei wenig intensiv bewirtschafteten Standorten wurden über dem Wald ähnliche Ammoniakkonzentrationen gemessen wie neben dem Wald (Kapitel 6.6). Wälder bei Stationen mit hohen Emissionen erhalten mindestens am Waldrand die hohen Stickstoff-Frachten aus Gasen und der Interzeption von Aerosolen.

Die Stickstofffrachten liegen bei sieben der 35 Wald-Standorten innerhalb des CLN-Bereichs, bei allen anderen darüber, bei sechs Standorten sind die N-Frachten mehr als doppelt so hoch wie die obere Grenze des CLN. Der höchste Eintrag wurde in Holderhus, Kanton Luzern, ermittelt.

4.2.2 Anteile der sieben N-Komponenten am Stickstoffeintrag

In Tabelle 5 sind die Anteile der verschiedenen Stickstoffkomponenten am Gesamteintrag aufgeführt.

An den Standorten auf Wies- und Ackerland fallen die meist hohen Anteile an reduzierten Stickstoffeinträgen auf, welche dem direkten Einfluss durch die Landwirtschaft zugeordnet werden können. Die höchsten Anteile finden sich bei Ap.-Steinegg (APS) mit 87 %, Holderhus (HOL) 86 % und Häggenschwil (HÄG) 84 %. Am tiefsten sind die Anteile an reduziertem Stickstoff in Jussy (JUS) mit 51 % und Lägeren (LAE F) 62 %. Bei APS, HOL, Beromünster (BRM), Mauren (MAU) und Lausanne (LAU) trägt Ammoniak zu mehr als 50 % der N-Fracht bei. An den Standorten Bachtel, Chaumont, Oberschrot, Rigi und Schänis (BA, CHA, OS, RIG, SCH) überwiegt der Eintrag durch Gravitationsdeposition.

Bei vielen Standorten der Ökosystemtypen alpines/subalpines Grasland und Trockenwiese macht der reduzierte Anteil 60 bis 70 % aus. Die Ausnahme bildet der hochgelegene, zentralalpine Standort Nationalpark (NAT), wo dieser Anteil 47 % beträgt. An allen dieser Standorte beträgt der Anteil der Gravitationsdeposition über 50 %, nur in Nenzlingen (NENZ) ist der Anteil der Gase und Aerosole grösser (55 %).

Die Zusammensetzung der N-Fracht in Flach- und Hochmooren ist stark abhängig von der geografischen Lage der Moore. Beim hochgelegenen zentralalpinen Standort Davos (DAV) ist der reduzierte Anteil unter 50 %, am Hochmoor-Standort Gänsemoos (GMO) und bei sieben der zehn Flachmoor-Standorte beträgt der reduzierte Anteil hingegen über 80 %. Bei den zentralalpin gelegenen Standorten Celerina (CEL) und DAV sowie bei einem Teil der nordalpinen Standorte (Alpthal ANA B und Sörenberg SOER) überwiegt der Eintrag durch Gravitationsdeposition.

Der Eintrag in Waldlichtung und in "Laub-, Misch- und Nadelwälder überwiegt der Stickstoffeintrag durch reduzierte Verbindungen, ausser bei den zentralalpinen Standorten CEL, DAV und NAT mit gleichen Anteilen. Der Anteil der Gravitationsdeposition schwankt stark, von 14 bis 67 %.

Tabelle 5 Prozentualer Anteil von Stickstoffkomponenten an der Gesamtstickstoff-Deposition Dunkle Farben sind für Gravitationsdeposition, helle für Gasdeposition und Interzeption, rot sind die reduzierten, blau die oxidierten Komponenten, Werte über 50 % sind fett gedruckt

Standort Code	Naturraum Code	N-NH4 ⁺	N-NH4 ⁺	N-NH ₃ Gas	N-NO ₃ ⁻	N-NO ₃ ⁻	N-NO ₂ Gas	N-HNO ₃ Gas	N Grav.	N Aeros&Gas	N red.	N oxi.
		Grav.	Acros.	005	% W	ies- und Ack	erland (Anna	hme: gedüng	at)	%	(%
CHA APS	J	40 24	3 1	29 62	17 9	1 1	5	4	57 32	43 68	72 87	28 12
BA	M	36 24	2	34 54	21	1	3	3	57 35	43	72	28 21
HÄG	M	34	1	54 49	9	1	3	3	43	57	84	16
HOL	M	24	1	61 22	8	1	2	3	32	68 52	86	14
LAE F	M	29	3	30	20	2	8	8	49	51	62	38
LAU MAU	M	17 25	4	51 54	14 10	2	6	6	31 35	69 65	72 81	28 19
OS	M	40	2	40	11	1	2	4	51	49	82	18
PAY SSH	M	23 30	1	48 45	12 14	1	9 4	5 4	35 44	65 56	73 77	27 23
TAE	M	29	1	47	13	1	6	3	42	58	77	23
RIG	NA	25 40	3	41 26	15 22	2	4	4	40 62	60 38	69 68	31 32
SCH	NA	35	3	30	22	2	3	5	57	43	68	32
11/10		52		41		Trockenwies	e (Annahme:	ungedüngt)	43	JI	14	20
NENZ RAN	J	28 42	3	34 25	18 19	2	7 4	8 5	45 61	55 39	65 70	35 30
ТАВ	M	35	3	32	19	2	4	6	53	47	69	31
BET	J	27	4	27	alpines 25	subalpines	prasiand (An 5	nanme: ungo 8	aungt) 52	48	59	41
BEA	NA	37	2	27	23	3	3	5	60	40	66	34
NAT	ZA	36	3	8	29 34	3	7	9	83 70	30	47	50 53
TIE	ZA	60 50	1	7	24	1	2	4	83 83	17 17	68 60	32
NOV	SA	45	2	15	33	1	2	2	78	22	61	39
ALB	М	15	1	73	6	0	Flachmoor 4	2	21	79	89	11
BIN	M	19	1	66	8	0	5	2	27	73	85	15
LEN	M	20	2	63 49	9 13	1	3 7	4	29 37	63	85 75	25
OBI	M	18	1	61	9	1	7	3	27	73	80	20
ANA B	NA	42	4	18	26	2	3	6	67	33	63	37
RRI	NA ZA	19	1	65 12	7 30	1	5 10	2	26 65	74 35	85 49	15 51
MAG	SA	22	0	58	12	ő	5	2	35	65	81	19
NE 01	J	18	2	59	11	1	5	4	29	71	79	21
AEG	M	22 18	2	50 63	12 9	1	8	5	34 27	66 73	73 84	27 16
HUD	M	23	2	52	12	1	6	4	35	65	77	23
ROB SOER	M	23 42	2	46 19	14 32	1	9	5	38 74	62 26	71 62	29 38
ZB	NA	33	2	42	15	1	3	3	48	52	77	23
	24		2	10	29	2	Waldlichtung		02		51	49
VIS	ZA M	26 15	3 5	31 42	17 13	2 4	13 12	8 10	43 27	57 73	60 62	40 38
SARE	SA	37	4	23	23	3	4 Laubwald	7	60	40	64	36
NENZ	J	20	4	45	13	2	10	6	33	67	69	31
JUS LAE F	M	20	э 3	34 45	10	3 2	17	8 5	33	67	56 68	44 32
	M	10	3	66 40	8	2	7	3	18	82	80 72	20
OBI	M	16	2	61	8	1	9	3	25	75	79	21
NOV	SA	39	2	23	29	1	4 Mischwald	2	67	33	64	36
BET	J	18	6	42	16	4	8	6	34	66	66 77	34 22
NE 01	J	25 13	4 3	48 64	8	2	6	3	22	64 78	80	23
RAN	J	30 17	5	39 52	14 10	3	6 11	4	44	56 73	74 73	26 27
BA	M	21	2	57	12	2	4	2	33	67	80	20
BRM	M	12	2	72 78	6 4	1	5	2	18 16	82 84	86 91	14 9
HUD	M	18	3	55	10	2	9	3	28	72	76	24
OTH	M	16	2 4	67 43	11	2	4 19	2 5	23 27	77	85 63	15 37
SSH	M	17	2	65 46	8	2	5	2	24	76	84	16
VOR	M	14	3	60	8	2	9	4	22	78	77	23
RIG SCH	NA NA	25 22	3	48 50	14 14	2	6	2	39 36	61 64	76 76	24 24
ZB	NA	27	3	49	12	2	4	3	39	61	79	21
SAKE	SA	27	b	36	17	4	Nadelwald	5	44	56	68	32
GMO OS	M	13 22	3	68 63	6	2	5	2	19 27	81 73	84 88	16 12
ANA B	NA	34	8	23	21	5	5	5	55	45	65	35
BEA SOER	NA NA	23 34	3 2	47 30	14 25	4	5	3 2	37 59	63 41	73 66	27 34
CEL	ZA	26	4	21	23	5	16	6	48	52	51	49
NAT	ZA	27	о 5	17	24 25	5 5	14	0 7	52	49 48	49	50
VIS	ZA	7	7	54 16	7 27	5	16 5	5	14 67	86 33	68 62	32 38
							-	-		50		

4.3 Atmosphärische Stickstoff-Deposition – alle Jahre

4.3.1 Fortlaufende Messungen seit 2000

Bei den sechs Standorten, an denen seit 2000 oder 2001 gemessen wird, kann die Entwicklung der N-Einträge über die Jahre betrachtet werden (Abbildungen 19 bis 22).

Abbildung 19 Jahresverläufe der Stickstofffrachten an Standorten im Mischwald, Vergleich mit CLN

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für den Ökosystemtyp Mischwald. Der gelbe Hintergrund zeigt die Überschreitung der CLN.

Abbildung 20 Jahresverläufe der Stickstofffrachten am Standort Schänis auf Wiese und in Nadelwald, Vergleich mit CLN Die Frachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für den Ökosystemtyp Nadelwald. Der gelbe Hintergrund zeigt die Überschreitung der CLN.

Abbildung 21 Jahresverläufe der Stickstofffrachten am Standort Magadino auf Wiese nahe Flachmoor Vergleich mit CLN Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für den Ökosystemtypen Flachmoor. Der gelbe Hintergrund zeigt die Überschreitung der CLN.

Abbildung 22 Jahresverläufe der Stickstofffrachten am Standort Payerne auf Wies- und Ackerland Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Grav. = Gravitationsdeposition, Interz. = Interzeption. Für Wies- und Ackerland bestehen keine Critical Loads für Stickstoff (CLN).

Statistische Betrachtung der zeitlichen Veränderung von Stickstofffrachten

Aufgeteilt auf die oxidierten respektive reduzierten N-Komponenten zeigt sich, dass die Summe der oxidierten Stickstoffkomponenten an allen 6 Standorten signifikant abgenommen haben. Bei den reduzierten Komponenten hingegen ergibt sich ein unklares Bild. Am Standort Magadino (MAG) besteht eine signifikante Zunahme und bei Schänis (SCH) eine signifikante Abnahme, die Standorte Bachtel, Chaumont, Payerne und Rigi (BA, CHA, PAY, RIG) zeigen keine signifikante Veränderung (Abbildung 23).

Abbildung 23 Verlauf der jährlichen reduzierten und oxidierten Stickstofffrachten 2000 – 2019 Links: Summe der reduzierten Stickstoffkomponenten, Rechts: Summe der oxidierten Stickstoffkomponenten Durchgehend farbige Markierungen = statistisch signifikante Verläufe, innen weisse Markierungen = statistisch nicht signifikant

4.3.2 4 bis 6 Messjahre

An vier Standorten wurde innerhalb der letzten 20 Jahren an 4 bis 6 Jahre gemessen (Abbildungen 24 & 25). Diese Daten reichen nicht aus, um die zeitliche Veränderung der Einträge zu beurteilen. Im Jahr 2003 wurde zwar bei APS, HÄG und TAE die höchste, 2019 die zweithöchste Fracht gemessen, dies kann jedoch auf die meteorologischen Bedingungen (2003 wärmster Sommer seit Messbeginn, 2019 fünftwärmstes Jahr, drittwärmster Sommer) und die dadurch hoch ausfallenden Ammoniakkonzentrationen zurückgeführt werden.

Abbildung 23 Stickstoffeintrag an Standorten an denen während vier bis sechs Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert

Abbildung 25 Stickstoffeintrag an Standorten an denen nur während vier Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN). Der gelbe Hintergrund zeigt die Überschreitung des CLN.

4.3.3 2 bis 3 Messjahre, 2000, 2014 und 2019

2019 wurden total 48 Standorte erfasst, darunter alle 20 Standorte von 2000 und 33 Standorte, die ebenfalls im Jahr 2014 gemessen wurden (Abbildungen 26 bis 29). Die Standorte, welche neben 2019 in den Jahren 2000 und/oder 2014 beprobt wurden, sind in diesem Kapitel dargestellt. Die einzelnen Jahre reichen nicht aus, um die zeitliche Veränderung der Einträge zu beurteilen. Die Gravitationsfrachten an den WSL-LWF-Standorten (BEA, BET, CEL, JUS, LAU, NAT, NOV, OTH, SCH, VOR) sind im Jahr 2000 vermutlich methodebedingt zu hoch (siehe Kap. 6.8)

Abbildung 26 Stickstoffeintrag an Standorten an denen nur während zwei bis drei Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Trockenwiese und alpines/subalpines Grasland: Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN). Der gelbe Hintergrund zeigt die Überschreitung des CLN.

Abbildung 27 Stickstoffeintrag an Standorten an denen nur während zwei bis drei Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN). Der gelbe Hintergrund zeigt die Überschreitung des CLN.

Abbildung 28 Stickstoffeintrag an Standorten an denen nur während zwei bis drei Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert: Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN). Der gelbe Hintergrund zeigt die Überschreitung des CLN.

Abbildung 29 Stickstoffeintrag an Standorten an denen nur während zwei bis drei Jahren gemessen wurde Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN). Der gelbe Hintergrund zeigt die Überschreitung des CLN.

4.3.4 2019 nicht beprobte Standorte

Zur Vervollständigung werden die Frachten von sechs Standorten gezeigt, an denen nur in den Jahren 2008 respektive 2014 gemessen wurde (Abbildung 30).

Abbildung 30 Gesamtstickstofffracht an Standorten, an denen 2019 keine Messungen durchgeführt wurden Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition

4.4 Verteilung der Deposition innerhalb des Jahres

An den Beispielen Bachtel, Holderhus und Wauwil werden die sieben Komponenten zeitlich so aufgelöst dargestellt, wie sie beprobt werden, um den Verlauf der Stickstoffdeposition innerhalb des Jahres zu zeigen. Bachtel wurde gewählt, weil dort seit mehreren Jahren alle sieben Stickstoffkomponenten gemessen werden, also keine Schätzwerte verwendet werden.

Das Beispiel Bachtel zeigt, dass vor allem während der Vegetationsperiode Stickstoff deponiert wird (Abbildung 31).

Abbildung 31 Fünf Jahre N-Deposition als Jahresmittelwerte und zeitlich aufgelöst nach Probenahme-Serien Standort Bachtel, Ökosystemtyp Wies- und Ackerland Oben als Jahresmittelwerte, unten zeitlich aufgelöst nach 4 Wochen-Probenahme-Serien Die Frachten von sieben Stickstoffkomponenten sind aufsummiert.

In Holderhus und Wauwil weichen die gemessenen N-Frachten stark von den modellierten Werten ab (HOL: NH_3 Gas, WAU: NH_4^+ Gravitationsdeposition). In Holderhus fallen die sehr hohen Ammoniak-Frachten von Mai bis Juli 2019 auf (Abbildung 32 links). In Wauwil

wiederum wurden von Mitte Juni bis Mitte August 2019, aber auch im Mai 2019, sehr hohe Stickstoffmengen über die Gravitationsdeposition eingebracht auf (Abbildung 32 rechts). Gründe für diese lokal sehr hohen Werte sind nicht bekannt.

Abbildung 32 Gesamtstickstofffracht 2019 oben als Jahresmittelwerte, unten zeitlich aufgelöst nach Probenahme-Serien Links Standort Holderhus, Ökosystemtyp Wies- und Ackerland Rechts Standort Wauwil, Ökosystemtyp Flachmoor Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert.

4.5 Gesamtstickstoff-Deposition – Vergleich mit modellierten Werten

Abbildung 33 Vergleich der 2019 ermittelten Jahresfrachten mit den von Meteotest modellierten Werten für 2015: Einzelne Komponenten

> Frachten aus Ammonium- und Nitrat (je Summe aus Gravitationsdeposition und Interzeption), Ammoniak, NO₂, Salpetersäure. Einheit: kg N ha⁻¹ a⁻¹

In Abbildung 33 werden die mit der "inferential technique" ermittelten Frachten von 2019 mit den durch Meteotest modellierten Werten (Bezugsjahr 2015) verglichen.

Meteotest hat im Auftrag des BAFU die Stickstoffdeposition flächendeckend für die Schweiz modelliert (Thöni et al. 2004, Rihm und Achermann 2016, Rihm & Künzle 2019). Da zur Kalibrierung der Modellierung auch Messwerte eingeflossen sind, ist kein unabhängiger Vergleich von Messresultat und Modellierung möglich.

Die Übereinstimmung ist im Allgemeinen gut. Das Modell schätzt die NH₄- Fracht, die NH₃und die HNO₃-Gasfracht eher tiefer als die punktuell gemessenen Frachten. Die NO₂-Gasfracht wird hingegen höher modelliert. Die grössten Abweichungen (absolute Zahlen) treten bei der NH₃- und NH₄-Frachten auf. In Abbildung 34 werden einerseits die aufsummierten reduzierten respektive oxidierten Frachten wie auch die Gesamtfracht verglichen. Die modellierten oxidierten N-Verbindungen stimmen sehr gut mit den ermittelten Werten überein, die reduzierten werden tendenziell tiefer modelliert und streuen mehr. Die modellierte Gesamtfracht stimmt gut mit der Fracht, welche aufgrund der Depositionsmessungen geschätzt wurde, überein. Die Streuung zwischen den aus Messungen für einen bestimmten Punkt ermittelten Stickstofffrachten und den Modellresultaten können hauptsächlich mit eingeschränkten räumlichen Informationen zu den stationären landwirtschaftlichen Quellen (Ställe, Hofdüngerlager) und Vereinfachungen bei der Ausbreitungsberechnung erklärt werden, auch werden bei Messung/Schätzung und Modell nicht die gleichen Jahre verglichen.

Abbildung 34 Vergleich der 2019 ermittelten Jahresfrachten mit den von Meteotest modellierten Werten (2015): summierte Stickstofffrachten

Reduzierte, oxidierte und Gesamtfrachten. Einheit: kg N ha-1 a-1

5 Diskussion und Schlussfolgerungen

Die Messungen im Rahmen dieser Studie zeigen, dass die Stickstoff-Frachten an den meisten Standorten, unabhängig von den betrachteten Ökosystemtypen (naturnahe Wiesen, Wälder und Moore), im Bereich um und bis deutlich über den CLN liegen.

Die Gesamtstickstoffeinträge sind durch verschiedene Faktoren bestimmt. Aufgrund der ausgeprägten Topographie sind die Stickstoff-Emittenten über die ganze Schweiz betrachtet unregelmässig verteilt. Gleichzeitig schränkt die Topografie in Kombination mit den meteorologischen Bedingungen den Transport in gewisse, vor allem zentralalpine Gebiete ein. Diese sind oft quellenfern gelegen, so dass an zentralalpinen Standorten hoher Lagen Stickstofffrachten unter den CLN ermittelt wurden. Ein Überschreiten der CLN an diesen Standorten kann dennoch nicht ausgeschlossen werden, da mit der verwendeten Messtechnik nicht der ganze Niederschlag erfasst und somit der Stickstoffeintrag unterschätzt wird.

Aufgrund der Differenzierung des Stickstoffs in oxidierte und reduzierte Komponenten, konnte aufgezeigt werden, dass sich die Prozesse, welche zu den Überschreitungen führten, von Standort zu Standort unterscheiden. Einerseits kommt es aufgrund von wichtigen Quellen (vor allem der Landwirtschaft) lokal zu hohen Stickstofffrachten, anderseits findet ein Ferntransport des Stickstoffs statt, welcher in Zusammenhang mit hohen Niederschlagsmengen zu einem hohen Stickstoffeintrag führen kann. Beispiele dazu sind Wauwiler Moos im Luzerner Mitteland oder Altstätten Bannriet im St. Galler Rheintal, wo die intensive Landwirtschaft als lokale Quelle reduzierter Stickstoffverbindungen eine Überschreitung der CLN zur Folge hatte. Weitere Beispiele sind Sörenberg in den nördlichen Voralpen oder Novaggio im Südtessin, wo der Ferntransport in Kombination mit einer hohen Niederschlagsmenge zu hohen Stickstoffeinträgen führt. Es kann davon ausgegangen werden, dass die Kombination von quellennahem Standort und hohem Niederschlag zum sehr hohem Stickstoffeintrag führt, wie er bei Magadino im Tessin gemessen wird.

Betrachtet man die Datenlage an den langjährigen Messstandorten, so ist keine deutliche Zuoder Abnahme der Gesamtstickstofffracht festzustellen, obwohl die Fracht der oxidierten Komponenten an allen sechs Standorten signifikant abgenommen hat. Die Vergleiche mit den CLN zeigen, dass die Zielsetzung bei weitem nicht erfüllt wird. Grosses Reduktionspotential besteht bei den ammoniakgebundenen Stickstoffemissionen durch die Landwirtschaft, welche aktuell bei 45'000 Tonnen Stickstoff pro Jahr liegen (FOEN 2020). Gemäss Umweltzielen der Landwirtschaft ist ein Wert von 25'000 Tonnen pro Jahr anzustreben (BAFU & BLW 2016). Damit gesicherte Aussagen über die Entwicklung von Stickstoffeinträgen gemacht werden können, ist es wichtig, dass an verschiedenen Orten mehrjährige Messreihen durchgeführt werden.

Der Vergleich der in dieser Studie abgeschätzten Stickstofffrachten mit den modellierten Daten der Meteotest zeigt eine gute Übereinstimmung an den meisten Standorten. Die grössten Abweichungen treten bei den reduzierten Stickstoffkomponenten auf. Dies kann einerseits davon herrühren, dass nicht identische Jahre miteinander verglichen wurden (Modelldaten aus 2015 mit Messdaten aus 2019), und dass die meteorologischen Begebenheiten beim Modell nicht berücksichtigt werden, diese hingegen bei der Erfassung der Stickstoffeinträge eine wichtige Rolle spielen. Andererseits weisen quellennahe Ammoniakmessungen lokal und zeitlich grosse Abweichungen auf, die das Modell mit eingeschränkten räumlichen Informationen zu den stationären landwirtschaftlichen Quellen nicht abbilden kann.

6 Fachteil

6.1 Sammelmethoden

6.1.1 Gravitations-Depositionssammlung

Bulk-Regensammler

Der Bulksammler ist im Gegensatz zum weiter unten beschriebenen "Wet only" immer offen und sammelt sowohl nasse wie trockene Gravitationsdeposition (VDI 4320 Blatt 3). Der FUB-Bulksammler besteht aus zwei, über den Kopf zusammengeschraubten, 5-Liter-Polyethylen-Flaschen; bei der einen Flasche wurde der Boden abgetrennt, so dass sie als Trichter dient (Auffangfläche 196 cm²). Die Verengung verhindert weitgehend die Verdunstung. Die Trichter-Flasche-Einheit steckt in einem weissen Rohr, das als Haltevorrichtung und als Lichtschutz dient (Abbildung 35).

Abbildung 35 Methode zur Erfassung von Gravitationsdeposition mit einem Bulkgerät Schematische Skizze, Bulk-Regensammler an der Station Tiefenbach

Die Öffnung des Bulksammlers wird gewöhnlich 1.5 - 1.8 m über dem Boden angebracht und mit einem Vogelschutzkorb ausgerüstet. Zum Schutz vor Insekten und Pflanzenteilen wird im Trichter ein Gitter aus rostfreiem Stahl als Quadratmaschengewebe (Maschenweite: 3 mm, Drahtdurchmesser: 1 mm) angebracht. Da bei früheren Probenahmen zum Teil Vogelkot im Trichter gefunden wurde, wurde ab 2003 in den Sommerhalbjahren zusätzlich ein grobmaschiges Netz über den Vogelschutzkorb befestigt, damit sich Vögel nicht allfällige Insekten im Trichter holen und dabei koten. Die Bulk-Sammler wurden mit genügend Abstand zu Bäumen und Sträuchern aufgestellt, um einen Eintrag von Blättern, Flugfrüchten
etc. zu vermeiden. Flaschen, Trichter, Stahlgitter und Netz wurden nach jedem Probewechsel gereinigt. Die Bulksammelgefässe wurden vierwöchentlich oder monatlich gewechselt.

Die Stickstoffeinträge an LWF-Standorten wurden von der WSL im Rahmen der Langfristigen Waldökosystem-Forschung erhoben (Thimonier et al. 2005 & 2019). Für Depositionsmessungen setzt die WSL im Sommer Regensammler (Bulksammler) ein, die aus einem tiefen Auffangtrichter aus Polyethylen mit einer Auffangfläche von 100 cm² bestehen, welcher mit einer Probeflasche aus Polyethylen mit einem Inhalt von 2 Litern verbunden ist. Die Auffangfläche wird mit einem Plexiglasverstärkungsring mit abgeschrägter Kante konstant gehalten. Eine kleine Scheibe aus Polyethylen am Grund des Trichters erlaubt grobe Teilchen vorzufiltern. Ein zweiter Filter aus Polyestergewebe ist am verengten Ende des Trichters platziert. Die Regensammler werden in ein PVC-Rohr gesteckt und die Auffangfläche befindet sich auf 1.5 m über Boden.

Schneesammler

An höheren Lagen werden von der WSL im Winter anstatt der Regensammler Schneesammler eingesetzt. Dieser besteht aus einem PE-Sack in einem Polyethylen-Eimer von 30 cm Durchmesser, welcher in einem PVC-Rohr steckt. Das Zentrum der Auffangfläche befindet sich 1.5 m über dem Boden.

Wet-only-Sammler, Nassfraktion von wet&dry-Sammler

Während eines Niederschlagsereignisses steht ein Polyethylen-Trichter offen, der die Nassdeposition in eine Polyethylen-Flasche leitet. In der niederschlagsfreien Zeit wird der Trichter abgedeckt, gesteuert durch einen Regensensor. Das Gerät wird beheizt, so dass Schnee im Trichter schmilzt und ebenfalls erfasst wird. "Wet only"-Geräte werden an den NABEL-Stationen angewendet (Empa & BAFU 2018, Seite 90), "wet&dry"-Geräte wurden durch FUB betrieben (Thöni, Seitler 2010). Der Wet-only-Sammler sammelt im Durchschnitt 85 % des Bulksammlers, welcher auch die trockene Gravitationsdeposition (sedimentierender Staub) aufnimmt. Für die Bestimmung des Gesamtstickstoff-Eintrags in dieser Studie wurden die Wet-Werte um diese Differenz erhöht, d.h. die Werte der Wet-Sammler wurden mit 1.15 (NH_4^+) bzw. 1.17 (NO_3^-) multipliziert (siehe Kapitel 6.4.1).

Berechnung der Stickstofffracht

In der Gravitationsdeposition wird die Konzentration der Stickstoffionen (Ammonium oder Nitrat) direkt gemessen. Über die Niederschlagsmenge und den Trichterdurchmesser wird daraus die Stickstofffracht folgendermassen berechnet:

flon-N GD	=	ρ lon, GD · M_N · V_{GD}							
I IOII-IN, GD		M _{lon} - A							
$f_{lon-N,GD}$	=	Stickstofffracht des lons Ammonium oder Nitrat in der Gravitationsdeposition							
ho lon, GD	=	Massenkonzentration des Ions Ammonium oder Nitrat in der Gravitationsdeposition							
Mion	=	Molare Masse des Ions Ammonium bzw. Nitrat							
MN	=	Molare Masse von Stickstoff							
V_{GD}	=	Volumen der Gravitationsdeposition							
А	=	Fläche der Sammleröffnung							

6.1.2 Passivsammler zur Messung von Ammoniak

Die Messungen wurden mit Passivsammlern nach VDI 3869 Blatt 4 durchgeführt. Bis 2003 wurde der Zürcher Passivsammler (Thöni et al. 2003) eingesetzt, anfangs 2004 wurde auf das qualitativ bessere Messsystem von Radiello[®] gewechselt, ab 2018 wurde an einigen Standorten auf Ferm-Sammler umgestellt. Die Vergleichbarkeit der Ergebnisse der Methoden wurden jeweils durch Parallelmessungen an verschiedenen Standorten untersucht. Die Resultate der Zürcher Passivsammler wurden rückwirkend mit einem Korrekturfaktor an die Radiello Passivsammler angeglichen (Thöni & Seitler 2010).

Radiello[®]-Passivsammler

Der Radiello[®]-Passivsammler ist ein käufliches System, das zur Bestimmung einer grossen Anzahl gasförmiger Stoffe (anorganisch und organisch) eingesetzt werden kann. Es fusst auf dem Prinzip der Diffusion. Bei den herkömmlichen Palmes Sammlern sind eine relativ kleine Diffusionsöffnung und eine lange Diffusionsstrecke vorhanden, was zu einer kleinen Sammelrate führt. Um diese zu vergrössern und damit die analytische Empfindlichkeit zu erhöhen, wurde bei den Radiello Passivsammlern die Diffusions- und Absorptionsoberfläche zylindrisch und co-axial gestaltet (Radial-Sammler) (Abbildung 36).

Abbildung 36 Radiello®-Passivsammler mit Aufhängevorrichtung

Links oben: Der einsatzbereite Passivsammler

Rechts oben: Einzelteile eines Radiello-Passivsammlers mit (von links) Adapter zum Aufhängen des Sammlers, der Deckel, die säurebeschichtete Cartridge, der Body mit gasdurchlässigem Zylinder und oben der gasdichte Transportbehälter. Links unten: Schema des Radiello-Passivsammlers mit Schutzbüchse, die gleichzeitig als Aufhängevorrichtung dient. Rechts unten: Radiello-Passivsammler in Schutzbüchse von unten

Der Body besteht aus mikroporösem Polyethylen. Die Absorptions-Cartridge für die Ammoniaksammlung besteht ebenfalls aus mikroporösem Polyethylen und wird mit Phosphorsäure belegt. Die Passivsammler werden in einer gut durchlüfteten Aufhängevorrichtung exponiert, die gleichzeitig als Witterungsschutz fungiert (Abbildung 36 unten). Die Cartridges werden mit hochreinem Wasser desorbiert. Das Eluat wird mit Ionenchromatografie oder Fliessinjektionsanalyse mit Gasdiffusionsmembrane und UV-Detektion anstelle der vorgeschlagenen Fotometrie mit Indophenol-Methode auf Ammonium analysiert. Die Blindwerte und damit die Nachweis- und Bestimmungsgrenzen können so deutlich gesenkt werden.

Radiello — Berechnung der Ammoniakkonzentration

$ ho$ NH $_3$, Luft	=	$\frac{M_{\mathrm{NH}_{4}}^{+} \cdot M_{\mathrm{NH}_{3}}}{M_{\mathrm{NH}_{4}}^{+} \cdot Q \cdot t}$
$ ho_{ m NH_{3^{\rm J}}}$ Luft	=	Konzentration von Ammoniak in Luft
т _{NH4} + <i>М</i> _{NH3}	= =	Masse Ammonium, das von der Cartridge desorbiert wurde Molare Masse von NH_3
<i>M</i> _{NH4} ⁺	=	Molare Masse von NH₄⁺
Q t	= =	Sammelrate bei 293 K und 1013 hPa Zeit der Exposition

Ferm-Passivsammler

Der axiale Ferm-Passivsammler⁵ besteht aus einem PP-Tubus (Länge: 10 mm), der zur Exposition mit der Eintrittsfläche nach unten befestigt wird. Die obere Tubus-Öffnung wird mit einer Verschlusskappe (Material: PE) verschlossen, auf der sich ein mit Phosphorsäure beschichteter Quarzfilter befindet. Die untere Öffnung wird von einem Quarzfilter verschlossen, das beidseitig mit einem Edelstahlnetz stabilisiert und vor grober Verschmutzung geschützt wird. Membran und Stahlnetz werden mit Hilfe eines PE-Halterings auf den Tubus gedrückt. Diese Verschlusskappe hat eine gestanzte Öffnung von 20 mm Durchmesser, die gleichzeitig die Eintrittsfläche des Passivsammlers darstellt (Abbildung 37).

Abbildung 37 Passivsammler nach Ferm-Bauweise

Links: einsatzbereiter Passivsammler mit dem Sammlereingang nach vorne rechtes Bild: Einzelteile eines Ferm-Passivsammlers mit (von links) Haltering, Quarzfilter als Turbulenzbarriere zwischen zwei stabilisierenden Drahtnetzen, Tubus, H₃PO₄-beschichteter Quarzfilter als Sorbens und Verschlusskappe, sowie oben der gasdichte Transportbehälter

⁵ Ferm-Passivsammler wurden von Martin Ferm am Swedish Environmental Research Institute IVL entwickelt (Ferm 1991) und werden in vielen Immissionsmessnetzen vor allem für die Messung von Ammoniak eingesetzt.

$ ho_{ m NH_3,}$ Luft	=	$\frac{m_{\rm NH_4} \cdot M_{\rm NH_3} \cdot l_{\rm PS}}{M_{\rm NH_4} \cdot A_{\rm PS} \cdot D_{\rm HNO_3} \cdot t}$
$ ho$ NH $_{ m 3}$, Luft	=	Konzentration von Ammoniak in Luft
<i>m</i> _{NH4} +	=	Masse Ammonium, das vom Quarzfilter desorbiert wurde
M _{NH3}	=	Molare Masse von NH ₃
$M_{\rm NH_4}^+$	=	Molare Masse von NH₄⁺
<i>I</i> PS	=	Länge der Diffusionsstrecke
Aps	=	Fläche der Diffusionsöffnung
D _{NH3}	=	Diffusionskoeffizient von NH ₃
t	=	Zeit der Exposition

Ferm — Berechnung der Ammoniakkonzentration

6.1.3 Passivsammler zur Messung von Stickstoffdioxid

Für die NO₂-Messung wurden Passivsammler nach Palmes verwendet (Palmes 1976). Für diese Messungen wurde der OSTLUFT-Passivsammler mit Windschutz verwendet (Brunner & Schlatter 2002) (Abbildung 38).

Abbildung 38 OSTLUFT-Passivsammler für NO₂-Messungen Schematische Skizze und Foto

Berechnung der NO₂ Konzentration

		m _{NO2} , ps · Ips
$ ho$ NO $_2$, Luft	=	
		$A_{\text{PS}} \cdot D_{\text{NO}_2} \cdot t$
$ ho_{ m NO_2}$, Luft	=	Konzentration von Stickstoffdioxid in Luft
<i>m</i> no ₂ , ps	=	Masse Nitrit, das vom Passivsammler desorbiert wurde
I _{PS}	=	Länge der Diffusionsstrecke

A _{PS}	=	Fläche der Diffusionsöffnung
$D_{\rm NO_2}$	=	Diffusionskoeffizient von NO2
t	=	Zeit der Exposition

6.1.4 Passivsammler zur Messung von gasförmiger Salpetersäure

Die Passivsammler zur Salpetersäurebestimmung entsprechen den Ferm-Sammlern zur Ammoniakbestimmung, jedoch wurde das Quarzfilter mit Natriumhydroxid statt Phosphorsäure beschichtet (Abbildung 37).

Berechnung der Salpetersäure-Konzentration

$ ho$ HNO $_3$, Luft	=	$\frac{m_{\text{HNO}_3} \cdot M_{\text{HNO}_3} \cdot l_{\text{PS}}}{M_{\text{NO}_3} \cdot \cdot A_{\text{PS}} \cdot D_{\text{HNO}_3} \cdot t}$
$ ho$ HNO $_3$, Luft	=	Konzentration von Salpetersäure in Luft
$m_{\rm NO_2}$	=	Masse Nitrit, das vom Quarzfilter desorbiert wurde
M _{HNO3}	=	Molare Masse von HNO ₃
<i>М</i> _{NO3} -	=	Molare Masse von NO3 ⁻
I _{PS}	=	Länge der Diffusionsstrecke
Aps	=	Fläche der Diffusionsöffnung
Dhno ₃	=	Diffusionskoeffizient von HNO3
t	=	Zeit der Exposition

6.1.5 Minidenuder / -filter (Midefix) für Gase und Aerosole

Der Midefix ist ein aktives Verfahren zur Sammlung von Gasen und Aerosolen (VDI 3869 Blatt 3).

Ein Denuder besteht aus einem innen aufgerauten Glasrohr, welches mit Phosphorsäure (für Ammoniak) resp. Kaliumhydroxid (für Salpetersäure) beschichtet ist. Die zu analysierende Aussenluft wird durch die Denuder geleitet. NH₃ oder HNO₃ werden im laminar durchströmten Minidenuder (Glasrohr) absorbiert. Partikelgebundenes Ammonium oder Nitrat – mit einer um drei bis fünf Zehnerpotenzen (je nach Partikelgrösse) geringeren Diffusionsgeschwindigkeit – passiert den Denuder und wird am nachgeschalteten beschichteten Filter (Phosphorsäure für Ammonium, NaCl für Nitrat) abgelagert.

Um eine laminare Strömung in Minidenudern zu gewährleisten, wird eine Einlaufstrecke (unbeschichtetes Glasrohr) vorgeschaltet. Um zu prüfen, ob Ammoniak vollständig vom Denuder erfasst wurde, kann ein 10 cm langer Kontrolldenuder zwischen Minidenuder und Filter geschaltet werden (Abbildung 39).

Abbildung 39 Offener Midefix

Probeneinlass, Minidenuder, Kontrolldenuder, Minifilter, Gasuhr, Rotameter und Pumpe

Einlaufstrecke, Minidenuder, Kontrolldenuder und Minifilter werden als Einheit verschickt. Für die Messung wird der Kunststoffverschluss bei der Einlaufstrecke entfernt und diese in den Probeeinlass gesteckt. Die Filterseite kann über eine Schnellkupplung direkt mit der Gasuhr verbunden werden (Abbildung 40).

Abbildung 40 Anordnung der Probesammeleinheit im Midefix

Einlaufstrecke E, Minidenuder MD, Kontrolldenuder KD, Minifilter MF und Schnellkupplung SK – Midefix

Denuder und Filter werden mit einem definierten Volumen Reinstwasser desorbiert. Die Filtereluate werden mikrofiltriert. Die Eluate werden ohne weitere Aufbereitung analysiert.

Berechnung der Konzentration von Ammoniak und Salpetersäure

hoGas,Luft	=	M _{lon} ⋅ M _{Gas} M _{lon} ⋅ V _{Luft}
$ ho$ Gas,Luft m_{lon}	= =	Konzentration von Ammoniak oder Salpetersäure in Luft Masse NH4* oder NO3 ⁻ , das vom Denuder desorbiert wurde

M_{Gas}	=	Molare Masse von NH3 oder HNO3
Mlon	=	Molare Masse von NH4 ⁺ oder NO3 ⁻
VLuft	=	Durchgesetztes Luftvolumen

Berechnung der Konzentration von Ammonium und Nitrat

holon,Luft	=	Mion VLuft
Plon,Luft	=	Konzentration von Ammonium oder Nitrat in Luft
Mlon	=	Masse NH4* oder NO3 ⁻ , das vom Filter desorbiert wurde
VLuft	=	Durchgesetztes Luftvolumen

MD-System von Empa/NABEL

Die Empa betreibt im NABEL-Messnetz ebenfalls einige Minidenuder-Filter-Systeme, deren Messwerte für diese Studie beigezogen wurden (Empa & BAFU 2018, Seite 99).

6.1.6 Summenfilter (Sufix) für Gase und Aerosole

Der Sufix ist ebenfalls ein aktiv sammelndes Verfahren für Gase und Aerosole. Im Gegensatz zu den Midefix werden Gase und Aerosole nicht getrennt, sondern nur als Summe von Ammonium und Ammoniak respektive Nitrat und Salpetersäure erfasst. Ein Filter oder zwei Filter in Serie (für oxidierte Stickstoffverbindungen) werden über eine Schnellkupplung mit der Gasuhr verbunden. Ihr sind der Rotameter und die Pumpe nachgeschaltet (Abbildung 41).

Durch gleichzeitige Probenahme von Ammoniak resp. Salpetersäure mit Passivsammlern kann der Aerosolanteil als Differenz aus Sufix und Passivsammler bestimmt werden.

Filtermessungen als Tagesproben von Empa

Empa betreibt an einigen Orten im NABEL-Messnetz Summenfiltermessungen als Tagesproben. Die Ammoniumdaten von PAY 2004 und 2005 sowie von RIG 2000-2004 wurden für diese Studie verwendet (Empa & BAFU 2018, Seite 96).

6.2 Probevorbereitung und Spurenanalytik

In der Analytik muss bei allen Handlungen sorgfältig darauf geachtet werden, dass die Proben nicht kontaminiert werden.

Wiederverwendbare Probegefässe und -geräte werden mechanisch gereinigt. Gefässe zur Bestimmung der Ionen und NO_2 werden mit Reinstwasser gespült und über Nacht stehen gelassen. Denuder werden für die Ammoniaksammlung mit KOH 0.5 M, für die Salpetersäuresammlung mit Phosphorsäure 0.5 M vorbehandelt. Alle Geräte werden dann mehrmals mit Reinstwasser gespült. Die Filter für Ammonium- und Nitratbestimmung werden vor der Belegung mit Reinstwasser gewaschen.

Die Bulkproben werden ohne weitere Vorbehandlung analysiert. Bei sichtbarem Schwebestoffgehalt werden sie mikrofiltriert. Die Passivsammler, Denuder und Filter werden mit Reinstwasser (Farbreagenz bei NO₂-Sammlern) eluiert und analysiert.

Messtechnik

- NO₂-Bestimmung mit Photometer PerkinElmer Lambda 25
- Ammonium-Bestimmung bis Mitte 2019 mit Fliessinjektionsanalysator Foss FIAstar 5000 Analyzer, ab Mitte 2019 mit Segmentflussanalysator SEAL AA100, beide bestehend aus automatischem Probegeber, Injektionsventil, peristaltischer Pumpe, Mischstrecke, Gasdiffusionsmembrane, Durchflussküvetten und Detektion durch UV/VIS-Photometrie (SN EN ISO 11732)
- Nitrat- und Ammonium-Bestimmung mit isokratischer Elution, mit Ionenchromatografie System ICS-1600 von Dionex, bestehend aus Probegeber, Injektionsventil, Pumpe, Vor- und Trennsäule, Suppression und Leitfähigkeitsdetektion

6.3 Qualitätssicherung

Die von FUB verwendeten Analyseverfahren werden mit der Teilnahme an den jährlich stattfindenden "EMEP laboratory intercomparison" (Kap. 6.3.2) und durch die Analyse von zertifiziertem Referenzmaterial (Kap. 6.3.1) überprüft.

Die Sammel- und Messverfahren der FUB werden laufend mit anderen Verfahren innerhalb der FUB, wie auch mit Verfahren anderer Institutionen im In- und Ausland verglichen (Tabelle 6) (Interne Berichte, Dämmgen et al. 2010). Von Passivsammlern werden in der Regel Doppel- oder Dreifachproben genommen.

Die Messmethoden und die Qualitätssicherung der NABEL-Daten ist im Technischen Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL) beschrieben (Empa & BAFU 2018).

Die Messmethoden und die Qualitätssicherung der WSL-Messungen sind in Thimonier et al. (2005 & 2019), König (2013), Marchetto et al. (2011) und Waldner et al. (2014) publiziert.

Sammelmethode	Anz. Proben pro Standort & Periode	Blind- werte	Nachweis- grenzen	Zertif. Ref mat.	Vergleich mit anderen Verfahren	Vergleich mit ande- ren Labors	Andere Massnahmen
Bulk	1 oder 2	Х	Х	Х	Wet & dry	WSL	Trichter Analyse
NH₃ PS	2 oder 3	x	x		Minidenuder	NABEL, LUBW, LANUV, SMUL, vTi, LfU BY	
NO ₂ PS	1, 2 oder 3	х	х		kont. Verfahren	UGZ, SEn, in-Luft , LUBW, LfU	
HNO₃ PS		х	х		Minidenuder		
Minidenuder NH3	1	х	x		NH3 PS	NABEL, LUBW, SMUL, vTi	Kontrolldenuder
Minifilter NH4 ⁺	1	х	х			NABEL, vTi	
Minidenuder HNO ₃	1	х	х			NABEL	
Minifilter NO3-	1	х	х			NABEL	
Summenfilter Nred	1	х	х		Minidenuder / -filter	NABEL	
Summenfilter Noxi	1 oder 2	x	x		Minidenuder / -filter	NABEL	Kontrollfilter

Tabelle 6 Übersicht über die Qualitätssicherungsmassnahmen

6.3.1 Vergleich mit zertifiziertem Referenzmaterial

Zur Überprüfung der Analytik wurden Standardreferenzmaterialien aus "Simulated rainwater" analysiert. Die Übereinstimmung der gemessenen mit den zertifizierten Werten ist gut (Tabelle 7).

 Tabelle 7
 Messung von Standardreferenzmaterialien

 "Simulated rainwater" CRM 408 (CEC, bcr 1993) und ERM® CA408 (EC, JRC, IRMM 2010)

				CRM 408	ERM [®] CA408						
		Zertifizierter Wert		FUB	FUB	FUB	FUB	Zertifizie	rter Wert	FUB	FUB
Jahr der Analyse				2003	2008	2013	2015			2015	2018
		с	CI	С	с	С	С	с	CI	с	С
		mg kg ⁻¹	+/-	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	+/-	mg kg ⁻¹	mg kg ⁻¹
Ammonium	NH_4^+	0.38		0.36	0.37		0.41	0.910	0.03	0.976	0.92
Nitrat	NO_3^-	1.25	0.02	1.06	1.17	1.25	1.24	2.01	0.09	2.00	2.02
Ammonium Nitrat	NH4 ⁺ NO3 ⁻	0.38 1.25	0.02	0.36 1.06	0.37 1.17	1.25	0.41 1.24	0.910 2.01	0.03 0.09	0.976 2.00	0.92

6.3.2 EMEP laboratory intercomparison

Die FUB nimmt seit 2015 am EMEP-Ringversuch der analytischen Methoden teil. Ammoniak und Salpetersäure auf Filtern, Stickstoffdioxid in synthetischer Lösung sowie Ammonium und Nitrat in synthetischem Regen erfüllten die EMEP-Qualitätsnorm (Abbildung 42). Resultate (Labor ID: 200, Switzerland) sind unter: http://www.nilu.no/projects/ccc/inter-comparison/ verfügbar:

Regen, G-samples: NH₄⁺, NO₃⁻, Cl⁻, SO₄²⁻, Na⁺, K⁺, Mg²⁺, Ca²⁺, pH, Leitfähigkeit Filter, B-samples: HNO₃, SO₂, J-samples: NH₃ Absorptionslösung, C-samples: NO₂

Vergleich der FUB Analyseresultate mit dem Erwartungswerten Einheit auf Filtern: µg N Filter¹, in Lösungen: mg N l⁻¹

6.3.3 Transport-Blindwerte

Blindproben wurden parallel zu den Proben im Feld transportiert, behandelt und analysiert. In Tabelle 8 sind die Blindwerte mit den jeweiligen Messwerten verglichen. Die Blindwerte wurden von den Analysewerten abgezogen (Ausnahme: Bulk und NO₂). Sie sind im Vergleich zu den Proben meist niedrig.

		Bulk		Radiello	Ferm	Passivsammler		Minidenuder		Minifilter		Summenfilter	
		NH_4^+	NO ₃	NH ₃	\mathbf{NH}_3	NO ₂	HNO ₃	NH₃	HNO ₃	NH_4^+	NO ₃	${\rm NH_4}^+$	NO ₃
		µg l⁻¹	μg Γ ¹	µg ľ ¹	μg Γ ¹	abs	μg Γ ¹	µg l⁻¹	µg ľ¹	µg ſ¹	μg Γ ¹	μg Γ ¹	µg Г¹
Blinds	Mittelwert	13	21	65	56	0.005	61	212	91	157	236	176	391
	SD	7	19	39	22	0.001	35	163	79	108	84	33	174
	Anzahl	42	41	405	143	420	106	101	32	130	33	23	33
	% vom Minimalwert					64	114	608	100	129	264	119	109
	% vom Median	2	1	2	7	5	26	4	5	8	7	10	8
	der Proben												
Proben	Mittelwert	864	1'709	3'992	899	0.117	253	6'147	1'786	2'367	4'533	3'939	5'138
	Minimalwert	0	0	0	0	0.008	54	35	91	121	89	148	358
	Median	661	1'464	2'893	778	0.094	238	5'313	1'656	2'015	3'486	1'819	4'615
	Maximalwert	35'823	20'776	242'880	26'507	0.491	586	28'761	5'657	8'309	18'803	30'613	18'115
	Anzahl	1'657	1'656	28'190	899	439	444	166	168	155	163	87	109

Tabelle 8 Blindwerte im Vergleich zu den Proben

6.3.4 Nachweis- und Bestimmungsgrenzen

Die Nachweis- und Bestimmungsgrenzen der Messverfahren wurde gemäss Empfehlung der SN EN 13528⁻2 (2002) bestimmt.

Nachweisgrenze:	3 x Standardabweichung der Blindwerte
Bestimmungsgrenze:	10 x Standardabweichung der Blindwerte

Tabelle 9 Nachweisgrenzen

	В	Bulk		Radiello Ferm Passivsammler		Minid	enuder	Min	ifilter	Summenfilter		
	$N-NH_4^+$	N-NO ₃	NH ₃	\mathbf{NH}_{3}	N-NO ₂	N-HNO ₃	$N-NH_3$	N-HNO ₃	$N-NH_4^+$	N-NO ₃	$N-NH_4^+$	N-NO ₃
	kg ha⁻¹	kg ha⁻¹	µg m ⁻³	µg m⁻³	µg m⁻³	µg m ⁻³	µg m⁻³	µg m ⁻³	µg m⁻³	µg m ⁻³	µg m ⁻³	µg m⁻³
14 Tage Exposition			0.19	0.43	0.09	0.27	0.32	0.04	0.21	0.05	0.10	0.11
28 Tage Exposition			0.09	0.22	0.05	0.13	0.16	0.02	0.11	0.02	0.05	0.05
10 mm tiefer Monatswert	0.002	0.001										
80 mm mittlerer Monatswert	0.01	0.01										
300 mm hoher Monatswert	0.05	0.04										

Von jeder Sammelmethode wurden Transportblindproben analysiert und die Nachweisgrenzen aus den Standardabweichungen der Einzelwerte berechnet (Tabelle 9). Um die Nachweisgrenzen der Gase und Aerosole mit den gemessenen Konzentrationen in der Luft vergleichen zu können, wurden sie je mit einer mittleren Expositionszeit von 14 und 28 Tagen berechnet. Um die Nachweisgrenzen der Ionen mit den Depositionsfrachten in den Proben vergleichen zu können, wurden sie je mit tiefen, mittleren und hohen monatlichen Niederschlagsmengen berechnet. Um Jahresmittelwerte mit vollständiger zeitlicher Abdeckung zu erhalten, wurden auch Messwerte unter der Bestimmungsgrenze verwendet.

6.3.5 Vergleich mit anderen Messverfahren

Ferm-Passivsammler werden laufend mit Radiello-Passivsammlern verglichen, (Abbildungen 43). Die Übereinstimmung ist gut.

Abbildung 43 Radiello- und Ferm-Passivsammler für Ammoniak im Vergleich 2 Passivsammlertypen der FUB: links 2009 bis 2017 (427 Datenpaare), rechts 2018 bis 2019 (131 Datenpaare) Einheit: μg m⁻³

Die Passivsammler für Ammoniak werden laufend mit einem Referenzverfahren (Denuder, VDI 3869 Blatt 3 2010, Empa & BAFU 2018) überprüft. Abbildung 44 links zeigt den Vergleich zwischen Minidenudern der Empa (Quelle: NABEL, BAFU und Empa) und Radiello Passivsammlern. In Abbildung 44 rechts sind die Ferm Passivsammlerwerte mit Empa-Minidenudern des NABEL-Messnetzes verglichen. Vergleiche mit Radiello Passivsammlern erfolgten von 2011 bis 2017, mit Ferm Passivsammlern von 2018 bis 2019. Die Übereinstimmung ist gut.

Abbildung 44 NH₃-Konzentration von Passivsammlern im Vergleich mit Minidenudern Oben links: Radiello Sammler und Minidenuder (Referenzverfahren, Quelle: NABEL, 526 Datenpaare) Oben rechts: Ferm Sammler und Minidenuder (Quelle: NABEL, 196 Datenpaare), Einheit: μg m⁻³

Die Passivsammler für Stickstoffdioxid werden laufend mit dem Referenzverfahren (Chemolumineszenz) überprüft (Abbildung 45). Die Übereinstimmung ist sehr gut.

Abbildung 45 Stickstoffdioxid-Passivsammler und Monitore im Vergleich Jahresmittelwerte (69 Datenpaare), Monitordaten von OSTLUFT und SEN, 2008 – 2019, Einheit: µg m⁻³

An der Station Bachtel werden laufend zwei Bulk parallel exponiert (Abbildung 46).

Die Übereinstimmung der Niederschlagsmenge und der Fracht von Nitrat-Stickstoff ist sehr gut. Bei Ammonium-Stickstoff ist die Übereinstimmung gut, einige Ausreisser sind auf Exposition eines der Sammler mit Insekten, pflanzlichem Material oder Vogelkot zurückzuführen.

Abbildung 46 Gravitationsdeposition: Vergleich zweier FUB Bulk Vergleich der Jahre 2012 – 2019. 104 Datenpaare Oben links: Niederschlag Einheit: mm

Unten links: Ammoniumstickstoff-Fracht, unten rechts: Nitratstickstoff-Fracht, Frachten: Einheit kg N ha-1 a-1

Zwischen FUB Bulk Sammlern mit WSL Regen- und Schneesammlern wurden in Othmarsingen und Celerina von August 2003 bis März 2004 und in Chironico 2019 umfangreiche Vergleichsmessungen durchgeführt, zwei- und vier-Wochen-Perioden (Abbildung 47).

Abbildung 47 Gravitationsdeposition: Vergleich WSL Regen- (blau) und Schneesammler (rot) und FUB Bulk Oben links: Niederschlag Einheit: mm unten links: Ammoniumstickstoff-Fracht, unten rechts: Nitratstickstoff-Fracht, Frachten: Einheit kg N ha⁻¹ a⁻¹ 30 Datenpaare, Ausreisser: siehe unten

Gründe für die Ausreisser in Abbilung 47 sind:

a) 2.10. - 30.10.2019 FUB Bulk (4 W exponiert) ist überlaufen, deshalb Minderbefund bei der Niederschlagsmenge. (WSL-Sammler 2 x 2 W exponiert) Die Stickstoff-Frachten weisen eine gute Übereinstimmung auf.

- b) Sehr starke Gewitter im Juni 2019, deshalb unterschiedliche Niederschlagsmengen, auch zwischen drei WSL-Sammlern und der Niederschlagswippe der LWF Meteostation.
- c) Warme Temperaturen am 20.3.-8.4.2019, deshalb mehr Verdunstung im offenen Schneesammler als im Bulk-Sammler mit Trichter.

Trotz der einzelnen Ausreisser ist die Übereinstimmung zwischen den Sammelmethoden gut, sowohl zwischen FUB Bulk und WSL Regensammlern, wie auch zwischen FUB Bulk und WSL Schneesammlern. Die Jahres-Niederschlagsmenge in Chironico 2019 beträgt 1946 mm für die FUB-Methode und 1963 mm für die WSL-Methode.

6.3.6 Rückhalt von Ionen im Trichter

Bulk-Trichter wurden nach der Exposition bei ausgewählten Standorten mit Reinstwasser ausgespült und die Ionen darin gemessen. Durchschnittlich wurden 2 % (Ammonium) resp. 4 % (Nitrat) Masseanteil an Ionen, die im Bulk gemessen wurden, im dazugehörigen Trichter gefunden (Abbildung 48). Um Kontaminationen zu vermeiden, wurden bei jedem Probewechsel frisch gereinigte Trichter installiert.

Abbildung 48 Analyse von Bulk-Trichtern

Anteil von der Masse der Ionen, die im Trichter gefunden wurden, verglichen mit der Masse der Ionen im dazugehörigen Bulk.

6.4 Vervollständigung von Datensätzen

Nicht alle Komponenten konnten an jedem Ort gemessen werden. Darum wurden die fehlenden Werte und Jahre durch Schätzungen ergänzt.

6.4.1 "Wet" zu Bulk

An den meisten Orten wurde mit Bulk-Regensammlern gemessen, in Tänikon wurde 2002 und 2003 mit wet&dry-Sammlern der FUB, an den NABEL-Stationen Chaumont (bis 2018), Magadino, Payerne und Rigi wurde mit Wet-only-Geräten des NABEL-Messnetzes gesammelt. Um die Vergleichbarkeit zu verbessern wurden die Werte der Wet-Sammler zu Bulk umgerechnet.

Der Wet-only-Sammler sammelt weniger als der Bulksammler, welcher auch die trockene Gravitations-Deposition aufnimmt. Am Standort Bachtel wurden drei Jahre lang beide Methoden parallel geführt (4-wöchentliche Sammelintervalle). In Abbildung 49 sind die Werte in einem Scatterplot dargestellt. Dabei ist ersichtlich, dass bei kleinen Depositionswerten der Bulk überproportional mehr sammelt. Dies kann damit erklärt werden, dass es bei kleinen Frachten oft längere regenfreie Zeiten gab und damit Staub aus der Luft eingetragen wurde.

Die Umrechnungsfaktoren wurden durch Summieren der "Wet" und "Bulk"-Periodenwerte und dividieren der "Wet"-Summe durch die "Bulk"-Summe ermittelt. Mit Wet-Sammlern wurden 87 % N (NH_4^+) respektive 85% N (NO_3^-) von der N-Fracht im Bulk gesammelt. Die Wet-Werte wurden für diesen Bericht mit den Reziprokwerten dieser Anteile 1.15 (NH_4^+) respektive 1.17 (NO_3^-) multipliziert (Tabelle 10).

Abbildung 49 Vergleich der Frachten gesammelt mit Bulkregensammler und Wet-only Methodenvergleich an der Station Bachtel von 2001 bis 2003. Die graue Diagonale entspricht der 1:1 Linie.

	Wet	Bulk	Anteil	Wet	Bulk	Anteil
Expositions- ende	N-NH4 ⁺	$N-NH_4^+$	<u>Wet</u> Bulk	N-NO ₃ ⁻	N-NO ₃ -	<u>Wet</u> Bulk
Datum	kg ha⁻¹	kg ha⁻¹	%	kg ha⁻¹	kg ha⁻¹	%
03.01.2001	1.6	2.6		1.6	2.1	
30.01.2001	1.0	2.6		1.6	2.6	
27.02.2001	6.2	7.7		4.9	6.3	
27.03.2001	5.9	10.3		5.6	5.3	
24.04.2001	10.8	14.7		10.9	11.9	
22.05.2001	7.2	7.3		3.3	3.7	
19.06.2001	16.4	16.6		9.2	9.5	
16.07.2001	7.6	7.3		3.7	3.9	
14.08.2001	8.0	8.5		4.9	4.8	
11.09.2001	12.7	13.1		7.4	7.9	
09.10.2001	8.0	7.5		5.7	6.3	
06.11.2001	2.1	3.9		2.2	2.2	
04.12.2001	5.2	7.0		4.9	5.6	
03.01.2002	2.5	4.0		2.7	3.0	
22.01.2002	0.1	0.1		0.2	0.3	
19.02.2002	0.7	4.2		1.0	3.8	
19.03.2002	3.1	4.1		2.3	2.9	
16.04.2002	6.6	6.6		4.6	5.2	
14.05.2002	11.3	11.2		8.4	9.5	
11.06.2002	11.6	23.2		6.4	8.2	
09.07.2002	9.1	11.1		5.0	5.6	
06.08.2002				6.3	6.5	
03.09.2002	19.7	16.7		10.0	11.1	
01.10.2002	8.2	9.7		6.6	7.5	
29.10.2002	10.9	10.2		6.9	8.6	
26.11.2002	6.0	8.1		6.6	6.8	
24.12.2002	3.2	5.5		3.4	4.7	
21.01.2003	1.3	4.2		1.5	2.8	
18.02.2003	3.9	4.2		5.9	5.2	
18.03.2003	5.0	5.4		3.1	3.7	
15.04.2003	7.3	4.6		4.9	4.4	
13.05.2003	16.3	18.4		5.6	7.8	
10.06.2003	21.9	23.2		8.3	9.7	
08.07.2003	14.6	14.6		7.1	8.7	
05.08.2003	15.7	14.6		7.4	7.5	
02.09.2003	5.1	3.6		2.9	3.9	
30.09.2003	5.0	5.2		3.2	5.1	
28.10.2003	7.3	7.2		6.4	6.7	
25.11.2003	3.2	3.0		2.5	2.7	
23.12.2003	2.6	4.7		2.6	5.6	
20.01.2004	3.7	6.6		2.6	4.7	
	299	343	87%	200	235	85%
		Faktor	1.15		Faktor:	1.17

 Tabelle 10
 Frachten gesammelt mit Bulkregensammler und Wet-only Vergleich von 4-Wochen-Werten an der Station Bachtel von 2001 bis 2003

6.4.2 Schätzwerte von Salpetersäure, Nitrat- und Ammonium-Aerosolen

HNO₃ (gasförmig) und die Nitrat- und Ammonium-Aerosole konnten nicht an allen Standorten gemessen werden. Erfahrungsgemäss schwanken die Konzentrationen jedoch über grössere Gebiete relativ wenig. Deshalb wurden die vorhandenen Messwerte (Tabelle 11 und Abbildung 50) verwendet, um Konzentrationen für die anderen Standorte abzuschätzen (Tabelle 12).

Ein potentieller, durch falsche Abschätzungen entstehender Fehler würde sich nicht stark auf die Gesamtstickstofffracht auswirken, da der Stickstoff-Anteil dieser drei Komponenten an der Gesamtstickstofffracht 2019 nur zwischen 3 und 19 %, mit einem Median von 8 % betrug.

Tabelle 11 Grundlage f ür Sch ätzung der Salpeters äure- und Aerosol-N-Konzentrationen

Median, Minimal- und Maximalwerte der vorhandene Jahresmittelwerte an verschiedenen Standorten. Diese Messungen wurden im Rahmen verschiedener Projekte durchgeführt. Auftraggeber: OSTLUFT (APS, TAE), BAFU (SA, SARE, BRM, WTG1, OEN, CHA, HAE, NEU 02), Uni Basel (FUR, TIE, KLE), Oekoscience (PIO, ROBI) Daten von NABEL: MAG, RIG, PAY (grün)

	HNO ₃ -N																			
									μg m ⁻³											
Standort	MAG	SA	SARE	PIO	ROBI				CHA	RIG	BA	APS	BRM	PAY		OEN		TAE		
Minimalwert	0.33	0.25	0.32						0.12	0.13	0.14		0.21	0.18		0.13		0.15		
Median	0.42	0.40	0.35	0.08	0.09				0.14	0.18	0.18	0.10	0.25	0.24		0.25		0.20		
Maximalwert	0.53	0.52	0.38						0.16	0.20	0.22		0.28	0.29		0.38		0.25		
Anz. Jahresmittel	12	4	2	1	1				2	13	10	1	3	13		3		5		
								Ν	10 ₃ -1	N										
									μg m ⁻³											
Standort	MAG	SA	SARE	PIO	ROBI	FUR	TIE	KLE	CHA	RIG	BA	APS	BRM	PAY		OEN		TAE		
Minimalwert	0.47	0.74	0.99						0.31	0.39	0.44		0.54	0.57		0.69		0.60		
Median	0.64	0.93	1.04	0.31	0.28	0.13	0.22	0.37	0.39	0.49	0.52	0.45	0.60	0.72		0.73		0.74		
Maximalwert	0.78	1.00	1.08						0.48	0.66	0.66		0.69	0.96		0.97		0.87		
Anz. Jahresmittel	12	4	2	1	1	1	1	1	2	13	10	1	3	13		3		5		
								Ν	H₄⁺-N	1										
								L	lg m⁻³											
Standort	MAG	SAS	SARE	PIO	robi	FUR	TIE	KLE	CHA	RIG	BA	APS	BRM	PAY	VTG1	OENN	EU 02	TAE	RAP	HAE
Minimalwert	0.63	1.40	1.09						0.47	0.52	0.60	0.79	0.64	0.71	1.00	1.22	0.78	0.86	1.26	1.39
Median	0.94	1.59	1.57	0.75	0.59	0.14	0.20	0.28	0.55	0.87	0.85	0.96	0.77	1.01	1.14	1.40	1.00	1.10	1.47	1.46
Maximalwert	1.59	1.71	2.17						0.62	1.05	1.14	1.12	1.00	1.72	1.34	1.49	1.17	1.44	1.51	1.69
Anz. Jahresmittel	12	4	5	1	1	1	1	1	2	15	14	2	3	14	3	3	3	5	4	3
HAE = Härkingen (S	0), NE	U 02 =	Neudo	rf (LU)	, OEN	= Oens	singen	(SO), F	PIO = F	Piotta (1	ΓΙ), RO	BI = R	obiei (1	I), SA	= Sag	no (TI),	WTG1	= Gimr	niz (BE),

85

Abbildung 50 Messwerte von Salpetersäure und Aerosol-N-Komponenten mit Schätzwerten An verschiedenen Orten, als Grundlage für Schätzwerte in der gleichen Region

Standort	Herkunft der Schätzwerte	HNO3-N	NO3 ⁻ -N	NH_4^+-N	Herkunft (Schätz-)Wert NO2, wenn nicht	NO ₂
Code		µg m⁻³	µg m ⁻³	µg m ⁻³	mit Passivsammlern an Station gemessen	µg m ⁻³
AEG	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.23	0.73	1.13		
ALB	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.23	0.73	1.13		
ANA B	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80		
APS	APS direkt 2014	0.10	0.45	0.79		
ARD 02	von FUR, HNO ₃ von ROBI	0.09	0.13	0.14		
ARD 06	von TIE, HNO₃ von ROBI	0.09	0.22	0.20		
BA	2000-2004 direkt, weitere von Mittelwert BA, Rest direkt	0.18	0.52	0.85	2001-2003: Schätzw. von BATU/0.88	4.2-5.3
BEA	von KLE, HNO ₃ von ROBI	0.09	0.37	0.28		
BET	von CHA	0.14	0.39	0.55		
BIN	von Mittelland: oxi PAY, OEN, TAE: NH₄ ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
BRM	BRM direkt	0.25	0.60	0.77		
CEL	von TIE, HNO₃ von ROBI	0.09	0.22	0.20		
CHA	CHA direkt 2014 + 2019	0.14	0.39	0.55	Monitor, NABEL	
СНІ	von ROBI	0.09	0.28	0.59		
DAV	von TIE, HNO₃ von ROBI	0.09	0.22	0.20		
FUR	FUR direkt, HNO₃ von ROBI	0.09	0.13	0.14		
GMO	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80		
HÄG	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
HOL	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13	2000: Schätzwert von LU 35	10.0
HUD	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13	2001: Schätzwert	10.0
JUS	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
KIT	von Mittelland: oxi PAY, OEN, TAE: NH₄⁺: auch WTG 1, NEU 02	0.23	0.73	1.13		
KLE	KLE direkt, HNO₃ von ROBI	0.09	0.37	0.28		
LAE F	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
LAU	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
LEN	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
MAG	2000-2007 Mittelwert MAG, nachher direkt	0.42	0.64	0.94	Monitor, NABEL	
MAU	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13	2000: OSTLUFT	18.0
MU	von Mittelland: oxi PAY, OEN, TAE: NH₄⁺: auch WTG 1, NEU 02	0.23	0.73	1.13		
NAT	von TIE, HNO ₃ von ROBI	0.09	0.22	0.20		
NE 01	von CHA	0.14	0.39	0.55		
NENZ	von Mittelland: oxi PAY, OEN, TAE: NH₄⁺: auch WTG 1, NEU 02	0.23	0.73	1.13		
NOV	von ROBI	0.09	0.28	0.59		
OBI	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13	2019: PS, UGZ	
OS	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80		
OTH	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
PAY	2000-2006 Mittelwert PAY, nachher direkt	0.24	0.72	1.01	Monitor, NABEL	
RAN	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80	2019: PS, UGZ	
RIG	2000-2006 Mittelwert RIG, nachher direkt	0.18	0.49	0.87	Monitor, NABEL	
ROBI	von Mittelland: oxi PAY, OEN, TAE: NH₄⁺: auch WTG 1, NEU 02	0.23	0.73	1.13		
ROHO	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80		
RRI	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
SARE	SARE direkt	0.35	1.04	1.57		
SCH	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
SOER	von KLE, HNO3 von ROBI	0.09	0.37	0.28		
SSH	von Mittelland: oxi PAY, OEN, TAE: NH4*: auch WTG 1, NEU 02	0.23	0.73	1.13		
ТАВ	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13		
TAE	2000-2011 Mittelwert TAE, nachher direkt	0.20	0.74	1.10	Monitor, NABEL	
TIE	TIE direkt, HNO₃ von ROBI	0.09	0.22	0.20		
VIS	von Mittelland: kein inneralpiner Vergleichsstandort	0.23	0.73	1.13		
VOR	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : RAP	0.23	0.73	1.13		
WAU	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.13	2000: Schätzwert von LU 35	10.0
WIE	von Mittelland: oxi PAY, OEN, TAE: NH4 ⁺ : auch WTG 1, NEU 02	0.23	0.73	1.47		
ZB	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS, BRM	0.17	0.49	0.80		

Tabelle 12

Zugewiesene Schätzwerte an die verschiedenen Standorte Herkunft der Schätzwerte oder (bei NO₂) Verwendung von Monitor-Messwerten

HAE = Härkingen (SO), NEU 02 = Neudorf (LU), OEN = Oensingen (SO), ROBI = Robiei (TI), SA = Sagno (TI), WTG 1 = Gimmiz (BE), BATU = Bachtel Turm (ZH), LU 35 = Schüpfheim

6.5 Von Konzentration zu Fracht

6.5.1 Gravitationsdeposition

Die Gravitationsfracht wird direkt aus Konzentration, Niederschlagsmenge und Trichterdurchmesser ermittelt (Kap. 6.1.1). Die Serienfrachten werden zu Jahresfrachten summiert.

6.5.2 Interzeption und Gasdeposition – Depositionsgeschwindigkeiten

Zur Berechnung der Fracht bei Gasen und Aerosolen wird die Konzentration mit der rezeptorspezifischen Depositionsgeschwindigkeit v_d multipliziert. Hierfür wurden die Depositionsgeschwindigkeiten der Komponenten dem Standort und dem Ökosystemtyp (z.B. Nadelwald, Flachmoor, Wiese) angepasst.

Interzeption:

f Ion-N	=	Stickstofffracht des Ions Ammonium oder Nitrat aus Aerosol
ho lon	=	Massenkonzentration des Ions Ammonium oder Nitrat in Aussenluft, Jahresmittelwert
Vd Aerosol	=	Depositionsgeschwindigkeit von Aerosol, angepasst an Ökosystemtyp und Höhe ü. M.
ΜN	=	Molare Masse von Stickstoff
Mlon	=	Molare Masse des Ions Ammonium oder Nitrat

Gasdeposition:

$$f_{\text{Gas-N}} = \frac{\rho_{\text{Gas}} \cdot V_{\text{d}}_{\text{Gas}} \cdot M_{\text{N}}}{M_{\text{Gas}}}$$

f _{Gas-N}	=	Stickstofffracht des Gases Ammoniak, Stickstoffdioxid oder Salpetersäure
hoGas	=	Massenkonzentration des Gases Ammoniak, Stickstoffdioxid oder Salpetersäure, Jahresmittelwert
Vd Gas	=	Depositionsgeschwindigkeit des Gases, angepasst an Ökosystemtyp
MN	=	Molare Masse von Stickstoff
M _{Gas}	=	Molare Masse des Gases Ammoniak, Stickstoffdioxid oder Salpetersäure

Depositionsgeschwindigkeit v_d ist die Geschwindigkeit, mit der sich Gase oder Aerosole auf Oberflächen absetzen. Sie sind sehr variabel und abhängig von der Stickstoffkomponente, den meteorologischen Begebenheiten sowie von der Oberflächenrauigkeit des Ökosystems, welche die Gasdeposition und Interzeption von Aerosolen stark beeinflusst. In der Literatur gibt es verschiedene Angaben mit einer grossen Streuung der Depositionsgeschwindigkeiten (z.B. Übersichtsartikel von Schrader/Brümmer, 2014). Für diese Untersuchung wurden Depositionsgeschwindigkeiten nach Rihm & Achermann 2016) und Thimonier et al. (2005) eingesetzt (Jahreswerte) (Tabelle 13). Diese wurden von Meteotest auch bei der Ausbreitungs- und Depositionsmodellierung verwendet. Sie sind mit Unsicherheiten behaftet. Die in den 1990er Jahren festgelegten Depositionsgeschwindigkeiten waren auch Teil der Grundlagen für die Herleitung der Expositions-Wirkungsbeziehungen zwischen Stickstoffeinträgen und Auswirkungen bei empfindlichen Ökosystemen.

Komponente	NO ₂ Gas	NH₃ Gas	HNO₃ Gas	NH4 ⁺ / NO3 ⁻ Aerosole					
Hoch- / Flachmoore	2	20	15	1 - 2					
Wiesen/Weiden (TWW)	1.5	12	15	1 - 2					
Alpines/subalpines Grasland		wie TWW							
Wies- und Ackerland	1.5	10	15	1 - 2					
Laubwald	3	22	15	1.5 – 3					
Mischwald	3 - 4	26	15	2 - 4					
Nadelwald	4	30	15	2.5 - 5					
Siedlung	1.5	8	15	1 - 2					
Felsen, Gletscher	1.5	5	15	1 - 2					
Schnee		wie Felsen	, Gletscher						

Tabelle 13	Ökosystemtypen und Depositionsgeschwindigkeiten (vd) N-haltiger Luftschadstoffe
	Jahresmittelwerte, Einheit: mm s ⁻¹

Bei **HNO**₃ wird von einer konstanten Depositionsgeschwindigkeit ausgegangen, da sich diese Komponente auf jeglicher Oberfläche sehr schnell abgesetzt. Für **NO**₂ werden höhere v_d für die eher rauen Oberflächen in Flach- und Hochmooren, sowie in Wälder angenommen. Für die **Aerosole** wird neben der Rauigkeit der Oberfläche die Höhenabhängigkeit miteinbezogen (siehe unten). Bei der Deposition von **Ammoniak** wurde berücksichtig, falls am Standort über mehrere Monate eine geschlossene Schneedecke liegt, da bei dieser deutlich weniger Ammoniak deponiert wird (Tabelle 14).

Ammoniak

Bei geschlossener Schneedecke ist die Depositionsgeschwindigkeit v_d bei Ammoniak reduziert (Gletscher: v_d NH₃ = 5 mm s⁻¹). Darum wurde für den Jahreswert die v_d des jeweiligen Ökoystems an Standorten oberhalb 900 m ü.M. reduziert (für tiefere Lagen wird nicht von einer langen Schneebedeckung ausgegangen).

Für die Anpassung wurde folgendermassen vorgegangen: Mit Nachfrage bei den Stationsbetreibern respektive Anwohnern wurden die Monate mit mehrheitlich geschlossener Schneedecke ermittelt.

(i) Die mittlere NH₃-Konzentration über die Zeit mit Schneebedeckung wurde mit der v_d von Gletscher und mit den Anzahl Monaten multipliziert. Die restlichen Monate (Vegetationszeit) wurden mit der am jeweiligen Ökosystem geltenden v_d multipliziert. Beides wurde summiert und durch die 12 Monate geteilt. Dies ergab die ermittelte Fracht an NH₃-N.

(ii) Die geltende v_d wurde mit dem NH₃-Jahresmittelwert multipliziert was die Fracht ohne Reduktion ergab.

Der Faktor beider Berechnungen (i)/(ii) wurde nun mit der am Standort geltenden v_d multipliziert, was die spezifische v_d am jeweiligen Standort ergab. Siehe Tabelle 14 für verwendete Werte.

 Tabelle 14
 Depositionsgeschwindigkeit von Ammoniak an höher gelegenen Standorten (> 900 m ü. M.)

 Anpassung an die Zeit mit geschlossener Schneedecke, bei der die Depositionsgeschwindigkeit reduziert ist a./suba. GL = alpines/subalpines Grasland

Code	Angaben von Stationsbetreiber oder Anwohner	Ökotop resp. Rezeptor	Depositions- gescheindigkeit vd · Schnee (Gletscher)	vd Vegetationszeit	NH3-Konzentration ganzes Jahr 2014	NH3-Konzentration Schneebedeckung Jahr 2014	NH3-Konzentration Vegetationszeit	Dauer Schneebedeckung	Dauer Vegetationszeit	N-NH3-Fracht Schneebedeckung	N-NH3-Fracht Vegetationsperiode	N-NH3-Fracht (i) Jahr 2014	N-NH3-Fracht (ii) Jahr 2014 · ohne Anpassung	Faktor für Anpassung vd (i)/(ii)	vd angepasst an Schneebedeckung
			mm s ⁻¹	mm s ⁻¹	µg m`	°µg m³	µg m⁻³	Monate	Monate	kg ha ⁻¹	kg ha	kg ha	kg ha		mm s ⁻¹
ARD 02	Andreas Gauer, Agroscope, Bodentemp. 2014/15	a./suba. GL	5	12	0.26	0.20	0.32	6	6	0.13	0.49	0.62	0.80	0.77	9
ARD 06	Andreas Gauer, Agroscope, Bodentemp. 2014/15	a./suba. GL	5	12	0.92	0.81	0.98	4	8	0.35	2.03	2.39	2.88	0.83	10
BEA	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.63	0.22	0.77	3	9	0.07	1.79	1.86	1.96	0.95	11
BET	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.60	0.28	0.67	2	10	0.06	1.73	1.79	1.88	0.95	11
CHI	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.27	0.09	0.33	3	9	0.03	0.78	0.81	0.85	0.95	11
FUR	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.15	0.14	0.18	7	5	0.10	0.23	0.33	0.48	0.70	8
KLE	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.52	0.35	0.63	5	7	0.19	1.15	1.34	1.61	0.83	10
NAT	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.15	0.13	0.16	5	7	0.07	0.30	0.37	0.46	0.79	10
NOV	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.59	0.15	0.68	2	10	0.03	1.76	1.79	1.83	0.98	12
TIE	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.20	0.11	0.30	6	6	0.07	0.47	0.54	0.63	0.85	10
ANA B	Patrick Schleppi, WSL, Schneehöhen	Flachmoor	5	20	0.38	0.15	0.46	3	9	0.05	1.77	1.82	1.96	0.93	19
CEL	Maria Schmitt, WSL, Schneehöhen	Hochmoor	5	20	0.20	0.12	0.25	4	8	0.05	0.85	0.91	1.03	0.88	18
DAV	Maria Schmitt, WSL, Schneehöhen	Hochmoor	5	20	0.14	0.13	0.15	4	8	0.05	0.52	0.57	0.73	0.78	16
NE 01	Margrit Bolliger, La-Chaux-de-Fonds	Hochmoor	5	20	1.19	0.69	1.36	3	9	0.22	5.28	5.51	6.18	0.89	18
ZB 01	Annahme: ähnlich wie BA	Hochmoor	5	20	1.44	0.60	1.73	3	9	0.19	6.71	6.91	7.49	0.92	18
ROHO	Albert Marty, Rothenthurm	Hochmoor	5	20	1.61	1.25	1.73	3	9	0.41	6.74	7.14	8.36	0.85	17
SOER	Mario Meier, PV	Hochmoor	5	20	0.42	0.41	0.43	4	8	0.18	1.49	1.67	2.20	0.76	15
BA	Silvia Marty, FUB	Wies-+ AL	5	10	2.35	1.16	2.75	3	9	0.38	5.35	5.73	6.11	0.94	9
CHA	Stefan Bugmann, EMPA, webcam	Wies-+ AL	5	10	0.89	0.36	0.99	2	10	0.08	2.14	2.22	2.30	0.97	10
RIG	Stefan Bugmann, EMPA, webcam	Wies-+ AL	5	10	1.32	0.75	1.51	3	9	0.24	2.94	3.18	3.43	0.93	9

Aerosole

Nach SAEFL (1996) verdoppelt sich (infolge Zunahme der Windgeschwindigkeit) die Depositionsgeschwindigkeit für Aerosole von 400 auf 800 m ü. M. Für die Schätzung an den jeweiligen Orten wurde eine lineare Erhöhung angenommen (Abbildung 51).

Abbildung 51 Höhenabhängigkeit der Depositionsgeschwindigkeiten von Aerosolen für verschiedene Ökosystemtypen

6.5.3 Gesamtstickstofffracht

Zur Berechnung der gesamten Stickstofffracht werden die Stickstoffrachten der sieben Komponenten summiert:

- Ammonium und Nitrat in der Gravitationsdeposition
- Ammonium und Nitrat in der Interzeption
- Ammoniak, Stickstoffdioxid und Salpetersäure in der Luft

6.6 Waldrand – über Wald

Der Eintrag in den Wald wird über die ermittelten Konzentrationen im Freiland nebenan berechnet. Belastet wird vor allem der Waldrand. An emissionsarmen Standorten finden sich auch oberhalb des Waldes ähnliche Konzentrationen wie im angrenzenden Freiland (Beispiele bei Hofstetten SO, an der Lägeren AG und in Vordemwald AG), (Abbildung 52, Tabelle 15). Somit kann davon ausgegangen werden, dass auch weiter innen im Wald mit ähnlichen Belastungen gerechnet werden muss.

Abbildung 52 Ammoniakmessungen an Standorten neben, über und im Wald

Links oben: Hofstetten (SO), links die Messstelle auf einem Kran über Baumkrone, rechts Messstelle nahe am Waldrand Rechts oben: Lägeren (AG), links auf der Freilandfläche WSL-LWF, rechts über Baumkrone auf Messturm NABEL Unten: Vordemwald (AG) von links nach rechts: Messtelle im Bestand auf 2 m Höhe, über Baumkrone auf 30 m Höhe, am Waldrand auf 2 m Höhe

Standorte	Messperiode	NH ₃ -Konzentration neben Wald	NH ₃ -Konzentration über Wald	NH ₃ -Konzentration im Wald
Hofstetten (SO)	Mai 2002 – Jan. 2003	1.4 µg m ⁻³	1.2 µg m ⁻³	
Lägeren (AG)	2014	1.4 µg m ⁻³	1.4 µg m ⁻³	
Vordemwald (AG)	2019	0.9 µg m ⁻³	1.4 µg m ⁻³	0.6 µg m ⁻³

Tabelle 15 Ammoniakkonzentrationen neben, über und im Wald Emittentenferne Standorte

6.7 Organischer Stickstoff im Niederschlag

Der Niederschlag enthält wasserlösliche organische Stickstoffverbindungen (Dissolved organic N - DON), z.B. Aminosäuren. Diese wurden in der vorliegenden Studie nicht berücksichtigt. Es ist nicht klar, ob und wie viel diese zur Überdüngung beitragen. Der Anteil DON am totalen Eintrag aus der Gravitationsdeposition schwankt stark. Gonzàles Benìtez et al. (2009) fanden im Freiland von Schottland einen Anteil am totalen N-Eintrag (Nitrat, Ammonium, DON) von 23 % ± 6 %. Daten aus Niedersachsen (D), Finnland und Slowenien (Abbildung 53) zeigen im Mittel 17 % ± 6 % DON bei einer mittleren anorganischen N-Fracht von 6 kg ha⁻¹ a⁻¹. Die prozentualen Werte aus Niedersachsen mit einer anorganischen N-Fracht von 12 kg ha⁻¹ a⁻¹ sind 6 % ± 4 %, in Finnland mit 2 kg ha⁻¹ a⁻¹ 20 % ± 4 %, in Slovenien 17 % ± 3 % bei 11 kg ha⁻¹ a⁻¹ anorganischen Stickstoff. Diese Daten waren Grundlagen für die Publikation Harmens et al. 2014, bei welchem die Stickstofffracht im Niederschlag mit der Stickstoffkonzentration in Moos verglichen wurde.

Abbildung 53 Vergleich von anorganischem Anteil zu totalem Stickstoff in der Gravitationsdeposition Anorganischer Anteil: Summe Ammonium- und Nitratfracht, Totaleintrag: anorganischer Teil plus lösliche organische Fracht (DON). Blau 1:1 Linie

6.8 Abschätzung der Qualität der Gesamtstickstoff-Resultate

Die Ermittlung der Gesamtstickstoff-Einträge ist mit Unsicherheiten behaftet. Diese liegen nur wenig auf der Seite der Analytik (Kap. 6.3.1 & 6.3.2), hingegen können bei der Probensammlung im Feld je nach Sammlertyp und Methode (Technik) Probleme auftreten:

Die Niederschlagsmenge ist vor allem bei Schneefall sehr ungenau. Die Bulk-Regensammler mit Trichter füllen sich und bilden eine Schneehaube, so dass weitere Niederschläge nicht mehr gesammelt werden. Um eine Haubenbildung zu verhindern werden von der WSL Schneesammler mit einer grossen Auffangfläche eingesetzt. Während den Übergangsphasen (Frühling) kann die Lufttemperatur bereits hoch sein, was dann zu Verdunstungsverlust führt. Der Windeinfluss muss ebenfalls berücksichtigt werden. Die in diesem Projekt eingesetzten Niederschlagssammler haben keinen Windschutz, und die Niederschlagsmenge wird tendenziell unterschätzt (was sich vor allem an hochgelegenen Standorten auswirkt). Bei hohen Niederschlagsmengen können die Sammelgefässe überlaufen, was zu einem Minderbefund führt⁶. Bei Starkniederschlags-Ereignissen werden teilweise auch lokal grosse Unterschiede bei den Sammelmengen verzeichnet.

Der WSL Bulksammlern wurde 2001 methodisch geändert. Ein europäischer Sammlervergleich Anfang der 2000 Jahre hat gezeigt, dass die WSL-Sammler aufgrund einer undichten Stelle zwischen Flasche und Trichter 10 bis maximal 20 % zu viel Wasser sammelten und die Deposition daher überschätzt wurde. Es kann somit nicht ausgeschlossen werden, dass die Gravitationsdepositionen an den WSL-Standorten im Jahr 2000 überschätzt sind.

Mit dem grössten Minderbefund muss an der Station Furka (FUR) gerechnet werden. Dort kann im Winter wegen Lawinengefahr nicht regelmässig gewechselt und der Schnee somit nur unvollständig aufgefangen werden. Nahe an der Passhöhe herrscht auch relativ viel und starker Wind. 2014 bis 2019 wurden die Regenmengen des FUB Bulks mit der automatischen ALPFOR-Wetterstation verglichen, die mit Bulk aufgefangene Jahres-Niederschlagsmengen betrugen nur zwischen 47 und 82 % der Niederschlagsmengen aus der Wetterstation. (pers. Mitteilung Erika Hiltbrunner, ALPFOR Uni Basel). Auch bei TIE, ARD 02 und KLE, alle drei auf einer Alp gelegen, muss ebenfalls mit Minderbefund der Niederschlagsmenge gerechnet werden. Die anderen, höher gelegenen Standorte befinden sich in geschützter Lage und dort konnte auch regelmässig gewechselt werden, so dass von einem kleineren Minderbefund ausgegangen werden kann.

Ein Minderbefund der Niederschlagsmenge gegenüber Messungen aus Wetterstationen bedeutet jedoch nicht, dass der N-Eintrag im gleichen Verhältnis unterschätzt wird.

- Verdunstung von Niederschlag im Sammelgefäss führt zu Aufkonzentrierung, welche aber die Stickstofffracht nicht beeinträchtigt.
- Wegen der reinigenden Wirkung von Niederschlägen auf die Aussenluft nimmt die Stickstoffkonzentration im zeitlichen Verlauf von Niederschlagsereignissen ab. Bei Verlust wegen vollen Sammelgefässen ist die N-Fracht, je nach Durchmischung des Stickstoffs im Behälter, nicht im gleichen Masse betroffen.

⁶ In SOER kam es 2014 zwei Mal zu Verlusten, da es deutlich mehr regnete als in der Flasche Platz hatte. Die Regenmenge wurde mit Hilfe der Messstelle "Marbach LU" geschätzt (uwe 2015).

Auch der Eintrag aus dem Nebel wird unterschätzt, da abtropfender Niederschlag oder Stammabfluss des ausgekämmten Nebels von den verwendeten Sammelmethoden unzureichend erfasst werden. An den meisten in diesem Bericht berücksichtigten Standorten ist der Einfluss von Nebel gering. Er spielt vor allem in alpinen, windausgesetzten Lagen mit häufigen Inversionsschichten eine Rolle (Spreafico & Weingartner 2005, Turner 1985).

In dieser Arbeit wurden nicht alle Stickstoff-Komponenten einbezogen. Es fehlen z.B. die wasserlöslichen organischen Stickstoffverbindungen (DON, siehe Kapitel 6.7), und die Gase HNO₂ und PAN.

Bei der trockenen Deposition von Aerosol- und gasförmigen Stickstoffverbindungen wird in einzelnen Fällen mit einer Unter- oder Überschätzung des Eintrags von bis zu 50 % gerechnet. Zusätzlich wurde bei vielen Standorten mit geschätzten Konzentrationen gerechnet.

Bei Ammoniak wird ein Kompensationspunkt erwartet, d.h. dass bei kleinen Konzentrationen in der Luft eine Emission stattfinden kann (Flechard et al. 2013). Die gemessenen Ammoniakkonzentrationen an quellenfernen Standorten sind somit unter Umständen nicht nur durch Transport des Ammoniaks zur Messstelle, sondern auch durch den aus dem Boden ausgedünsteten Ammoniak bestimmt. Dies kann zu einer Überschätzung des Stickstoffeintrages über Ammoniak führen. Wobei auch dieser an Ort emittierte Ammoniak in den nahen Ökosystemen wieder deponiert werden kann.

Bei der Berechnung von Gesamtstickstoffeintrag in Wald aus Messungen im Freiland (Inferential technique, Schmitt et al. 2005, Ahrends 2020) gibt es Unsicherheiten, da die Sammlung wenige Meter über Boden stattfindet, der Wald aber von der Luft von Duzenden von Metern über Boden beeinflusst ist, wo die Gas- und Aerosolkonzentrationen unter Umständen anders sind. Speziell bei Messungen in Waldlichtungen können Aerosole und Gase bereits ausgekämmt sein.

Jedoch sind die Depositionsgeschwindigkeiten die grössten Unsicherheitsfaktoren. Diese sind sehr variabel und abhängig von der Stickstoffkomponente, den meteorologischen Begebenheiten sowie von der Rauigkeit der Oberfläche, welche die Auskämmung von Gasen und Aerosolen beeinflusst. Die verwendeten Depositionsgeschwindigkeiten wurden auf der Basis von wissenschaftlicher Literatur der 1990 Jahre im Rahmen eines Expertenworkshops festgelegt. (FOEFL 1996, Rihm & Achermann 2016).

7 Anhang

7.1.1	Standortbeschreibung und Resultate
Tabelle 16	Standortbeschreibung Beschreibung der Messstandorte und der Umgebung
	Seite 97 und 98
Tabelle 17	Ökosystemtypen und Depositionsgeschwindigkeiten an den Standorten Ökosystemtyp 1 direkt am Standort, Typ 2 innerhalb von 200 m um den Standort, standortspezifische Depositionsge- schwindigkeiten und ökosystemspezifische Bereiche der Critical Loads für Stickstoff Seite 99

 Tabelle 18
 Sammelmethoden

 Sammelverfahren zur Erfassung der sieben Stickstoffkomponenten

Seite 100

Tabelle 19 Jahres-Niederschlagsmengen und Jahresmittelwerte der Gas- und Aerosol-Konzentrationen

Seiten 101 bis 106

Tabelle 20 Stickstofffrachten

Jahres-Stickstoffeinträge von Ammonium und Nitrat aus der Gravitationsfracht, Ammonium und Nitrat-Aerosolen, Ammoniak, Stickstoffdioxid und Salpetersäure sowie die N-Frachten der oxidierten und der reduzierten Stickstoffkomponenten und die Summe aller Frachten, berechnet für ein bis zwei Ökosysteme pro Standort

Seiten 107 bis 123

 Tabelle 21
 Modellierte N-Frachten und Emissionszahlen für Ammoniak Quelle: Meteotest, Bern

Seite 124

Code	Standort Name		Kt.	Natur-	Stationsbetreiber	Koord	inaten	Höhe	Relief	Expo-	Neiauna
				raum		E	N			sition	> 5 %
						km	km	m ü. M.			%
AEG	Knonau Ägelsee		ZH	М	OSTLUFT	675521	232695	449	Е	—	
ALB	Altstätten	Bannriet	SG	М	OSTLUFT	761030	247635	420	E	_	
ANA B	Alpthal	Erlentobel	SZ	NA	WSL	696810	211110	1190	Н	SW	13
APS	ApSteinegg	Appenzell	AI	М	OSTLUFT	750830	243700	820	E	-	
ARD 02	Ardez Szen. 2		GR	ZA	Agroscope	809042	186024	2180	Т	S	
ARD 06	Ardez Szen. 6		GR	ZA	Agroscope	808659	184410	1680	H	S	
BA	Bachtel	hinterer Sennenberg, Wald	ZH	M	OSTLUFT, FUB	710340	239607	930	H	E	18
BEA	Beatenberg	Vorsass	BE	NA	WSL/LWF	625510	172200	1560	H	SW	22
BEI	Bettlachstock	Stockmatteli	SO	J	WSL/LWF	597896	230150	10/6	H	S	21
BIN	Biten Niederriet		GL	M		719010	225155	411	E	-	
BRM	Beromunster NABEL	Dunt Murael, Otan	LU	IVI ZA		055840	220/80	1760	ĸ		F
	Celerina	Punt Muragi - Staz.	GR			707043 E6E000	100400	1/00	E		5
	Chiraniaa	Lemponeo		J CA		706012	211040	1470	п	JE NE	10
	Davaa	Lampenca		3A 74	WSL/LWF	700013	144210	1479	п	INE C	19
	Davos		UD	ZA 74		675336	158056	2440	п Ц	0 0E	0
GMO	Gänsemoos		BE	M	UNIDAS Kt BE	503658	186057	2440 707	F	3E	10
HÄG	Häggenschwil		SC	M		7/3500	261675	555	F		
HOL	Holderbus 1	Neuenkirch	111	M		657120	201073	500	Ц		7
		Nedenkiich	TG	M		73013/	210302	518	F	-	1
	lussy	La Forêt	GE	M	WSL/LWF	511633	120631	501	F		
KIT	Kirchhera	Turnenriet	SG	M	OSTI LIFT	720315	251605	740	F	_	
KIF	Klewenalp		NW	NA	UNIBAS	679107	198636	1722	ĸ	NW	21
LAE F	Lägeren WSL	Tiaelmoos	AG	M	WSL/LWF	669033	258591	508	Н	S	11
LAU	Lausanne	Chalet de la ville	VD	M	WSL/LWF	539387	156702	790	ĸ	SF	
LEN	Lengwiler Weiher 1		TG	M	OSTLUFT	730492	277044	502	E	_	
MAG	Magadino-Cadenazzo		TI	SA	NABEL	715500	113200	204	E	_	
MAU	Mauren 1	Pünt	TG	М	Kt. TG	729182	269404	439	E	_	
MU	Muri 1		AG	М	IAP	669347	236256	470	н	E	6
NAT	Nationalpark	Porta 9	GR	ZA	WSL/LWF	814454	171381	1900	Е	S	5
NE 01	Les Ponts-de-Martel	Tourbières	NE	J	Kt. NE	546745	204903	1000	Е	_	
NENZ	Nenzlingen	Nenzlingerweid	BL	J	Kt. BL	609799	255259	500	Н	SW	30
NOV	Novaggio	oberhalb Pianea commune	TI	SA	WSL/LWF	708159	97953	1075	Н	S	13
OBI	Ottenbach Bibelaas		ZH	М	Kt. ZH	672489	236903	386	Е	_	
OS	Oberschrot 1		FR	М	IAP	586700	175800	900	Н	Е	8
OTH	Othmarsingen	Berg	AG	М	WSL/LWF	659218	250228	462	Н	SW	12
PAY	Payerne		VD	М	NABEL	562285	184775	489	Е	-	
RAN	Merishausen Hagenturm		SH	J	OSTLUFT	684769	292087	900	Н	SE	7.3
RIG	Rigi-Seebodenalp		SZ	NA	NABEL	677845	213462	1031	Н	NW	30
ROB	Wetzikon Robenhuserriet		ZH	М	OSTLUFT	701987	243514	539	Е	—	
ROHO	Rothenturmer Hochmoor		SZ	М	Kt. SZ	693918	219533	905	E	_	
RRI	Ruggell Riet			NA	OSTLUFT	760091	235668	432	E		
SARE	Sagno Reservoir		TI	SA	IAP	724286	80024	820	Т		
SCH	Schänis		SG	NA	OSTLUFT, WSL/LWF	722923	223521	630	Н	W	59
SOER	Sörenberg Husegg		LU	NA	Kt. LU	643514	184831	1450	Е	—	
SSH	Stein Sägehüsli		AR	М	OSTLUFT	744888	247230	722	Н	E	7.7
TAB	Turbenthal Tablat		ZH	М	OSTLUFT	707669	252230	641	Н	SW	23
TAE	Tänikon	Aadorf	TG	М	NABEL	710500	259810	539	E	-	
TIE	Tiefenbach		UR	ZA	UNIBAS	678393	160750	2127	Т	SW	
VIS	Visp	nicht auf WSL-Freifläche	VS	ZA	WSL/LWF	632242	127410	664	Н	Ν	6
VOR	Vordemwald	Probsthol	AG	М	WSL/LWF	635733	235431	486	E	SE	
WAU	Wauwil 16		LU	M	Kt. LU	643707	224651	499	E	_	
WIE	Schimmelstrasse	Zürich, Wiedikon	ZH	М	OSTLUFT	681950	247250	415	E	-	
ΖB	Zugerberg 1	Zug	ZG	NA	IAP	682992	220489	990	K	-	
Legende		I = Jura	NA	= Norda	lpen		Е	= Ebene	К	= Kuppe	9
	M	= Mittelland	ZA	= Zentra	alalpen & Urserental		Н	= Hang	Т	= Terras	sse
			SA	= Sudal	pen						

Code	direkte Umgebung	landwirtschaftliche Nutzung		Verkehr DTV	Siedlungs-	bedeutender Wechsel am Standort		
			abstand	(% LKW)	grosse	am Standort		
		1			1	1		
AEG	Hochmoor	Schweinezuchtbetrieb	-	_	Einzelhöfe			
ALB	Flachmoor, Wiesen, Acker	Wiesen, Ackerbau	-	_	Einzelhof			
ANA B	Wald und Streuwiesen	Wald	-	_	Weiler			
APS	Wiesen	intensive Tierwirtschaft			Weiler	2014 80 m entfernt exponiert		
ARD 02	Alpweiden	Alpweide			Einzelgebäude			
ARD 06	subalp. Wiesen, lichter Lärchenwald	Weide	_		Weiler			
BA	Wiesen, Weiden, Graswirtschaft	Wiesen, Weiden, Graswirtschaft			Einzelhöfe			
BEA	Alpwiese	Alpweide			Einzelgebäude			
BET	Waldlichtung	—	_		-			
BIN	Flachmoor, Wiesen, ARA ca. 350 m O	Wiesen, Ackerbau	330		Einzelgebaude			
BRM	Sendeturm	Wiesen, Ackerbau	-	_	Einzelhofe			
CEL	subalpin, Wald, Moor	-	М	_	-			
CHA	Wiesen, Weiden, Graswirtschaft	Wiesen, Weiden, Graswirtschaft	-	_	Einzelhofe			
CHI	Alpwiese	Alpweide	-	_	Vveiler			
DAV	vvaid (Turm)/ vvaidiichtung	Waldlichtung, Hochmoor	-		Einzeigebaude			
FUR	Alpwiese	Alpweide, Schafe	130	Sommerpassstr.	Einzelgebaude			
GMO	Hochmoor	Wiesen, Ackerbau, Reitstall 180 m NO			vveller	0040		
HAG	Wiesen, Ackerbau				vveller	2018 um 120 m versch. + noner		
HUL	Ubstkultur, Wiese, Wald, Graswirtschaft	Obstbau, wiese			grosses Dorr			
HUD	landlich, Naturschutzgebiet				—			
JUS		aussemaid: Wesen	-		Einzeigebaude			
	Flachmoor	Ackerbau, wiesen, weiden	00	(grosses Don			
	Alpwiese	Alpweide, Rinder	_	_	Einzelhof			
	landlich, Aggiomeration, Waldrand	Wiesen Dfordewoide	_		Einzelhof			
	Viesen, Weide, Aggionneration		_		Einzelhof	2001 164 m entformt evineniert		
		So III w Ackelbau	_	_	Einzelgehöude			
MALL		int Londwirtschoft Asker Obsthau	150	6'700 (<5%)	Woilor	NH2 ab 2000 yess 1.7 auf 3 m Höbe		
MU	Poumochulo	Poumochulo	150	0700 (<5%)	grossos Dorf			
NAT	Wiese	Wiese			giosses Doll			
NE 01	Moorrand	Wiesen Weiden			— Finzelaehäude	2014 ca. 50 m verschoben		
NENZ	Wiesen Weiden	Weide Rinder			kleines Dorf			
NOV	grosse Waldlichtung	ausserbalb: Aloweide Alowiese			Finzelgehäude			
OBL	Flachmoor Fluss	Ackerbau Graswirtschaft	_	_	kleines Dorf			
05	Wiesen Weiden	Wiesen Weiden	_	_	Weiler			
ОТН	ländlich Agglomeration Waldlichtung	Waldlichtung	155	ca 10'000	kleines Dorf			
PAY	Grasland Ackerbau	Grasland Ackerbau	_	_	grosses Dorf			
RAN	Waldlichtung, Magerwiesen, Hagenturm 180	m W	_					
RIG	Weiden, Wald	Wiesen. Weiden	_	_	Einzelhöfe			
ROB	Flachmoor, Hochmoor, Siedlung	_	_	_	Kleinstadt			
ROHO	Hochmoor		_		_			
RRI	Flachmoor	Wiesen, Weiden	_	_	_			
SARE	Trinkwasserfassung, Waldlichtung	_	_	_	Weiler			
SCH	Waldlichtung, Weide	Weide, Schafe, seit 2013 Rinder	_	_	Einzelgebäude			
SOER	Weide neben Moorgebiet	Moor, beschränkt Alpweide	_	_	Einzelgebäude			
SSH	Kiesgrube, Laubwäldchen	Graswirtschaft	_	_	Einzelhöfe			
TAB	Mischwald, Trockenwiese	Wiesen, Weiden	_	_				
TAE	Weiden, Ackerbau	intensive Landwirtschaft	_	_	grosses Dorf			
TIE	Weide	Alpweide, Rinder	60	Sommerpassstr.	Einzelgebäude			
VIS	Waldlichtung	_	30	ca. 10'000	Industrie			
VOR	Weiden, Äcker	Wiesen, Weiden, Ackerbau	_	_	Einzelhöfe			
WAU	Flachmoor, ext. Wiesland	Naturschutzgebiet, Wiesen	_	_	_	2000 80 m entfernt exponiert		
WIE	Stadtzentrum, Strassen, Parkplatz	-	5	27'000 (5.5%) ¹	Stadt			
ZB	Weide, Hochmoorrand	Wiesen, Weiden	_	_	Einzelhof			
				¹ Stand 2012				

Τ

Code	Ökosystemtyp 1	ndigkeit v _d	C	LN	Ökosystemtyp 2	Depositio	onsgeschwir	C	v _d				
		NH_3	NO ₂	Aeros.	u o			NH ₃	NO ₂	Aeros.	u	0	HNO ₃
			mm s ⁻¹		kg ha⁻¹				mm s ⁻¹		kg	ha ⁻¹	mm s ⁻¹
AEG	Hochmoor	20	2	1.1	5	10	Mischwald	26	3.5	2.2	5	20	15
ALB	Flachmoor	20	2	1.0	10	15							15
ANA B	Flachmoor	19	2	2.0	10	15	Nadelwald	30	4	5.0	5	15	15
APS	Wies- und Ackerland	10	1.5	2.0									15
ARD 02	Alpines/subalpines Grasland	9	1.5	2.0	5	10							15
ARD 06	Alpines/subalpines Grasland	10	1.5	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
BA	Wies- und Ackerland	9	1.5	2.0			Mischwald	26	3.5	4.0	5	20	15
BEA	Alpines/subalpines Grasland	11	1.5	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
BET	Alpines/subalpines Grasland	11	1.5	2.0	5	10	Mischwald	26	3.5	4.0	5	20	15
BIN	Flachmoor	20	2	1.0	10	15							15
BRM	Wies- und Ackerland	10	1.5	2.0			Mischwald	26	3.5	4.0	5	20	15
CEL	Hochmoor	18	2	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
CHA	Wies- und Ackerland	10	1.5	2.0			Mischwald	26	3.5	4.0	5	20	15
CHI	Alpines/subalpines Grasland	11	1.5	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
DAV	Flachmoor	16	2	2.0	10	15	Nadelwald	30	4	5.0	5	15	15
FUR	Alpines/subalpines Grasland	8	1.5	2.0	5	10							15
GMO	Hochmoor	20	2	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
HAG	Wies- und Ackerland	10	1.5	1.4									15
HOL	Wies- und Ackerland	10	1.5	1.5			Mischwald	26	3.5	3.0	5	20	15
HUD	Hochmoor	20	2	1.3	5	10	Mischwald	26	3.5	2.6	5	20	15
JUS	Wies- und Ackerland	10	1.5	1.3			Laubwald	22	3	1.9	10	20	15
KIT	Flachmoor	20	2	1.9	10	15	Mischwald	26	3.5	3.7	5	20	15
KLE	Alpines/subalpines Grasland	10	1.5	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
LAE F	Wies- und Ackerland	10	1.5	1.3			Laubwald	22	3	1.9	10	20	15
LAU	Wies- und Ackerland	10	1.5	2.0			Laubwald	22	3	3.0	10	20	15
LEN	Flachmoor	20	2	1.3	10	15	Laubwald	22	3	1.9	10	20	15
MAG	Wies- und Ackerland	10	1.5	1.0			Flachmoor	20	2	1.0	10	15	15
MAU	Wies- und Ackerland	10	1.5	1.1									15
MU	Waldlichung	12	1.5	1.2			Mischwald	26	3.5	2.4	5	20	15
NAT	Alpines/subalpines Grasland	10	1.5	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
NE 01	Hochmoor	18	2	2.0	5	10	Mischwald	26	3.5	4.0	5	20	15
NENZ	Trockenwiesen	12	1.5	1.3	5	10	Laubwald	22	3	1.9	10	20	15
NOV	Alpines/subalpines Grasland	12	1.5	2.0	5	10	Laubwald	22	3	3.0	10	20	15
OBI	Flachmoor	20	2	1.0	10	15	Laubwald	22	3	1.5	10	20	15
OS	Wies- und Ackerland	10	1.5	2.0			Nadelwald	30	4	5.0	5	15	15
OTH	Waldlichung	12	1.5	1.2			Mischwald	26	3.5	2.3	5	20	15
PAY	Wies- und Ackerland	10	1.5	1.2							-		15
RAN	Irockenwiesen	12	1.5	2.0	5	10	Mischwald	26	3.5	4.0	5	20	15
RIG	Wies- und Ackerland	9	1.5	2.0	5	10	Mischwald	26	3.5	4.0	5	20	15
ROB	Hochmoor, Flachmoor	20	2	1.3	5	10							15
ROHO	Hochmoor, Flachmoor	17	2	2.0	5	10							15
RRI	Flachmoor	20	2	1.1	10	15			0.5	4.0	-		15
SARE	Waldlichung	12	1.5	2.0			Mischwald	26	3.5	4.0	5	20	15
SCH	Wies- und Ackerland	10	1.5	1.6	-		Mischwald	26	3.5	3.2	5	20	15
SOER	Hochmoor, Flachmoor	15	2	2.0	5	10	Nadelwald	30	4	5.0	5	15	15
SSH	Wies- und Ackerland	10	1.5	1.8		40	Mischwald	26	3.5	3.6	5	20	15
TAB	Irockenwiesen	12	1.5	1.6	5	10	Mischwald	26	3.5	3.2	5	20	15
TAE	Wies- und Ackerland	10	1.5	1.3	-							<u> </u>	15
11E	Alpines/subalpines Grasland	10	1.5	2.0	5	10				4.5	-	/-	15
VIS	Waldlichung	12	1.5	1.7			Nadelwald	30	4	4.2	5	15	15
VOR	Wies- und Ackerland	10	1.5	1.2		/-	Mischwald	26	3.5	2.4	5	20	15
WAU		20	2	1.2	10	15						<u> </u>	15
WIE	Siedlung	8	1.5	1.0	-				0.7	4.5	-		15
ZB	Hochmoor, Flachmoor	18	2	2.0	5	10	Mischwald	26	3.5	4.0	5	20	15

An Dauer der Schneebedeckung angepasste Depositionsgeschwindigkeit (Kapitel 6.5.2 Tabelle 13) CLN u = untere Grenze des Critical Loads für Stickstoff CLN o = obere Grenze des Critical Loads für Stickstoff Legende

Code			Sammel	methoden						
	Grav'dep. NH , ⁺ , NO₂ [−]	NHa	Gase	HNO	Aeros NH ∕ ⁺	ole NO ₂ ⁻				
450	N114, NO3	1113	102	11103	1114	103				
ALD	Bulk	PS	PS	-	-	-				
	Bulk	PS PS	PS	_						
	Bulk	F3 DS		_ D.E	- 9E					
	Bulk	PS	PS	D-I	51	D-1				
ARD 06	Bulk	PS	PS	_						
BA	Bulk	PS	PS	D-F	D-F	D-F				
BEA	B/S	PS	PS	-	-	-				
BET	B/S	PS	PS	-	-	-				
BIN	Bulk	PS	PS	-	-	-				
BRM	Bulk	PS	PS	D-F	D-F	D-F				
CEL	B/S	PS	PS	-	-	-				
CHA	Wet/Bulk *	PS	Chem	D-F	D-F, SF	D-F				
CHI	B/S	PS	PS	-	-	-				
DAV	B/S	PS	PS	-	-	-				
FUR	Bulk	PS	PS	-	SF	SF				
GMO	Bulk	PS	PS	-	-	-				
HÂG	Bulk	PS	PS	-	-	-				
HOL	Bulk	PS	-	-	-	-				
HUD	Bulk	PS	PS	-	-	-				
JUS	B/S	PS	PS	-	-	-				
	Bulk	P3 DS	P3	-	- 9E					
	B/S	F3 DS	F3	_	JF	35				
	B/S	PS	PS							
I FN	Bulk	PS	PS	_		_				
MAG	Wet	PS	Chem	D-F	D-F	D-F				
MAU	Bulk	PS	_	_	_	_				
MU	Bulk	PS	PS	-	-	-				
NAT	B/S	PS	PS	-	-	-				
NE 01	Bulk	PS	PS	-	-	-				
NENZ	Bulk	PS	PS	-	-	-				
NOV	B/S	PS	PS	-	-	-				
OBI	Bulk	PS	PS	-	-	-				
OS	Bulk	PS	PS	-	-	-				
OTH	B/S	PS	PS	-	-	-				
	Vvet	PS	Cnem	D-F	IF, D-F	D-F				
	Wet	P3 DS	Chom	_ DE	- TE D E					
ROB	Bulk	PS	PS	-	-	-				
ROHO	Bulk	PS	PS							
RRI	Bulk	PS	PS	_	-	-				
SARE	Bulk	PS	PS	PS	SF	SF				
SCH	B/S	PS	PS	-	-	-				
SOER	Bulk	PS	PS	-	-	-				
SSH	Bulk	PS	PS	-	-	-				
TAB	Bulk	PS	PS	-	-	-				
TAE	Bulk/Wet **	PS	Chem	D-F	D-F	D-F				
TIE	Bulk	PS	PS	-	SF	SF				
VIS	B/S	PS	PS	-	-	-				
VOR	B/S	PS	PS	-	-	-				
WAU	Bulk	PS	PS	-	-	-				
	Bulk	PS	PS	-	-	-				
ZB	Bulk	42	PS	-	-	-				
	B/S	= Bulk oder Schnees	ammler (WSL)	D-F	= Minidenuder-Minifilte	r (FUB)				
	Wet	(Empa-NABEL)		D-F	= Minidenuder-Minifilte = Summenfilter (FLIR)	r (Empa-NABEL)				
	PS	= Passivsammler (F	UB)	TF	= Tagesfilter (Empa-N/	ABEL)				
	PS	= Passivsammler (U	GZ)	-	= Schätzwerte (Kap. 6	.4.2, Tab. 11)				
	Chem.	= Chemolumineszer	z (Empa-NABEL)	* CHA: 2000-2018 w	et NABEL, 2019 Bulk FUB					
	I			- TAE: 2002+2003 V	vet HUB, 2000, 2008, 2014+20	I 9 BUIK FUB				

Code	2000	2001	2002	2003	2004	2005	2006	2007	Jahres 2008	-Nieders 2009	chlagss 2010	umme 2011	2012	2013	2014	2015	2016	2017	2018	2019
										mm	а									
AEG																				972
ALB																				1017
ANA B															2183					2181
APS				1073					1404						1476					1356
ARD 02															756					
ARD 06															691					
BA		1843	1939	1489	1274	1343	1489	1482	1401	1421	1457	1533	1679	1723	1700	1306	1801	1797	1122	1625
BEA	1222														1526					1028
BET	1301														1209					1137
BIN																				1377
BRM	4400														000					//4
CEL	1126	4040	4400	750	4404	000	4000	4070	4405	070	0.40	070	4070	4007	920	054	4440	047	4450	992
	1090	1242	1403	103	1101	906	1303	12/9	011	9/0	940	0/0	12/0	1237	1004	904	1149	917	1100	1062
															1027				1590	1106
FLID														_	001	800	777	787	/05	807
GMO															331	030		101	400	1022
HÄG				757					845						909					1009
HOL	1004			101					010						000				_	1132
HUD	952	1019													904					899
JUS	1052														942				_	993
KIT																				1019
KLE															1228					
LAE F															1015					1001
LAU	1394							Í							1206					1011
LEN	952														746					859
MAG	2201	1889	2558	1166	1649	1021	1410	1403	2345	1904	1865	1378	1736	1892	2592	1363	1078	1637	1477	2019
MAU	957																			829
MU															930					
NAT	1270														967					938
NE 01															1183					1146
NENZ															890					691
NOV	2686														2558					1898
OBI																				906
OS																				1115
OTH	1096														896					950
PAY	867	1042	990	621	869	695	933	1014	932	765	671	613	1044	1064	973	703	1057	693	857	921
RAN																				760
RIG	1213	1528	1798	1024	1079	1306	1271	1224	1066	1218	1419	1203	1398	1206	1523	1270	1437	1348	996	1267
ROB															4005					1081
KUHU															1635					1450
															1002					1153
SARE	2200	2016	2000	1477	1070	1677	1950	1201	1000	1915	2074	1715	2000	1040	1903	1670	1052	2105	1244	1917
SOFR	2300	2016	2200	1477	10/2	1077	1002	1001	1929	1010	2071	1/15	2000	1949	2427	10/0	1953	2125	1341	1017
SUER															2421				_	15/1
TAR																			_	1041
	0/5		1101	870					1012						1026					1078
TIF	040		1131	010					1012						1020	941	1110	980	_	1163
VIS															656	5-1	1115	000		685
VOR	1177														1018					1032
WAU	923														884					828
WIE									868											
ZB															1349					1168
	Wet Date	n von M	AREL O	uf "Rulk"	umgeroe	chnet (Kr	n 6 4 1												_	
	Wet-Sam	mler vor	n FUB, a	uf "Bulk'	umgere	chnet (Ka	ap. 6.4.1))												

Bulk Regensammler von FUB Bulk Regen- / Schneesammler von WSL

										Konzentration										
Code										Ammonia	ak Gas									
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										NH ₃ : μ	gm									
AEG																				2.1
ALB																			9.1	8.6
ANA B															0.4	0.4	0.3			0.5
APS				11.9	8.8	9.6	10.9	9.5	8.7	9.4	8.1	9.5	8.7	7.3	7.9	8.4	7.5	8.3	10.5	10.5
ARD 02															0.3					
ARD 06															0.9					
BA	2.2	2.5	2.3	2.5	1.7	1.7	2.5	2.1	1.7	2.3	2.0	2.4	2.0	1.8	2.4	2.2	2.0	2.2	3.2	3.0
BEA	0.7														0.6					0.8
BET	0.6														0.6					0.7
BIN																				6.5
BRM																		4.7	5.9	5.6
CEL	0.3														0.2					0.2
CHA	0.9	0.9	0.8	1.2	0.8	0.8	0.8	0.9	0.8	1.1	1.2	1.7	1.0	0.9	0.9	1.3	1.0	1.0	1.3	1.5
CHI															0.3					0.3
DAV															0.1					0.2
FUR															0.2					0.2
GMO																				3.2
HAG				9.4	8.0	7.5	8.6	7.1	6.9	7.5	7.0	7.9	7.0	5.5	6.5	9.4	7.2	7.4	8.3	7.7
HOL	6.9	5.4	6.5	8.7	6.0	5.6	5.7	5.7	5.8	6.5	5.8	6.6	5.8	5.8	6.2	6.2	5.5	7.4	8.1	10.1
HUD	1.6	2.0													2.4					2.7
JUS	1.3														0.7					0.9
KIT																				5.6
KLE															0.5					
LAE F															1.4					1.7
LAU	3.5														4.3					3.8
LEN	1.5														2.0					2.4
MAG	3.5	3.3	3.7	4.3	4.2	4.3	4.7	4.2	3.7	4.0	3.5	5.6	5.4	4.7	4.3	5.6	4.8	5.5	7.6	7.1
MAU	4.1	4.3	3.4	5.0	5.4	5.5	6.3	5.8	5.7	6.2	5.8	6.3	5.8	5.0	5.9	6.7	5.9	5.3	6.9	6.7
MU	3.3	2.2	2.7	3.6	3.0	3.0	2.9	2.6	2.9	3.1	2.9	2.8	2.7	2.5	2.4	3.0				
NAT	0.3														0.1					0.1
NE 01													1.9	1.0	1.2	1.5	2.2			2.2
NENZ															1.3					1.4
NOV	0.7														0.6					1.0
OBI																				3.7
OS								3.5	4.0	4.0	4.0	3.5	4.0	3.0	3.4	4.9				3.5
OTH	1.3														1.1					1.4
PAY	3.4	2.6	2.2	3.3	3.5	3.4	3.3	3.0	2.9	3.5	3.3	3.8	3.2	2.5	2.4	3.1	2.5	2.9	3.3	3.6
RAN																				1.3
RIG	1.3	1.1	1.0	1.6	1.3	1.3	1.4	1.3	1.3	1.5	1.3	1.5	1.3	1.3	1.3	1.6	1.2	1.5	1.9	1.8
ROB																				2.1
ROHO															1.6					
RRI																				5.9
SARE														1.5	1.1	1.3	1.2	1.5	1.6	1.9
SCH	1.6		2.1	3.3	2.2	1.8	1.9	1.9	1.8	2.1	1.9	2.2	1.9	1.6	1.7	2.0	1.7	1.9	2.7	2.5
SOER															0.4					0.7
SSH																				5.3
ГАВ																				1.9
TAE	3.9	4.4	4.1	6.5	5.6	5.7	5.3	6.2	5.2	6.0	5.5	6.9	5.4	5.2	5.2	5.2	4.5	3.9	5.4	4.9
TIE															0.2					0.3
VIS															1.6					1.5
VOR	2.9														2.2					2.5
WAU	4.7						5.5	5.0	4.7	6.4	6.6	7.4	6.2	5.1	5.5	6.0	5.5	5.6	6.7	6.9
WIE									5.6		4.2	5.1	4.3	4.0	3.9	4.1	3.9	4.0	5.1	4.7
ΖB	2.5	1.7	1.6	2.3	1.4	1.6	1.8	1.9	1.8	1.8	1.6	1.8	1.6	1.2	1.4	1.9	1.8	1.9	2.3	2.2

Legende

FUB, Zürcher Passivsammler FUB, Radiello Passivsammler FUB, Ferm Passivsammler
										Konzen	tration									
Code									St	ckstoffd	ioxid Ga	IS								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										NO₂: μ	g m ⁻³									
AEG																				9.5
ALB																				11.2
ANA B															2.8	2.7	2.5			2.1
APS				7.3		6.5	7.7	6.8	7.3	7.5	7.6	7.0	7.1	7.7	6.6	7.2	6.3	6.4	6.5	6.1
ARD 02															1.2					
ARD 06															2.1					
BA		5.1	4.2	5.3	5.2	5.1	5.5	5.3	5.5	5.1	5.6	5.3	4.9	5.3	5.1	4.9	4.5	4.3	4.5	4.0
BEA	2.6														2.1					1.8
BET	4.6														3.9					2.9
BIN																				12.1
BRM																		8.0	9.6	7.9
CEL	3.5														3.9					3.3
CHA	7.6	7.6	8.0	9.0	6.0	6.7	6.7	6.1	5.5	6.1	6.8	6.3	5.8	6.4	5.4	5.6	5.4	5.1	5.8	5.0
CHI															2.3					2.1
DAV															3.0					2.9
FUR															1.3					0.9
GMO																				4.9
HÄG				10.6	9.6	10.0	11.3	9.6	10.5	10.5	10.8	10.3	9.8	10.3	9.5	10.3	9.6	8.9	8.7	8.2
HOL	10.0																			7.3
HUD	10.0	10.0													10.6					9.1
JUS	11.4														9.1					8.8
KIT																				7.2
KLE															1.7					
LAE F															10.1					8.0
LAU	12.7														9.9					7.9
LEN	11.0														10.7					9.1
MAG	23.7	22.5	22.4	23.9	23.5	24.1	25.8	22.4	21.9	20.9	21.4	20.7	19.7	18.9	17.9	20.0	18.1	20.0	16.0	15.2
MAU	18.0																			11.9
MU															12.0					
NAT	2.2														2.4					2.3
NE 01															4.1					4.4
NENZ															8.0					6.5
NOV	5.3														3.5					3.3
OBI																				10.9
OS																				3.2
OTH	18.5														14.4					12.1
PAY	16.4	14.1	14.7	16.9	14.4	15.3	16.6	13.8	14.3	15.2	15.3	15.0	13.5	14.2	12.4	13.9	13.5	12.8	12.2	11.6
RAN																				4.0
RIG	8.0	9.6	8.6	7.7	7.3	7.5	7.5	7.4	7.1	6.7	8.2	7.1	6.6	7.6	6.2	6.4	5.7	5.3	6.1	4.8
ROB																				10.9
ROHO															6.2					
RRI																				12.2
SARE							/								6.9					6.3
SCH	6.8		7.2	7.0	6.5	6.3	7.4	6.6	6.9	6.9	6.9	6.7	6.5	6.7	5.8	6.4	6.4	4.5	6.1	5.0
SOER															1.9					1.7
SSH																				8.0
TAE		40.1	44.5	40.0	410	41-	45.5	40.4							40.4	40.0	44.0		40.0	5.8
THE	14.8	13.4	14.5	16.3	14.6	14.7	15.5	13.4	14.1						12.1	12.9	11.9	11.4	12.0	11.1
11E															1.6					1.6
VIS															14.7					8.7
VOR	11.8														8.8					7.6
WAU	10.0								50.0		41.0	15-5	10.1	10.0	10.1	110	15.0	10 -	11.5	8.4
WIE									52.2		41.6	45.7	43.1	43.2	43.8	44.6	45.9	43.7	41.5	39.0
ZB															4.5					3.9

Legende Daten von NABEL Passivsammler von FUB Passivsammler von UGZ Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

										Konzen	tration									
Code									5	alpetersa	aure Gas	3								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										HNO₃: I	µg m ^{-s}									
AEG																				1.0
ALB																				1.0
ANA B															0.8					0.8
APS				0.4					0.4						0.4					0.4
ARD 02															0.4					
ARD 06															0.4					
BA		0.4	0.4	0.8	0.8	0.8	0.8	0.8	1.0	0.8	0.8	1.0	0.8	0.9	0.8	0.8	0.7	0.8	0.8	0.6
BEA	0.4														0.4					0.4
BET	0.6														0.6					0.6
BIN																				1.0
BRM																			1.1	1.0
CEL	0.4														0.4					0.4
CHA	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.6	0.6	0.6	0.6	0.5
CHI															0.4					0.4
DAV															0.4					0.4
FUR															0.4					0.4
GMO																				0.8
HÄG				1.0					1.0						1.0					1.0
HOL	1.0	_																		1.0
HUD	1.0	1.0													1.0					1.0
JUS	1.0														1.0					1.0
KIT																				1.0
KLE															0.4					
LAE F															1.0					1.0
LAU	1.0														1.0					1.0
LEN	1.0														1.0					1.0
MAG	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.6	2.2	2.4	2.3	2.2	2.0	1.7	1.8	1.6	1.9	1.6	1.5
MAU	1.0																			1.0
MU															1.0					
NAT	0.4														0.4					0.4
NE 01															0.6					0.6
NENZ	0.4														1.0					1.0
NOV	0.4														0.4					0.4
OBI																				1.0
US OTH	1.0														10					0.8
DAY	1.0									4.0	4.0	4.0		10	1.0		0.0	4.0	4.0	1.0
	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.3	1.3	1.Z	1.1	1.0	0.9	1.1	0.8	1.0	1.0	1.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.7	0.7	0.7	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.9	0.9	0.0	0.0	0.9	0.0	0.0	0.7	0.7	0.7	1.0
RUB															0.0					1.0
															0.0					1.0
SADE															1 /	17				1.0
SARE	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.4	1.7	1.0	1.0	1.0	1.0
SOFP	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.4	1.0	1.0	1.0	1.0	0.4
COLIN COLIN															0.4					1.0
TAR																				1.0
	0.0		0.4	0.1					0.0						0.0					0.7
TIF	0.9		0.4	0.1					0.9						0.9					0.7
VIS															1.0					1.0
VOR	10														1.0					1.0
WALL	1.0														1.0					1.0
WIE	1.0								10						1.0					1.0
7B									1.0						0.8					0.8
															0.0					0.0
I egende	Minideni	ider von	NABEL																	

Minidenuder von FUB Passivsammler von FUB Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

										Konzen	tration									
Code									A	nmoniur	n Aeroso	bl								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										NH₄⁺∶⊦	ıg m ^{-s}									
AEG																				1.5
ALB																				1.5
ANA B															1.0					1.0
APS				1.0					1.0						1.0					1.0
ARD 02															0.2					
ARD 06															0.3					
BA		0.8	0.8	0.9	1.1	1.3	1.5	1.3	1.1	1.2	1.3	1.3	0.9	1.1	0.9	0.9	1.0	1.1	1.1	0.8
BEA	0.4														0.4					0.4
BET	0.7														0.7					0.7
BIN																				1.5
BRM																		0.8	1.3	1.0
CEL	0.3														0.3					0.3
CHA	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.7	0.7	0.8
															0.8					0.8
															0.3					0.3
GMO															0.2					1.0
HÄG				1 5					1 F						1 5					1.0
HOL	15			1.5					1.3						1.5					1.5
HUD	1.5	15													15					1.5
JUS	1.5	1.0													1.5					15
KIT	1.0														1.0					1.5
KLE															0.4					
LAE F															1.5					1.5
LAU	1.5														1.5					1.5
LEN	1.5														1.5					1.5
MAG	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.6	1.2	1.4	1.9	2.0	1.2	0.9	1.2	1.0	1.2	1.0	0.8
MAU	1.5																			1.5
MU															1.5					
NAT	0.3														0.3					0.3
NE 01															0.7					0.7
NENZ															1.5					1.5
NOV	0.8														0.8					0.8
OBI																				1.5
OS																				1.0
OTH	1.5														1.5					1.5
PAY	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.2	1.3	1.9	1.8	1.9	1.5	1.7	1.2	1.3	1.1	1.1	1.2	0.9
RAN																				1.0
RIG	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.3	1.1	1.2	1.4	1.3	1.0	1.2	1.0	0.9	0.7	0.7	0.9	0.7
ROR															10					1.5
RUHU															1.0					4 5
SARE															15	1 /		21	2.9	1.5
SARE SCH	15		15	15	15	15	15	15	15	15	15	15	15	15	1.5	1.4	15	1.5	1.5	2.0
SOFR	1.5		1.5	1.5	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	0.4	1.5	1.5	1.3	1.0	0.4
SSH															0.4					1.5
TAB																				1.5
TAE	1.4		2.4	3.3					1.4						1.2					1.1
TIE				0.0											0.3					0.3
VIS															1.5					1.5
VOR	0.4														1.5					1.5
WAU	1.5														1.5					1.5
WIE									1.9											
ZB															1.0					1.0

Legend von i

Minidenuder von FUB Summenfilter/Passivsammler von FUB Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

Code										Konzen Nitrat A	tration erosol									
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										NO₃ ⁻ : µ	ıg m ⁻³									
AEG																				3.2
ALB																				3.2
ANA B															2.2					2.2
APS				2.0					2.0						2.0					2.0
ARD 02															0.6					
ARD 06															1.0					
BA		3.0	2.9	3.4	2.3	2.3	2.3	2.3	2.6	2.3	2.3	2.9	2.4	2.9	2.1	2.1	2.2	2.3	2.4	2.0
BEA	1.6														1.6					1.6
BET	1.7														1.7					1.7
BIN																		0.1	2.4	3.2
BRM	1.0														10			2.4	3.1	2.7
	1.0	17	17	17	17	17	17	17	17	17	17	17	17	17	1.0	17	17	17	17	1.0
	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	2.1	1.7	1.7	1.7	1.7	1.4
															1.2					1.2
FUR															0.6					0.6
GMO															0.0					2.2
HÄG				3.2					3.2						3.2					3.2
HOL	3.2																			3.2
HUD	3.2	3.2													3.2					3.2
JUS	3.2														3.2					3.2
KIT																				3.2
KLE															1.6					
LAE F															3.2					3.2
LAU	3.2														3.2					3.2
LEN	3.2														3.2					3.2
MAG	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3.3	2.8	3.0	3.5	3.2	2.8	2.2	2.6	2.4	3.0	2.2	2.1
MAU	3.2														2.0					3.2
	1.0														3.2					1.0
NE 01	1.0													-	1.0					1.0
NEN7															32					3.2
NOV	1.2													-	1.2					1.2
OBI																				3.2
OS																				2.2
OTH	3.2														3.2					3.2
PAY	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.2	4.2	3.9	4.2	3.5	4.1	2.7	3.2	2.9	3.0	3.0	2.5
RAN																				2.2
RIG	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.3	2.0	2.9	2.7	2.7	2.1	2.6	1.9	2.2	1.9	1.8	2.2	1.7
ROB																				3.2
ROHO															2.2					
RRI																				3.2
SARE						2.0			2.0				2.0		4.4	4.8				4.6
SUH	3.2		3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
SUEK						ĺ				1					1.6					1.0
TAR																				3.2
TAF	2.2		36	48					33						27					3.2
TIE	0.0		0.0	4.0					0.0		ĺ				1.0					1.0
VIS															3.2					3.2
VOR	3.2														3.2					3.2
WAU	3.2														3.2					3.2
WIE									3.2											
ZB															2.2					2.2
Logondo	Minidan	darvan																		

Minidenuder von FUB Summenfilter/Passivsammler von FUB Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

constructure transfer t	Ökosystem												2								
200 201 202 203 204 <td>Code</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ammon</td> <td>iumfracl</td> <td>nt im Nie</td> <td>derschla</td> <td>ig als St</td> <td>ickstoff</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Code								Ammon	iumfracl	nt im Nie	derschla	ig als St	ickstoff							
Net to be the set of th		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
A63											N: kg h	na ⁻¹ a ⁻¹									
XAB Image I	AEC																				1 9
XMA B	ALG																				4.0
AND 6 B.8 B.8 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E 0</td><td></td><td></td><td></td><td></td><td>5.4</td></th<>																E 0					5.4
AP3 Bos IIII IIII IIIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					0 0					0.2						11 5					5.7 10.4
ADD G Image: Second	APO 02				0.0					0.3						11.0					10.4
ARU mode ARU mode <th< td=""><td>ARD 02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td><td></td><td></td><td></td><td></td><td></td></th<>	ARD 02															1.5					
DN DL DL <thdl< th=""> DL DL DL<!--</td--><td>ARD 00</td><td></td><td>0 7</td><td>10.4</td><td>07</td><td>07</td><td>0.0</td><td>10.7</td><td>0.0</td><td>7.0</td><td>7.5</td><td>7.0</td><td><u> </u></td><td>7 4</td><td>77</td><td>Z.1</td><td>0.0</td><td>7.4</td><td>0.0</td><td>7.0</td><td>7.4</td></thdl<>	ARD 00		0 7	10.4	07	07	0.0	10.7	0.0	7.0	7.5	7.0	<u> </u>	7 4	77	Z.1	0.0	7.4	0.0	7.0	7.4
BCA 442 1 3.3 3.4 3.3 3.4 2.3 2.5 3.0 2.5 4.7 4.5 3.3 3.6 2.7 2.6 3.0 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 3.0 2.5 4.7 4.5 4.6	BA	4.0	0.7	10.4	0.7	0.7	9.0	10.7	0.2	7.0	1.5	7.0	0.9	7.4	1.1	7.4	0.0	1.4	0.2	1.2	7.4
Ball 33 34 <	DEA	4.2														<u> </u>					3.1
BM 20 1		3.9														2.3					2.2
BYOM 1	DIN																				9.5
CLC 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 25 30 29 25 30 29 25 30 29 25 30 25 30 25 30 25 30 29 25 30 30 30	BRM	0.0														4.0					6.5
CHA 42 33 35 33 35 2.7 2.6 30 2.5 30 2.5 4.7 6.5 DAV I	CEL	2.0	0.4	0.5		0.7		5.0	0.5			0.7				1.0	0.5		0.5		2.0
CHI	CHA	4.2	3.1	3.5	3.3	3.7	3.2	5.0	3.5	3.3	3.6	2.7	2.6	3.0	3.0	2.9	2.5	3.0	2.5	4./	5.4
DAV Image: state sta	CHI															4.1					6.2
PUK Image: Puk	DAV															1.2					1.9
GMU Image: margine marginemargine margine margine marginemargine margine margine	FUR	-														1.9					4.0
HAG B.8 B.8 B.72 B.8 B.4 B.4 <thb< td=""><td>GMO</td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.8</td></thb<>	GMO	ļ																			4.8
HOL 12.8 Image: Control of the cont	HAG				8.8					7.2						8.4					13.7
HUD 57 49 666 666 666 622 JUS 3.6 1 1 1 19 22 KIT 1 1 1 19 33 34 KLE 1 1 1 10 446 33 LAF F 1 1 10 43 33 34 LAF F 1 106 11 10.8 11.4 11.8 156 132 10.4 11.4 12.1 14.8 152 12.9 12.9 12.1 13.3 MAG 13.1 10.6 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 12.9 12.9 12.1 13.3 MAG 13.1 10.6 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 12.9 12.9 12.1 13.1 NAT 2.2 2.0 10.0 1.1 11.4 11.8 15.6 13.2 10.4 14.4 12.1 14.8<	HOL	12.5																			10.5
JUS 3.6	HUD	5.7	4.9													6.6					6.2
KIT Image: Control of the control o	JUS	3.6														1.9					2.5
KLE Image: Control of the control o	KIT																				9.2
LAE F	KLE															4.6					
LAU 7.0 4.6 4.6 4.6 3.3 LEN 4.6 6.0 13.1 10.8 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 9.9 12.9 12.1 14.3 MAG 13.1 10.6 13.1 10.8 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 9.9 12.9 12.1 14.3 MAU 6.9 1 1 1 18.0 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 9.9 12.9 12.1 14.3 NAT 2.2 1 1 1 1.0 10.0 10.0 11.0 11.0 15.3 13.1 10.0 11.1 12.0 14.8 15.2 13.1	LAE F															3.3					4.2
LEN 4.6 Image Ima	LAU	7.0														4.3					3.3
MAG 13.1 18.0 16.6 10.6 13.1 10.8 11.4 11.8 15.6 13.2 10.4 11.4 12.1 14.8 15.2 12.5 9.9 12.9 12.1 14.3 MAU 6.9 Image Image </td <td>LEN</td> <td>4.6</td> <td></td> <td>4.6</td> <td></td> <td></td> <td></td> <td></td> <td>6.0</td>	LEN	4.6														4.6					6.0
NAU 6.9 6.9 6.9 6.9 6.0 6.0 6.0 6.0 MU 2.0 2.0 2.0 3.1 1.0 3.7 2.0 3.1 NE01 3.7 3.7 3.7 3.7 3.8 3.7 3.1 NEV 5.4 6.7 8.7 3.7 3.7 3.1 NEV 5.4 9.8 3.7 3.7 3.7 3.1 NOV 15.4 9.8 9.8 9.8 9.2 9.8 9.2 OBI 7.7 7.7 7.7 7.7 7.3 8.0 9.7 9.3 9.7 7.7 9.7 7.7	MAG	13.1	18.0	16.6	10.6	13.1	10.8	11.4	11.8	15.6	13.2	10.4	11.4	12.1	14.8	15.2	12.5	9.9	12.9	12.1	14.3
NU SA SA <th< td=""><td>MAU</td><td>6.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.0</td></th<>	MAU	6.9																			8.0
NAT 2.2 1 1 1.0 1.1 NE 01 1 1 1 3.7 3.3 3.1 NENZ 1 1 3.7 3.3 3.7 3.6 NOV 15.4 1 1 3.7 3.6 3.7 3.6 OBI 1 1 1 1 3.7 3.6 3.7 3.6 OS 15.4 1 1 1 1 1.6 9.8 9.2 OBI 1 1 1 1 1.6 9.8 9.2 OTH 5.7 1 1 1 1.6 9.2 OTH 5.7 1 1 1.3 4.7 4.3 5.7 4.3 4.2 3.7 3.2 8.4 7.4 4.4 RAN 1 1 1.6 1.7 9.4 4.7 4.3 8.6 6.6 5.6 6.5 6.6 5.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	MU															5.4					
NE 01 3.7 3.7 3.7 3.1 NEVZ 3.7 3.7 3.7 3.7 3.7 NOV 15.4 3.7 <	NAT	2.2														1.0					1.7
NENZ 8.7 3.6 NOV 15.4 1 1 1 1 9.8 1 9.8 9.8 9.8 9.2 OBI 1 1 1 1 1 9.8 1 9.8 9.8 9.2 OBI 1 1 1 1 1 1 1 1.57 5.7 5.7 5.7 2.6 1 3.0 4.7 4.3 3.8 4.7 4.3 5.7 4.3 4.2 3.7 3.2 2.8 4.7 3.7 3.6 3.0 4.1 3.0 4.7 4.4 RAN 1 <td< td=""><td>NE 01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.7</td><td></td><td></td><td></td><td></td><td>3.1</td></td<>	NE 01															3.7					3.1
NOV 15.4 9.8 9.8 9.8 9.2 OBI Image: Constraint of the state of the stat	NENZ															8.7					3.6
OBI Image: Constraint of the constrain	NOV	15.4														9.8					9.2
OS	OBI																				5.8
OTH 6.7 2.6 3.5 PAY 4.5 4.7 4.3 3.8 4.7 4.3 5.7 4.3 4.2 3.7 3.2 2.8 4.7 3.7 3.6 3.0 4.1 3.0 4.7 4.4 RAN R	OS																				9.2
PAY 4.5 4.7 4.3 3.8 4.7 4.3 5.7 4.3 4.2 3.7 3.2 2.8 4.7 3.7 3.6 3.0 4.1 3.0 4.7 4.4 RAN	OTH	5.7														2.6					3.5
RAN Image: Constraint of the state of	PAY	4.5	4.7	4.3	3.8	4.7	4.3	5.7	4.3	4.2	3.7	3.2	2.8	4.7	3.7	3.6	3.0	4.1	3.0	4.7	4.4
RIG 6.4 6.5 8.5 7.3 6.4 7.8 6.5 5.3 5.2 6.4 7.8 5.6 6.9 5.8 6.0 6.6 5.6 6.3 6.6 6.5 ROB Image: Constraint of the state	RAN																				6.6
ROB Image: Constraint of the constrain	RIG	6.4	6.5	8.5	7.3	6.4	7.8	6.5	5.3	5.2	6.4	7.8	5.6	6.9	5.8	6.0	6.6	5.6	6.3	6.6	6.5
ROHO 5.7 6.7 RRI 5.7 6.8 SARE 6.1 6.2 9.4 SCH 11.3 10.5 7.9 11.2 10.2 9.6 7.7 7.9 7.9 8.6 8.2 8.4 9.1 7.2 7.9 7.5 7.5 6.4 7.5 SOER 6.2 6.2 6.2 6.4 9.2 6.4 9.2	ROB																				5.6
RRI Image: Constraint of the second seco	ROHO															5.7					
SARE 10.5 7.9 11.2 10.2 9.6 7.7 7.9 7.9 8.6 8.2 8.4 9.1 7.2 7.9 7.5 7.5 6.4 7.5 SOER 6.2 6.2 6.4 9.4 9.4 9.4 9.4 9.4 SOER 6.2 6.2 6.2 6.4 9.4 9.4 9.4 SSH 6.2 6.2 6.2 6.4 9.2 9.4 9.4 SSH 6.0 5.8 6.9 6.2 6.2 9.2 TAB 6.0 5.8 6.9 6.2 7.7 7.9 TIE 6.0 5.8 6.9 6.2 7.7 7.9 VIS 6.4 6.0 5.8 6.9 6.2 7.7 7.9 VIS 6.4 6.0 6.9 6.2 7.7 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.9 7.9 7.9 7.9 8.6 6.2 7.7 7.9 7.9 7.9 7.9	RRI															5					8.8
SCH 11.3 10.5 7.9 11.2 10.2 9.6 7.7 7.9 7.9 8.6 8.2 8.4 9.1 7.2 7.9 7.5 7.5 6.4 7.5 SOER	SARE															10.7					9.4
SOER 6.2 6.4 SSH 6.9 6.2 TAB 6.0 5.8 TIE 6.9 6.2 VIS 1.1 VOR 6.4 WAU 15.1 TEB 6.6 WIE 6.6 UIE 6.6 VIS 5.9 SA 6.8	SCH	11.3		10.5	7.9	11.2	10.2	9.6	77	7.9	79	8.6	82	84	91	7.2	7.9	7.5	7.5	64	7.5
SSH 0.2 0.2 0.4 SSH 0 0.2 0.2 TAB 0 0.2 0.2 TAE 4.8 6.0 5.8 6.9 6.2 7.7 TIE 0 0 0.2 0 5.8 VIS 0 0 0 0.2 0 VIS 0 0 0 0.3 0 WAU 15.1 0 0 6.6 0 0 ZB 0 0 5.9 8.1	SOFR	1.5		10.0		11.2	10.2	0.0		7.5	1.0	0.0	0.2	0.7	0.1	6.2		1.5	1.0	0.4	6.4
TAB Image: Constraint of the second seco	SSH															0.2					9.7
TAE 4.8 6.0 5.8 6.9 6.2 7.7 TIE 2.0 5.8 2.0 5.8 VIS 1.1 1.6 3.6 3.9 WAU 15.1 6.6 8.7 22.7 WIE 6.6 5.9 8.1 Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 5.9 8.1	TAR																				6.5
TIE 0.0 0.0 0.0 0.0 0.1 TIE 0.0 0.0 0.0 0.0 5.8 VIS 0.0 0.1 0.0 0.0 5.8 VIS 0.0 0.1 0.0 0.1 0.0 5.8 VIS 0.0 0.0 0.1 0.0 0.0 5.8 VOR 6.4 0.0 0.0 0.0 0.0 0.0 0.0 WAU 15.1 0.0		10		6.0	5.9					6.0						6.2					7.7
VIS 1.1 1.6 VOR 6.4 3.6 3.9 WAU 15.1 6.6 22.7 WIE 6.6 5.9 8.1 Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 5.9 8.1	TIE	4.0		0.0	5.0					0.9						2.0					5.9
Vis I.1 I.1 VOR 6.4 3.6 3.9 WAU 15.1 6.6 8.7 22.7 WIE 6.6 5.9 8.1 Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 8.7 8.7																2.0					0.0
VUK 0.4 3.6 3.9 WAU 15.1 6.6 8.7 22.7 WIE 6.6 5.9 8.1 Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 8.1 8.1	VIS															1.1					1.6
WAU 15.1 8.7 22.7 WIE 6.6 <td>VUR</td> <td>6.4</td> <td></td> <td>3.6</td> <td></td> <td></td> <td></td> <td></td> <td>3.9</td>	VUR	6.4														3.6					3.9
WIE 6.6 5.9 8.1 ZB Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 6.6 5.9 8.1	WAU	15.1														8.7					22.7
ZB 5.9 8.1 Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1) 6.4.1	WIE									6.6											
Legende Wet-Daten von NABEL, auf "Bulk" umgerechnet (Kap. 6.4.1)	ZB															5.9					8.1
	Legende	Wet-Date	en von N	IABEL, a	uf "Bulk"	umgered	chnet (Ka	ap. 6.4.1)	1												

Bulk Regensammler von FUB Bulk Regen- / Schneesammler von WSL

AEG ALB ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÅG	2000 4.1 4.4 2.9 3.2	2001	2002 6.3	2003 4.5 5.7	2004	6.1	2006	Nitra 2007	4.3	n Nieders 2009 N: kg h	schlag a 2010 a ⁻¹ a ⁻¹	2011	2012	2013	2014	2015	2016	2017	2018	2019 2.8 3.5
AEG ALB ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÅG	2000 4.1 4.4 2.9 3.2	2001 5.9 3.0	6.3	2003 4.5 5.7	2004 5.5	6.1	2006 6.5	2007	4.3	2009 N: kg h	2010 a ⁻¹ a ⁻¹	2011	2012	2013	2014	2015	2016	2017	2018	2019 2.8 3.5
AEG ALB ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	4.5	5.5	6.1	6.5	5.4	4.3	N: kg h	a'' a''				12					2.8
AEG ALB ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÄG	4.1 4.4 2.9 3.2	5.9	6.3	4.5	5.5	6.1	6.5	54	4.3						12					2.8 3.5
ALB ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	4.5	5.5	6.1	6.5	54	4.3						13					3.5
ANA B APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	4.5	5.5	6.1	6.5	54	4.3						13					0.0
APS ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	4.5	5.5	6.1	6.5	5.4	4.3						4.5					3.5
ARD 02 ARD 06 BA BEA BET BIN BRM CEL CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	5.7	5.5	6.1	6.5	54							4.4					3.8
ARD 06 BA BEA BET BIN BRM CEL CHA CHI DAV FUR GMO HÅG	4.1 4.4 2.9 3.2	5.9	6.3	5.7	5.5	6.1	6.5	54							1.7					
BA BEA BET BIN CEL CHA CHI DAV FUR GMO HÃG	4.1 4.4 2.9 3.2	5.9	6.3	5.7	5.5	6.1	6.5	54							1.5					
BEA BET BIN CEL CHA CHI DAV FUR GMO HÄG	4.1 4.4 2.9 3.2	3.0							5.1	5.1	5.6	4.9	5.8	6.1	5.1	4.3	5.3	5.7	3.9	4.3
BET BIN CEL CHA CHI DAV FUR GMO HÄG	4.4 2.9 3.2	3.0													2.7					1.9
BIN BRM CEL CHA CHI DAV FUR GMO HÄG	2.9 3.2	3.0													2.5					1.9
BRM CEL CHA CHI DAV FUR GMO HÄG	2.9 3.2	3.0																		4.1
CEL CHA CHI DAV FUR GMO HÄG	2.9 3.2	3.0																		3.1
CHA CHI DAV FUR GMO HÄG	3.2	3.0													1.4					1.8
CHI DAV FUR GMO HÄG		-	3.4	2.6	3.0	2.8	3.5	3.1	2.8	3.1	2.5	2.0	2.7	2.7	2.4	1.8	2.4	1.8	2.7	2.3
DAV FUR GMO HÄG															3.8					4.1
fur GMO HÄG															1.7					1.7
GMO HÄG															2.4	1				2.1
HAG				, .																2.2
				4.4					4.0						4.2					3.7
HUL	3.0	2.4													2.5					3.4
HUD	3.8	3.1													3.5					3.2
JUS	4.0														Z. I					2.3
															3.4					3.9
														_	3.4					2.8
	61													_	3.1					2.0
LAU LEN	3.9														3.2					3.2
MAG	11.4	14.5	13.4	87	10.4	8.5	9.0	9.0	12.2	9.6	8.6	8.0	89	9.5	10.0	79	6.5	76	61	7.7
MAU	4.3	14.0	10.4	0.7	10.4	0.0	0.0	0.0	12.2	0.0	0.0	0.0	0.0	0.0	10.0	1.5	0.0	1.0	0.1	31
MU															31					0
NAT	2.9													_	1.5					1.6
NE 01															2.7					2.0
NENZ															3.1					2.3
NOV	14.7														8.6					6.9
OBI																				2.8
OS																				2.5
OTH	5.1														2.5					2.3
PAY	2.9	3.0	3.1	2.2	3.1	2.0	2.8	2.8	2.8	2.6	2.1	1.7	3.2	2.6	2.4	1.8	2.7	1.7	2.1	2.3
RAN																				3.0
RIG	4.9	5.0	6.4	4.4	4.9	5.1	4.8	4.1	3.7	4.2	5.5	3.6	4.7	4.7	4.2	4.1	3.6	3.6	3.3	3.5
ROB																				3.4
ROHO															4.0					
RRI																				3.4
SARE															7.0					5.9
SCH	10.0		7.8	6.6	8.5	8.1	7.0	5.9	6.1	5.5	6.7	4.9	5.9	7.0	5.5	6.0	5.3	5.2	3.9	4.8
SOER															5.4					4.8
SSH																				4.3
TAB																				3.5
TAE	3.6		4.5	3.8					4.0						3.5					3.5
TIE															2.0					2.3
VIS															1.4					1.4
VOR	4.7														2.8					2.3
WAU	3.4														3.0					2.1
WIE									4.1						10					2.0
ZB															4.0					3.6
Legende	Wet-Date	n von N	ABEL, a	uf "Bulk"	umgered	chnet (Ka	ap. 6.4.1)													

Bulk Regensammler von FUB Bulk Regen- / Schneesammler von WSL

	Ökösystemtyp 1																			
Code									Am	moniak	Gas Fra	cht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg l	1a ⁻¹ a ⁻¹									
AEG																				11.0
ALG																				11.2
															10					44.J
				30.0					<u> </u>						20.6					2.4
				30.9					22.1						20.0					21.2
															2.4					
RA		5.8	51	5.8	3.0	4.0	5.0	5.0	4.0	53	17	5.5	17	12	5.5	5.2	16	5 1	7 /	6.0
	2.0	0.0	J. 4	0.0	0.0	4.0	0.0	5.0	4.0	0.0	4.1	0.0	4.1	7.2	1.0	J.2	4.0	J. I	1.4	0.3
BER	2.0														1.0					2.5
BIN	1.0														1.7					33.6
BPM																				14.6
CEL	16														0.9					1 0
	22	24	21	3.1	21	2.0	22	23	21	29	3.1	43	27	22	23	34	26	27	34	3.0
СНІ	2.2	2.7	2.1	0.1	2.1	2.0	<i>L.L</i>	2.0	2.1	2.5	0.1	4.0	2.1	<i>L.L</i>	0.8	U.T	2.0	2.1	0.4	0.0
															0.0					0.0
FUR															0.0					0.7
GMO															0.0					16.6
HÄG				24.4					17.8						16.8					20.0
HOL	17.8			21.1											10.0					26.3
HUD	82	10.6													12.4					14.2
JUS	3.5	10.0													1.8					22
KIT	0.0														1.0					28.8
KIF															13					20.0
															3.7					43
LAU	92														11.2					9.8
L FN	8.0														10.6					12.2
MAG	9.0	86	96	11 1	10.8	11 1	12.2	11.0	96	10.4	9.0	14 6	14 1	12 1	11 1	14 5	12.5	14.3	19.6	18.4
MAU	10.6		0.0														.2.0			17.3
MU															74					
NAT	0.9														0.4					0.4
NE 01															5.6					10.1
NENZ															3.9					4.4
NOV	2.2														1.8					3.1
OBI																				19.3
OS																				9.0
OTH	4.2														3.4					4.2
PAY	8.9	6.8	5.8	8.5	9.0	8.8	8.6	7.8	7.5	9.1	8.6	9.8	8.3	6.6	6.3	8.0	6.6	7.5	8.5	9.3
RAN																				3.9
RIG	3.0	2.5	2.3	3.8	3.1	3.0	3.3	3.0	3.1	3.5	3.1	3.5	3.1	3.0	3.1	3.8	2.9	3.5	4.4	4.3
ROB																				10.9
ROHO															7.1					
RRI																				30.7
SARE															3.4					5.8
SCH	4.2		5.5	8.4	5.6	4.6	4.9	4.9	4.7	5.4	4.9	5.7	4.9	4.1	4.5	5.2	4.4	5.0	7.0	6.5
SOER															1.7					2.8
SSH																				13.7
TAB				ĺ							ĺ									6.0
TAE	10.1		10.5	16.8					13.6						13.6					12.7
TIE															0.5					0.7
VIS															5.1					4.5
VOR	7.5														5.7					6.4
WAU	24.3														28.3					35.5
WIE									11.5											
ZB				i							ĺ				6.8					10.3
														_						

Legende Passivsammler von FUB

										Okosyste	mtyp 1									
Code									Sticks	toffdioxi	d Gas F	racht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	a ⁻¹ a ⁻¹									
AEG																				1.8
ALB																				2.1
ANA B															0.5					0.4
APS				1.1					1.0						0.9					0.9
ARD 02															0.2					
ARD 06															0.3					
RA BA		07	0.6	0.8	0.7	0.7	0.8	0.8	0.8	07	0.8	0.8	0.7	0.8	0.0	0.7	0.6	0.6	07	0.6
BEA	0.4		0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.7	0.1	0.0	0.0	0.1	0.0
BET	0.4														0.0					0.0
	0.7														0.0					2.4
																				2.0
	0.7														0.7					1.1
CEL	0.7			4.0	0.0	4.0	4.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.7	0.0	0.0	0.7	0.0	0.0
CHA	1.1	1.1	1.1	1.3	0.9	1.0	1.0	0.9	0.8	0.9	1.0	0.9	0.8	0.9	0.8	0.8	0.8	0.7	0.8	0.7
															0.3					0.3
DAV															0.6					0.5
FUR															0.2					0.1
GMO																				0.9
HAG				1.5					1.5						1.4					1.2
HOL	1.4																			1.1
HUD	1.9	1.9													2.0					1.7
JUS	1.6														1.3					1.3
KIT																				1.4
KLE															0.2					
LAE F															1.5					1.2
LAU	1.8														1.4					1.1
LEN	2.1														2.1					1.8
MAG	3.4	3.2	3.2	3.4	3.4	3.5	3.7	3.2	3.1	3.0	3.1	3.0	2.8	2.7	2.6	2.9	2.6	2.9	2.3	2.2
MAU	2.6																			1.7
MU															1.7					
NAT	0.3														0.3					0.3
NE 01															0.8					0.9
NENZ															1.2					0.9
NOV	0.8														0.5					0.5
OBI																				2.1
OS																				0.5
OTH	2.7														2.1					1.7
PAY	2.4	2.0	2.1	2.4	2.1	2.2	2.4	2.0	2.1	2.2	2.2	2.2	1.9	2.0	1.8	2.0	1.9	1.8	1.8	1.7
RAN																				0.6
RIG	1.2	1.4	1.2	1.1	1.0	1.1	1.1	1.1	1.0	1.0	1.2	1.0	1.0	1.1	0.9	0.9	0.8	0.8	0.9	0.7
ROB																				2.1
ROHO															1.2					
RRI																				2.3
SARE															1.0					0.9
SCH	1.0		1.0	1.0	0.9	0.9	1.1	0.9	1.0	1.0	1.0	1.0	0.9	1.0	0.8	0.9	0.9	0.7	0.9	0.7
SOER												-			0.4					0.3
SSH																				1.2
TAB																				0.8
TAE	21		21	23					20						17					1.6
TIF	2.1			2.0					2.0						0.2					0.2
VIS															2.1					13
VOP	17														1.1					1.0
WALL	1.7														1.0					1.1
WIE	1.9								7 F						1.9					1.0
7R									7.5						0.0					0.2
ZD															0.9					0.0
Legende	NO ₂ -Moi	nitordate	n von NA	BEL																

Passivsammler von FUB Passivsammler von UGZ Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

Ökosystemtyp 1 & 2																				
Code									Salpe	etersäure	e Gas Fr	acht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	1a ⁻¹ a ⁻¹									
AEG																				1 1
ALG																				1.1
															0.8					0.9
				0.5					0.5						0.0					0.0
				0.0					0.0						0.0					0.5
															0.4					
RA		0.4	0.4	0.9	0.9	0.9	0.0	0 0	10	0.0	0 0	10	0.9	10	0.4	0.8	0.7	0.9	0.8	0.6
BFA	0.4	0.7	0.7	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.1	0.0	0.0	0.0
BET	0.7														0.7					0.7
BIN	0.1														0.1					1 1
BRM																				1.0
CFI	0.4														0.4					0.4
CHA	0.7	07	0.7	0.7	0.7	07	07	07	07	07	07	0.7	0.7	07	0.7	0.7	0.7	0.7	07	0.6
CHI	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.1	0.0
DAV															0.4					0.4
FUR														-	0.4					0.4
GMO															U. 1					0.8
HÄG				1.1					1.1						1.1					1.1
HOL	1.1								1.1											1.1
HUD	1.1	1.1													1.1					1.1
JUS	1.1														1.1					1.1
KIT																				11
KLE															0.4					
LAE F															1.1					1.1
LAU	1.1														1.1					1.1
LEN	1.1														1.1					1.1
MAG	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.7	2.3	2.5	2.5	2.4	2.1	1.8	1.9	1.6	2.0	1.6	1.6
MAU	1.1																			1.1
MU															1.1					
NAT	0.4														0.4					0.4
NE 01															0.7					0.7
NENZ															1.1					1.1
NOV	0.4														0.4					0.4
OBI																				1.1
OS																				0.8
OTH	1.1														1.1					1.1
PAY	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.1	1.4	1.3	1.2	1.1	1.1	0.9	1.1	0.9	1.1	1.1	1.0
RAN																				0.8
RIG	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.7	0.8	0.7	0.7	0.8	0.6
ROB																				1.1
ROHO															0.8					
RRI								Ì				İ								1.1
SARE															1.5					1.7
SCH	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
SOER															0.4					0.4
SSH																				1.1
TAB																				1.1
TAE	1.0		0.4	1.0					1.0						0.9					0.7
TIE															0.4					0.4
VIS															1.1					1.1
VOR	1.1														1.1					1.1
WAU	1.1														1.1					1.1
WIE									1.1											
ZB															0.8					0.8
Legende	Miniden	ider von	NAREI																	

Minidenuder von NABEL Minidenuder von FUB Passivsammler von FUB Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

										Okosyste	emtyp 1									
Code									Amm	onium Ae	erosol F	racht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N:kg h	a ⁻¹ a ⁻¹									
AEG																				0.4
ALB																				0.1
															0.5					0.1
			-	0.5					0.5						0.5					0.5
				0.5					0.0						0.0					0.0
															0.1					
RA RA		0.8	0.8	0 0	0.5	0.7	0.7	0.7	0.5	0.6	0.6	0.6	0.4	0.5	0.1	0.4	0.5	0.5	0.5	0.4
BEA	0.2	0.0	0.0	0.3	0.5	0.7	0.1	0.1	0.0	0.0	0.0	0.0	0.4	0.0	0.4	0.4	0.0	0.5	0.5	0.4
DET	0.2														0.2					0.2
	0.5														0.5					0.3
																				0.4
	0.1														0.1					0.5
	0.1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.1	0.3	0.3	0.3	0.3	0.1
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	0.5	0.5	0.5	0.5	0.4
															0.4					0.4
															0.1					0.1
CMO															0.1					0.1
GMU				0.5					0.5						0.5					0.5
	10			0.5					0.5						0.5					0.5
	1.2	0.5													0.5					0.5
HUD	0.5	0.5													0.5					0.5
JUS	0.4														0.4					0.4
															0.0					0.7
															0.2					0.5
	0.7														0.5					0.5
	0.7														0.7					0.7
LEN	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.4	0.5	0.5	0.0	0.5	0.0	0.0	0.0	0.0	0.5
MAG	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.5	0.5	0.3	0.2	0.3	0.2	0.3	0.3	0.3
MAU	0.4														0.4					0.4
MU	0.4														0.4					0.4
	0.1														0.1					0.1
NE UT															0.3					0.3
NENZ	0.4														0.4					0.4
	0.4														0.4					0.4
OBI																				0.4
05	0.4														0.4					0.5
DAY	0.4	0.4	0.4	0.4	0.5	0.0	0.7	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.0	0.0	0.4	0.4
PAY	0.4	0.4	0.4	0.4	0.5	0.6	0.7	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.4	0.3	0.3	0.4	0.3
RAN						0.7	0.7		0.5		0.7		0.5		0.5					0.5
RIG	0.4	0.5	0.6	0.6	0.4	0.7	0.7	0.6	0.5	0.6	0.7	0.6	0.5	0.6	0.5	0.4	0.4	0.3	0.4	0.3
RUB															0.5					0.5
KUHU															0.5					
																				0.4
SARE															0.7					1.0
SCH	0.6		0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
SOER															0.2					0.2
SSH																				0.6
IAB																				0.6
TAE	0.5		0.8	1.1					0.5						0.4					0.4
TIE															0.1					0.1
VIS															0.6					0.6
VOR	0.4														0.4					0.4
WAU	0.4														0.4					0.4
WIE									0.5											
ZB															0.5					0.5

	Ökösystemtyp 1																			
Code	de Nitrat Aerosol Fracht																			
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N:kgł	1a ⁻¹ a ⁻¹									
										-										
AEG																				0.3
ALB																				0.2
ANA B															0.3					0.3
APS				0.3					0.3						0.3					0.3
ARD 02															0.1					
ARD 06															0.1					
BA		0.4	0.4	0.5	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3
BEA	0.2														0.2					0.2
BET	0.2														0.2					0.2
BIN																				0.2
BRM																				0.4
CEL	0.1														0.1					0.1
CHA	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2
CHI					ĺ		Í			-	ĺ		Í		0.2		Í			0.2
DAV															0.1					0.1
FUR															0.1					0.1
GMO																				0.3
HÄG				0.3					0.3						0.3					0.3
HOL	0.2			0.0					0.0						0.0					0.3
HUD	0.2	0.3													0.3					0.3
	0.0	0.0													0.0					0.0
JU3 KIT	0.5														0.5					0.3
															0.0					0.4
NLE															0.2					0.0
	0.5														0.3					0.3
LAU	0.5														0.5					0.5
LEN	0.3														0.3					0.3
MAG	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
MAU	0.3																			0.3
MU															0.3					
NAT	0.1														0.1					0.1
NE 01															0.2					0.2
NENZ															0.3					0.3
NOV	0.2														0.2					0.2
OBI																				0.2
OS																				0.3
OTH	0.3														0.3					0.3
PAY	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.3	0.4	0.2	0.3	0.3	0.3	0.3	0.2
RAN																				0.3
RIG	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.2
ROB																				0.3
ROHO															0.3					
RRI																				0.2
SARE															0.7					0.7
SCH	0.4		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
SOER															0.2					0.2
SSH																				0.4
TAB																				0.4
TAE	0.3		0.3	0.5					0.3						0.3					0.3
TIF	0.0		0.0	0.0					0.0						0.0					0.0
VIS															0.1					0.1
VOR	0.2														0.4					0.4
WALL	0.3														0.3					0.3
WIE	0.3								0.0						0.3					0.3
WIE									0.2											
ZB															0.3					0.3

									_	Okosyste	mtyp 1									
Code									Frac	ht Summ	ie reduz	iert								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	a'a'									
AEG																				16.4
ALB																				54.3
ANA B															8.2					8.6
APS				40.2					31.5						32.7					38.0
ARD 02															2.2					
ARD 06															5.2					
BA		15.3	16.6	15.4	13.1	14.4	17.3	13.8	11.6	13.4	12.2	13.0	12.6	12.5	13.4	11.6	12.5	13.8	15.2	14.6
BEA	6.4						ĺ								5.2					5.6
BET	5.9														4.4					4.6
BIN																				43.4
BRM																				21.6
CEL	3.7														2.1					3.1
CHA	6.7	5.8	5.9	6.7	6.2	5.6	7.5	6.1	5.7	6.9	6.2	7.2	6.0	5.6	5.5	6.3	5.9	5.5	8.4	9.7
CHI															5.3					7.5
DAV															1.9					2.7
FUR															2.3					4.5
GMO																				21.9
HÄG				33.7					25.5						25.7					34.1
HOL	31.5																			37.3
HUD	14.4	16.0													19.5					20.8
JUS	7.6														4.1					5.2
KIT																				38.6
KLE															6.2					
LAE F															7.4					8.9
LAU	16.8														16.1					13.9
LEN	13.1														15.6					18.6
MAG	22.4	26.9	26.6	22.0	24.2	22.2	23.9	23.1	25.6	23.9	19.8	26.5	26.7	27.3	26.5	27.3	22.6	27.5	32.0	33.0
MAU	17.8																			25.7
MU															13.2					
NAT	3.3														1.6					2.2
NE 01															9.6					13.6
NENZ															13.1					8.5
NOV	17.9														12.0					12.6
OBI																				25.5
OS																				18.7
OTH	10.3														6.4					8.1
PAY	13.8	11.9	10.5	12.7	14.2	13.7	15.0	12.6	12.2	13.3	12.2	13.1	13.3	10.8	10.1	11.4	11.0	10.7	13.5	14.0
RAN																				11.0
RIG	9.8	9.5	11.4	11.7	10.0	11.5	10.5	8.9	8.8	10.5	11.6	9.8	10.5	9.5	9.5	10.8	8.9	10.1	11.4	11.1
ROB																				17.0
ROHO															13.4					
RRI																				39.9
SARE															14.8					16.1
SCH	16.0		16.6	16.9	17.3	15.4	15.1	13.1	13.1	13.9	14.0	14.4	13.8	13.8	12.2	13.7	12.5	13.1	14.0	14.6
SOER															8.0					9.4
SSH																				23.5
TAB																				13.1
TAE	15.3		17.3	23.6					20.9						20.2					20.7
TIE]]]]]]		2.7]]		6.6
VIS															6.8					6.7
VOR	14.4														9.8					10.7
WAU	39.8														37.4					58.7
WIE									18.5											
ZB															13.2					18.9

Teach 3ume output with a sume output with a sum output										_	Okosyste	emtyp 1									
actio actic actic <th< th=""><th>Code</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Fra</th><th>cht Sum</th><th>me oxidi</th><th>iert</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Code									Fra	cht Sum	me oxidi	iert								
TOTALING A ALB INTENTION OF COLSPAN ALB INTENTION OF COLSPAN ALB INTENTION OF COLSPAN ALB INTENTION OF COLSPAN ALB INTENTION OF COLSPAN INTENTION OF COLSPAN INTENTION OF COLSPAN <th></th> <th>2000</th> <th>2001</th> <th>2002</th> <th>2003</th> <th>2004</th> <th>2005</th> <th>2006</th> <th>2007</th> <th>2008</th> <th>2009</th> <th>2010</th> <th>2011</th> <th>2012</th> <th>2013</th> <th>2014</th> <th>2015</th> <th>2016</th> <th>2017</th> <th>2018</th> <th>2019</th>		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
AEG A											N: Kg n	a a									
ALB Image mage Image Im	AEG																				6.0
AMA 6 BA T.S T.Z BA BA BA T.S T.Z T.S BA BA BA T.S T.Z T.S BA BA T.S T.S T.S BA BA T.S T.S <tht.s< th=""> T.S T.S <th< td=""><td>ALB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.0</td></th<></tht.s<>	ALB																				7.0
APS	ANA B															5.9					5.1
ARD 0 No	APS				6.3					6.0						6.1					5.4
ARD 6 I <td>ARD 02</td> <td></td> <td>2.4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ARD 02															2.4					
BA 1.5 1.7 1.9 1.9 1.9 1.5 1.7 1.9 1.7 1.7 1.9 1.7 1.	ARD 06												/			2.4					
BAA 5.1 I	BA		7.5	7.7	7.9	7.5	8.0	8.5	7.3	7.3	7.0	7.6	7.1	7.7	8.2	7.0	6.1	7.0	7.5	5.8	5.8
Bit S9 S9 <t< td=""><td>BEA</td><td>5.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.6</td><td></td><td></td><td></td><td></td><td>2.8</td></t<>	BEA	5.1														3.6					2.8
BNN Image: state of the	BEI	5.9														3.9					3.2
mmm mmm <td>BIN</td> <td></td> <td>1.1</td>	BIN																				1.1
CAL 5.0 5.0 5.0 5.0 4.8 4.7 5.4 4.5 4	BRM	4.1														0.7					5.0
Orn 32 30 30 4.4 3.0 4.4 3.0 4.4 4.2 3.3 4.1 3.3 4.4 DAV I <		4.1	E 0	5 5	4.0	4.0	47	E /	4.0	4 5	4.0	4.4	2.0	4.4	4 5	2.1	25	4.1	2 5	4.4	3.0
DAV DAV ZAV Z	СНА	J.Z	5.0	5.5	4.0	4.0	4.7	5.4	4.9	4.5	4.9	4.4	3.0	4.4	4.5	4.2	3.5	4.1	3.5	4.4	5.0
DM Image: constraint of the sector of th																2.8					2.8
Altho Altho <th< td=""><td>FUR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.1</td><td></td><td></td><td></td><td></td><td>2.0</td></th<>	FUR															3.1					2.0
HAG T.4 69 T.0 T.0 I <thi< td=""><td>GMO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1</td><td></td><td></td><td></td><td></td><td>4.3</td></thi<>	GMO															0.1					4.3
International and another state of the	HÄG				74					6.9						70					6.3
HUD 7.1 6.4 .	HOL	6.2								0.0											5.9
JUS 7.1 1 <td>HUD</td> <td>7.1</td> <td>6.4</td> <td></td> <td>6.9</td> <td></td> <td></td> <td></td> <td></td> <td>6.4</td>	HUD	7.1	6.4													6.9					6.4
KIT Image: state in the	JUS	7.1	-													4.8					5.0
KLE All A	KIT																				6.8
LAE F	KLE															4.3					
LAU 9.5	LAE F															5.9					5.4
LEN 7.4 6.6 6.6 6.6 6.6 6.6 6.6 7.1 7	LAU	9.5									ĺ					6.1					5.3
MAG 17.0 19.9 18.8 14.3 16.0 14.1 14.9 14.4 17.2 15.1 14.4 13.7 14.5 14.5 14.5 12.9 10.9 12.7 10.2 1 MU 8.3 6.2 6.3 6.5<	LEN	7.4														6.6					6.3
MAU 8.3 Image: Mail of the ma	MAG	17.0	19.9	18.8	14.3	16.0	14.1	14.9	14.4	17.2	15.1	14.4	13.7	14.3	14.5	14.5	12.9	10.9	12.7	10.2	11.6
NU 62 62 62 62 NAT 3.8 6.2 2.4 6.2 6.2 NE 01 2.4 4.4 1 <	MAU	8.3																			6.2
NAT 3.8 A <td>MU</td> <td></td> <td>6.2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	MU															6.2					
NE 01 4.4 <th< td=""><td>NAT</td><td>3.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.4</td><td></td><td></td><td></td><td></td><td>2.5</td></th<>	NAT	3.8														2.4					2.5
NENZ 6 56 6 6 6 6 6 6 7 0 <td>NE 01</td> <td></td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td>3.7</td>	NE 01															4.4					3.7
NOV 16.1 Image: constraint of the state	NENZ															5.6					4.6
OBI Image: Constraint of the second sec	NOV	16.1														9.7					8.0
OS OS <th< td=""><td>OBI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.2</td></th<>	OBI																				6.2
OTH 9.1 Image: Constraint of the state	OS																				4.0
PAY 6.7 6.4 6.6 6.0 6.5 5.6 6.6 6.1 5.4 5.2 5.7 4.9 5.1 RAN R	OTH	9.1														5.9					5.4
RAN Image: Constraint of the constrain	PAY	6.7	6.4	6.6	6.0	6.5	5.6	6.6	6.2	6.3	6.5	6.0	5.5	6.6	6.1	5.4	5.2	5.7	4.9	5.1	5.2
RIG 7.2 7.3 8.8 6.6 7.1 7.3 7.0 6.4 5.8 6.4 8.0 5.8 6.8 7.0 6.0 6.1 5.4 5.3 5.3 ROB ROHO Image: Constraint of the standard of the	RAN	7.0	7.5	0.0	0.0	7.4	7.0	7.0	C 4	5.0	C 4	0.0	5.0	<u> </u>	7.0	0.0	6.4	5.4	5.0	5.0	4.7
NOD N		1.2	1.5	ზ.ბ	6.6	7.1	7.3	7.0	6.4	5.8	6.4	8.0	5.8	ხ.შ	7.0	6.0	6.1	5.4	5.3	5.3	5.1
RRI O <tho< th=""> <tho< th=""> <tho< th=""></tho<></tho<></tho<>																6.0					0.9
NM Image: Constraint of the constrai																0.3					7 1
SNRL 10.4 10.3 9.1 10.9 10.5 9.5 8.3 8.6 7.9 9.1 7.3 8.3 9.4 7.7 8.3 7.7 7.3 6.2 SOER Image: Solution of the state o	SARE															10.2					0.1
Sorr TAX Too Too </td <td>SCH</td> <td>12 /</td> <td></td> <td>10.3</td> <td>Q 1</td> <td>10 0</td> <td>10 5</td> <td>Q 5</td> <td>83</td> <td>8.6</td> <td>70</td> <td>Q 1</td> <td>7 2</td> <td>83</td> <td>Q /</td> <td>77</td> <td>83</td> <td>77</td> <td>73</td> <td>62</td> <td>9.1 6.0</td>	SCH	12 /		10.3	Q 1	10 0	10 5	Q 5	83	8.6	70	Q 1	7 2	83	Q /	77	83	77	73	62	9.1 6.0
SSH 0.4 0.4 TAB 1 0 TAE 7.0 7.3 TE 0 VIS 0 VOR 7.8 VIS 0 0	SOFR	12.4		10.3	3.1	10.3	10.5	J.J	0.0	0.0	1.3	3.1	1.5	0.0	J. 1	6.4	0.0	1.1	1.5	0.2	5.8
TAB TAB And the second	SSH															0.4					6.9
TAE 7.0 7.3 7.3 6.4 TIE 2.8 2.8 VIS 5.0 5.0 VOR 7.8 5.4 WAU 6.7 6.4 VIE 13.0 5.0	TAB																				5.8
TIE 2.8 VIS 5.0 VOR 7.8 WAU 6.7 WIE 13.0	TAE	7.0		7.3	7.5					7.3						6.4					6.1
VIS 5.0 VOR 7.8 WAU 6.7 WIE 13.0	TIE															2.8					3.1
VOR 7.8 5.4 WAU 6.7 6.4	VIS															5.0					4.1
WAU 6.7 6.4 WIE 13.0 6.2	VOR	7.8														5.4					4.7
WIE 13.0	WAU	6.7														6.4					5.1
70 50	WIE									13.0											
<u>ZB</u> 5.9	ZB															5.9					5.5

										Okosyste	emtyp 1									
Code										Fracht S	Summe									
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	ia 'a '									
AEG																				22.3
ALB																				61.3
ANA B															14.1					13.7
APS				46.5					37.6	ĺ					38.7					43.4
ARD 02															4.6					
ARD 06															7.6					
BA		22.7	24.3	23.3	20.5	22.5	25.8	21.1	18.9	20.5	19.8	20.1	20.3	20.7	20.4	17.7	19.5	21.3	20.9	20.4
BEA	11.5														8.9					8.4
BET	11.8														8.3					7.9
BIN																				51.2
BRM																				27.2
CEL	7.8														4.8					6.1
CHA	11.9	10.8	11.4	11.5	11.0	10.2	13.0	11.0	10.2	11.8	10.5	11.1	10.5	10.1	9.7	9.8	10.0	9.0	12.8	13.5
CHI															10.1					12.5
DAV															4.8					5.5
FUR															5.5					7.3
GMO																				26.2
HÄG				41.0					32.4						32.7					40.5
HOL	37.8																			43.2
HUD	21.5	22.4													26.4					27.2
JUS	14.6														8.9					10.1
KIT																				45.5
KLE															10.4					
LAE F															13.3					14.3
LAU	26.4														22.3					19.2
LEN	20.4														22.3					24.9
MAG	39.3	46.9	45.4	36.2	40.2	36.3	38.8	37.5	42.9	39.0	34.2	40.2	41.0	41.8	41.0	40.2	33.5	40.2	42.2	44.6
MAU	26.1																			31.9
MU															19.3					
NAT	7.1														3.9					4.7
NE 01															14.1					17.3
NENZ	24.0														18.7					13.1
	34.0														21.7					20.6
OBI																				31.7
US OTH	10.4														10.0					22.8
	19.4 20 F	10.2	17.0	10 7	20.7	10.2	21.6	10.0	10.6	10.0	10.2	10.6	10.0	16.0	12.3	16.6	16.7	15.6	10.6	10.0
	20.0	10.3	۱ <i>۱</i> .2	10.7	20.7	19.3	21.0	10.0	10.0	19.0	10.3	10.0	19.9	10.9	10.0	10.0	10.7	10.0	10.0	19.2
PIC	16.0	17.0	20.2	10.2	17 1	19.0	17 F	15.2	14.6	17.0	10 C	15.6	17 0	16 F	15 F	16.0	11.2	15 /	16 7	16.2
ROR	10.9	17.0	20.Z	10.3	17.1	10.9	17.0	10.3	14.0	17.0	19.0	10.0	17.3	10.0	10.0	10.9	14.3	10.4	10.7	10.3
															10.7					23.0
															19.7					47.0
SADE															25.0					25.3
SAIL	28.5		26.0	26.0	28.2	25.0	24.6	21 /	21.7	21.8	23.2	21.7	22.1	23.2	20.0	22.0	20.2	20.4	20.2	21.5
SOFR	20.0		20.3	20.0	20.2	20.0	24.0	21.4	21.7	21.0	20.2	21.7	22.1	20.2	14.5	22.0	20.2	20.4	20.2	15.1
SSH															14.0					30.4
TAR																				18.0
TAF	22 /		24.6	31.2					28.3						26.6					26.7
TIF	22.4		24.0	01.2					20.3						5.5					9.7
VIS															11.8					10.8
VOR	22.2														15.2					15.5
WAU	46.5														43.8					63.8
WIE	10.0								31.5						.0.0					00.0
ZB									51.0						19 1					24.3
															.0.1					21.0

											Ökosyst	emtyp 2									
	Code									Am	moniak	Gas Fra	cht								
<th< td=""><td></td><td>2000</td><td>2001</td><td>2002</td><td>2003</td><td>2004</td><td>2005</td><td>2006</td><td>2007</td><td>2008</td><td>2009</td><td>2010</td><td>2011</td><td>2012</td><td>2013</td><td>2014</td><td>2015</td><td>2016</td><td>2017</td><td>2018</td><td>2019</td></th<>		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Accord Accord <td></td> <td>N: kg </td> <td>ha⁻¹ a⁻¹</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											N: kg	ha ⁻¹ a ⁻¹									
AEG Image I											-										
ALB A	AEG																				14.5
AAAB	ALB																				
APS APS <td>ANA B</td> <td></td> <td>2.9</td> <td></td> <td></td> <td></td> <td></td> <td>3.9</td>	ANA B															2.9					3.9
APD 06 Image: and and any and any	APS																				
ARD 6 S S S T T< T T T T T T T T< T T T T< T T T<	ARD 02																				
AA 166 155 167 112 115 168 144 116 154 158 12 147 244 200 BET 38 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 70 50 70 50 70 50 70 70 50 70 50 70	ARD 06															7.2					
BEA 58 60 88 70 87 <t< td=""><td>BA</td><td></td><td>16.6</td><td>15.5</td><td>16.7</td><td>11.2</td><td>11.5</td><td>16.9</td><td>14.4</td><td>11.6</td><td>15.4</td><td>13.4</td><td>15.9</td><td>13.6</td><td>12.1</td><td>15.9</td><td>15.0</td><td>13.2</td><td>14.7</td><td>21.4</td><td>20.0</td></t<>	BA		16.6	15.5	16.7	11.2	11.5	16.9	14.4	11.6	15.4	13.4	15.9	13.6	12.1	15.9	15.0	13.2	14.7	21.4	20.0
BET 38	BEA	5.6														4.9					6.3
BIN B	BET	3.8														4.1					5.0
BRM Image I	BIN																				
CEL 2.7 D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	BRM																				37.9
CHA 58 62 53 80 56 52 57 61 53 77 62 11 70 58 61 70 <t< td=""><td>CEL</td><td>2.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.6</td><td></td><td></td><td></td><td></td><td>1.7</td></t<>	CEL	2.7														1.6					1.7
CHI C	CHA	5.8	6.2	5.3	8.0	5.6	5.2	5.7	6.1	5.3	7.7	8.2	11.3	7.0	5.8	6.0	8.8	6.7	7.0	8.7	10.2
DAV Image: market mar	CHI															2.1					2.4
FUR Image: Control of the	DAV															1.1					1.2
GMO Image	FUR																				
HAG HAG <td>GMO</td> <td></td> <td>24.9</td>	GMO																				24.9
HOL 46.3 Image Im	HAG																				
HUD 107 138 10 107 138 10	HOL	46.3																			68.4
JUS 76 - - - - - 39 - - 49 KIE - - - - - - - - 37.4 LAE F - - - - - - - 4.0 -	HUD	10.7	13.8													16.1					18.4
KIT K	JUS	7.6														3.9					4.9
KLE K	KIT																				37.4
LAE F Image Image <th< td=""><td>KLE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0</td><td></td><td></td><td></td><td></td><td></td></th<>	KLE															4.0					
LAU 20.2 V </td <td>LAE F</td> <td></td> <td>8.1</td> <td></td> <td></td> <td></td> <td></td> <td>9.4</td>	LAE F															8.1					9.4
LEN 8.8 1.1.1 1.2.1 9.3.2 2.1 2.1.7 2.2.2 2.4.4 2.2.0 1.9.3 2.0.9 1.8.0 2.9.3 2.2.1 2.1.7 2.2.2 2.4.4 2.2.0 1.9.3 2.9.1 2.2.1 2.1.7 2.2.2 2.4.4 2.2.0 1.9.3 2.9.1 2.2.1 2.1.7 2.2.2 2.4.4 2.2.0 1.9.3 2.9 1.8.0 2.9.3 2.9.2 2.9.2 2.9.3 2.0.1 2.9.3 2.9	LAU	20.2														24.6					21.6
MAG 18.1 17.2 19.3 22.1 21.7 22.2 24.4 22.0 19.3 20.9 18.0 29.3 28.2 24.3 22.2 28.9 25.0 28.6 39.2 38.7 MAU <	LEN	8.8														11.7					13.4
MAU M	MAG	18.1	17.2	19.3	22.1	21.7	22.2	24.4	22.0	19.3	20.9	18.0	29.3	28.2	24.3	22.2	28.9	25.0	28.6	39.2	36.7
MU MU <th< td=""><td>MAU</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	MAU																				
NAT 2.7	MU															16.0					
NE 01 Image: state s	NAT	2.7														1.2					1.1
NENZ Image: Solution of the state of	NE 01															8.1					14.7
NOV 4.0 Image: state st	NENZ															7.2					8.1
OBI I	NOV	4.0														3.4					5.6
OS 9.1 I	OBI																				21.3
OTH 9.1 I <td>OS</td> <td></td> <td>27.0</td>	OS																				27.0
PAY Image: state sta	OTH	9.1														7.3					9.1
RAN Image: state sta	PAY																				
RIG 8.6 7.4 6.7 11.0 9.1 8.7 9.5 8.7 8.8 10.1 9.1 10.2 8.9 8.8 8.9 10.8 8.4 10.0 12.8 12.4 ROB Image: Solution of the solution of	RAN																				8.5
ROB Image: Constraint of the constrain	RIG	8.6	7.4	6.7	11.0	9.1	8.7	9.5	8.7	8.8	10.1	9.1	10.2	8.9	8.8	8.9	10.8	8.4	10.0	12.8	12.4
ROHO Image: state st	ROB																				
RRI Image: state sta	ROHO																				
SARE Image: state st	RRI																				
SCH 11.0 14.3 21.9 14.6 12.0 12.8 12.6 12.7 14.7 12.8 10.6 11.6 13.6 11.6 12.9 18.2 16.9 SOER Image: Solid strain strand strand strain strain strand strain strain strand s	SARE															7.4					12.5
SOER 3.3 5.6 SSH 3.3 35.6 TAB 3.6 35.6 TAE 3.6 32.0 TIE 3.6 32.0 VIS 3.6 32.0 VOR 19.5 32.0 11.3 VOR 19.5 32.0 14.9 16.6 WAU 3.0 32.0 32.0 33.0 ZB 3.0 33.0 33.0 33.0 33.0	SCH	11.0		14.3	21.9	14.6	12.0	12.8	12.6	12.2	14.1	12.7	14.7	12.8	10.6	11.6	13.6	11.6	12.9	18.2	16.9
SSH Image: SSH	SOER															3.3					5.6
TAB Image: Constraint of the constrain	SSH																				35.6
TAE Image: Constraint of the system of t	TAB																				12.9
TIE Image: Constraint of the constrain	TAE			ĺ				ĺ								ĺ					
VIS 12.6 11.3 VOR 19.5 14.9 16.6 WAU 1000000000000000000000000000000000000	TIE																				
VOR 19.5 19.5 14.9 16.6 WAU Image: Comparison of the comparison of	VIS															12.6					11.3
WAU Image: Constraint of the second sec	VOR	19.5														14.9					16.6
WIE Image: Constraint of the second sec	WAU																				
ZB 9.8 14.8	WIE																				
	ZB															9.8					14.8

Legende Daten von FUB

										Ökosyste	emtyp 2									
Code									Sticks	toffdioxi	id Gas F	racht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	na''a''									
AEG																				3.2
ALB																				
ANA B															1.1					0.8
APS																				
ARD 02																				
ARD 06															0.8					
BA		1.7	1.4	1.8	1.7	1.7	1.9	1.8	1.9	1.7	1.9	1.8	1.7	1.8	1.7	1.7	1.5	1.5	1.5	1.3
BEA	1.0														0.8					0.7
BET	1.5														1.3					1.0
BIN																				
BRM																				2.7
CEL	1.3														1.5					1.3
CHA	2.5	2.6	2.7	3.0	2.0	2.2	2.2	2.0	1.9	2.0	2.3	2.1	2.0	2.1	1.8	1.9	1.8	1.7	1.9	1.7
CHI															0.9					0.8
DAV															1.2					1.1
FUR																				
GMO																				1.9
HÄG																				
HOL	3.4																			2.5
HUD	3.4	3.4													3.6					3.1
JUS	3.3														2.6					2.5
KIT																				2.4
KLE															0.6					
LAE F															2.9					2.3
LAU	36														2.9					2.3
LEN	3.2														3.1					2.6
MAG	4.6	4.3	4.3	4.6	4.5	4.6	5.0	4.3	4.2	4.0	4.1	4.0	3.8	3.6	3.4	3.8	3.5	3.8	3.1	2.9
MAU																				
MU															4.0					
NAT	0.8														0.9					0.9
NE 01															1.4					1.5
NENZ															2.3					1.9
NOV	1.5														1.0					0.9
OBI																				3.1
OS																				1.2
OTH	6.2														4.8					4.0
PAY																				
RAN																				1.3
RIG	2.7	3.2	2.9	2.6	2.4	2.5	2.5	2.5	2.4	2.3	2.7	2.4	2.2	2.6	2.1	2.2	1.9	1.8	2.1	1.6
ROB																				
ROHO																				
RRI																				
SARE															2.3					2.1
SCH	2.3		2.4	2.4	2.2	2.1	2.5	2.2	2.3	2.3	2.3	2.3	2.2	2.2	1.9	2.2	2.2	1.5	2.1	1.7
SOER															0.7					0.6
SSH																				2.7
TAB																				1.9
TAE																				
TIE																				
VIS															5.7					3.3
VOR	4.0														3.0					2.5
WAU	1.5														0.0					2.0
WIF																				
ZB				ĺ											15					13
	Detro														1.0					1.0
Leaende	Daten vo	DU NARF	:L																	

Daten von FUB Daten von UGZ Schätzwerte (Herkunft siehe Kapitel 6.4.2, Tabelle 12)

										Ökosyst	emtyp 2									
Code									Amm	onium A	erosol F	racht								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg	ha ⁻¹ a ⁻¹									
150																				
AEG																				0.8
ALB																				
ANA B															1.3					1.3
APS																				
ARD 02																				
ARD 06															0.3					
BA		1.7	1.7	1.8	1.1	1.3	1.4	1.3	1.1	1.2	1.3	1.3	0.9	1.1	0.8	0.8	1.0	1.0	1.1	8.0
BEA	0.4														0.4					0.4
BEI	0.7														0.7					0.7
BIN																				
BRM																				1.0
CEL	0.3														0.3					0.3
CHA	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.7	0.7	0.8
CHI															0.9					0.9
DAV	<u> </u>														0.3					0.3
FUR																				
GMO																				1.3
HAG																				
HUL	2.3																			1.1
HUD	0.9	0.9													0.9					0.9
JUS	0.7														0.7					0.7
KII																				1.3
KLE															0.4					0.7
															0.7					0.7
LAU	1.1														1.1					1.1
LEN	0.7														0.7					0.7
MAG	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.5	0.5	0.3	0.2	0.3	0.2	0.3	0.3	0.3
MAU																				
MU															0.8					
NAT	0.3														0.3					0.3
NE 01															0.7					0.7
NENZ															0.7					0.7
NOV	0.6														0.6					0.6
OBI																				0.5
OS																				1.3
OTH	0.8														0.8					0.8
PAY																				
RAN					• •										~ ~ ~	~ ~ ~		• ~	• •	1.0
RIG	0.8	0.9	1.2	1.3	0.9	1.3	1.3	1.3	1.1	1.2	1.3	1.3	1.0	1.2	0.9	0.9	0.7	0.7	0.9	0.7
ROB																				
ROHO																				
KKI																				
SARE															1.4					2.0
SCH	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
SOER	<u> </u>														0.4					0.4
SSH	<u> </u>																			1.3
TAB	-																			1.2
TAE																				
TIE																				
VIS															1.5					1.5
VOR	0.9														0.9					0.9
WAU																				
WIE	ļ																			
ZB															1.0					1.0

0.1										Ökosyste	emtyp 2									
Code	2000	2001	2002	2003	2004	2005	2006	2007	2008	2000	2010	2011	2012	2013	2014	2015	2016	2017	2018	2010
	2000	2001	2002	2003	2004	2005	2000	2007	2000	2009 N: ka l	1a ⁻¹ a ⁻¹	2011	2012	2013	2014	2015	2010	2017	2010	2019
450																				0.5
AEG																				0.5
															0.0					0.0
															0.0					0.0
ARD 06															0.4					
BA		0.9	0.8	1.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.7	0.8	0.6	0.6	0.6	0.6	0.7	0.6
BEA	0.6														0.6					0.6
BET	0.5														0.5					0.5
BIN																				
BRM																				0.8
CEL	0.4														0.4					0.4
CHA	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.4
CHI															0.4					0.4
DAV															0.4					0.4
FUR																				
GMO																				0.8
HAG	0.0																			0.7
HUL	0.3	0.0													0.0					0.7
HUD	0.6	0.6													0.0					0.6
103 103	0.4														0.4					0.4
KIE															0.6					0.5
															0.4					0.4
LAU	0.7														0.7					0.7
LEN	0.4														0.4					0.4
MAG	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
MAU																				
MU															0.5					
NAT	0.4														0.4					0.4
NE 01															0.5					0.5
NENZ															0.4					0.4
NOV	0.3														0.3					0.3
OBI																				0.3
OS																				0.8
	0.5														0.5					0.5
																				0.0
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.6	0.9	0.0	0 0	0.6	0.7	0.5	0.6	0 F	0 F	0.6	0.6
ROR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.7	0.5	0.0	0.5	0.5	0.0	0.5
ROHO																				
RRI																				
SARE															1.3					1.3
SCH	0.7		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
SOER															0.6					0.6
SSH																				0.8
TAB																				0.7
TAE																				
TIE																				
VIS															1.0					1.0
VOR	0.6														0.6					0.6
WAU																				
WIE																				
ZB															0.6					0.6

									_	Ökosyste	emtyp 2									
Code									Frac	ht Sumr	ne reduz	iert								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009 Ny ka k	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: Kg r	ia a									
AEG																				20.1
ALB																				
ANA B															10.0					10.8
APS																				
ARD 02															10.2					
RA RA		27.0	27.6	27.2	21.0	22.6	29.1	23.8	19.7	24.1	21 7	24.1	21.9	20.9	24.2	21.8	21.6	23.9	29.7	28.1
BFA	10.2	21.0	21.0	21.2	21.0	22.0	23.1	20.0	10.7	27.1	21.7	27.1	21.5	20.5	8.6	21.0	21.0	20.5	20.1	9.8
BET	8.4														7.1					7.8
BIN	-																			-
BRM																				45.4
CEL	5.0														2.9					4.0
CHA	10.7	9.9	9.5	12.0	10.0	9.1	11.4	10.2	9.3	12.0	11.5	14.5	10.7	9.5	9.5	12.0	10.3	10.1	14.1	16.4
CHI															7.2					9.6
DAV															2.6					3.5
FUR																				
GMO																				31.0
HAG																				
HOL	61.2																			79.9
HUD	17.3	19.6													23.7					25.5
JUS	11.9														6.4					8.1
															0.1					47.9
															9.1 12.0					14.3
	28.2														29.9					26.0
LEN	14.1														16.9					20.0
MAG	31.4	35.5	36.2	33.0	35.1	33.3	36.1	34.1	35.3	34.4	28.8	41.1	40.8	39.4	37.6	41.7	35.1	41.8	51.6	51.3
MAU																				
MU															22.2					
NAT	5.3		ĺ							ĺ					2.5		ĺ			3.2
NE 01															12.4					18.5
NENZ															16.6					12.4
NOV	19.9														13.7					15.3
OBI																				27.6
OS																				37.5
OTH	15.6														10.7					13.4
																				16.1
	15.9	1/ 9	16.2	10.5	16.4	17.9	17.2	15.2	15 1	17 7	19.2	17 1	16.0	15.9	15.9	19.2	14.7	16.0	20.2	10.1
ROB	15.0	14.0	10.5	19.5	10.4	17.0	17.5	13.2	13.1	17.7	10.2	17.1	10.9	15.0	15.0	10.5	14.7	10.9	20.2	19.0
ROHO																				
RRI																				
SARE															19.5					23.9
SCH	23.3		26.0	31.0	26.9	23.4	23.5	21.5	21.2	23.1	22.4	24.0	22.2	20.9	19.9	22.6	20.2	21.6	25.8	25.5
SOER															10.0					12.4
SSH																				46.0
TAB																				20.6
TAE																				
TIE																				
VIS															15.2					14.4
VOR	26.8														19.4					21.4
WAU																				
WIE																				
ZB															16.7					23.9

									_	Okosyste	emtyp 2									
Code									Fra	cht Sum	me oxid	iert								
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
										N: kg h	ia''a''									
AEG																				7.6
ALB																				
ANA B															6.9					5.9
APS																				
ARD 02																				
ARD 06															3.1					
BA		8.9	8.9	9.3	8.8	9.3	9.9	8.7	8.7	8.3	9.0	8.5	9.0	9.7	8.3	7.4	8.2	8.7	7.0	6.8
BEA	6.1														4.5					3.6
BET	7.1														5.0					4.0
BIN																				
BRM	5.0														0.7					1.5
CEL	5.0	0.7	7.0												3.7		5.4	47		3.8
CHA	6.9	6.7	1.3	0.8	b.2	6.2	6.9	0.3	5.8	6.3	5.9	5.3	5.8	6.0	5.5	4.8	5.4	4.7	5.8	5.0
															0.0					0.0
															3.0					3.5
GMO																				57
HÄG																				5.1
HOL	83																			77
HUD	8.9	82													8.8					8.0
JUS	8.8	0.2													6.3					6.4
KIT																				8.3
KLE															5.0					
LAE F															7.5					6.7
LAU	11.6														7.8					6.7
LEN	8.6														7.8					7.3
MAG	18.1	21.0	19.9	15.4	17.1	15.3	16.1	15.5	18.3	16.1	15.4	14.7	15.3	15.4	15.4	13.9	11.8	13.6	11.0	12.4
MAU																				
MU															8.8					
NAT	4.5														3.1					3.3
NE 01															5.3					4.6
NENZ															6.9					5.7
NOV	16.9														10.3					8.5
OBI																				7.4
OS																				5.3
OTH	12.9														9.0					8.0
PAY																				
RAN		0.7	40.0	0.4		0.4						7.0								5.8
RIG	9.0	9.7	10.8	8.4	8.8	9.1	8.8	8.2	7.5	8.1	9.9	7.6	8.4	8.8	7.5	1.1	6.8	6.6	6.8	6.3
RUB																				
RUHU																				
RRI SADE															12.2					11.0
SARE	1/ 1		12.0	10.9	12.5	12.0	11.2	0.0	10.2	0.6	10.9	0.0	0.0	11.0	0.2	0.0	0.3	8.5	7.9	11.0
SOFR	14.1		12.0	10.0	12.0	12.0	11.5	3.5	10.5	9.0	10.0	9.0	9.9	11.0	9.2 7 1	3.5	9.0	0.0	1.0	6.4
SSH 122															7.1					8.9
TAB																				7.3
TAE																				1.5
TIE																				
VIS															9.1					6.8
VOR	10.4														7.4					6.5
WAU																				
WIE																				
ZB															6.9					6.3

										Ökosyst	emtyp 2									
Code	0000	0004	0000	0000	0004	0005	0000	0007	0000	Fracht	Summe	0014	0040	0040	0044	0045	0040	0047	0040	0040
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009 N: ka	2010 ha ⁻¹ a ⁻¹	2011	2012	2013	2014	2015	2016	2017	2018	2019
AEG																				27.7
ALG																				21.1
ANA B															17.0					16.7
APS															-					
ARD 02																				
ARD 06															13.3					
BA		35.8	36.5	36.6	29.7	31.9	39.0	32.5	28.5	32.4	30.7	32.5	30.9	30.6	32.5	29.1	29.8	32.6	36.7	34.9
BEA	16.3														13.1					13.4
BET	15.4														12.0					11.9
BIN																				
BRM																				52.9
CEL	9.9														6.6					7.8
CHA	17.5	16.7	16.8	18.8	16.1	15.3	18.3	16.5	15.1	18.3	17.4	19.8	16.5	15.5	15.0	16.8	15.7	14.8	19.9	21.3
CHI															12.8					15.4
															0.3					7.0
GMO																				36.7
HÄG																				
HOL	69.5																			87.6
HUD	26.2	27.8													32.4					33.5
JUS	20.8	-													12.7					14.5
KIT																				56.2
KLE															14.1					
LAE F															19.5					21.0
LAU	39.8														37.7					32.7
LEN	22.7														24.7					27.4
MAG	49.5	56.6	56.1	48.4	52.2	48.6	52.2	49.5	53.6	50.5	44.2	55.8	56.1	54.8	53.0	55.6	46.9	55.4	62.6	63.7
MAU																				
MU															30.9					
NAT	9.8														5.7					6.4
NE 01															17.7					23.1
	26.0														23.5					18.1
	30.0														24.1					25.9
05																				42.8
OTH	28.5														19.7					21.4
PAY																				
RAN																				21.8
RIG	24.8	24.5	27.1	27.9	25.1	26.9	26.1	23.4	22.6	25.9	28.1	24.7	25.2	24.7	23.3	26.0	21.5	23.5	27.0	25.9
ROB																				
ROHO																				
RRI																				
SARE															31.7					34.8
SCH	37.4		38.0	41.8	39.3	35.4	34.8	31.4	31.4	32.7	33.2	33.0	32.2	31.9	29.1	32.6	29.4	30.1	33.6	33.8
SOER															17.1					18.9
SSH																				54.9
TAB																				27.9
TAE																				
															24.4					04.0
VIS	27 4														24.4					21.2
WALL	31.1														20.0					21.9
WIF																				
ZB															23.6					30.3
															20.0					00.0

		model	lierte F	rachte	en (Met	eotest	t)	ÖT	1		modell	ierte F	rachte	n (Met	eotest	t)	ÖT	2	Emissi	onszahl	len NH ₃	.	GVE
Code	$\rm NH_3$	${\sf NH_4}^+$	NH_4^{\ast}	NO_3^{-}	NO_3^{-}	NO_2	HNO_3	BN24	MG	NH_3	${\sf NH_4}^+$	${\sf NH_4}^+$	NO ₃ ⁻	NO ₃ ⁻	NO_2	HNO_3	BN24	MG	i	m 500 r	m-Radiu	ıs, 201	5
	Gas	WET	DRY	WET	DRY	Gas	Gas			Gas	WET	DRY	WET	DRY	Gas	Gas			LW	HI	VK	tot	
			N:	kg ha	1 a ⁻¹							N:	kg ha ^{.1}	a ⁻¹					N:	kg ha ⁻¹ a	a ⁻¹		
AEG	25.7	5 1	0.6	32	0.2	22	07	14	0	33.4	51	11	32	0.5	44	07	1	3	53	0	0	53	153
ALB	25.3	4.8	0.5	3.0	0.2	2.2	0.7	14	0	00.1	0.1		0.2	0.0		0.1		0	28	0	0	28	78
ANA B	4.4	6.4	0.6	4.1	0.3	0.6	0.5	14	0	6.5	6.4	1.6	4.1	0.6	1.7	0.5	1	1	20	0	0	2	0
APS	15.6	6.1	0.8	3.8	0.3	1.3	0.6	8	0										75	0	0	75	186
ARD 02	1.7	2.9	0.4	1.9	0.1	0.3	0.2	11	0										5	0	0	5	0
ARD 06	4.8	2.4	0.5	1.6	0.2	0.5	0.3	11	0	11.9	2.4	0.5	1.6	0.2	1.4	0.3	1	1	22	0	0	22	106
BA	7.2	6.7	0.8	4.3	0.3	1.1	0.6	8	0	18.6	6.7	1.6	4.3	0.6	2.3	0.6	1	3	45	0	0	45	141
BEA	1.6	5.0	0.6	3.1	0.2	0.5	0.4	11	0	3.9	5.0	1.4	3.1	0.6	1.3	0.4	1	1	2	0	0	2	0
BET	2.2	5.7	0.8	3.6	0.3	0.9	0.6	11	0	4.8	5.7	1.5	3.6	0.6	1.8	0.6	1	3	1	0	0	1	0
BIN	26.2	6.4	0.5	4.0	0.2	2.4	0.8	14	0										13	0	5	18	
BRM	14.8	5.2	0.8	3.3	0.3	1.4	0.6	8	0	38.5	5.2	1.7	3.3	0.7	2.8	0.6	1	3	72	0	0	72	201
CEL	1.8	1.6	0.5	1.0	0.2	0.4	0.3	14	0	2.7	1.6	1.3	1.0	0.5	1.0	0.3	1	1	0	0	0	0	0
CHA	2.9	3.6	0.7	2.2	0.3	0.8	0.6	8	0	7.6	3.6	1.5	2.2	0.6	1.7	0.6	1	3	8	0	0	8	0
CHI	0.6	4.8	0.5	4.2	0.2	0.6	0.4	11	0	1.5	4.8	1.3	4.2	0.5	1.6	0.4	1	1	1	0	0	1	3
DAV	2.7	3.1	0.5	2.1	0.2	0.6	0.4	14	0	4.6	2.4	1.1	1.5	0.5	1.3	0.4	1	1	11	0	0	11	52
FUR	0.6	2.7	0.3	1.7	0.1	0.2	0.2	11	0										3	0	0	3	0
GMO	15.1	4.6	0.8	2.8	0.3	1.2	0.6	14	0	22.7	4.6	2.0	2.8	0.8	3.2	0.6	1	1	43	0	0	43	121
HAG	16.5	4.4	0.6	2.8	0.3	1.9	0.7	8	0										49	1	0	50	71
HOL	16.4	5.1	0.7	3.4	0.3	2.0	0.7	8	0	42.7	5.1	1.3	3.4	0.5	4.1	0.7	1	3	46	1	0	47	112
HUD	18.9	4.1	0.6	2.6	0.2	1.9	0.7	14	0	24.6	4.1	1.2	2.6	0.5	3.7	0.7	1	3	9	0	0	9	0
JUS	1.6	3.4	0.7	2.1	0.3	1.9	0.7	8	0	3.4	3.4	1.0	2.1	0.4	3.7	0.7	1	4	0	0	0	0	0
KII	23.0	5.7	0.8	3.6	0.3	1.4	0.7	14	0	29.9	5.7	1.5	3.6	0.6	2.8	0.7	1	3	61	1	0	61	156
	3.1	5.1	0.0	3.4	0.2	0.5	0.3	0	0	1.1	5.1	1.4	3.4	0.0	1.4	0.3	1	1	4	0	0	4	0
	4.4	4.0	0.0	2.0	0.2	2.4	0.0	0	0	9.7	4.5	0.9	2.0	0.4	4.0	0.0	1	4	1	0	0	1	20
	12.5	4.3	0.0	2.0	0.3	2.0	0.0	0	0	12.2	4.3	1.2	2.0	0.5	4.0	0.0	1	4	23	0	0	23	00
MAG	9.1	Q 1	0.0	6.7	0.2	2.0	0.0	14	0	12.2	9.0 9.1	0.9	6.7	0.4	4.0	0.0	14	4	45	1	0	46	134
MAU	14.9	3.9	0.5	2.5	0.2	2.1	0.0	8	0	10.2	5.1	0.0	0.7	0.2	0.2	0.0	17	0	40	1	1	51	133
MU	8.8	4.9	0.0	3.2	0.2	2.1	0.7	8	0	22.8	49	12	32	0.5	4 5	0.7	1	3	21	1	0	22	27
NAT	0.6	1.7	0.4	1.0	0.1	0.3	0.2	11	0	1.4	1.7	0.9	1.0	0.4	0.7	0.2	1	1	0	0	0	0	0
NE 01	17.5	4.3	0.7	2.7	0.3	1.0	0.6	14	0	22.8	4.3	1.3	2.7	0.5	1.9	0.6	1	3	18	0	0	18	5
NENZ	4.8	3.9	0.6	2.5	0.3	1.9	0.8	11	0	8.8	3.9	0.9	2.5	0.4	3.8	0.8	1	4	22	0	0	22	69
NOV	0.7	8.8	0.8	6.5	0.3	1.1	0.6	11	0	1.3	8.8	1.2	6.5	0.5	2.1	0.6	1	4	0	0	0	0	0
OBI	26.0	5.0	0.5	3.2	0.2	2.4	0.8	14	0	28.6	5.0	0.7	3.2	0.3	4.7	0.8	1	4	8	1	1	10	
OS	11.6	4.7	0.7	2.9	0.3	1.0	0.5	8	0	34.8	4.7	1.7	2.9	0.7	2.6	0.5	1	1	30	0	0	30	64
OTH	5.3	4.3	0.6	2.7	0.2	2.8	0.9	8	0	13.9	4.3	1.2	2.7	0.5	5.6	0.9	1	3	7	0	2	10	1
PAY	6.9	2.9	0.6	1.8	0.2	2.0	0.8	8	0										11	1	0	12	11
RAN	3.7	3.3	0.8	2.1	0.3	0.9	0.6	11	0	8.0	3.3	1.6	2.1	0.6	1.9	0.6	1	3	6	0	0	6	
RIG	3.1	6.8	0.7	4.3	0.3	1.0	0.6	8	0	7.9	6.8	1.5	4.3	0.6	1.9	0.6	1	3	5	0	0	5	0
ROB	11.7	5.6	0.6	3.6	0.2	2.2	0.8	14	0										1	3	0	4	
ROHO	11.3	7.3	0.7	4.9	0.3	1.3	0.5	14	0										14	0	0	14	0
RRI								14	0														
SARE	0.9	9.9	1.1	7.2	0.4	1.9	0.8	8	0	2.3	9.9	2.2	7.2	0.9	3.8	0.8	1	3	3	0	0	3	19
SCH	3.9	7.1	0.7	4.5	0.3	1.7	0.7	8	0	10.2	7.1	1.3	4.5	0.5	3.3	0.7	1	3	3	0	0	3	0
SOER	3.1	5.0	0.6	3.2	0.2	0.4	0.3	14	0	4.7	5.0	1.4	3.2	0.6	1.0	0.3	1	1	4	0	0	4	0
SSH	11.8	5.5	0.7	3.5	0.3	1.5	0.6	8	0	30.6	5.5	1.4	3.5	0.6	3.0	0.6	1	3	32	1	1	34	53
TAB	8.5	6.0	0.7	3.8	0.3	1.6	0.7	11	0	18.5	6.0	1.4	3.8	0.5	3.2	0.7	1	3	23	0	0	23	65
TAL	13.6	4.8	0.6	3.0	0.2	1.9	0.8	8	0										38	1	0	39	97
IIE	0.7	3.5	0.4	2.2	0.2	0.3	0.2	11	0	14.0	0.5	4.0	4.0	07	6.0	~ 7	4		3	0	0	3	0
VIS	3.9	2.5	0.7	1.6	0.3	2.6	0.7	ð o	0	17.0	2.5	1.8	1.6	0.7	0.9	0.7	1	1	20	1	2	29	94
WALL	0.0	4.5	0.0	2.0	0.2	2.1	0.8	0	0	11.2	4.0	1.2	2.0	0.5	4.1	0.8	- 1	3	10	0	0	10	29
WIE	50.1	3.0 1 P	0.0	2.3	0.2	2.U 5.2	1.0	14	0										19	2	5	19	0
7B	0.0	4.0 6.2	0.0	3.2	0.2	10	0.1	14	0	12.6	62	16	40	0.6	10	9.0	1	3	28	<u>د</u>	0	78 28	58
	3.1	(D.2	0.0	4.0	0.5	1.0	0.0	14	0	12.0	0.2	1.0	- 1 .0	0.0	1.3	0.0	i '	5	20	- 1	U Line of	20	50
∟egenae	BN24	= \//ol	ennutz d	ung)						WIG (= Nod	ungsgr olwald	a0)							- Land\ = Haud	wirtSCN8 halt ± 14	ll (nduetric	
	l '	- **di	<u>~</u>								- 1100	JIWAIU							P	1 1005	nun + II	ausuit	,

8 = Acker/Wiesen, Annahme gedüngt

11 = Alp-/Juraweiden, Annahme ungedüngt
11 = Alp-/Juraweiden, Annahme ungedüngt
14 = Unproduktive Vegetation (Moore)
17 = Gebäudeumschwung (Siedlung)

Erhebung 2015

VK = Verkehr

tot = Summe der 3 Kategorien GVE = Anzahl Grossvieheinheiten kursiv = Daten von 2010 / 2007

^{3 =} Mischwald 4 = Laubwald

7.1.2 Statistische Betrachtung der langjährigen Messreihen

Tabelle 22Mittlere Veränderung langjähriger Messreihen und deren P-Werte für ein Signifikanzniveau von 5 %
Einheiten slope: Gase $\mu g m^{-3}$; Frachten kg N ha⁻¹ a⁻¹

Komponente	Standort	slope	Std. Error	P-Value
		berechnet mit "R"		fett = signifikant
		(R Core Team 2013)		95 % Niveau
	APS	-0.094	0.11	0.40
Ammoniak	BA	0.012	0.02	0.62
	СНА	0.021	0.01	0.019
Konzentration in Luft	HÄG	-0.034	0.05	0.49
	MAG	0.142	0.04	0.0012
	PAY	-0.004	0.02	0.84
	RIG	0.023	0.01	0.025
	SCH	0.015	0.02	0.44
	TAE	-0.009	0.06	0.87
	APS	-0.067	0.03	0.025
Stickstoffdioxid	BA	-0.046	0.02	0.023
	СНА	-0.126	0.02	0.00001
Konzentration in Luft	HÄG	-0.107	0.04	0.016
	MAG	-0.399	0.07	0.00003
	PAY	-0.184	0.04	0.0002
	RIG	-0.157	0.03	0.0001
	SCH	-0.052	0.03	0.13
	TAE	-0.201	0.03	0.00006
	BA	-0.129	0.05	0.011
Ammonium	CHA	-0.065	0.02	0.0007
N-Fracht im	MAG	-0.049	0.11	0.66
Niederschlag	PAY	-0.045	0.03	0.11
	RIG	-0.039	0.03	0.21
	SCH	-0.198	0.04	0.0003
	BA	-0.079	0.02	0.0044
Nitrat	CHA	-0.055	0.01	0.0007
N-Fracht im	MAG	-0.251	0.08	0.0037
Niederschlag	PAY	-0.044	0.01	0.0044
	RIG	-0.083	0.02	0.00009
	SCH	-0.210	0.04	0.0009
	BA	-0.082	0.03	0.018
Summe oxidierter	СНА	-0.076	0.02	0.0001
Komponenten	MAG	-0.328	0.07	0.0002
Fracht	PAY	-0.078	0.01	0.000001
	RIG	-0.117	0.02	0.000002
	ISCH	-0.224	0.04	0.00002
• • • • •	BA	-0.114	0.08	0.15
Summe reduzierter	СНА	-0.022	0.04	0.53
Komponenten	MAG	0.352	0.17	0.047
Fracht		-0.064	0.07	0.38
	IRIG	0.000	0.04	1.00
	ISCH	-0.187	0.05	0.0015
• "	IBA	-0.176	0.08	0.035
Summe aller		-0.118	0.02	0.00003
Komponenten	IMAG	0.093	0.30	0.76
Fracht		-0.134	0.07	0.07
		-0.118	0.05	0.028
	ISCH	-0.413	0.05	0.000001

Literatur

- Ahrends B, Schmitz A, Prescher A-K, Wehberg J, Geupel M, Andreae H and Meesenburg H (2020) Comparison of Methods for the Estimation of Total Inorganic Nitrogen Deposition to Forests in Germany. Front. For. Glob. Change 3:103. doi: 10.3389/ffgc.2020.00103
- BAFU 2011: BDM-Facts Nr.3: Stickstoffeintrag aus der Luft verändert Vielfalt http://www.biodiversitymonitoring.ch/de/daten/berichte-und-publikationen.html (Stand 05.11.2020)
- BAFU 2014: Stickstoff, vom Segen zum Umweltproblem. Animationsfilm www.bafu.admin.ch/stickstoff-film (Stand 25.11.2020)
- BAFU 2018: Umwelt Schweiz 2018 Bericht des Bundesrates https://www.bafu.admin.ch/bafu/de/home/dokumentation/umweltbericht/umweltbericht-2018.html (Stand 05.11.2020)
- BAFU 2020a: Auszug aus dem Emissionsinventar EMIS der Abteilung Luftreinhaltung und Chemikalien.
- BAFU 2020b: Übermässigkeit von Stickstoff-Einträgen und Ammoniak-Immissionen. Bewertung anhand von Critical Loads und Critical Levels insbesondere im Hinblick auf einen kantonalen Massnahmenplan Luftreinhaltung. Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 2003: 23 S. https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/publikationen/uebermaessigkeit-vonstickstoff-eintraegen-und-ammoniak-immissionen.html (Stand 05.11.2020)
- BAFU & BLW 2016: Umweltziele Landwirtschaft. Statusbericht 2016, Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1633 114 S. https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/publikationen-studien/publikationen/umweltziele-landwirtschaft-statusbericht-2016.html (Stand 05.11.2020
- Bobbink R., Hettelingh JP (eds.) 2011: Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. Coordination Centre for Effects, National Institute for Public Health and the Environment,
- CEC, bcr 1993: The certification of the contents (amount of substance contents) of ammonium, calcium, chloride, hydronium, magnesium, nitrate, potassium, sodium, and sulphate in simulated rainwater low content CRM 408. Report EUR 15024 EN
- Dämmgen U., Thöni L., Lumpp R., Gilke K., Seitler E., Bullinger M. 2010: Feldexperiment zum Methodenvergleich von Ammoniak- und Ammonium-Konzentrationsmessungen in der Umgebungsluft, 2005 – 2008 in Braunschweig. vTI Johann Heinrich von Thünen-Institut Braunschweig, Sonderheft 337 https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D1003809227 (Stand 05.11.2020)
- EC, JRC, IRMM 2010: Certification of the mass concentration of ammonium, chloride, fluoride, magnesium, nitrate, orthophosphate, sulfate, and of pH and conductivity in simulated rainwater – Certified Reference Material ERM®-CA408. EUR 24426 EN
- EKL 2005: Stickstoffhaltige Luftschadstoffe in der Schweiz. Status-Bericht der Eidg. Kommission f
 ür Lufthygiene (EKL), Bern, https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/publikationen/stickstoffhaltigeluftschadstoffe-in-der-schweiz.html (Stand 05.11.2020)
- EKL 2014: Ammoniak-Immissionen und Stickstoffeinträge. Eidgenössische Kommission für Lufthygiene (EKL), Bern, http://www.news.admin.ch/NSBSubscriber/message/attachments/34121.pdf (Stand am 05.11.2020)
- Empa 2006: Chemische Zusammensetzung des Feinstaubs während der Smoglagen im Januar/Februar 2006. Abteilung Luftfremdstoffe/Umwelttechnik Empa Nr. 203'056/4
- Empa & BAFU 2018: Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL) 2018. https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/daten/nationales-beobachtungsnetz-fuer-luftfremdstoffe--nabel-.html (Stand am 10.8.2020)
- Ferm M. 1991: A sensitive diffusional sampler. Report L91-172. Göteborg, Swedish Environmental Research Institute IVL

- Flechard C.R., Massad R.-S., Loubet B., Personne E., Simson D: Bash J.O., Cooter E.J., Nemitz E., Sutton M.A. 2013: Advances in Understanding, Models and Parameterizations of Biosphere-Atmosphere Ammonia Excange. Biogeosciences, 10, 5183–5225
- FOEFL 1996: Critical Loads of Nitrogen and their Exceedances, Eutrophying Atmospheric Deposition. Environmental Series No. 275, Federal Office of Environment, Forests and Landscape (FOEFL.), Berne. 90pp.
- FOEN 2020: Switzerland's Informative Inventory Report 2020 (IIR) Submission under the UNECE Convention on Long-range Transboundary Air Pollution Submission of March 2020 to the United Nations ECE Secretariat. Federal Office for the Environment FOEN, Air Pollution Control and Chemicals Division, Bern. https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/fachinfo-daten/Switzerlands-Informative-Inventory-Report-2019.pdf.download.pdf/switzerlands-informative-rep-2020.pdf (Stand am 20.10.2020)
- Gonzàles Benìtez J.M., Cape J.N., Heal M.R., van Dijk N. Vidal Dìez A. 2009: Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment 43, 4087-4094
- Guntern J., Altermatt F., Hagedorn F., Schwikowski M., Seehausen O., Stamm C. van der Heijden M., Waldner P., Widmer I. 2020: Übermässige Stickstoff- und Phosphoreinträge schädigen Biodiversität, Wald und Gewässer. Swiss Academies Factsheet 15 (8) (Stand 25.11.2020)

https://scnat.ch/de/publications/uuid/i/abf3e252-a389-5e05-9363-4ba2cfb80cca-Swiss_Academies_Factsheets

- Gutersohn H. 1973: Naturräumliche Gliederung. In: Atlas der Schweiz E. Imhof (Hrsg.), Taf. 23. Eidg. Landestopographie, Wabern-Bern
- Harmens H., Schnyder E., Thöni L., Cooper DM., Mills G., Leblond S., Mohr K., Poikolainen J., Santamaria J., Skudnik M., Zechmeister HG., Lindroos, A-J., Hanus-Illnar A. 2014: Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environmental Pollution 194, 50-59
- König N., Cools N., Derome K., Kowalska A., De Vos B., Fürst A., Marchetto A., O'Dea P., Tartari G.A. 2013: Chapter 22 data quality in laboratories: methods and results for soil, foliar, and water chemical analyses. M. Ferretti, R. Fischer (Eds.), Developments in Environmental Science, Elsevier (2013), pp. 415-453
- Marchetto A., Mosello R., Tartari G., Derome J., Derome K., König N., Clarke N., Kowalska A. 2011: Atmospheric Deposition and Soil Solution Working Ring Test 2009, Project FutMon, Verbania Pallanza, 41 pp.
- MeteoSchweiz 2020: Klimabulletin Jahr 2019. Zürich https://www.meteoschweiz.admin.ch/home/service-und-publikationen/publikationen.html?pageIndex=1&tab=search_tab (Stand am 05.11..2015)
- Palmes E.D., Gunnison A. F., DeMattio J., Tomczyk C. 1976: Personal Sampler for Nitrogen Dioxide. Am. Ind. Hyg. Assoc. J., 37, (10), 570-577
- PSI & uwe 2007: Verursacher von Feinstaub, Teilbericht 1 PSI: Januar Februar 2006, Teilbericht 2 uwe: Daten- analyse Reiden 2005/06, Paul Scherrer Institut / Umwelt und Energie Kanton Luzern
- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/ (Stand 05.11.2020)
- Rihm B., Achermann B. 2016: Critical Loads of Nitrogen and their Exceedances. Swiss contribution to the effects-oriented work under the Convention on Long-range Transboundary Air Pollution (UNECE). Federal Office for the Environment, Bern. Environmental studies no. 1642: 78 p. https://www.bafu.admin.ch/bafu/de/home/themen/luft/publika-tionen-studien/publikationen/Critical-Loads-of-Nitrogen-and-their-Exceedances.html (Stand 5.11.2020)
- Rihm B., Künzle T. 2019: Mapping Nitrogen Deposition 2015 for Switzerland. Technical Report on the Update of Critical Loads and Exceedance, including the years 1990, 2000, 2005 and 2010. Meteotest, Bern, commissioned by the Federal Office for the Environment (FOEN). https://www.bafu.admin.ch/dam/bafu/en/dokumente/luft/externe-studien-berichte/mapping-nitrogen-deposition-2015-for-switzer-land.pdf.download.pdf/Mapping%20Nitrogen%20Deposition%202015%20for%20Switzerland.pdf. (Stand 05.11.2020)

- Roth T., Kohli L., Rihm B., Achermann B., 2013: Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agriculture, Ecosystems and Environment 178: 121-126
- Roth T., Kohli L., Rihm B., Amrhein V., Achermann B. 2015: Nitrogen deposition and multi-dimensional plant diversity at the landscape scale. R. Soc. open sci. 2: 150017. http://dx.doi.org/10.1098/rsos.150017 (Stand 05.11.2020)
- Schrader F, Brümmer C. 2014: Land use specific ammonia deposition velocities: a review of recent studies (2004-2013). Water Air Soil Pollut 2114, 2-12
- Seitler E., Schnyder R., Rihm B. 2020: Ammoniak-Immissionsmessungen in der Schweiz, Beschreibung der Standorte und Daten. Bezugsquelle: FUB, 8640 Rapperswil
- Seitler E., Meier M. 2020: Ammoniak-Immissionsmessungen in der Schweiz 2000 bis 2019. Messbericht. Bezugquelle: https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/studien.html (Stand 05.11.2020)
- Spreafico M., Weingartner R. (eds.) 2005: Hydrologie der Schweiz, Ausgewählte Aspekte und Resultate. Berichte des BWG, Serie Wasser, Nr. 7 – Bern
- Schmitt M., Thöni L., Thimonier A., Waldner P. 2005: Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots: comparison of the throughfall and the inferential method. Atmospheric Environment 39, 1079-1091
- Thimonier, A., Kosonen, Z., Braun, S., Rihm, B., Schleppi, P., Schmitt, M., Seitler, E., Waldner, P., Thöni, L. 2019): Total deposition of nitrogen in Swiss forests: comparison of assessment methods and evaluation of changes over two decades. Atmospheric Environment, 198, 335-350. https://doi.org/10.1016/j.atmosenv.2018.10.051 (Stand 05.11.2020)
- Thimonier A., Schmitt M., Waldner P., Rihm B. 2005: Atmospheric deposition on Swiss Long-term Forest Ecosystem Research (LWF) plots. Environmental Monitoring and Assessment 104: 81-118
- Thöni L., Seitler E., Blatter A., Neftel A. 2003: A passive sampling method to determine ammonia in ambient air. J. Environ. Monit. 5, 96-99
- Thöni L., Brang P., Braun S., Seitler E., Rihm B. 2004: Ammonia monitoring in Switzerland with passive samplers: patterns, determinants and comparison with modelled concentrations. Environmental Monitoring & Assessment 98, 93-107
- Thöni L., Seitler E. 2010: Stickstoff- & Elementdeposition OSTLUFT 2000 bis 2008. Bericht an die OSTLUFT, Geschäftsleitung, Stampfenbachstr. 12, Postfach, 8090 Zürich. http://www.ostluft.ch/fileadmin/intern/LZ_Information/Publikationen/Fachberichte/BE_StickstoffElementdeposition2000-2008_PT_201002.pdf (05.11.2020)
- Turner H. 1985: Nebelniederschlag. In: SGTK (Schweizerische Geotechnische Kommission) & GK/SNG (Hydrologische Kommission der Schweizerischen Naturforschenden Gesellschaft): Der Niederschlag in der Schweiz (p. 159–164). Beiträge zur Geologie der Schweiz – Hydrologie Nr. 31, Bern
- UNECE 2003: Expert workshop on empirical critical loads for nitrogen deposition on (semi-)natural ecosystems. Summary report prepared by the organizers. United Nations Economic Commission for Europe (UNECE), Executive Body for the Convention on Long-range Transboundary Air Pollution. Working Group on Effects. EB.AIR/WG.1/2003/14.
- UNECE 2010: Empirical critical loads and dose-response relationships. Workshop held from 23 to 25 June 2010 in Noordwijkerhout, the Netherlands. Convention on Long-range Transboundary Air Pollution, Working Group on Effects, 13 July 2010, ECE/EB.AIR / WG.1 / 2010 / 14
- Uwe 2015: https://uwe.lu.ch/downloads/uwe/jahrbuch/Daten/Niederschlag/SMA6450Marbach/6450.PDF (Stand 05.11.2020)
- VDI 3869 Blatt 3 2010: Messen von Ammoniak in der Aussenluft; Probenahme mit beschichteten Diffusionsabscheidern (Denudern); Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin
- VDI 3869 Blatt 4 2012: Messen von Ammoniak in der Aussenluft; Probenahme mit Passivsammlern; Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin
- VDI 4320 Blatt 3 2017: Messung atmosphärischer Depositionen Bestimmung der Deposition von wasserlöslichen Anionen und Kationen - Probenahme mit Bulk- und Wet-Only-Sammlern. Beuth Verlag GmbH, 10772 Berlin

- Waldner P., Schaub M., Graf Pannatier E., Schmitt M., Thimonier A., Walthert L. 2007. Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded? In: Paoletti E., Schaub M., Bytnerowicz A. (eds.). Air Pollution and Global Change: Key Studies of the Effects on Forest Vegetation. Environmental Monitoring and Assessment (Special Issue) 128:5-17
- Waldner P., Marchetto A., Thimonier A., Schmitt M., et al. (32 co-authors) 2014: Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmospheric Environment 95, 363-374

Abkürzungen und Definitionen

Aerosol	Heterogenes Gemisch aus festen und flüssigen Schwebeteilchen in einem Gas, hier in der Luft
BAFU	Bundesamt für Umwelt
CLe	Critical Level. Ökologisch kritische Konzentration eines Schadstoffes in der Luft gemäss UNECE. Be- lastungsgrenze zur Beurteilung der direkten Einwirkung von gasförmigen Luftschadstoffen auf emp- findliche Rezeptoren.
CLe-NH ₃	Critical Level von Ammoniak
CLN	Critical Load für Stickstoff. Ökologisch kritische Eintragsrate für stickstoffhaltige Luftschadstoffe ge- mäss UNECE (empirische CLN). Belastungsgrenze zur Beurteilung des trockenen und nassen Ein- trags von stickstoffhaltigen Luftschadstoffen in empfindliche Ökosysteme.
Deposition	Flächenbezogener Stofffluss von der Atmosphäre in Ökosysteme. Einheit kg ha-1
DON	Dissolved organic nitrogen, gelöster organischer Stickstoff im Niederschlag
Eintrag	Gleichbedeutend wie Deposition
Emission	Schadstoffausstoss an der Quelle
Empa	Forschungsinstitut im ETH-Bereich; Materialien und Technologien
Gesamtstickstoff- eintrag	In diesem Bericht: Summe der Stickstofffrachten von NO3 ⁻ und NH4 ⁺ (aus Gravitationsdeposition und Aerosol), NO2, NH3 und HNO3
Gravitations- deposition	Eintrag durch nassen Niederschlag (Regen, Schnee, Graupel ect.) und sedimentierenden Staub
HNO ₃	Salpetersäure (hier gasförmig)
HONO	Salpetrige Säure
IAP	Institut für Angewandte Pflanzenbiologie
Immissionen	Schadstoffe am Ort des Einwirkens
Inferential technique	Bestimmung des N-Eintrags in Wälder durch Messung der Gas- und Aerosol-Komponenten im Frei- land und multiplizieren mit einer spezifischen v _d
Interzeption	Trägheitsabscheidung (Auskämmen), hier von Aerosolen
J	Jura (Naturraum nach Gutersohn 1973)
Konzentration	Schadstoffmenge pro Volumen (Luft oder Niederschlag)
LANUV	Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (D)
Laubwald	< 50 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog
LfU	Bayerische Landesamt für Umwelt (D)
LRV	Luftreinhalte-Verordnung (LRV)
LUBW	Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (D)
LWF	Langfristige Waldökosystemforschung (der WSL)
М	Mittelland (Naturraum nach Gutersohn 1973)
Midefix	Minidenuder-Minifilter-Einheit

Mischwald	Mischwald 50 - 65 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog
Ν	Elementsymbol für Stickstoff
Nadelwald	Nadelwald > 65 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog
NH₃	Ammoniak
NH4 ⁺	Ammonium (in Gravitationsdeposition und Aerosol)
NO ₂	Stickstoffdioxid
NO ₃ -	Nitrat (in Gravitationsdeposition und Aerosol)
Nxy-N	Stickstoff aus stickstoffhaltigr Komponente, z.B. NH ₃ -N = ammoniakalischer Stickstoff
NA	Nordalpen (Naturraum nach Gutersohn 1973)
NABEL	Nationales Beobachtungsnetz für Luftfremdstoffe (BAFU und Empa)
Ökosystemtyp	Zuordnung mit Hilfe von map.geo.admin.ch, Geokatalog
PAN	Peroxiacetylnitrat, Salpetersäureanhydrid der Peroxiethansäure, CH3C(O)OONO2
SA	Südalpen (Naturraum nach Gutersohn 1973)
SEn	Service de l'environnement, Ct. Fribourg
SMUL	Sächsisches Staatsministerium für Umwelt und Landwirtschaft (D)
Sufix	Summenfilter
TWW	Trockenwiesen und -weiden von nationaler Bedeutung
UGZ	Umwelt- und Gesundheitsschutz – Stadt Zürich
Vd	Depositionsgeschwindigkeit
vTi	Johann Heinrich von Thünen-Institut, Braunschweig (D)
UNECE	United Nations Economic Commission for Europe
"wet&dry"	Sammler zur getrennten Erfassung von nasser und trockener Deposition. Durch einen Regensensor gesteuert werden zwei Gefässe wechselseitig zugedeckt bzw. freigegeben.
"wet only	Wet-only- oder Regensammler erfasst die nasse Deposition aus der Atmosphäre. Die Sammelöffnung ist nur bei Niederschlagsereignissen geöffnet.
Wiese	Wies- und Ackerland (Annahme gedüngt) sowie alpines/subalpines Grasland und Trockenwiesen (An- nahme ungedüngt)
WSL	Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft
ZA	Zentralalpen (Naturraum nach Gutersohn 1973), in dieser Arbeit wird das Urserental dazugenommen