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1. Introduction

In May 2014, GeoMod ingénieurs conseils SA has received a contract from the Federal Office for
the Environment (FOEN) in order to evaluate the importance of taking soil structure interaction

into account when performing nonlinear pushover analyses.

1.1 Study objectives and methodology

This study should provide answers to the following questions:

e What is the necessity and potential benefit of taking soil structure interaction into account
when performing finite element seismic assessment of structures (mainly buildings and
bridges) through nonlinear pushover analyses?

e Which constitutive laws and which characteristic values of the soil parameters should be
used to model the soil, so that results remain on the conservative side according to the

principles of the buildings codes?

In order to answer the first question, it has been decided to compare the results of the following
different pushover analyses on an example 5-storey building [1], performed with the finite
element software package ZSOIL [2]:
e 2D structural only analysis, with clamped boundary conditions at terrain level
e 2D structure + soil analysis, considering two types of foundations:
o Shallow isolated foundations

o Rigid mat foundation

The comparison of the results is focused on the bending moment distribution and the maximum
chord rotation for the critical structural elements when the roof top displacement reaches the
displacement demand (target displacement). The detailed assessment of the seismic safety of
the example building is beyond the scope of this study. Whenever possible, a comparison of the
compliance factor values for the critical structural elements with and without taking soil into

consideration is given.

An estimation of the influence of the foundation flexibility on the bending moment distribution
in the elastic domain has also been performed in order to estimate the influence of the

introduction of foundation flexibility in classical seismic force based verification analyses.
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To answer the second question, a parametric study has been conducted on the 2D structure +
soil analysis with shallow isolated foundations, with the following varying parameters:
e Constitutive law used to model the soil: Hardening Soil with small strain extension model
[3] vs. Mohr-Coulomb model
e Soil parameters: use of different elastic moduli E and friction angles ¢ for the Mohr-
Coulomb model
e Seismicity level: Z3b (ag = 1.6 m/s?) vs. Z2 (ag = 1.0 m/s?)

Remark: the validation of the pushover approach with and without soil has been performed on
another example structure by comparing results with the ones given by a time history analysis
considering as seismic input an accelerogram compatible with the pushover demand spectrum.
Details can be found in [4] and [5].

1.2 Problem description

Classical « structural only » pushover analysis assumes that the structure has a rigid foundation
and usually doesn’t consider soil-structure interaction: the foundation is replaced by a fixed
boundary condition at the soil-structure interface. This approach is generally (but not always)
on the safe side. When the rigidity and/or the failure mode of the foundation system contributes
to a substantial amount of the horizontal displacement of the structure under seismic loading,
taking soil structure interaction into consideration will be generally beneficial for the verification
of the structural safety of structural elements (reduction of forces in the structure). Sometimes
neglecting soil structure interaction is not on the safe side (for example for structures that are
sensitive to P-A effects, for structures founded on foundations with very different rigidities, or
for foundations on soft soils). It is then mandatory to include soil structure interaction in the
modelization of the problem. Several research teams have addressed this question in [6] (see
Figure 1.1).
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Figure 1.1 Taking soil structure interaction into account (modified, from [6])

In the pushover method, the capacity curve of the structure is obtained by imposing a force
distribution to the structure and raising it monotonously. The top displacement is then related
to base shear Vb (see Figure 1.2). With the classical structural only pushover method, raising the
external force will increase the bending moment at the base of the structure until it reaches a
yield plateau (red curve in Figure 1.2). Considering the structure-foundation-soil system, the
foundation will transmit the bending moment at the base of the structure to the soil underneath
the foundation and two situations can occur [4]:

e either the plastic moment of the soil is greater than the plastic moment of the structure
(dotted green curve) and the global response (dotted black curve) will be close to the
structural only response: Vpy™#*(structure+soil) will be roughly equal to Vo™#*(structure)

e or the soil’s parameters (or the foundation type and dimensions) are such that the soil’s
plastic moment under the foundation is smaller than the structure’s plastic moment, and
the global response (plain black curve) will be bounded by the soil’s behavior (plain green
curve) which will trigger a rocking phenomenon: the bending moment at the base of the
structure will not reach its plastic value, and Vp™®*(structure+soil) will smaller than

VpMaX(structure)

In conclusion, the influence of taking the foundation and soil into account on the force-
displacement capacity curve can a priori be expected to be anywhere, from negligible to
significant, depending on various factors: soil type, foundation type and dimensions, structural

stiffness.
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Figure 1.2. Structure-foundation-soil system: moment displacement curves [4]

2. Example building description

2.1

Structure

dg

B
®

M,=a(l?/3)
! 4o M
i 87 120Kl

A\ MStI'IJCT

Figures 2.1 to 2.4 summarize the characteristics of the example 5-storey reinforced concrete
building taken from [1] as a reference for this study. For subsequent 2D analyses and for the
sake of simplicity, only frame B will be considered (assumption: frame B is repeated every 5 m).

Figure 2.1.
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Figure 2.2. Example building RC members characteristics
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Figure 2.3. Material parameters (ZSOIL input, given data) and loads

2.2 Seismic action and soil conditions

Figure 2.4 summarizes the parameters that determine seismic action according to SIA 261 [7].

4.1.4 Zone de risque sismique, classe d'ouvrage et
classe du sol de fondation

Dans le cadre de cet exemple, on admet les conditions
suivantes pour I'évaluation sismique:

Zone de risque sismique: Z3b, ag, = l.6mvs?  (24)
Classe d'ouvrage: COIl y, =10 (25)
Classe du sol de fondation: C (26)

Figure 2.4. Seismic zone, importance factor and soil class

According to [7], soil class C corresponds to sand, gravel or moraine deposits with Nspr between
15 and 50. For this study a value of Nspr = 40 has been chosen. The following set of characteristic
mean parameters are estimated:

y = 20 kN/m3, E(static) = 80’000 kPa (see Figure 2.5), ck = 5 kPa, ¢k = 35°
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Figure 2.5. Soil’s elastic modulus estimation [3]
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2.3 Foundation assumptions

Figure 2.1 shows that the example building has a rigid basement floor. In order to study the
influence of the foundation type, two configurations are scrutinized (see Figure 2.6):
e Continuous thick slab (h = 0.5 m, E = 20 GPa)

e Isolated shallow foundations under each column: b =2 m, h = 0.5 m, E = 20 GPa
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Figure 2.6. Foundation types: thick slab (left) and isolated shallow foundations (right)

Remarks:
e As this 2D FE model assumes plane strain conditions, the isolated shallow foundations
case actually corresponds to a strip footing foundation type
e The bearing capacity of the isolated shallow foundations under static loading (Figure 2.3)
has been verified (see Figure 2.7 and [8])
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Figure 2.7 Bearing capacity of isolated shallow foundations (from [8])
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3. 2D pushover analyses of frame B

Remark: for the analyses in this report, it is assumed that a brittle shear failure of the frame
elements can be excluded.
3.1 Structural only analysis

Figure 3.1 illustrates the 2D structural FE model corresponding to frame B. Column and slab

sections are introduced in the model according to Figure 2.2 and 2.3.
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Figure 3.1 2D structural FE model

An initial state is first performed, applying gravity loads (nodal loads corresponding to the
distributed weight at each column’s top?), and then a classical pushover analysis is conducted,
using a uniform force pattern. The resulting capacity curve is given in Figure 3.2. Total shear at
the base reaches about 900 kN, which is in good agreement with the total horizontal force given
in [1], Fig. 18.

2 jt is thus assumed for the sake of simplicity that bending moments in the structural elements are 0 for

the gravity load case (which in reality is not the case, especially for the beam elements).
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Figure 3.2 Structural only pushover analysis, frame B. Capacity curve and comparison with [1]

Figure 3.3

illustrates the demand spectrum, both

in conventional and ADRS formats,

corresponding to Eurocode 8 type 1 spectrum: here a ground acceleration of 0.16 g is

considered, with importance factor = 1.0 and ground type = C.
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Figure 3.3 Seismic demand
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In Figure 3.4, the 1DOF capacity curve (blue) and the elastic demand spectrum (pink) are plotted

in the same graph, and yield the 1DOF target displacement. For this, according to N2 theory

[10], the capacity curve is bi-linearized (brown line) and the demand spectrum is reduced

(nonlinear red spectrum). Figure 3.5 summarizes the pushover analysis and yields the MDOF

target displacement (or displacement demand): 8.8 cm.
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Figure 3.4 Structural only pushover analysis, frame B. Capacity and demand spectra

Pushover analysis report

Item Unit PSH 1/Default
MDOF Free vibr. period........ T [s] 0.596785
SDOF Free vibr. period....... T* [s] 0.976961
SDOF equivalent mass......... M* [kg] 311299
Mass participation factor Gamma - 1.31488
Bilinear yield force value..Fy* [kN] 692.6537
Bilinear displ. atyield....Dy* [m] 0.053794
Target displacement......... Dm* [m] 0.067052
SDOF displacement demand....Dt* [m] 0.06706
ENergy.....cccoeveeennes Em* [kN*m] | 27.81364
Reduction factor............. qu - 1.246607
Demand ductility factor......mi 1.246607
Capacity ductility factor...miC 1.246464
MDOF displacement demand.....Dt [m] 0.088176

Figure 3.5 Structural only pushover analysis, frame B.

Pushover analysis summary and extraction of target displacement

Figure 3.6 illustrates the deformed mesh of the structure corresponding to the top roof target

displacement of 8.8 cm, and corresponding bending moments are given in Figure 3.7 (| max]|:

482 kNm).
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Figure 3.6 Structural only pushover analysis, frame B

Deformed mesh corresponding to target displacement dt = 8.8 cm
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Figure 3.7 Structural only pushover analysis, frame B

Bending moment distribution corresponding to target displacement dt = 8.8 cm

The displacements, chord rotations, inter-storey drifts derived from Figure 3.6 or internal forces
represented in Figure 3.7 should be compared with limit values of resistance or deformation in
order to assess the seismic safety of the structure. A specific chapter of this report is dedicated

to this point (see chapter 4).
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3.2 Structure + soil analysis

3.2.1 Shallow isolated foundations

Figure 3.8 illustrates the 2D structure + soil FE model corresponding to frame B on isolated
foundations (see also Fig. 2.6, right). In the reference case, the HSS constitutive law is used to
model the soil, with soil C characteristic parameters according to §2.2. As for the structural only
case, an initial state is first performed, applying gravity loads (nodal loads corresponding to the
distributed weight of the structure at each column’s top + distributed soil’s unit weight all over
the soil domain), and then a pushover analysis is conducted, using once again a uniform force
pattern applied to the structure only (multiplier for the soil’s mass matrix = 0).
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Figure 3.8 2D structure + soil FE model (shallow isolated foundations)

The resulting capacity curve is given in Figure 3.9 and in Figure 3.10, the 1DOF capacity and
demand spectra are plotted in the same graph, yielding the 1DOF target displacement. Figure
3.11 summarizes the pushover analysis and vyields the MDOF target displacement (or
displacement demand): 12.3 cm (higher than the 8.8 cm obtained in the structural only case,

due to the foundation’s flexibility and the rocking’s phenomenon).
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Figure 3.9 Structure + soil pushover analysis, frame B (shallow isolated foundations)
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Figure 3.10 Structure + soil pushover analysis, frame B (shallow isolated foundations)

Capacity and demand spectra

Pushover analysis report

Item

MDOF Free vibr. period........ T

SDOF Free vibr. period......T*

SDOF equivalent mass......... M*

Mass participation factor Gamma

Bilinear yield force value..Fy*

Bilinear displ. at yield....Dy*

[Target displacement......... Dm*

SDOF displacement demand....Dt*

ENergy.....ccoceeennenne Em*

Reduction factor............. qu

Demand ductility factor......mi

Capacity ductility factor...miC

MDOF displacement demand.....Dt

Unit PSH 1/Default
[s] 0.840514
[s] 1.359520061
[kg] 402954
- 1.31941]
[kN] 634.3961679
[m] 0.073708332]
[m] 0.093231987
[m] 0.09324022
[kN*m] 35.76587353
- 1.264988878
1.264988878
- 1.264877177
[m] 0.123022079|

Figure 3.11 Structure + soil pushover analysis, frame B (shallow isolated foundations)

Pushover analysis summary and extraction of target displacement
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Figure 3.12 illustrates the deformed mesh of the structure corresponding to the top roof
displacement of 12.3 cm, as well as the stress level in the soil (SL = 1 in brown corresponds to
a plastic state). Corresponding bending moments are given in Figure 3.13 (max: -258 kNm at
the bottom of the lower columns, and +316 kNm at the top of the lower columns): soil
plastification and associated rocking phenomenon are found to reduce significantly the maximal
bending moment found in the structural only case (-482 kNm).
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Figure 3.12 Structure + soil pushover analysis, frame B (shallow isolated foundations)
Deformed mesh (x 50) and stress level corresponding to target displacement dt = 12.3 cm
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Figure 3.13 Structure + soil pushover analysis, frame B (shallow isolated foundations)

Bending moment distribution corresponding to dt = 12.4 cm
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3.2.2 Thick slab foundation

Figure 3.14 illustrates the 2D structure + soil FE model corresponding to frame B on thick slab
foundation (see also Fig. 2.6, left).
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Figure 3.14 2D structure + soil FE model (thick slab foundation)

The resulting capacity curve is given in Figure 3.15 and in Figure 3.16, the 1DOF capacity and
demand spectra are plotted in the same graph, yielding the 1DOF target displacement. Figure
3.17 summarizes the pushover analysis and yields the MDOF target displacement (or
displacement demand): 11.2 cm.
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Figure 3.15 Structure + soil pushover analysis, frame B (thick slab foundation)

Capacity curve
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Figure 3.16 Structure + soil pushover analysis, frame B (thick slab foundation)

Capacity and demand spectra

Pushover analysis report

Item Unit PSH 1/Default

MDOF Free vibr. period........ T [s] 0.836596
SDOF Free vibr. period....... T* [s] 1.225429744
SDOF equivalent mass......... M* [ke] 401745
Mass participation factor Gamma - 1.33014
Bilinear yield force value..Fy* [kN] 742.5613829
Bilinear displ. at yield....Dy* [m] 0.070307067
Target displacement......... Dm* [m] 0.084025659
SDOF displacement demand....Dt* [m] 0.084032062
Energy......ccccevvunnnne. Em* [kN*m] 36.29055307
Reductionfactor............. qu - 1.195215021
Demand ductility factor......mi - 1.195215021
Capacity ductility factor...miC - 1.195123946
MDOF displacement demand.....Dt [m] 0.111774407

Figure 3.17 Structure + soil pushover analysis, frame B (thick slab foundation)

Pushover analysis summary and extraction of target displacement
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Figure 3.18 illustrates the deformed mesh of the structure corresponding to the top roof
displacement of 11.2 cm, as well as the stress level in the soil. Corresponding bending moments
are given in Figure 3.19 (max: -482 kNm at the bottom of the lower columns): this time, the
thick slab’s thickness prevents the rocking phenomenon to happen and the maximal bending

moments in both the structural only and the structure + soil cases are found to be equal.
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Figure 3.18 Structure + soil pushover analysis, frame B (thick slab foundation)
Deformed mesh (x 50) and stress level in soil corresponding to dt = 11.2 cm

| STikT} 750 Tod i) Tinh 150 1200 250 T30
200 -4 8158+002
B
i) gﬁ % [ % e
-2 34%e002
L 150 V(t
= 3 .
- /4 /4 E PN
226] 5| = g 1.245e+001
78] i [a7 1 0] 2] 5] 7] [+]
[ 108 A % 9.477e+001
07| | 1.771e+002
o
o M
EICIF 227 310 _J 203 371 53] ) [ g 3
5 I
25 577 3
L s0 o
180 _s| 177] 3 250 _J 700) 220 O
= 5
| 3417es002
O
i 333 53] -a17] ) o

UNIT
[keem]

TIME - 0 000[] PUSHOVER, PSH /DS COMTROL DISPL: 113000
ZSOIL 13.10 License . GEOMOD 2014 Project: D0211_cadreB PO _soilStruct LD nodall. BIGF_c5phids HSS E0B00 T-shapedOK Date 15 9.2014 1338

Figure 3.19 Structure + soil pushover analysis, frame B (thick slab foundation)

Bending moment distribution corresponding to target displacement dt = 11.2 cm
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3.2.3 Parametric studies

Different parametric studies have been conducted on the soil + structure case, with isolated

foundations:

- Use of Mohr-Coulomb constitutive model instead of HSS, with ¢(M-C) = ¢(HSS) = 35°
and E(M-C) = Eo(HSS) = 800 MPa

- Within the Mohr-Coulomb model, use E = 120 MPa (corresponding to somewhere between
loading and unloading moduli) instead of 800 MPa

- Within the Mohr-Coulomb model, use ¢ = 33° instead of 35°

- Change seismic demand (ground acceleration of 0.10g instead of 0.16g)

Figure 3.20 gives the capacity curves corresponding to the different computed cases.
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Figure 3.20 Pushover analysis of frame B

Comparison of capacity curves, parametric study
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692.6537468

658.7684476)

581.8733938

608.3042528

634.3961679

Tables 3.1 (ag = 0.16g) and 3.2 (ag = 0.10g) summarize the pushover results for the
aforementioned studies.
Item Unit Structonly MCE800 phi35 MCE120 phi35 MCE800 phi33 | HSS E0800 phi35 HS,S E0800 ph|35
big foundation
MDOF Free vibr. period......T sl 0596785, 0.800796] 1.07811 0.802771] 0.840514| 0.836596,
. ) .
pPOF Free vibr. period......T [s] 0.976960966]  1.271963381]  1.607603057|  1.294799843|  1.359520061]  1.225429744
: .
pPOF equivalent mass....... M [ke] 311299 394034 464753 394251 402954 401745
Mass participation factor Gamma - 131488 131923 1.42099 1.31906 131941 133014
Bilinear yield force value..Fy* [kN]

742.5613829

ilinear displ. at yield...Dy [m] 0.053793915|  0.068515459]  0.081960426]  0.065522972]  0.073708332|  0.070307067
H *
[farget displacement.......Dm [m] 0.067052149 008726019 0.110229905|  0.088783015|  0.093231987|  0.084025659
H *
pPOF displacement demand...Dt [m] 0.067059847|  0.087268925|  0.110265418] _ 0.088789118 0.09324022|  0.084032062,
. .

A Em (kN*m] 27.813644]  34.91634853 40.2945535|  34.07813426]  35.76587353|  36.29055307
) 1.246606565  1.273711457 1345349493  1.355083803|  1.264988878|  1.195215021

pemand ductility factor.....mi . 1246606565 1.273711457|  1.345349493|  1.355083803|  1.264988878|  1.195215021

(Capacity ductility factor...miC - 1.246463461) 1273583962 1.344916207|  1.354990655|  1.264877177|  1.195123946,

MDOF displacement demand.....Dt [cm] 8.8 115 15.7 11.7 123 11.2

IMmax lower columns at Dt [kNm] 482 344 411 345 337 482

Gain on Mmax [%] - -28.8 -14.9 -28.6 -30.2 -0.2

Table 3.1 2D Pushover analysis of frame B. Parametric study,

forag = 0.16 g

Item Unit Structonly MCES00 phi35 | MCE120 phi35 | MCES00 phi33 | HSS EO800 phi3s Hz?gigﬁgg;?;is
MIDOF Free vibr. period......T [s) 0.596785 0.800796 1.07811 0802771 0.840514 0.836596
SDOF Free vibr. period......T* [s] 0.991272432 1.303588674 1.622768732) 1.315012813 1.397791253 1.241586529
PPOF equivalent mass........M* [ke] 311299 394034 464753 394251 402954 401745
Mass participation factor Gamma . 131488 131923 1.42099 131906 131941 133014
Bilinear yield force value..Fy* [(kN] 692.6537468J 658.7684476|  581.8733938]  608.3042528 6343961679  742.5613829)
Bilinear displ. at yield...Dy* (m] 0.055381509|  0.071964865  0.083514103|  0.067584683]  0.077916598  0.072173227
[farget displacement.......Dm* [m] 0.152105135| 0151603587 0.140746944]  0.151623126|  0.151582904  0.150360112)
PDOF displacement demand...Dt* [m] 0.042527486]  0.055865578]  0.069565869 0.05637374|  0.059930249  0.053223862
A Em* (kN m] 86.17608697|  76.16756855  57.50958461]  71.67696703| 7144861827  84.85508727
Reduction factor............. qu - 1 1 1 1 1 1
Pemand ductility factor.....mi . 3.576631238] 2713720882 2.023218375 2.689605581 2.529322108]  2.825050759)
(Capacity ductility factor...miC . 2.746496776 2.106633393 1685307491 2.243453971 1945450767 2.083322554)
MDOF displacement demand.....Dt [m] 5.6 7.4 9.9 7.4 7.9 7.1

Mmax lower columns at Dt [kNm] 421 316 330 311 319 408

(Gain on Mmax %] - -24.9 216 26.1 242 3.1

Table 3.2 2D Pushover analysis of frame B. Parametric study, forag = 0.10 g
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Reading the results, it is difficult to be conclusive on whether to use min. or max. characteristic
values of strength and stiffness soil parameters in order to be on the safe side. Smaller values
of E, c and ¢ lead to a bigger rocking phenomenon and hence lower the bending moment at the
bottom of the lower columns, but Table 3.3 shows we should be careful about the value at the
top of these columns, as the soil’s, foundation’s and floor’s stiffness all play a role in the column

bending moment distribution.

VD) [kN/ structural onl HSS thick slab HSS isolated M-Cisolated M-Cisolated M-Cisolated
(Dt) [kN/m] rUCtUratonly | e =800 MPa ¢ =35° | ;=800 MPa ¢ =35° | E=800MPa ¢ =35° | E=800 MPa ¢ =33° | E=120 MPa § = 35°

| |

ower columns 246 300 339 312 338 411
max. top

| |

ower columns 482 482 258 331 282 173

max. bottom

Table 3.3 Moment in lower columns (at top/bottom) corresponding to target displacement

Conclusions:

- Sensibility analyses with characteristic soil parameters taken from their minimal to their
maximal values should be performed in order to remain on the safe side.

- Neglecting SSI for the design of frame structures on isolated footings is not on the safe
side as some structural elements could be potentially under-designed. For the seismic
verifications of such structures, the critical structural elements could be misidentified and

structural measures implemented at the wrong place.
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4.

4.1

Considerations on seismic assessment with/without soil

Definitions

According to [1] (introduction and §4.2.3) or [11] (§9.1), the seismic verification of a structure

is based on the determinant compliance factor oefr for all structural members (including

foundation elements). The compliance factor can be computed:

Either force based by dividing the seismic action for which the design resistance of the
determinant structural member is reached by the verification value of the seismic action
(in some simple cases the force based compliance factor can be obtained by dividing the

design resistance Rd by the effect of the considered actions Eq)

Or displacement based by dividing the displacement capacity of the structure wr,q by the
displacement demand due to the seismic action wq (the target displacement obtained by
the pushover method in our case). The displacement capacity wr,qd is computed based on
the ultimate displacement capacity wu divided by a partial factor yp as wr,d = wu/yp. The
partial factor yp has a value of 1.3 for reinforced concrete structures. The displacement
based compliance factor can be computed also for each structural member as the
deformation capacity of the structural member divided by the deformation demand for
the structural member. A displacement based approach is only possible if brittle failure

modes can be excluded.

Remarks:

Determining a displacement based compliance factor requires a careful analysis to

determine at which point the structure has reached its ultimate capacity (see also [1]).

Though theoretical failure loads can be retrieved through numerical modeling for simple

III

frames (see Figures 4.1 and 4.2), the “numerical” global displacement capacity wu of a

complex structure can be difficult to estimate.

Typically, for RC structures, chord rotations 6r,d and 64 are compared at the member’s

(column, wall, beam) level (see [11], §6.2.1).
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In the following chapters, two different approaches are briefly developed to assess the influence

of soil structure interaction on the compliance factor of the example building based on the

previous considerations:
- Force based, by using the elastic part of the push-over capacity spectrum, similarly to a

linear replacement forces method (§4.2)
- Deformation based, by comparison of column’s chord rotations (§4.3)

F
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| |I = I II [ |II I III
|/ i I} 1
if I/ 1 I
S &
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Fig. 3.2: Simple example of a mechanism.
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Fig. 2.14: Elastic-plastic analysis of a portal frame.

Figure 4.1. Theoretical elastic-plastic analysis of a portal frame (from [13])
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4.2 Use of the elastic part of the push-over capacity spectrum

According to [12], the following method could be used in order to evaluate the impact of taking

soil into account in a classical force based linear replacement forces method:

- Choose a reference point in the elastic part of the pushover capacity spectrum, and
store corresponding reference internal efforts Erer

- Compute a “global” scaling factor: f = Sae,demand / (Saeref ) (S€e Figure 4.3)

- Compute the force-based verification internal efforts E¢« by multiplying Erer by the scaling
factor f and then dividing the result by the appropriate behavior factor q.

- Compute aerf force based

S

ae,demand

ae,ref

Reference point . d*

Figure 4.3. Definition of factor f

Applying this method to the building described in sections 3.1 (structure only, see Figures 4.4
and 4.5) and 3.2.1 (structure + soil on shallow isolated foundations, see Figures 4.6 and 4.7)

leads to the design bending moments comparison given in Table 4.1.
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Figure 4.4. Definition of factor f and corresponding global displacement (structure only)
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Figure 4.5a. Corresponding reference bending moments (structure only)
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Figure 4.5b. Corresponding reference normal forces (structure only)
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Figure 4.6. Definition of factor f and corresponding global displacement (structure+soil)
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Figure 4.7a. Corresponding reference bending moments (structure+soil)
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Figure 4.7b. Corresponding reference normal forces (structure+soil)
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structure only structure+soil
d el 3.6cm d el 5cm
scaling 2.5 scaling 2.5
M(d_el) M(scaled) M(d_el) M(scaled)
Column [kNm] [kNm] [kNm] [kNm]
1 bottom -122 -305 -158 -395
1 top -3 -8 116 290
2 bottom -257 -643 -144 -360
2 top 58 145 158 395
3 bottom -294 -735 -139 -348
3 top 95 238 171 428
4 bottom -327 -818 -135 -338
4 top 134 335 195 438
5 bottom -269 -673 -165 -413
5 top 92 230 175 438
Beam

A left -123 -308 -144 -360
A right 126 315 110 275
B left -139 -348 -174 -435
B right 150 375 134 335
C left -150 -375 -178 -445
C right 164 410 163 408
D left -165 -413 -236 -590
D |right 185 463 58 |64 |

Table 4.1. Comparison of bending moments for both “structure only” and “structure+soil”

cases (Erer and Erer * f), without considering behavior factor q

Remark:

- Foundation flexibility is shown to drastically reduce the verification values of the bending
moments at the columns bottom. However, in the structure+soil case, values at the top
of the columns increase as soil, foundation and floor stiffness all play a role in the column
bending moment distribution. In the structure + soil case, the verification values of the
bending moments for the beam elements and the top part of the columns are

systematically higher than for the structure only case.
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4.2.1 Comparison of force-based compliance factors for columns and isolated

footings

For the example building on isolated footings, a behavior factor of q = 1.5 has been selected
as the resistance of the soil is lower than the resistance of the structure (soil reaches design

bearing capacity before columns reach their design structural resistance).

e In the structure only case: the lowest compliance factor for the columns is
oeff = 0.80 (column 4; Mg = 545 kNm; Ng = 1’200 kN; Mra = 440 kNm)

e In the structure+soil case: the lowest compliance factor for the columns is
oeff = 1.32 (column 5; Mg = 292 kNm; Ng = 1’200 kN; Mrda = 387 KNm)

e In the structure only case: the lowest compliance factor for the isolated footings is
oeff = 0.51 (footing 4; bearing capacity; Na= 1200 kN, Md = 545 kNm, Va4 = 240kN)

e In the structure+soil case: the lowest compliance factor for the isolated footings is
aeff = 0.80 (footing 5; bearing capacity; Na= 1’055 kN, Mg = 275kNm, V4 = 177kN)

Remarks:

- For the soil + structure case, only one set of characteristic values for the soil has been
used. As explained in 3.2.3 a sensitivity analysis should be performed by varying the soil
parameters between their upper and lower bounds.

- For the determination of the compliance factor of the columns the ratio Mra / Md has been
used as the moment for gravity loads only is assumed 0 in the structural elements
(simplification for the sake of illustration). It is also assumed that shear failure is not
determinant for the columns.

- For the determination of the compliance factor for the isolated footings, the more general

definition of the compliance factor has been used.
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4.3 Chord rotation of columns, with/without soil
Figure 4.8, taken from [11], illustrates graphically the computation of the chord rotation for

reinforced concrete members.
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Figure 4.8. Chord rotation computation (taken from [11], top and [13], bottom)

SC - M942
Lausanne, January 5th, 2016 - v6



Nonlinear pushover analyses M942 EE%MS%

Taking soil into account Page 33

According to Figure 3.5, the target displacement of the structure only case reaches 8.8 cm. The
maximal chord rotation for the columns on the bottom floor is 64 = 0.0073 rad (column 5,
bottom). In the structure+soil case (shallow isolated foundations), Figure 3.11 indicates a target
displacement of 12.3 cm. The maximal chord rotation for the columns on the bottom floor is
04 = 0.0025 rad (column 5, bottom). The ultimate chord rotation for column 5 has been
computed as 0y 0.007 rad. Thus, the displacement based compliance factor for column 5 can be

computed as:

e Structure only: aeff = (0.007/1.3)/0.0073 = 0.74
e Structure+soil: aeff = (0.007/1.3)/0.0025 = 2.15

In the structure+soil system, foundations are weaker than the structural elements (they reach
their nominal resistance first). In this situation, it is not clear what criteria should be used in
order to declare that the structure+soil system has reached its ultimate displacement capacity

in a push-over analysis. This aspect has not been further investigated in this study.

Remark:
For the structure+soil case, only one set of characteristic values for the soil has been
used. As explained in 3.2.3 a sensitivity analysis should be performed by varying the soil

parameters between their upper and lower bounds.
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5. Conclusions

This study shows that for the example building built on isolated shallow foundations, pushover
analysis taking soil into account leads to maximum internal forces (or member curvatures)
smaller than the ones obtained when neglecting soil (structural only pushover analysis with fixed

boundary conditions).

The distribution of the bending moments in the structure is also substantially different, which
shows that neglecting soil structure interaction for a frame structure on isolated footings can be

potentially on the unsafe side for some structural elements.

In the example treated in this report, a reduction of 20% to 30% of the maximal bending
moments in the critical columns on the ground floor is obtained (see Figures 3.21 and 3.22 and
chapter 4.1), which leads to higher compliance factor for the structural members. On the other
hand, if the building is built on a rigid foundation (for instance: on a thick continuous slab or on

a pile raft with a stiff basement floor, see Figure 5.1), no significant reduction is observed.
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Figure 5.1 3D Pushover analysis in X direction, with stiff walls in basement

Deformed mesh corresponding approximately to target displacement dt = 17 cm
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In order to trigger the foundation’s rocking phenomenon, the soil must be modeled with an
adequate elasto-plastic constitutive law. Simple (Mohr-Coulomb) or advanced (Hardening soil
with Small strain extension) constitutive laws can be used. Characteristic (and not design)
parameters (E, c, ¢) given by the geotechnician should be introduced carefully in the soil’'s model,
as well as interface elements. Sensitivity analyses should be performed on these characteristic
values, as variations in the values of E and ¢ will decrease the internal loads or deformations for
some structural members and increase them for others. In most cases it is not possible to know
beforehand which combination is the determinant one. The N2 pushover method [10] used in
this study is one of many nonlinear static procedures which have emerged in the last two decades
in order to assess seismic safety of structures. Open topics that would be worth future research
include:

- Testing the influence of soil structure interaction in the framework of other nonlinear
static procedures (capacity spectrum method (or CSM) for instance)

- Comparing the results of nonlinear pushover static analyses to the ones of nonlinear time
history analyses

- Analyze the influence of taking soil structure interaction for other relevant structures in
Switzerland, such as bridge foundations.
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Figure 5.2 Structure + soil time history with DRM analysis, frame B (shallow foundations)
Reduced model top floor horizontal displacement

Hypothesis: seismic input (accelerogram) is coherent with demand spectrum
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