Empa Überlandstrasse 129 CH-8600 Dübendorf T +41 44 823 47 43 F +41 44 823 47 93 www.empa.ch

BAFU Abt. Klima, Oekonomie, Umweltbeobachtung Hr. Klaus Kammer Postfach 3003 Bern

Untersuchungsbericht Nr. 451'388, int. 511.2414

Auswertung der Lärmmonitoring-Daten 2008

Auftraggeber: BAFU, Abteilung Klima, Oekonomie, Umweltbeobachtung

Ihr Auftrag vom: 15. Dezember 2008

Anzahl Seiten: 16

Inhaltsverzeichnis

Zu	usammenfassung	2
1	Auftrag	2
2	Einleitung	2
3	Vorgehen	2
4	Ergebnisse 4.1 Camignolo	5 7 9 11 13
5	Diskussion	15

Eidg. Materialprüfungs- und Forschungsanstalt

Abteilung Akustik Dübendorf, 6.2.2009 Sachbearbeiter:

Abteilungsleiter:

Kurt Heutschi Kurt Eggenschwiler

Zusammenfassung

In einer zweistufigen Prozedur wurden die MFM-U Strassenlärmmonitoringdaten vom 1.1.2008 bis zum 31.12.2008 aufbereitet. Dabei wurde das ganze Jahr 2008 als Einheit sowie jeder Monat separat ausgewertet. In einem ersten Schritt wurden pro Standort anhand der Verkehrszahlen, Geschwindigkeiten und Messwerte Korrekturen zum Emissionsmodell von SonRoad bestimmt. Im zweiten Schritt wurden schliesslich die totalen durchschnittlichen Freifeldemissionspegel in 1 m Abstand berechnet, unter der Annahme, dass der ganze Verkehr auf eine Spur konzentriert würde. Die Aufschlüsselung in verschiedene Fahrzeugkategorien ergab für das Jahr 2008 tags akustische Energieanteile des Güterschwerverkehrs zwischen 9 und 63 %, nachts zwischen 8 und 55 %. Dabei zeigten Camignolo und Rothenbrunnen die geringsten, Tenniken die grössten Güterschwerverkehrsanteile.

1 Auftrag

Mit Vertrag vom 15.12.2008 beauftragte das BAFU, Abteilung Klima, Oekonomie, Umweltbeobachtung die EMPA, Abteilung Akustik mit der Auswertung und Aufbereitung der MFM-U Lärmmonitoringdaten 2008.

2 Einleitung

Das MFM-U Strassenlärmmonitoring erfolgt an jedem Standort mittels zweier je auf einer Seite der Autobahn installierter Mikrophone. Die Nähe der Messpositionen zu den Fahrspuren führt dazu, dass die Mikrophonpegel sowohl von den Fahrzeugemissionen als auch von der befahrenen Fahrspur abhängen. Dieser Fahrspureinfluss ist unerwünscht, da dadurch systematische Abhängigkeiten z.B. von der Verkehrsstärke auftreten können. So ist zu erwarten, dass nachts bei schwachem Verkehr die meisten Fahrzeuge auf der Normalspur verkehren. Tagsüber bei hohem Verkehrsaufkommen verteilen sich die Fahrzeuge auf die Normal- und Überholspur. Da bei gleicher Emission ein Fahrzeug auf der Überholspur im Vergleich zu einem Fahrzeug auf der Normalspur rund 2 dB tiefere Pegel am Mikrophon erzeugt, liegen nach einer Korrektur für die Verkehrsstärke und die Geschwindigkeit die Pegel tags systematisch tiefer als in der Nacht. Für die Kommunikation der Emissionen an den MFM-U Standorten wäre es vorteilhaft, diesen Fahrspureffekt zu kompensieren. Überdies ist es wünschenswert, die Emissionen getrennt für den Güterschwerverkehr und den übrigen Verkehr auszuweisen.

In der EMPA-Untersuchung 432'309 [1] wurden für alle MFM-U Monitoringstationen die Ausbreitungsdämpfungen von den einzelnen Fahrspuren zu den Mikrophonen bestimmt. Es ist damit in Kenntnis der Geschwindigkeiten und der Verkehrsdaten pro Fahrspur im Prinzip möglich, aus den Monitoringdaten auf die durchschnittliche Emission der beiden (akustisch motivierten) Fahrzeugkategorien Personen- und Lastwagen zu schliessen [2]. Die Kategorisierung in Personen- und Lastwagen ist durch das Quellenmodell aus SonRoad [3] bedingt. Die Emissionskennwerte können als fundamentale Beschreibungsgrössen des Fahrzeugparkes auf dem jeweiligen Belag angesehen werden. In einem zweiten Schritt werden anhand dieser Emissionswerte, der Geschwindigkeiten und der Verkehrszahlen die totalen Emissionen der Strasse berechnet.

3 Vorgehen

Die Grundlage bildeten folgende Daten:

- Verkehrszahlen: Stundenwerte pro Fahrspur und SWISS7 Fahrzeugkategorie (siehe Tabelle 1)
- ASTRA Zählerinformationen: für jedes Einzelereignis mit Geschwindigkeit und Aufschlüsselung nach Fahrzeugkategorie, bzw. stündliche Geschwindigkeitsmittelwerte pro Fahrspur und Fahrzeugkategorie (Camignolo und Moleno)
- Lärmmonitoringdaten: Leq-Halbstundenwerte pro Mikrophon als A-Pegel und in Terzbändern

Überdies wurde auf das akustische Emissionsmodell aus SonRoad [3] sowie auf die akustischen Ausbreitungsdämpfungen von den einzelnen Fahrspuren zu den Mikrophonen [1] zurückgegriffen.

Klassennummer	Fahrzeugkategorie
1	Busse/Cars
2	Motorräder
3	Personenwagen
4	Lieferwagen
5	Lastwagen
6	Lastenzüge
7	Sattelzüge

Tabelle 1: SWISS7 Fahrzeugklassierung.

In einem ersten Auswerteschritt wurden die halbstündigen Akustikdaten zu Stundenwerten zusammengefasst. Dies wurde durch energetische Mittelwertbildung jeweils zweier Halbstundenwerte erreicht.

Der Verkehr wurde in vier Sammelkategorien zusammengefasst:

PW umfasst die SWISS7 Kategorien 3 und 4

LW umfasst die SWISS7 Kategorien 1, 2, 5, 6, und 7

Güterschwerverkehr umfasst die SWISS7 Kategorien 5, 6 und 7

übriger Verkehr umfasst die SWISS7 Kategorien 1...4

In einem nächsten Schritt wurden die Stunden mit überwiegend PW Verkehr detektiert, wobei folgende Bedingung gestellt wurde: (Anzahl PW) > $30 \times (Anzahl \ LW)$. Dies sind naturgemäss primär Nacht- und Wochenendstunden.

Anhand der ASTRA Zählerinformationen wurden für jede Stunde die durchschnittlichen Geschwindigkeiten für die Kategorien *PW* und *LW* getrennt nach Normalspur und Überholspur bestimmt. Da die ASTRA Zählerinformation nicht vollständig ist, wurden mittlere Geschwindigkeiten als Funktion der Tagesstunde bestimmt. Für die Stunden ohne ASTRA Zählerinformation wurden die entsprechenden Schätzwerte angenommen.

Basierend auf dem akustischen Emissionsmodell aus SonRoad und in Kenntnis der Ausbreitungsdämpfungen wurden mittels der Verkehrszahlen und Geschwindigkeiten in den Kategorien PW und LW die zu erwartenden Mikrophonpegel berechnet [1]. Im Vergleich mit den tatsächlich gemessenen Pegeln wurden jene 30% der Werte verworfen, die die grössten Differenzen Messung-Berechnung aufwiesen. Damit wurden aussergewöhnliche Situationen wie Stau oder nasse Fahrbahnen etc. ausgeschlossen.

In einer Optimierungsprozedur wurde die quadratische Fehlersumme Messung-Berechnung minimiert, indem an den Emissionstermen von SonRoad eine Korrektur vorgenommen wurde. Dies geschah zuerst nur durch Variation des PW Emissionswertes, wobei dafür lediglich die Messperioden mit überwiegend PW Verkehr herangezogen wurden. In einem zweiten Umlauf wurde der LW Emissionsterm variiert, wobei hier alle Messperioden berücksichtigt wurden. Nach Abschluss dieser Optimierung lagen zwei Korrekturwerte G_{PW} und G_{LW} vor, die die Abweichung der Emissionen in den beiden Kategorien PW und LW gegenüber SonRoad beschreiben.

In einem letzten Schritt wurden schliesslich im Sinne eines Mittelwertes die entstandenen Emissionen für die ganze Strasse bestimmt. Dazu wurde an jedem MFM-U Standort der Verkehr auf eine Spur konzentriert und der resultierende A-bewertete $Leq_{\rm tot}$ in 1 m Abstand unter Freifeldbedingungen, d.h. ohne Bodeneinfluss ausgewiesen (siehe Gl. 1 bis 4 bzw. [1] und [3]). Diese Berechnung verwendete das Emissionsmodell von SonRoad mit den gefundenen Korrekturwerten $G_{\rm PW}$ und $G_{\rm LW}$, die Verkehrszahlen und Geschwindigkeiten. Der $Leq_{\rm tot}$ ist für den Gesamtverkehr und für den $G_{\rm LW}$ ausgewiesen und zwar getrennt für den Tag (6-22 Uhr) und die Nacht (22-6 Uhr).

$$Leq_{tot} = 10 \log \left(\sum_{j,k} 10^{0.1(G_j + Leq_{j,k})} \right)$$
 (1)

mit

 G_j Pegelanpassung für die beiden Fahrzeugkategorien (j = PW bzw. LW)

$$Leq_{i,k} = L_{W,A,i,k} - 28.5 - 10\log(v_{i,k}) - 7.5 + 10\log(N_{i,k})$$
(2)

mit

 $L_{\mathsf{W},\mathsf{A},j,k} \\ v_{j,k} \\ N_{j,k}$

A-bewerteter Schallleistungspegel eines Fahrzeuges der Kategorie j auf der Spur k Mittlere Fahrzeugeschwindigkeit eines Fahrzeuges der Kategorie j auf der Fahrspur k in km/h Stündliche Verkehrsmenge der Kategorie j auf der Fahrspur k

$$L_{\mathsf{W},\mathsf{A},\mathsf{PW},k} = 28.5 + 10\log\left(10^{0.1(7.3 + 35\log(v_{\mathsf{PW},k}))} + 10^{0.1\left(60.5 + 10\log\left(1 + \left(\frac{v_{\mathsf{PW},k}}{44}\right)^{3.5}\right)\right)}\right) \tag{3}$$

$$L_{\mathsf{W},\mathsf{A},\mathsf{LKW},k} = 28.5 + 10\log\left(10^{0.1(16.3 + 35\log(v_{\mathsf{LW},k}))} + 10^{0.1\left(74.7 + 10\log\left(1 + \left(\frac{v_{\mathsf{LW},k}}{56}\right)^{3.5}\right)\right)}\right) \tag{4}$$

mit

 $v_{j,k}$ Fahrzeuggeschwindigkeit der Kategorie j auf der Spur k [km/h]

Die Rechnung für den *Güterschwerverkehr* verwendete die *Güterschwerverkehr*-Verkehrszahlen, jedoch die Quellenleistung und Geschwindigkeiten der *LW*-Kategorie. Der dadurch verursachte Fehler lässt sich als gering abschätzen. Zum einen macht der Fahrzeuganteil der zwar zur *LW*-Klasse, aber nicht zur *Güterschwerverkehr*-Klasse gehört (SWISS7 Kategorien 1 und 2) stationsabhängig typisch weniger als 30% aus. Zum anderen liegt die gemittelte Quellenleistung der SWISS7 Kategorien 1 und 2 in der gleichen Grössenordnung wie die gemittelte Quellenleistung der SWISS7 Kategorien 5 bis 7. Eine leichte Überschätzung des *Güterschwerverkehr-Leq*tot ergibt sich aus dem Umstand, dass die verwendete *LW*-Geschwindigkeit mit den zusätzlichen Kategorien Busse/Cars und Motorräder tendenziell etwas höher liegen dürfte als die effektive *Güterschwerverkehr*-Geschwindigkeit.

Nebst der gemäss LSV vorgegebenen Tag/Nacht-Aufschlüsselung wird zusätzlich der sogenannte day-eveningnight-Pegel L_{den} ausgewertet. Dabei wird die Lärmbelastung durch einen einzigen Pegel dargestellt, wobei zur Abbildung der erhöhten Störwirkung in den Abend- und Nachtstunden eine entsprechende Gewichtung vorgenommen wird:

$$L_{den} = 10 \log \left[\frac{d}{24} \cdot 10^{0.1L_d} + \frac{e}{24} \cdot 10^{0.1(L_e + K_e)} + \frac{24 - d - e}{24} \cdot 10^{0.1(L_n + K_n)} \right]$$
 (5)

 L_d entspricht dem L_{eq} während den Tagstunden, L_e dem durchschnittlichen Abendpegel und L_n dem durchschnittlichen Nachtpegel. Der Zuschlag K_e entspricht 5 dB, K_n ist 10 dB. Bei der Definition des Abend-zeitintervalls besteht ein gewisser Spielraum. Da in der Schweiz noch keine Einteilung festgelegt wurde, wird hier die Abenddefinition von Deutschland übernommen, obwohl auf Grund der unterschiedlichen Arbeitszeiten abweichende Vorstellungen betreffend den Feierabend bestehen dürften. Es wird angenommen, dass der Tag von 6 bis 18 Uhr (d=12), der Abend von 18 bis 22 Uhr (e=4) und die Nacht von 22 bis 6 Uhr dauert.

Im folgenden Abschnitt *Ergebnisse* werden pro Standort die Emissionskorrekturwerte zu SonRoad, die mittleren Geschwindigkeiten, die durchschnittlichen stündlichen Verkehrsmengen auf allen Fahrspuren sowie die Freifeldemissionspegel als Leq in 1 m Abstand ausgewiesen. Zusätzlich sind die prozentualen Anteile der akustischen Energie der einzelnen Fahrzeugkategorien angegeben.

4 Ergebnisse

4.1 Camignolo

- Stundenmittelwerte der Geschwindigkeiten von 2008-01-01 bis 2008-12-31
- Verkehrs- und Lärmdaten von 2008-01-01 bis 2008-12-31

	Jahr	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
G-PW	1.1	1.4	1.1	0.5	1.1	1.4	0.9	0.6	0.8	1.5	1.4	1.7	1.8
G-LW	-0.9	0.1	-0.2	-0.3	-0.8	-1.6	-1.9	-1.1	-1.8	-1	-0.3	0.1	0.2
v-PW-Tag	117	116.5	117.6	116.8	116.7	117.2	118.2	116.8	117	117.1	117	116.4	116.7
v-PW-Nacht	117.5	115.3	119	117.9	117.2	117.3	119.1	118.2	116.7	117.8	118.7	116.1	116.4
v-LW-Tag	93.9	90.8	91.2	92.6	93.1	96.2	96.4	95.7	99	94.7	93.5	91.4	91.7
v-LW-Nacht	98	93.6	95.2	96.6	97.3	98.6	100.8	101.1	102.4	98.1	97.5	95.4	95.3
N-LW-Tag	204	191	230	205	233	196	220	235	149	231	224	196	147
N-LW-Nacht	27	24	27	28	29	27	29	33	24	29	29	25	22
N-Tot-Tag	2664	2144	2384	2517	2730	2795	2783	3165	3122	2989	2850	2313	2220
N-Tot-Nacht	585	404	442	509	519	616	633	943	905	605	537	439	466
L-LW-Tag	82.2	82.7	83.2	82.7	82.8	81.4	81.7	82.7	80.2	82.7	83.2	82.8	81.7
L-LW-Nacht	73.7	73.8	74.2	74.3	74.1	73.1	73.2	74.7	72.6	73.9	74.6	74.1	73.7
L-Rest-Tag	88.2	87.4	87.7	87.4	88.3	88.9	88.3	88.6	88.8	89.1	88.9	88.1	88.1
L-Rest-Nacht	81.9	80.3	80.7	80.8	81.4	82.3	82.2	83.7	83.5	82.4	82	81.1	81.4
L-Tot-Tag	89.2	88.7	89	88.7	89.4	89.6	89.2	89.6	89.4	90	89.9	89.2	89
L-Tot-Nacht	82.5	81.2	81.6	81.7	82.1	82.8	82.7	84.2	83.8	83	82.7	81.9	82.1
v-PW-Tag6-18	116.7	116.6	117.7	116.7	116.3	116.7	117.5	116	116.6	116.7	116.9	116.5	116.7
v-PW-Evening	118.1	116.1	117.3	117.2	118.1	119	120.9	120.1	118.7	118.7	117.2	115.9	116.8
v-LW-Tag6-18	93.5	90.6	91	92.3	92.7	95.9	95.9	95	98.2	94.3	93.2	91.2	91.3
v-LW-Evening	96	92	92.3	94.1	94.9	97.7	99	99.1	102.8	96.8	95.3	92.5	93.7
N-LW-Tag6-18	231	213	260	229	263	219	248	264	170	263	256	223	165
N-LW-Evening	125	127	139	130	143	124	136	147	86	137	129	113	91
N-Tot-Tag6-18	2842	2280	2545	2665	2896	2975	2999	3374	3317	3215	3043	2475	2379
N-Tot-Evening	2131	1739	1901	2065	2234	2256	2136	2539	2535	2331	2278	1825	1743
L-LW-Tag6-18	82.7	83.1	83.7	83.2	83.3	81.9	82.1	83.2	80.7	83.2	83.7	83.4	82.2
L-LW-Evening	80.2	81	81.1	80.8	80.8	79.6	79.8	80.9	78.1	80.6	80.9	80.5	79.7
L-Rest-Tag6-18	88.5	87.7	87.9	87.7	88.4	89	88.6	88.9	89.1	89.5	89.1	88.4	88.4
L-Rest-Evening	87.5	86.5	86.8	86.7	87.7	88.1	87.5	88	88.2	88.3	88	87.1	87.2
L-Tot-Tag6-18	89.5	89	89.3	89	89.6	89.8	89.5	89.9	89.7	90.4	90.2	89.6	89.3
L-Tot-Evening	88.2	87.6	87.8	87.7	88.5	88.7	88.2	88.8	88.6	89	88.8	88	87.9
L-LW-den	83.5	84	84.4	84.1	84.1	82.9	83	84.3	81.9	83.9	84.4	84.1	83.2
L-Rest-den	90.6	89.5	89.8	89.7	90.5	91.2	90.8	91.8	91.7	91.4	91	90.2	90.3
L-Tot-den	91.4	90.6	90.9	90.8	91.4	91.8	91.5	92.5	92.2	92.1	91.9	91.2	91.1

Tabelle 2: Ergebnisse für das Jahr 2008 in Camignolo. G-PW, G-LW: PW und LW Emissions-Korrekturen zu SonRoad in dB(A); v-PW und v-LW: PW und LW Geschwindigkeiten in km/h; N-LW: durchschnittlicher stündlicher Güterschwerverkehr, N-Tot: durchschnittlicher stündlicher Verkehr gesamt; L-LW, L-Rest, L-tot: Freifeldemission Güterschwerverkehr, übriger Verkehr und Gesamtverkehr (Leq in 1 m) in dB(A), Tag: 6-22, Nacht: 22-6, Tag6-18: 6-18, Evening: 18-22, Lden: Day-Evening-Night-Pegel.

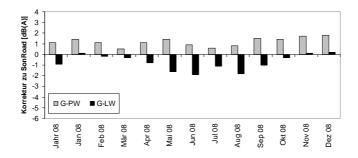


Abbildung 1: Emissions-Korrekturen G gegenüber SonRoad (Standardbelag) für PW und LW an der Messstelle Camignolo.

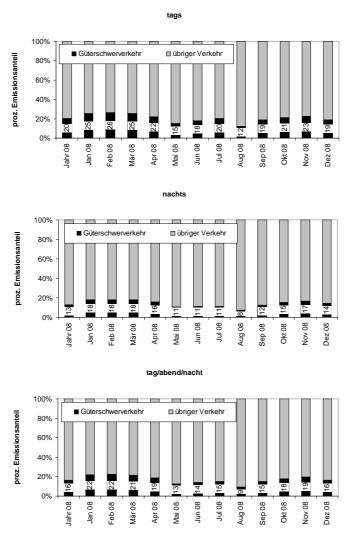


Abbildung 2: Prozentualer Emissionsanteil des Güterschwerverkehrs an der gesamten Energie, tags (oben), nachts (mitte) bzw. tag/abend/nacht (unten) an der Messstelle Camignolo.

4.2 Moleno

- Stundenmittelwerte der Geschwindigkeiten von 2008-01-01 bis 2008-12-31
- Verkehrs- und Lärmdaten von 2008-01-01 bis 2008-12-31

	Jahr	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
G-PW	-0.7	-0.2	-1	-1.1	-1.5	0.1	-0.4	-0.3	-0.8	-0.3	-1.3	-0.4	-0.3
G-LW	-0.8	-0.7	-1	-1.5	0	-1.3	-2	-2.9	-2.2	-1.3	-0.5	-0.2	-0.1
v-PW-Tag	121.7	120.8	123.1	123.4	122.6	122.6	121.9	120.6	121.6	120.9	121.9	120.7	121.2
v-PW-Nacht	120.7	116.6	122.9	123.3	122	121.3	121.9	120.2	119.6	120.7	122.8	118.7	119.3
v-LW-Tag	93.1	89.9	90	91.5	91.7	95.2	95.5	94.9	98.9	93.6	92.6	91.1	92.9
v-LW-Nacht	97	92.5	94.8	96.3	96.5	97.8	98.6	98.4	100.6	97.6	97.2	95.4	96.7
N-LW-Tag	162	160	184	169	190	158	174	187	120	181	175	139	116
N-LW-Nacht	22	19	22	22	24	22	24	29	19	23	23	19	19
N-Tot-Tag	1538	1118	1238	1399	1516	1648	1764	2093	2113	1772	1626	1071	1186
N-Tot-Nacht	331	206	215	280	274	350	377	647	592	347	295	206	229
L-LW-Tag	81.2	81	81.4	80.6	82.6	80.7	80.5	79.9	78.9	81.3	81.8	81	80.5
L-LW-Nacht	72.9	72.1	72.4	72.2	74.1	72.6	72.1	72.1	71.2	72.6	73.4	72.8	72.9
L-Rest-Tag	84.5	83.1	83	83.7	83.9	85.7	85.5	86.1	86	85.4	84.2	83.1	83.8
L-Rest-Nacht	78	76	75.9	77.1	76.7	79	78.9	81.1	80.3	78.5	77.2	76.1	76.8
L-Tot-Tag	86.2	85.2	85.3	85.4	86.3	86.9	86.7	87	86.8	86.8	86.2	85.2	85.5
L-Tot-Nacht	79.2	77.5	77.5	78.3	78.6	79.9	79.7	81.6	80.8	79.5	78.7	77.8	78.3
v-PW-Tag6-18	121.4	120.9	123.2	123.2	122.1	122	121.3	119.8	121.1	120.3	121.6	120.7	121.1
v-PW-Evening	123.2	120.3	122.9	124	124.3	124.8	124.9	124	123.5	123.3	123.2	120.6	121.8
v-LW-Tag6-18	92.9	89.6	89.9	91.2	91.5	95.1	95.4	94.6	98.6	93.5	92.4	90.9	92.5
v-LW-Evening	94.1	90.8	90.5	92.7	93	95.4	96.4	96.7	100.7	94.4	93.4	91.9	94.6
N-LW-Tag6-18	181	175	205	188	210	175	192	207	136	203	197	154	128
N-LW-Evening	108	114	122	111	128	107	114	123	74	115	112	97	83
N-Tot-Tag6-18	1658	1200	1329	1496	1620	1776	1902	2253	2279	1928	1751	1146	1293
N-Tot-Evening	1177	873	965	1106	1203	1263	1286	1595	1612	1304	1264	864	885
L-LW-Tag6-18	81.7	81.4	81.8	81.1	83.1	81.2	80.9	80.3	79.4	81.7	82.3	81.5	80.9
L-LW-Evening	79.5	79.7	79.6	78.9	81	79.1	78.7	78.2	76.9	79.4	80	79.5	79.2
L-Rest-Tag6-18	84.9	83.5	83.3	83.9	84	86.1	85.8	86.3	86.3	85.8	84.6	83.3	84.1
L-Rest-Evening	83.6	82.1	82	82.7	83	84.8	84.4	85.2	85	84.3	83.2	82.3	82.7
L-Tot-Tag6-18	86.6	85.6	85.6	85.7	86.6	87.3	87	87.3	87.1	87.2	86.6	85.5	85.8
L-Tot-Evening	85	84.1	84	84.2	85.1	85.8	85.4	86	85.6	85.5	84.9	84.1	84.3
L-LW-den	82.7	82.4	82.6	82.1	84.1	82.3	81.9	81.5	80.5	82.6	83.2	82.6	82.3
L-Rest-den	86.9	85.2	85	85.9	85.9	88	87.7	89.1	88.7	87.5	86.3	85.2	85.9
L-Tot-den	88.3	87	87	87.4	88.1	89	88.7	89.8	89.3	88.7	88.1	87.1	87.5

Tabelle 3: Ergebnisse für das Jahr 2008 in Moleno. G-PW, G-LW: PW und LW Emissions-Korrekturen zu SonRoad in dB(A); v-PW und v-LW: PW und LW Geschwindigkeiten in km/h; N-LW: durchschnittlicher stündlicher Güterschwerverkehr, N-Tot: durchschnittlicher stündlicher Verkehr gesamt; L-LW, L-Rest, L-tot: Freifeldemission Güterschwerverkehr, übriger Verkehr und Gesamtverkehr (Leq in 1 m) in dB(A), Tag: 6-22, Nacht: 22-6, Tag6-18: 6-18, Evening: 18-22, Lden: Day-Evening-Night-Pegel.

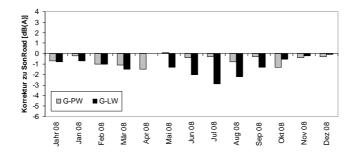


Abbildung 3: Emissions-Korrekturen G gegenüber SonRoad (Standardbelag) für PW und LW an der Messstelle Moleno.

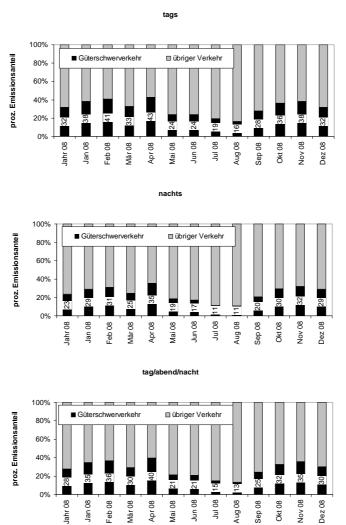


Abbildung 4: Prozentualer Emissionsanteil des Güterschwerverkehrs an der gesamten Energie, tags (oben), nachts (mitte) bzw. tag/abend/nacht (unten) an der Messstelle Moleno.

4.3 Reiden

- ASTRA Einzelereignisdaten von 2008-01-01 bis 2008-12-31
- Verkehrs- und Lärmdaten von 2008-01-01 bis 2008-12-31

	Jahr	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
G-PW	0.3	0.4	0.3	-0.1	0.1	-0.1	-0.2	-0.3	-0.3	0.1	0.1	0.4	0.7
G-LW	-0.6	-0.3	-0.3	-0.2	-0.3	-2.1	-1.3	-1.1	-1.2	-0.7	-0.6	-0.5	-0.2
v-PW-Tag	116.9	117.5	117.7	116.7	117	117.2	117.2	116.6	117	116.7	116.6	117.1	115.7
v-PW-Nacht	116.9	118	118.5	116.9	117.7	117.4	117	115.7	116.4	117.7	117.5	116.5	115.4
v-LW-Tag	93.5	90.8	90.9	91.2	91.4	101.7	97.3	93.1	96.2	92.5	93.8	92	90.1
v-LW-Nacht	96.1	94	93.8	93.7	94.3	103.7	100	95.4	97.7	95.6	96.2	94.1	92.4
N-LW-Tag	310	297	333	302	356	316	328	337	255	341	324	299	245
N-LW-Nacht	66	58	65	62	72	68	68	76	62	73	68	63	57
N-Tot-Tag	2646	2247	2467	2523	2707	2745	2802	2983	2996	2858	2741	2453	2245
N-Tot-Nacht	575	422	437	505	526	606	632	835	818	598	548	497	466
L-LW-Tag	84.4	84.2	84.7	84.4	85	83.9	84.3	84.1	83.1	84.6	84.6	84.2	83.4
L-LW-Nacht	77.9	77.5	77.9	77.8	78.4	77.4	77.8	77.9	77.2	78.2	78.1	77.7	77.3
L-Rest-Tag	87.3	86.5	86.8	86.7	87.1	87.1	87.2	87.3	87.6	87.4	87.2	87	86.7
L-Rest-Nacht	80.7	79.3	79.4	79.8	80	80.6	80.7	81.7	81.7	80.8	80.4	80	79.9
L-Tot-Tag	89.1	88.5	88.9	88.7	89.2	88.8	89	89	88.9	89.2	89.1	88.8	88.4
L-Tot-Nacht	82.5	81.5	81.7	81.9	82.3	82.3	82.5	83.2	83	82.7	82.4	82	81.8
v-PW-Tag6-18	116.6	117.2	117.5	116.6	116.5	116.9	116.7	116.1	116.7	116.4	116.2	117	115.8
v-PW-Evening	118.2	118.4	118.5	117.2	119.4	118.5	119.1	118.9	118.4	118.1	118	117.8	115.3
v-LW-Tag6-18	93.1	90.4	90.5	90.8	91	101.2	96.8	92.4	95.6	92.1	93.4	91.5	89.7
v-LW-Evening	97.1	93.5	93.7	94.2	95	105.3	100.8	97.3	100.4	95.7	96.7	96	93.3
N-LW-Tag6-18	369	352	396	359	422	373	389	398	302	406	384	358	293
N-LW-Evening	136	132	143	136	157	145	145	154	114	146	142	122	101
N-Tot-Tag6-18	2873	2455	2689	2746	2933	2964	3060	3222	3203	3112	2948	2681	2470
N-Tot-Evening	1969	1622	1799	1872	2029	2088	2034	2268	2377	2099	2116	1770	1570
L-LW-Tag6-18	85.1	84.9	85.4	85.1	85.7	84.6	85	84.8	83.8	85.3	85.3	84.9	84.2
L-LW-Evening	81.1	80.9	81.3	81.2	81.8	80.8	81.1	81.1	80	81.1	81.3	80.7	79.9
L-Rest-Tag6-18	87.5	86.9	87.2	86.9	87.3	87.4	87.4	87.6	87.7	87.7	87.4	87.2	87.1
L-Rest-Evening	86.4	85.5	85.8	85.5	86.3	86.2	86.1	86.5	86.8	86.5	86.4	85.8	85.4
L-Tot-Tag6-18	89.5	89	89.4	89.1	89.6	89.2	89.4	89.4	89.2	89.7	89.5	89.2	88.9
L-Tot-Evening	87.5	86.8	87.1	86.9	87.6	87.3	87.3	87.6	87.6	87.6	87.6	87	86.5
L-LW-den	86.4	86.1	86.5	86.4	87	85.9	86.3	86.3	85.4	86.6	86.6	86.2	85.6
L-Rest-den	89.5	88.5	88.7	88.7	89.2	89.4	89.5	90	90.2	89.7	89.4	89	88.8
L-Tot-den	91.3	90.5	90.8	90.7	91.2	91	91.2	91.6	91.4	91.4	91.2	90.8	90.5

Tabelle 4: Ergebnisse für das Jahr 2008 in Reiden. G-PW, G-LW: PW und LW Emissions-Korrekturen zu SonRoad in dB(A); v-PW und v-LW: PW und LW Geschwindigkeiten in km/h; N-LW: durchschnittlicher stündlicher Güterschwerverkehr, N-Tot: durchschnittlicher stündlicher Verkehr gesamt; L-LW, L-Rest, L-tot: Freifeldemission Güterschwerverkehr, übriger Verkehr und Gesamtverkehr (Leq in 1 m) in dB(A), Tag: 6-22, Nacht: 22-6, Tag6-18: 6-18, Evening: 18-22, Lden: Day-Evening-Night-Pegel.

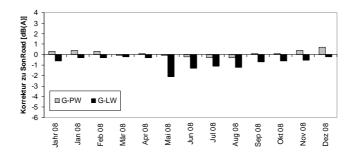


Abbildung 5: Emissions-Korrekturen G gegenüber SonRoad (Standardbelag) für PW und LW an der Messstelle Reiden.

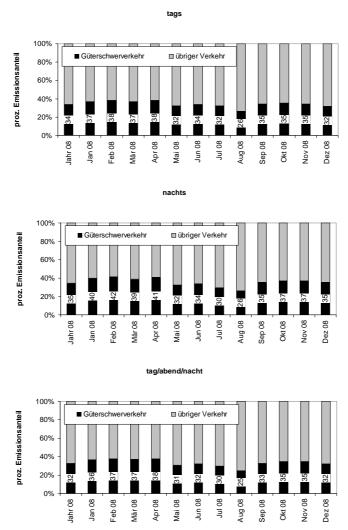


Abbildung 6: Prozentualer Emissionsanteil des Güterschwerverkehrs an der gesamten Energie, tags (oben), nachts (mitte) bzw. tag/abend/nacht (unten) an der Messstelle Reiden.

4.4 Rothenbrunnen

Datengrundlagen:

- ASTRA Einzelereignisdaten von 2008-01-01 bis 2008-12-31
- Verkehrs- und Lärmdaten von 2008-01-01 bis 2008-12-31

	Jahr	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
G-PW	1.1	1.3	1.2	0.9	1.1	0.8	1.3	1.1	0.8	1.6	1.5	1.2	1.9
G-LW	-1.7	0.4	-0.4	0.1	-0.9	-1.9	-3.5	-2.9	-2.8	-2.1	-1.1	-0.1	-0.2
v-PW-Tag	102	101.9	102.6	102.7	102.4	102.6	102.4	102	101.9	101.8	101.7	101	101.3
v-PW-Nacht	101.9	102.6	103.5	102.5	102.1	102.3	102.7	101.8	101.2	102.1	102.2	100.3	99.3
v-LW-Tag	90.5	88.8	88.7	89	89.1	93.2	92	91.8	93.9	90.7	89.4	87.2	88.4
v-LW-Nacht	93.6	93.3	94.4	93.5	94.4	93.9	94.6	95.5	95	93.3	92.5	91.3	90.4
N-LW-Tag	45	35	42	42	50	46	52	55	41	55	50	43	29
N-LW-Nacht	6	5	5	5	6	7	6	7	6	8	6	5	4
N-Tot-Tag	883	696	839	876	775	987	918	1120	1188	984	903	641	686
N-Tot-Nacht	123	85	96	110	103	160	134	193	192	141	108	88	88
L-LW-Tag	74.4	75.3	75.3	75.8	75.6	74.5	73.3	74.2	73.2	74.9	75.4	75.6	73.9
L-LW-Nacht	65.8	67.1	66.7	67.2	66.7	66.3	64.4	65.8	64.9	66.7	66.3	66.6	65.8
L-Rest-Tag	82.1	81.2	81.9	82	81.5	82.6	82.4	83.2	83.2	83	82.5	80.6	81.7
L-Rest-Nacht	73.6	72.5	72.9	73.2	73	74.5	74.2	75.5	75.1	74.7	73.4	72.3	72.8
L-Tot-Tag	82.8	82.2	82.8	82.9	82.5	83.2	82.9	83.7	83.6	83.6	83.3	81.8	82.4
L-Tot-Nacht	74.3	73.6	73.8	74.2	73.9	75.1	74.6	75.9	75.5	75.3	74.2	73.3	73.6
v-PW-Tag6-18	101.9	101.8	102.6	102.6	102.1	102.3	102.1	101.7	101.8	101.6	101.6	101	101.5
v-PW-Evening	102.7	102.6	102.8	103	103.4	103.5	103.5	103.3	102.5	102.8	102.2	100.9	100.4
v-LW-Tag6-18	90.3	88.6	88.3	88.8	88.9	93	91.6	91.4	93.5	90.5	89.2	87	88.2
v-LW-Evening	92.4	90.1	90.7	90.8	90.9	94.8	94.3	93.9	96.1	92.1	91.4	88.7	89.5
N-LW-Tag6-18	52	40	49	48	59	53	60	64	48	64	59	51	34
N-LW-Evening	22	19	22	21	24	23	25	28	21	28	24	19	15
N-Tot-Tag6-18	959	761	915	956	836	1055	998	1209	1281	1071	974	705	762
N-Tot-Evening	653	499	610	636	594	770	678	851	908	725	687	450	458
L-LW-Tag6-18	75	75.9	76	76.4	76.3	75.1	74	74.8	73.8	75.6	76.1	76.3	74.6
L-LW-Evening	71.5	72.8	72.6	72.9	72.6	71.7	70.4	71.5	70.4	72.1	72.3	72.1	70.9
L-Rest-Tag6-18	82.5	81.7	82.3	82.3	81.8	82.8	82.8	83.4	83.6	83.3	82.9	81	82.1
L-Rest-Evening	80.9	79.9	80.7	80.6	80.6	81.5	81.3	82.1	82.1	81.8	81.5	79.2	80
L-Tot-Tag6-18	83.2	82.7	83.2	83.3	82.9	83.5	83.3	84	84	84	83.7	82.3	82.8
L-Tot-Evening	81.4	80.7	81.3	81.3	81.2	81.9	81.6	82.5	82.4	82.2	82	80	80.5
L-LW-den	75.6	76.7	76.5	77	76.7	75.8	74.4	75.5	74.5	76.3	76.4	76.5	75.3
L-Rest-den	83.6	82.7	83.2	83.3	83.1	84.2	84	85	84.9	84.5	83.9	82.1	82.9
L-Tot-den	84.3	83.6	84.1	84.2	84	84.8	84.5	85.4	85.3	85.1	84.6	83.2	83.6

Tabelle 5: Ergebnisse für das Jahr 2008 in Rothenbrunnen. G-PW, G-LW: PW und LW Emissions-Korrekturen zu SonRoad in dB(A); v-PW und v-LW: PW und LW Geschwindigkeiten in km/h; N-LW: durchschnittlicher stündlicher Güterschwerverkehr, N-Tot: durchschnittlicher stündlicher Verkehr gesamt; L-LW, L-Rest, L-tot: Freifeldemission Güterschwerverkehr, übriger Verkehr und Gesamtverkehr (Leq in 1 m) in dB(A), Tag: 6-22, Nacht: 22-6, Tag6-18: 6-18, Evening: 18-22, Lden: Day-Evening-Night-Pegel.

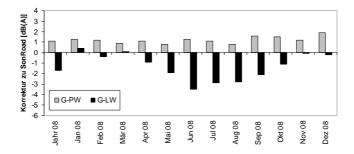


Abbildung 7: Emissions-Korrekturen G gegenüber SonRoad (Standardbelag) für PW und LW an der Messstelle Rothenbrunnen.

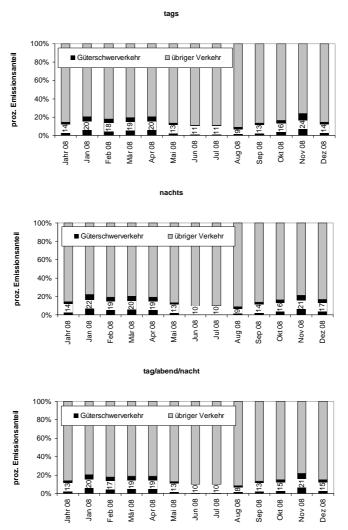


Abbildung 8: Prozentualer Emissionsanteil des Güterschwerverkehrs an der gesamten Energie, tags (oben), nachts (mitte) bzw. tag/abend/nacht (unten) an der Messstelle Rothenbrunnen.

4.5 Tenniken

- ASTRA Einzelereignisdaten (Zähler Eptingen) von 2008-01-01 bis 2008-12-31
- Verkehrs- und Lärmdaten von 2008-01-01 bis 2008-12-31

	Jahr	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
G-PW	-1.4	0.1	-2.9	-0.9	-2.2	-1.4	-2.8	-0.5	-2.5	-0.9	-3.4	-2.5	-0.7
G-LW	-2.6	-3.3	-2.8	-2.1	-1.1	-4.7	-2.8	-5.9	-2.5	-4.2	-0.9	-2.4	-1.1
v-PW-Tag	106.3	108.5	107.4	104.8	106.3	107.1	106.2	104	105.5	107.1	107.2	107.7	104.7
v-PW-Nacht	110.4	111.7	111.7	109.1	108.8	111.2	110.7	109	110.2	111.5	111.2	111.5	108.7
v-LW-Tag	99.6	99.8	99.5	99.5	99.1	100	99.7	99.4	100.1	99.9	99.5	101.1	97.9
v-LW-Nacht	102.7	103	103.4	101.1	100.8	103.9	103.7	104.3	104.8	103.2	101.6	102.3	99.7
N-LW-Tag	352	336	377	345	401	356	377	377	293	380	376	332	280
N-LW-Nacht	53	48	54	54	56	52	53	58	50	56	56	49	47
N-Tot-Tag	2762	2388	2640	2750	2730	2789	2864	3185	3207	2880	2803	2441	2461
N-Tot-Nacht	555	414	455	517	500	572	628	784	795	549	510	463	461
L-LW-Tag	83.8	82.9	83.9	84.2	85.8	81.8	83.9	80.8	83.2	82.6	85.8	83.9	84.2
L-LW-Nacht	75.9	74.9	75.9	76.3	77.5	73.8	75.8	73.2	75.9	74.6	77.8	75.7	76.6
L-Rest-Tag	84.9	85.5	83.3	85.1	84.2	84.7	83.9	85.8	84.7	85.4	83.5	83.3	84.9
L-Rest-Nacht	78.5	78.5	76.5	78.6	77.5	78.5	78.1	80.5	79.2	78.8	76.9	76.6	78.2
L-Tot-Tag	87.4	87.4	86.6	87.7	88.1	86.5	86.9	87	87	87.2	87.8	86.6	87.6
L-Tot-Nacht	80.4	80.1	79.2	80.6	80.5	79.8	80.1	81.2	80.9	80.2	80.4	79.2	80.5
v-PW-Tag6-18	105.6	108	106.9	104	105.6	106.4	105.2	102.9	104.7	106.4	106.8	107.2	104.2
v-PW-Evening	109	110.4	109.2	108.1	108.7	109.7	110	108.3	108.6	109.7	108.7	109.8	107.1
v-LW-Tag6-18	98.8	98.8	98.5	98.5	98.4	99	98.8	98.3	99.2	99	98.7	100.6	97.2
v-LW-Evening	106.3	107.1	106.8	106.8	104.9	107	106.3	106.8	107.2	107.1	105.8	105.6	103.9
N-LW-Tag6-18	419	399	449	410	478	421	448	446	350	454	448	399	338
N-LW-Evening	150	147	162	154	173	163	163	169	124	158	155	131	108
N-Tot-Tag6-18	2978	2589	2839	2971	2930	2982	3111	3428	3423	3113	2992	2653	2698
N-Tot-Evening	2114	1783	2043	2091	2130	2211	2125	2455	2560	2187	2220	1805	1748
L-LW-Tag6-18	84.5	83.6	84.6	84.9	86.5	82.4	84.6	81.4	83.8	83.3	86.5	84.6	84.9
L-LW-Evening	80.9	80.1	81	81.5	82.9	79.2	81.1	78.1	80.2	79.6	82.7	80.3	80.8
L-Rest-Tag6-18	85.1	85.7	83.3	85.3	84.4	85	84.2	86	84.9	85.6	83.6	83.5	85.3
L-Rest-Evening	84.1	84.7	82.5	84.4	83.5	84.2	83.2	85.4	84.3	84.7	82.9	82.4	83.9
L-Tot-Tag6-18	87.8	87.8	87	88.1	88.6	86.9	87.4	87.3	87.4	87.6	88.3	87.1	88.1
L-Tot-Evening	85.8	86	84.8	86.2	86.2	85.4	85.3	86.1	85.7	85.9	85.8	84.5	85.6
L-LW-den	85.3	84.3	85.3	85.7	87.1	83.2	85.3	82.4	84.8	84	87.2	85.1	85.7
L-Rest-den	87.3	87.6	85.4	87.4	86.5	87.3	86.6	88.8	87.6	87.7	85.8	85.5	87.1
L-Tot-den	89.4	89.3	88.4	89.7	89.8	88.7	89	89.7	89.4	89.3	89.6	88.3	89.5

Tabelle 6: Ergebnisse für das Jahr 2008 in Tenniken. G-PW, G-LW: PW und LW Emissions-Korrekturen zu SonRoad in dB(A); v-PW und v-LW: PW und LW Geschwindigkeiten in km/h; N-LW: durchschnittlicher stündlicher Güterschwerverkehr, N-Tot: durchschnittlicher stündlicher Verkehr gesamt; L-LW, L-Rest, L-tot: Freifeldemission Güterschwerverkehr, übriger Verkehr und Gesamtverkehr (Leq in 1 m) in dB(A), Tag: 6-22, Nacht: 22-6, Tag6-18: 6-18, Evening: 18-22, Lden: Day-Evening-Night-Pegel.

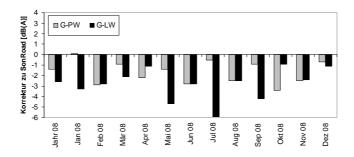


Abbildung 9: Emissions-Korrekturen G gegenüber SonRoad (Standardbelag) für PW und LW an der Messstelle Tenniken.

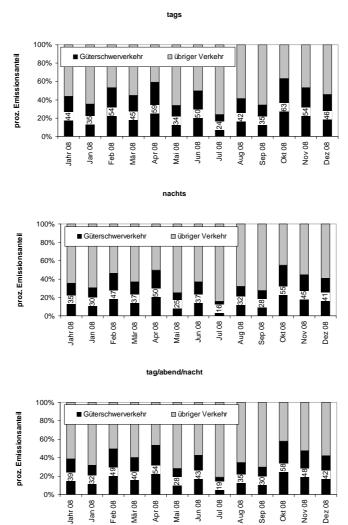


Abbildung 10: Prozentualer Emissionsanteil des Güterschwerverkehrs an der gesamten Energie, tags (oben), nachts (mitte) bzw. tag/abend/nacht (unten) an der Messstelle Tenniken.

5 Diskussion

Die Diskussion bezieht sich im Wesentlichen auf die Korrekturwerte G. Diese Pegelkorrekturen beschreiben die Anpassung des Emissionsmodells aus SonRoad für beste Übereinstimmung Messung-Berechnung. G bildet mögliche Änderungen des Fahrzeugparks (aufgeschlüsselt in die beiden Kategorien PW und LW) und die Belagskorrektur gegenüber dem SonRoad zu Grunde gelegten Schwarzbelag ab.

- Für das Jahr 2008 ergeben sich Güterschwerverkehrsenergieanteile tags zwischen 9 und 63 %, nachts liegen die Werte zwischen 8 und 55 %. Camignolo und Rothenbrunnen zeigen die geringsten, Tenniken die höchsten Schwerverkehrsanteile.
- Die übers Jahr 2008 gemittelten Korrekturen G gegenüber dem Emissionsmodell SonRoad liegen an den Stationen Camignolo und Reiden für PW zwischen 0.3 und 1.1 dB(A), für LW zwischen -0.9 und -0.6 dB(A). In Rothenbrunnen wurden für PW 1.1 dB(A) höhere Pegel registriert, währenddem die Pegel für LW 1.7 dB(A) unter SonRoad liegen. Diese deutlich tiefer liegenden Pegel für LW wurden bereits in früheren Auswertungen beobachtet und könnten unter Umständen mit einem speziellen Fahrzeugmix auf dieser Route zusammenhängen. An den Stationen Moleno und Tenniken ergeben sich als Folge des lärmarmen Belags mit -1.4...-0.7 dB(A) für PW bzw. -2.6...-0.8 dB(A) für LW deutliche Korrekturen gegenüber SonRoad (Standardbelag).
- Gegenüber dem Vorjahr haben die jahresdurchschnittlichen G-Werte an den Stationen Camignolo, Moleno, Reiden und Rothenbrunnen im Mittel um rund 0.2 dB(A) zugenommen. In Tenniken ist der über PW und LW gemittelte G-Wert um 0.2 dB(A) zurückgegangen. Diese Änderungen sind allerdings kleiner als die erwarteten Aussageunsicherheiten [5] und haben damit nur bedingte Aussagekraft.
- An der Station Tenniken sind die über's Jahr auftretenden monatlichen Streuungen der Korrekturen G
 deutlich grösser als an den übrigen Messstellen. Die Ursache dafür liegt im Umstand begründet, dass
 die Verkehrszählung und die Geschwindigkeitsmessung nicht im gleichen Querschnitt wie die akustische
 Messung erfolgt.

EMPA, Abt. Akustik, Bericht-Nr. 451'388, int. 511.2414 Auftraggeber: BAFU, Abt. Klima, Oekonomie, Umweltbeobachtung, 3003 Bern

Seite 16 von 16

Literatur

- [1] EMPA Untersuchungsbericht 432309, int. 511.2206, MFM-U: Ermittlung der akustischen Ausbreitungsdämpfungen, 2004.
- [2] K. Heutschi, Schätzung der mittleren akustischen Leistungen von Personen- und Lastwagen anhand von quellennahen Strassenlärmimmissionsmessungen, Tagung Fortschritte der Akustik DAGA 2005.
- [3] K. Heutschi, SonRoad: New Swiss Road Traffic Noise Model, Acta Acustica united with Acustica, vol. 90, p. 548-554, 2004.
- [4] U. Sandberg, J. A. Ejsmont, Tyre/Road Noise Reference Book, Informex, 2002.
- [5] EMPA Untersuchungsbericht 446412, int. 511.2366, Abschätzung der Unsicherheit der Freifeldemissionspegel im Lärm- monitoring MFM-U, 2007.