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1. Summary

Due to its commitments to limitations and reductions of greenhouse gas emissions, Switzer-

land has to provide annual reports of its carbon stocks in forests to the United Nations

(UN). The reported values are based on empirical 10-year mean values of large-scale

biomass estimates by the Swiss National Forest Inventory (NFI), but the annual de-

viations from these mean values are estimated by means of the mechanistic ecosystem

simulation model BIOME-BGC that simulates biogeochemical and hydrologic processes

assuming these are a function of climate and general life-form characteristics. It was the

aim of this study (1) to validate these simulation-model-based estimates of tree growth by

a large sample of tree ring width measurements for Norway spruce (Picea abies) collected

immediately after the storm Lothar in winter 2000 and (2) to suggest alternative ways of

estimating the annual deviations from the empirical 10-year mean values.

The measured tree ring widths for 1650 trees from 104 locations did not correlate

with the predictions of the mechanistic simulation model BIOME-BGC. Provided that

tree ring width is a suitable proxy of annual tree biomass increment, the conclusion is

that the calculation method for the annual greenhouse gas reporting to the UN based on

the mechanistic model BIOME-BGC should be abandoned. The calculation method, as

currently applied by the Swiss Federal Office for the Environment (FOEN), additionally

implements a statistical modelling approach. However, the statistical models are solely

used to bypass the use of BIOME-BGC for the prediction of annual biomass deviations

since the latter was considered to be to difficult to handle in everyday use.

As an alternative to the currently applied calculation method, we suggest to dis-

card the mechanistic modelling approach and to continue using a statistical modelling

approach, the later being changed in two important ways. First, the response variables

should be empirically obtained, i.e. measured biomass data (or proxies thereof) instead

of biomass data obtained via mechanistic simulation models such as BIOME-BGC. The

reason is that BIOME-BGC does not gain biomass data independently from explana-

tory variables and thus misleadingly overestimates the amount of explained variance by

basically expressing autocorrelation. Estimates of actual biomass increments could be
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obtained from the planned annual surveys of the NFI or an annual sampling specifically

designed for the purpose of the greenhouse gas reporting. We replaced the simulated

BIOME-BGC based biomass data with our measured tree ring widths as the response

variable in the statistical models and used the same set of explanatory variables as ap-

plied in the statistical models of the FOEN. It was found that, although only a relatively

small part of the variance in tree ring width is explained, the estimated prediction error

is at maximum c. 4 % (average departure of predicted values from real values). There-

fore, and considering the missing correspondence between the biomass data simulated by

BIOME-BGC and our measurements, such models could be used as a replacement for the

currently applied ones. Second, we suggest to extend the set of explanatory variables by

characteristics of forest water balance. We applied a simple hydrologic model that sim-

ulates the amount of available water in forest soils based on climate data and estimates

of forest evapotranspiration and soil characteristics. Simple drought criteria based on the

simulated soil water availability were used as additional explanatory variables in the sta-

tistical models. In most cases, these variables did not significantly improve our models,

but on the other hand, there were cases where the forest water balance based drought

criteria were the most significant of all predictors. Work on drought criteria based on

the hydrologic model will therefore be continued in order to be able to develop improved

prediction models.
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2. Introduction

2.1 Switzerland’s greenhouse gas inventory and car-

bon fluxes in forests

With the ratification of the United Nations Framework Convention on Climate Change

(UNFCCC, http://unfccc.int/) on 10 December 1993 and more specifically with the

ratification of the Kyoto Protocol (KP, an addition to the UNFCCC treaty) on 9 Au-

gust 2003, Switzerland entered greenhouse gas (GHG) emission limitation and reduction

commitments. The signees of the UNFCCC and the KP have to submit an annual report

on their GHG inventory in the form of the so-called National Inventory Report (NIR)

which serves to control the countries’ compliance with their commitments. Prior to sign-

ing the Kyoto protocol (KP) on 16 March 1998, Switzerland decided to take its forests

as a potential source or sink of carbon into account (article 3.4 of the protocol):

[. . . ] human-induced activities related to changes in greenhouse gas emissions

by sources and removals by sinks in the agricultural soils and the land-use

change and forestry categories shall be added to, or subtracted from, the

assigned amounts [. . . ]

Therefore, forest management activities and their impact on forests’ carbon stocks are

part of Switzerland’s GHG inventory and listed in the NIR (Heldstab et al. 2009).

2.2 Current calculation method for annual carbon

fluxes in forests

In order to assess the carbon budget of forests on an annual basis, the annual fluxes of

CO2 have to be recorded. The difference of the yearly gain and loss of biomass in terms

of wood is translated into an equivalent amount of CO2 and is taken as an estimate of

the CO2 balance of Swiss forests (Thürig & Schmid 2008). Whereas data on the yearly
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biomass loss through forestry activities are available (Pasi et al. 2009), reliable empirical

estimates on biomass gain through tree growth are based on the Swiss National Forest

Inventory (NFI, see Brassel & Brändli 1999) which has so far been conducted only once

per decade and is only now being reorganised to implement an annual sampling scheme.

Because annual rather than 10-year average based biomass estimates were needed, Thürig

& Schmid (2008) developed a calculation method for the Swiss GHG inventory which al-

lowed them to predict annual (positive and negative) deviations from the empirical 10-year

mean values. They employed the mechanistic ecosystem simulation model BIOME-BGC

that simulates biogeochemical and hydrologic processes assuming these are a function of

climate and general life-form characteristics (as described in Thornton et al. 2002). First,

they used BIOME-BGC to simulate the carbon pools for the five production regions of the

NFI, and they did so separately for three altitudinal ranges, for deciduous and coniferous

forests, furthermore handling the Eastern and Western Alps separately for the two lower

altitudinal range. These combinations of NFI production region, altitudinal range, and

forest type were termed (and will be referred to as) strata by Thürig & Schmid (2008).

Then, they determined the size of the simulated carbon pool for each year and used these

values to get estimates of yearly forest biomass gain (assuming specific carbon contents

of wood). These annual values were afterwards standardised by dividing them by their

10-year mean. The resulting dimensionless values were termed climate correction factors

(Thürig & Schmid 2008) and were suggested to be interpreted as the relative annual devi-

ation of forest biomass from the long-term mean in a specific stratum. The idea was that

an empirical 10-year biomass estimate from the NFI could be multiplied by the simu-

lated annual climate correction factor of the corresponding production region, altitudinal

range, and forest type to obtain an annual biomass value that could be reported in the

GHG inventory.

Ideally, the simulated biomass values of BIOME-BGC would have been used directly

for the calculation of the climate correction factors of forest growth. However, to simplify

everyday application and since the handling of BIOME-BGC seems to be rather labori-

ous, Thürig & Schmid (2008) used the biomass data simulated by BIOME-BGC in yet

another (but now statistical) modelling step as the response variable in multiple linear

regression models for each stratum. They used summary statistics (such as annual sum of

precipitation, mean temperature during growing period, etc.) of the same climatic data

that were already used for the BIOME-BGC simulations as explanatory variables in the

multiple linear regression models. Subsequently, the regression models were simplified by

removing non-significant predictors by an undescribed procedure (see Thürig et al. 2006,
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a report with more technical details on which Thürig & Schmid 2008 is based and which

we cite interchangeably). To report annual forest gross growth in the NIR (Heldstab et al.

2009), these statistical models are used to predict climate correction factors which are

then in turn used to “correct” the NFI 10-year mean values of gross growth.

2.3 Validation of current calculation method

Ultimately, i.e. over periods of 10 years, the reported gross growth is based on the NFI

estimates and should thus have a sound empirical basis. However, current estimation of

annual deviations is based on the mechanistic simulation model BIOME-BGC and thus

primarily on climatic data (Thürig & Schmid 2008). Moreover, the auxiliary statistical

modelling approach of the calculation method for the GHG inventory suffers from cir-

cular reasoning because the predictive accuracy of the multiple regression equations was

assessed by comparison with the output of the (mechanistic simulation) model BIOME-

BGC which in turn is used as the response variable in the (statistical) multiple regression

models (Thürig & Schmid 2008). Comparison of multiple regression models with regard to

their predictive accuracy should, however, be based on response variables independently

obtained from the explanatory variables — which was clearly not the case.

Candidates for independently derived response variables are empirical tree growth

measurements. These measurements serve as proxies for actual biomass increments. For a

study on the association between wood properties and windthrow damage, a large sample

of wood cores has been collected (Meyer et al. 2008). In the study at hand, the annual

ring widths of these wood cores serve as a measure for tree growth and were planned to

be used to validate the output of the mechanistic simulation model BIOME-BGC and

the auxiliary multiple regression equations, respectively.

The only data available from the currently applied GHG inventory calculation method

(Thürig & Schmid 2008) are climate correction factors. Furthermore, no gold standard

for the actual annual Swiss forest gross growth is available with which one could compare

either the currently applied calculation method or alternative methods such as the ones

suggested here. Thus we initially had to define how to validate these data by means of our

measurements. Because climate correction factors as defined by Thürig & Schmid (2008)

are (1) standardised values and (2) averaged over large areas, we had to define a variable,

based on our tree ring width measurements, that is at least qualitatively comparable.

We decided to base our comparisons on detrended annual tree ring width averaged over

the same strata (i.e. combinations of NFI production region, altitudinal range and forest
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type) as used by Thürig & Schmid (2008). The details of how the detrended annual tree

ring widths are obtained are outlined in section 3.4.2. Validation is done with a subset

of the data since Meyer et al. (2008) restricted themselves to a sampling of the most

abundant tree species of Switzerland, Norway spruce (Picea abies), in the Swiss Jura

mountains and the Swiss Plateau plus a few measurements taken in the Prealps, i.e. our

results should at least be applicable to coniferous forests in these regions.

Prior to validation of the models, we describe the wood core data set in detail since

such high resolution data sets on forest growth in Switzerland are rare and might thus

be of general interest. Next, we use forest growth as estimated by the tree ring width

measurements to validate the models developed by Thürig & Schmid (2008). Finally, we

present alternative approaches for estimating the carbon inventory of Swiss forests.
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3. Material and methods

3.1 Sampling procedure

Coworkers of Meyer et al. (2008) visited storm damaged forests during February and

March 2000 right after the windstorm“Lothar”had hit Western and Central Europe on 26

December 1999. A sampling scheme could not be set up in advance because the primary

aim was to determine chemical wood properties of damaged trees, and thus sampling

had to take place while temperatures were still low to keep biological degradation of

the wood as small as possible. Furthermore, only a fraction of the damaged areas had

been cartographed by the public authorities before sampling started. Site selection was

done arbitrarily by driving by car through parts of the Swiss Jura mountains and the

Swiss Plateau and visual inspection of forests for windstorm damage. The selection of the

resulting 104 forest sites was thus on the one hand biased towards accessibility by roads

and on the other hand by the necessity to have been affected by the windstorm Lothar

(Fig. 3.1). A whole range of studies were conducted in order to unravel potential causes of

tree breakage or uprooting during Lothar (Indermühle et al. 2005). Generally, it was found

that it was mostly wind speed and the occurrence of turbulances that explained most of

the variance in the risk of a tree to be damaged. For the residual variance, important

predictors were tree species, tree species mixture, forest height, height differences between

forests, and acidity of the soil (Indermühle et al. 2005). Although we cannot exclude the

possibility that some of these factors led to a bias in site selection which may be relevant

for the estimates derived further below, the influence is probably negligible and thus we

feel confident that the selected sites are close to a random sample of forest sites over the

sampled area.

At each site, it was attempted to arbitrarily select at least five broken, five uprooted

and five undamaged “control” trees that had been located in immediate viccinity to dam-

aged trees, i.e. 15 trees in total. Only the conifer Picea abies , the tree species in Switzer-

land which was by far most affected by Lothar (and at the same time the most abundant

tree species in Switzerland), was sampled. Not all sites contained trees of all three damage
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Figure 3.1 Location of the 104 sampling sites in the Swiss Jura, Plateau and Prealps. The

map projection’s x and y coordinate units are metres. (Relief map © 2007 Federal Office of

Topography. All rights reserved.)
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categories and thus median numbers for sampled broken, uprooted and control trees were

5, 2, and 7.5, respectively. At breast height (1.3 m above ground), trunk diameter was

measured to the nearest centimeter and a c. 100 mm long wood core was taken with a

5 mm increment borer (Suunto Inc., Vantaa, Finland). For full details on site selection,

sampling procedure and further measurements taken, consult Meyer et al. (2008).

3.2 Tree ring measurements

For the purpose the tree cores had originally been collected (wind break resistance), they

were reduced at the pithward end to a standard length of 65 mm and then oven dried

at 80 °C. The cores were then split in radial stem direction and one half was sanded and

used for microscopic tree ring analysis. The other half was used for chemical analysis (not

discussed here). Annual ring width was measured to the nearest 0.01 mm with a com-

puterised measuring table (“LINTAB3” with TSAP software version 3.1, Rinntech.com,

Heidelberg, Germany). Again, full details on methods are given in Meyer et al. (2008).

Prior to analysis, the tree ring data provided by Meyer et al. (2008) were inspected

for plausibility. In total, 4 tree ring series pairs with duplicated tree and site identifiers

were detected, all of which could eventually be unequivocally attributed to unique tree

and site identifiers and used in the analyses. Of the initially collected 1836 cores, 1716

were usable for further processing and 1650 could be used for tree ring width analysis.

Overall, we are in the fortunate situation to have a unique data set available, with

broad spatial coverage and a large number of samples within sites.

3.3 Third-party data

Apart from the data on sampling sites, trees and tree ring widths compiled and described

by Meyer et al. (2008), we used several data sets from third-party sources.

First, we used the climate correction factors as estimated by Thürig & Schmid (2008)

with the help of multiple regression equations for the years 1986–1999, i.e. up to the year

for which tree ring width data were available. Initially, it was planned to directly use the

biomass data as simulated with BIOME-BGC, however, the data are unfortunately not

available anymore (S. Schmid, personal communication).

Second, we used climate data of daily resolution from several Swiss meteorological sta-

tions (1) as provided by the European Climate Assessment & Dataset (ECA&D) project

(http://eca.knmi.nl/) made freely available by the Swiss Federal Office of Meteorology
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and Climatology MeteoSwiss (see Klein Tank et al. 2002, for acknowledgements) or (2) as

directly provided by MeteoSwiss (http://www.meteo.admin.ch/) made available solely

for teaching and research purposes.

Third, we used girth tape measurements of P. abies diameter increment and sap flow

measurements from the Swiss Canopy Crane project (Körner et al. 2005, Leuzinger &

Körner 2007).

3.4 Statistical analysis

3.4.1 Characteristics of tree ring width

The tree cores were reduced to a standard length of 65 mm and thus fast growing trees

having produced wider rings are represented with fewer rings in the overall sample. Due

to this censoring, the further one goes back in time, the smaller the remaining sample of

ring widths for the corresponding year becomes. Simultaneously, the mean of ring widths

is the more underestimated the further one moves away from the sampling year 2000 and

thus the most recently measured year 1999. Consequently, comparisons of ring widths

between two distant time points are here only conducted using detrended measures.

To each of the 1650 censored tree ring series, a natural cubic spline with constant

degrees of freedom of 5 was fitted (regardless of the length of the series). Initially, a

negative exponential function was fitted to each series, but since the fit in many series

was not satisfactory, this approach was discarded. In any case, we found that the particular

method of detrending, and more specifically the exact parametrisation of the splines, did

not alter the results decisively. The resulting trend estimates (i.e. spline functions) were

used to detrend the tree ring series. In the following, residual ring width is defined as

the measurement detrended by subtraction of the trend, and standardised ring width is

defined as the measurement detrended by division by the trend. Mean standardised ring

width is meant to be the standardised ring width averaged across multiple sites.

For each year, we calculated the mean for ring width, trend and standardised ring

width for all 1650 measured cores. Because measurements of trees originating from the

same sampling site are not independent, we applied generalised estimating equations

(GEE) to obtain robust standard errors for the means. Similarly, for each year and site,

we calculated the mean and standard error for the standardised ring width. Inverse dis-

tance weighted interpolation was used to estimate mean values for areas adjacent to the

sampling sites.
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3.4.2 Validation of current calculation method

For the validation of the climate correction factors as provided by the regression equa-

tions of Thürig & Schmid (2008), we used the standardised ring widths (see definition

above) because the climate correction factors represent a standardised measure as well

(simulated annual gross growth divided by 10-year mean). Thus both quantities represent

relative deviations from the average trend. For each stratum for which ring width mea-

surements were available, we calculated the mean standardised ring width. For the years

1986–1999, both mean standardised ring widths and climate correction factors were avail-

able (Thürig & Schmid 2008). We checked whether mean standardised ring widths and

climate correction factors for this time period are approximately distributed according

to a bivariate normal distribution. Then, we calculated Pearson product moment corre-

lation coefficients for each stratum and tested whether the coefficients are significantly

different from zero. Our null hypothesis was that the mean standardised ring widths and

the correction factors do not correlate significantly. In an exemplary attempt to assess

how well climate correction factors can predict mean standardised ring width, a simple

linear regression model was fitted for the mean standardised ring widths of all strata for

which data from at least two sites were available. The regression predictor was weighted

with the inverse of the squared robust SE estimates.

3.4.3 Climatic predictors of tree ring width

To obtain reliable climatic predictors for tree ring width, multiple linear regression anal-

ysis was used to model the response variable mean standardised ring width per stratum

and year.

Modelling step 1 In a first step, the same explanatory variables were used as in the

calculation method of Thürig et al. (2006). Following the same notation, these are:

T annual mean temperature (°C)

Tveg mean temperature during vegetation period (April – September) (°C)

N annual precipitation (mm)

Nveg precipitation during vegetation period (April – September) (mm)

dd annual sum of degree days (sum of mean temperature of days with mean temperature

> 5 °C) (°C)
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PP annual soil water index (potential evapotranspiration / precipitation, after Bugmann

& Cramer 1998) (dimensionless)

PPveg soil water index during vegetation period (April – September) (potential evapo-

transpiration / precipitation Bugmann & Cramer 1998) (dimensionless)

DrN drought index (after Bugmann & Cramer 1998) for coniferous forests (dimension-

less)

In contrast to Thürig et al. (2006), (1) these variables were not calculated from monthly

but from daily climate measurements, (2) the response variable was not a simulated

variable but an independent measurement, and (3) the models were not simplified by any

model selection technique. For the multiple regression analysis, only the years 1950–1999

were used (50 data points) because prior to the year 1950, the number of sites from where

ring width measurements are available drops quickly. For the considered time period, only

relatively few meteorological stations within the perimeter of the sites provided a complete

record of measurements of daily mean temperature, precipitation, relative humidity and

sunshine hours (the latter two were needed in a hydrologic model as outlined further

below):

• Basel/Binningen (7.58 °E, 47.55 °N)

• Bern/Zollikofen (7.47 °E, 46.98 °N)

• Neuchâtel (6.95 °E, 47.00 °N)

• La Chaux-de-Fonds (6.80 °E, 47.08 °N)

• Luzern (8.30 °E, 47.03 °N)

• Zurich/SMA (7.47 °E, 47.38 °N)

Each sampling site was assigned to a meteorological station according to its affiliation

with a specific stratum (i.e. NFI region and altitude) and, in ambiguous cases, according

to the major regions as used by MeteoSwiss (the Swiss Federal Office of Meteorology and

Climatology, see http://www.meteoswiss.admin.ch/).

Modelling step 2 In a second step, a natural cubic spline with constant degrees of

freedom of 5 was fitted to the girth tape data set (from the Swiss Canopy Crane Project,

see Körner et al. 2005, Leuzinger & Körner 2007) pooled over the years 2001–2005 to
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obtain an estimate of instantaneous ring increment of P. abies over the course of a sesa-

son. The spline function was artificially bounded by the interval 1 March to 31 October

(because the exact start and end points of diameter increment are unknown) and set to

zero at increments below 0 mm. The function was used to weigh the explanatory variables

that only cover the vegetation period to adjust for differential growth over time:

Tveg weighted mean temperature during vegetation period (April – September) (°C)

Nveg weighted precipitation during vegetation period (April – September) (mm)

PPveg weighted soil water index during vegetation period (April – September) (potential

evapotranspiration / precipitation Bugmann & Cramer 1998) (dimensionless)

These variables were used instead of Tveg, Nveg and PPveg (see modelling step 1) in the

regression models.

Modelling step 3 In a third step, the daily climate data were plugged into a hydro-

logic model developed by Leuzinger & Körner (2009, includes a complete specification

of the model) which simulates the amount of available soil water in a forest. From the

temporal progression of water availability, characteristics for possible drought situations

were derived and used as additional explanatory variables in the regression models (on

top of the variables used in modelling step 1). Two additional predictors were defined:

SW cumulative soil water content during growing season (April – September) (mm)

SWprev cumulative soil water content during previous growing season (April – Septem-

ber) (mm)

Because, except for daily climate data, many parameters were not available for the sam-

pling sites, the measurements taken at the site described by Leuzinger & Körner (2009)

were used throughout all strata. These notably include estimates of evapotranspiration

and soil depth. Climate data from 1940-1949 were used to calibrate the model and only

estimates of soil water content from 1950-1999 were used for the two additional predictors

defined above.

Model comparison The models fitted in each of the three steps were compared by

means of the Akaike’s “an information criterion” (AIC) in order to assess whether the use

of weights in the second step or the addition of drought criteria in the third step contribute

to goodness-of-fit. The goodness-of-fit of models was further assessed and compared by
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means of the coefficient of determination and the adjusted coefficient of determination. To

assess predictive accuracy, leave-one-out cross-validation was applied in order to obtain

estimates of absolute prediction error (expected value of the absolute difference between

future and predicted responses).

3.4.4 Autocorrelation

Spatial autocorrelation due to multiple measurements per site was taken into account by

using generalised estimating equations (GEE) in order to obtain robust standard errors

of estimates of means. On the other hand, temporal autocorrelation was not considered

explicitly in our analyses. Implicitly modelling temporal autocorrelation might improve

model fitting resulting in better estimates of the variance explained by explanatory vari-

ables. However, our inferential analyses are based on summary statistics such as the mean

so that autocorrelative patterns probably cancel each other out.

3.4.5 Software

All analyses were conducted with R (R Development Core Team 2010, version 2.10.1).

Code from packages dplR (Bunn 2008, version 1.2.3) and pspline (version 1.0-14) was

adapated for detrending. Packages gee (version 4.13-14) and geepack (version 1.0-16)

were used to obtain robust standard errors. Package boot (version 1.2-41) was used for

the leave-one-out cross-validation. Plots were produced with package lattice (Sarkar 2008,

version 0.17-26). Throughout the plots, statistics of standardised ring width are indicated

in dark green and statistics of climate correction factors (Thürig & Schmid 2008) are

displayed in bright red.
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4. Results

4.1 Characteristics of tree ring width

The 1650 measured tree cores were all reduced to a length of 65 mm. Therefore younger

and fast growing trees tend to be represented with fewer, larger ring widths in these outer

65 mm than older and slow growing trees since the total basal area increment is distributed

over a smaller or larger circumference, respectively. Consequently, cores with large ring

widths are underrepresented and cores with narrow ring widths are overrepresented the

further one goes back in time. The probability distribution of the oldest year still included

in the tree core is given in Fig. 4.1. The median of the oldest represented year is 1966, i.e.

50 % of the cores include rings back to at least this year and cover a range of 34 years.

The mean ring width across all sites over the whole measurement period is given in

Fig. 4.2c. It is accompanied by the mean of the individual series’ trend lines based on

natural cubic smoothing splines. Due to the overrepresentation of cores with narrow ring

widths in the earlier measurement period, both the mean ring width and the mean trend

forcibly increase over time (Fig. 4.2c). The mean of the standardised ring width is not

affected by this problem, and therefore it is used to validate the climate correction factors

by the assessment of correlation coefficients (Fig. 4.2d, see section 4.2). It is apparent from

the number of sites and trees for which measurements were available (Fig. 4.2a,b) that the

erratic trajectories of mean width, trend and standardised ring width in early years is due

to too small sample sizes and consequently too large standard errors. Prior to 1893, the

sample size consists of only a single tree and thus no standard errors can be calculated.

For each site and year, mean ring width was calculated. Inverse distance weighted

interpolation was applied to these site specific year-wise mean values to illustrate their

spatial and temporal variation (Fig. 4.3). Only the values for 1976–1999 are depicted.

The period is of interest because it is delimited by the very dry year 1976 and the years

for which the climate correction factors were available (1986–1999, see section 4.2). Note

that interpolation in areas far off any sampling site becomes erratic.
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Figure 4.1 Probability distribution (kernel density estimate) of the year of the oldest ring

present in each tree core (at the 65 mm core section). The vertical lines indicate the minimum,

lower quartile, mean, median, upper quartile and maximum oldest ring year in the whole sample

of tree cores.
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with vertical bars and were estimated with generalised estimating equations (GEE) adjusting

for multiple measurements within the same sampling site.
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Figure 4.3 Mean standardised ring width per sampling site for the years 1976–1999 (blue

indicates below average ring width increment and orange indicates above average ring width

increment). Each dot marks a sampling site. Spatial prediction was done with inverse distance

weighted interpolation. Note that interpolation in areas far off any sampling site becomes erratic.
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4.2 Validation of current calculation method

Since we only had access to the climate correction factors estimated by multiple regression

for the period 1986–2007 (Thürig & Schmid 2008) and ring width data were only available

until 1999, validation of the climate correction factors was limited to the period 1986–

1999, i.e. 14 years. For the six strata for which ring width measurements for at least two

sites were available, the temporal trajectories of the mean standardised ring width and

the climate correction factors are displayed next to each other in Fig. 4.4. For none of

the strata, the pair of trajectories is in phase. The amplitude of standardised ring width

tends to be smaller than the amplitude of the climate correction factors.

The values of Fig. 4.4 are plotted against each other in Fig. 4.5 to assess the degree

to which standardised ring width and climate correction factors are associated. In none

of the strata, a significant correlation resulted. In the stratum with the most reliable

estimates of ring width (Plateau below 600 m a.s.l., the stratum with the largest number

of sampling sites), the Pearson product moment correlation coefficient virtually dropped

to zero. The results are so distinct that one can foreclose the inevitable conclusion: The

validation of the (simulated) climate correction factors by means of the (measured) tree

ring widths turned out negative. The two different approaches of estimating actual an-

nual forest biomass increment, i.e. measurements (standardised ring width) vs. simulated

values (climate correction factor), do not in the slightest describe one and the same.

The simple linear regression model for the mean standardised ring widths of all strata

for which data from at least two sites were available is shown in Fig. 4.6. It is clear

that prediction of mean standardised ring width with climate correction factors is futile

because the 95 % confidence bands for prediction (1) span a very wide range along the

ordinate and (2) run almost in parallel to a horizontal line (Fig. 4.6). The model thus

does not help at all to discriminate different values of mean standardised ring width

based on different values of climate correction factor. This is a further corroboration of

the conclusion that the validation of the climate correction factors failed.

4.3 Climatic predictors of tree ring width

Four strata comprised a reasonable amount of sampling sites:

stratum 1 Jura, ≤ 600 m a.s.l. (16 sites)

stratum 7 Plateau, ≤ 600 m a.s.l. (40 sites)

stratum 9 Plateau, 600-1200 m a.s.l. (26 sites)
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Figure 4.4 Trajectories of mean standardised ring width (green, continuous line, ± SE) and

climate correction factor (red, hatched line, after Thürig et al. 2006, Thürig & Schmid 2008)

from 1986–1999.
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Figure 4.5 Mean standardised ring width (± SE) and climate correction factor (after Thürig

et al. 2006, Thürig & Schmid 2008) from 1986–1999 plotted against each other for each stratum

for which measurements were taken in at least 2 sites. Pearson product moment correlation

coefficients r and p values for the hypothesis test that the coefficient is significantly different

from zero are given in the lower right corner of each panel. Note that all correlation coefficient

estimates are far from being significantly different from 0 and that in the stratum with the best

data base (Plateau below 600 m a.s.l.), the correlation coefficient drops close to 0.
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Figure 4.6 Mean standardised ring width (± SE) and climate correction factor (after Thürig

et al. 2006, Thürig & Schmid 2008) from 1986–1999 plotted against each other including all

strata for which at least two measurements were available. The straight line indicates a simple

linear regression fit, the upper and lower hatched lines indicate the 95 % confidence bands for

predicting mean standardised ring width with climate correction factors. For the prediction, it is

assumed that the SE of the mean of future observations equals the mean of SEs in the sample.

Prediction is basically futile because the model is essentially equivalent to a horizontal line.

Furthermore, assuming mean SEs in future data points, the confidence interval of prediction

would be very large.
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stratum 15 Prealps, 600-1200 m a.s.l. (15 sites)

Thus in the following, only the regression models for these four strata will be considered.

Modelling step 1 The coefficients of the regression models for the response variable

standardised ring width and the same explanatory variables as used in the original cal-

culation method (Thürig et al. 2006, Thürig & Schmid 2008) are displayed in Table 4.1.

Different goodness-of-fit criteria (AIC, R2, adjusted R2) and the cross-validation predic-

tion error estimates are given in Table 4.4 for comparison of models of different strata

and for models with alternative combinations of explanatory variables (see below).

The low coefficients of determination (between 0.086 and 0.252) indicate that only

up to c. 25 % of the whole variation in the response (mean standardised ring width)

are explained by the multiple regression models (Table 4.4). Nevertheless, given that

the values of mean standardised ring width lie always in the range of 0.7–1.3 (compare

Fig. 4.6), the estimated prediction error based on leave-one-out cross-validation is rather

small, i.e. at most 0.0215 / 0.7 or c. 3.1 % off the real value (Table 4.4). Thus, given that

future values of mean standardised ring width would be distributed in a similar manner

as the values used to fit the models, the prediction error can be regarded as minor.

Modelling step 2 The girth tape data were used to obtain a spline function which

in a very coarse way describes the 5-year average of instantaneous ring width increment

(Fig. 4.7). Taking this spline function and standardising it by the maximum value yields

values in the range of 0–1. Using these as weights in the multiple regression equations to

adjust for differential growth over the course of the year did improve the model fitting

slightly (Table 4.2).

Again, the coefficients of determination and thus the amounts of explained variance

are low but a bit higher than in the standard models (modelling step 1) and lie between

0.137 and 0.260 (Table 4.4). The prediction error estimates are also slightly smaller and

are, again given that the values of mean standardised ring lie always in the range of 0.7–

1.3 (compare Fig. 4.6), at maximum 0.0194 / 0.7 or c. 2.8 % off the real value (Table 4.4).

This is a slight improvement in predictive accuracy.

Modelling step 3 Using the soil water content as simulated by the hydrologic model

of Leuzinger & Körner (2009), two additional predictors were defined, namely cumulative

amount of soil water during the current growing season and the cumulative amount of

soil water during the previous growing season. Example output of the model is given in
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Figure 4.7 Consecutive diameter increment (i.e. difference between current and previous

measurements) of 9 P. abies individuals from the Swiss Canopy Crane project (Körner et al.

2005, Leuzinger & Körner 2007) pooled over 5 years (2001–2005). The smoothing function is a

natural cubic spline fit through the data points bounded by 1 March and 31 October and set

to zero at increments below 0 mm.
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Figure 4.8 Example output of the hydrologic model developed by Leuzinger & Körner (2009)

driven with data from the MeteoSwiss station Basel/Binningen (7.583° E, 47.550° N, 316 m a.s.l.)

for the period 1 January 1940 to 31 Dezember 1999. The solid black line indicates the simulated

soil water content (mm). Daily precipitation (blue bars) and daily mean temperature (red line)

are two of the input variables and drawn in the background. For the regression models, cumula-

tive soil water content of the current and previous growing season were extracted for the period

1950–1999. The period 1940–1949 was used to calibrate the model.
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Fig. 4.8 to illustrate how the two additional predictors were derived. Note that the model

was calibrated during the first decade and the simulated values produced during this

period were discarded. Adding the predictors to the regression models, whose coefficients

are listed in Table 4.3, did not substantially improve model fitting either, rather on the

contrary.

The coefficients of determination might seem to be higher than for the ordinary models

(modelling step 1), but as two more predictors were used in the models, the adjusted

coefficients of determination should be used to compare models of modelling steps 1

and 3 (since adding variables to a model can only inflate but not deflate the amount

of explained variance). It becomes clear when penalising for the number of explanatory

variables used in the model that the goodness-of-fit of models of modelling step 3 is not

consistently higher than of the models of modelling step 1 (Table 4.4). The maximum

prediction error estimates are actually the highest of all modelling steps, again given that

the values of mean standardised ring width lie always in the range of 0.7–1.3 (compare

Fig. 4.6), resulting in 0.0276 / 0.7 or c. 3.9 % off the real value (Table 4.4).

As already mentioned above, a comparison of the models fit in the three steps for

the four selected strata is given in Table 4.4. For each model, Akaike’s “an information

criterion” (AIC), the coefficient of determination (R2), the adjusted coefficient of deter-

mination (R2 adjusted), the leave-one-out cross-validation prediction error estimate (CV

prediction error) are given. The first three are used to assess goodness-of-fit and the last

one to assess predictive accuracy.
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Table 4.1 Modelling step 1: coefficients of regression models for strata 1, 7, 9, and 15.

stratum 1 stratum 7 stratum 9 stratum 15

(AIC = -57.41) (AIC = -83.07) (AIC = -96.55) (AIC = -92.65)

estimate SE p estimate SE p estimate SE p estimate SE p

(intercept) 1.6578 0.9880 0.10 -0.4780 1.0259 0.64 1.8296 0.8943 0.05 0.6396 1.1455 0.58

T -0.0400 0.0880 0.65 -0.0741 0.0647 0.26 -0.0684 0.0561 0.23 -0.0545 0.0600 0.37

Tveg 0.0064 0.0500 0.90 0.0003 0.0432 0.99 -0.0033 0.0361 0.93 -0.0155 0.0499 0.76

N -0.0001 0.0008 0.91 0.0007 0.0007 0.34 -0.0007 0.0005 0.20 -0.0003 0.0008 0.69

Nveg -0.0009 0.0009 0.33 -0.0000 0.0007 0.96 -0.0002 0.0006 0.72 0.0008 0.0010 0.44

dd 0.0001 0.0003 0.58 0.0000 0.0002 0.91 0.0003 0.0002 0.10 0.0001 0.0002 0.64

PP -0.0364 0.0628 0.57 0.1041 0.1350 0.45 -0.1077 0.0789 0.18 -0.0912 0.1703 0.60

PPveg -0.0229 0.0340 0.50 -0.0106 0.0569 0.85 -0.0233 0.0367 0.53 0.0742 0.1062 0.49

DrN 0.3026 0.7847 0.70 1.2892 0.6314 0.05 0.8201 0.5491 0.14 0.7425 0.5030 0.15

Table 4.2 Modelling step 2: coefficients of regression models for strata 1, 7, 9, and 15. The

predictors Tveg, Nveg, and PPveg were weighted with the spline function obtained from the

diameter increment data in Fig. 4.7 and used to replace the unweighted predictors of modelling

step 1.

stratum 1 stratum 7 stratum 9 stratum 15

(AIC = -60.24) (AIC = -84.09) (AIC = -97.08) (AIC = -94.17)

estimate SE p estimate SE p estimate SE p estimate SE p

(intercept) 2.6257 0.9788 0.01 -0.2765 1.0542 0.79 1.8890 0.9412 0.05 0.2067 1.2119 0.87

T 0.0601 0.0825 0.47 -0.0650 0.0619 0.30 -0.0607 0.0557 0.28 -0.0618 0.0565 0.28

Tveg weighted -0.2619 0.2107 0.22 -0.0213 0.1683 0.90 -0.0813 0.1482 0.59 -0.0787 0.1482 0.60

N -0.0008 0.0008 0.29 0.0004 0.0007 0.51 -0.0008 0.0005 0.11 -0.0002 0.0006 0.73

Nveg weighted 0.0002 0.0018 0.90 0.0005 0.0015 0.72 0.0000 0.0011 0.97 0.0020 0.0015 0.20

dd 0.0001 0.0002 0.56 0.0001 0.0002 0.80 0.0003 0.0002 0.07 0.0002 0.0002 0.42

PP -0.0409 0.0620 0.51 0.0704 0.1244 0.57 -0.1184 0.0730 0.11 -0.0596 0.1420 0.68

PPveg weighted -0.0080 0.0163 0.62 0.0023 0.0308 0.94 -0.0055 0.0186 0.77 0.0489 0.0456 0.29

DrN -0.9776 0.8257 0.24 1.0717 0.6657 0.12 0.7067 0.5708 0.22 0.5809 0.4883 0.24

Table 4.3 Modelling step 3: coefficients of regression models for strata 1, 7, 9, and 15. In

addition to the ordinary models (modelling step 1), two additional predictors representing char-

acteristics of soil water availability as estimated by a hydrologic model are used (SW, cumulative

soil water content, and SWprev, cumulative soil water content of previous year).

stratum 1 stratum 7 stratum 9 stratum 15

(AIC = -51.11) (AIC = -90.37) (AIC = -91.78) (AIC = -89.42)

estimate SE p estimate SE p estimate SE p estimate SE p

(intercept) 1.6825 1.0646 0.12 -0.9796 0.9407 0.30 1.1950 1.0103 0.24 0.0502 1.1965 0.97

T -0.0345 0.0929 0.71 -0.0860 0.0592 0.15 -0.0789 0.0573 0.18 -0.0583 0.0605 0.34

Tveg 0.0028 0.0533 0.96 0.0088 0.0395 0.83 0.0096 0.0385 0.80 -0.0140 0.0509 0.78

N -0.0001 0.0008 0.91 0.0007 0.0006 0.25 -0.0005 0.0005 0.35 -0.0004 0.0008 0.66

Nveg -0.0008 0.0011 0.44 0.0001 0.0007 0.91 -0.0000 0.0006 0.96 0.0010 0.0010 0.32

dd 0.0001 0.0003 0.64 -0.0000 0.0002 0.90 0.0003 0.0002 0.15 0.0001 0.0002 0.62

PP -0.0336 0.0666 0.62 0.1071 0.1213 0.38 -0.0880 0.0810 0.28 -0.0973 0.1707 0.57

PPveg -0.0237 0.0357 0.51 0.0042 0.0515 0.94 -0.0158 0.0377 0.68 0.1063 0.1098 0.34

DrN 0.2666 0.8223 0.75 1.3873 0.6189 0.03 0.9488 0.5806 0.11 0.6959 0.5147 0.18

SW -0.0945 0.4252 0.83 0.1076 0.2123 0.62 -0.0153 0.2327 0.95 0.1536 0.2445 0.53

SWprev 0.0812 0.2148 0.71 0.3864 0.1193 0.00 0.1782 0.1276 0.17 0.2056 0.1260 0.11
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Table 4.4 Comparison of the three modelling steps for the four selected strata. Akaike’s “an

information criterion” (AIC), the coefficient of determination (R2), the adjusted coefficient of

determination (R2 adjusted), and the leave-one-out cross-validation prediction error estimate

(CV prediction error) are given for each model.

stratum modelling step AIC R2 R2 adjusted CV prediction error

1 1 -57.4 0.086 -0.092 0.0215

1 2 -60.2 0.137 -0.032 0.0194

1 3 -51.1 0.091 -0.148 0.0276

7 1 -83.1 0.205 0.050 0.0114

7 2 -84.1 0.221 0.069 0.0112

7 3 -90.4 0.404 0.247 0.0095

9 1 -96.6 0.252 0.106 0.0086

9 2 -97.1 0.260 0.115 0.0083

9 3 -91.8 0.288 0.101 0.0089

15 1 -92.6 0.160 -0.004 0.0090

15 2 -94.2 0.185 0.026 0.0089

15 3 -89.4 0.223 0.018 0.0093
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5. Discussion

Based on a broadly spaced dendrological sample of 1650 spruce trees, we constructed

multiple linear regression models to predict (a proxy of) annual forest biomass increment

in Switzerland outside the Alps based on standard meteorological data. Tree ring width

does not seem to be unequivocally driven by a single climatic variable. Nevertheless, the

predictive power of the models is in the range of about 3 %, which makes them applicable

to the estimation of forest biomass increment, not solely in the context of the greenhouse

gas inventory. Our data set for this most important tree species in central Europe covers

a wide spectrum of locations and includes very dry (e.g. the year 1976) and very wet

periods. The patterns seen in spruce may, at least trendwise, hold for many other co-

occuring tree species. Handling such data inevitably incurs a number of difficulties and

sources of errors. Our sample was restricted to the outer 65 mm of stems of tall, c. 100

year old trees, and thus, trees with high vigour in recent decades ended up with fewer

rings captured than slow growing trees.

5.1 Temporal and spatial patterns of tree ring width

Even though the tree core sample was limited to a single (albeit the most common) tree

species, covered only the outer 65 mm of the trunks and was biased towards storm affected

sites, it provides valuable insights into temporal and spatial patterns of tree growth in

the Swiss Jura mountains and Plateau. As initially mentioned, thicker ring widths are

overrepresented in more recent years, be it because trees with thicker rings were younger

at the time of sampling and the secondary growth was distributed over a smaller area

or be it because trees with thicker rings of comparable age actually grew faster. We

took this fact into account by detrending each ring width series and working only with

dimensionless, detrended ring width (which we call standardised ring width throughout

the report). The temporal evolution of the overall mean of standardised ring width as

shown in Fig. 4.2d makes it clear that from the year 1950 onwards, when a couple of

hundred measurements were available, the annual negative and positive deviances of ring
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width were rather synchronous across sites. This becomes evident when one considers the

very small standard errors and thus the high precision of the estimates of the mean. When

one moves from the overall mean to the site specific mean standardised ring width, spatial

differences within a given year emerge (Fig. 4.3). Although some sites largely departed

from the rest of the sites, on the whole, as was already implied by the precise estimates

of the overall mean, the majority of sites was surprisingly synchronous with regard to

negative and positive annual deviations, at least in close spatial proximity.

5.2 Failed validation of current calculation method

We tested projections derived from a mechanistic forest growth model based on clas-

sical input variables such as photosynthesis, respiration, allocation rules and nutrient

feedback (Thürig & Schmid 2008) against real data from the Swiss Jura and Plateau

as represented by measured tree ring widths. In essence, the validation of the currently

applied calculation method of the carbon stocks of Swiss forests for the greenhouse gas

inventory was based on the hypothesis that, within a stratum, detrended ring width (i.e.

mean standardised ring width) should correlate with the corresponding climate correction

factor (i.e. mean standardised simulated gross growth). (A stratum is a combination of

NFI production region, altitudinal range, and forest type as defined by Thürig & Schmid

(2008)). The significance tests for the Pearson correlation coefficients clearly showed that

in none of the strata for which data from multiple sites were available any association

could be found (Fig. 4.5). Not even a slight trend could be detected, and in the stratum

with the most profound data base (Pleateau below 600 m a.s.l. with 40 sites, smallest SE),

the corelation coefficient basically dropped to 0. This is even more astonishing because

the sample size of 14 data points per correlation is rather low and thus chances that

spurious correlations are found may be higher due to the violation of the assumption of a

bivariate normal distribution of data points. In the same vein, the absence of a significant

correlation means that it is basically impossible to predict mean standardised ring width

with climate correction factors and vice versa (compare Fig. 4.6).

The hypothesis that mean standardised ring width and climate correction factors

should correlate is based on the assumption that tree ring width is a suitable proxy of

tree biomass increase (as has been shown for P. abies e.g. by Mäkinen et al. 2002). Given

this is the case to a measurable extent and in view of the fact that the estimates of mean

standardised ring width are based on a very large sample of 1650 trees collected over

a relatively large area (Meyer et al. 2008), we conclude that the mechanistic ecosystem
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simulation model BIOME-BGC failed to reliably predict carbon stocks. Although the

accordance of BIOME-BGC predictions with measurements has been tested for a few sites

in Switzerland (Schmid et al. 2006), the model’s predictive accuracy might nevertheless

not be sufficient (see appendix A for a critique).

5.3 Statistical modelling of climate correction factors

and tree ring width

The conclusion from the previous section is very explicit: climate correction factors as

defined by Thürig & Schmid (2008) do not adequately reflect reality and should therefore

not be used to predict forest carbon stocks for the Swiss greenhouse gas inventory. But

why were Thürig & Schmid (2008) and coworkers confident to use climate correction

factors nonetheless? The quintessence of our critique was already uttered in section 2.3

and shall not be repeated. For an in-depth critique of the modelling approach based on

BIOME-BGC, we refer you to appendix A.

As a consequence of the failed validation of the climate correction factors as a central

part of the calculation method for the greenhouse gas inventory (Heldstab et al. 2009),

we propose that future calculation methods should use measurement data instead of

data generated from climate data driven mechanistic simulation models. Ideally, such

measurements are conducted on an annual basis in order to obtain reliable up-to-date

estimates of Swiss forest carbon stocks. One could obtain measurements from the NFI

(Brassel & Brändli 1999) which presumably changes its sampling scheme from a 10-year to

an annual survey in the near future. Alternatively, an annual sampling scheme specifically

tailored to the needs of the greenhouse gas inventory could be developed, covering the

whole area of Switzerland and stratifying to forest type and possibly other variables. The

sampling scheme could include tree ring width measurements by taking cores as used in

the study at hand as well as other measurements of tree biomass in order to obtain data

on the quality of tree rings as a proxy for biomass increment. In essence, no modelling

effort would be needed at all given the measurements are a good proxy for tree biomass

increment.

Nevertheless, in case measurements cannot be obtained in due course, one would have

to resort to modelling. Measurement data could be used to build statistical models for the

prediction of future annual gross growth of Swiss forests. It was not the aim of this report

to present a comprehensive solution but to suggest a couple of modelling approaches which

might be worth being refined or built upon. In the following, the different approaches are
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discussed successively.

To check whether mean standardised ring width could be explained by climatic data,

three approaches were taken (see Table 4.4 for a comparison of different measures of

goodness-of-fit and predictive accuracy). First of all, a multiple regression approach anal-

ogous to the one of Thürig & Schmid (2008) was chosen (Tables 4.1 and 4.4). In contrast

to Thürig et al. (2006), the explanatory variables were calculated from daily climate

data, no model simplification technique was applied and, most importantly, the response

variable was the mean standardised ring width instead of the climate correction factors.

Due to these differences (particularly in the modelled response variables) and due to

the potential problems with the multiple regression models for the climate correction

factors (as outlined extensively in appendix A), a direct comparison of goodness-of-fit

criteria of the models presented here and in Thürig et al. (2006) is not meaningful, but

nonetheless instructive. R2 values of the models for mean standardised ring width are

considerably lower, as one would expect for ecological data. The very small adjusted R2

values could possibly be increased by model reduction, but we intentionally did not use

any such technique in order to keep the comparison of the different modelling approaches

simple. Because the ultimate goal consists in building prediction models, the estimates

of the cross-validation prediction error are a more meaningful measure to be considered

here. The (absolute) cross-validation prediction error is the expected value of the abso-

lute difference between the future and predicted responses. Since we applied leave-one-out

cross-validation, a potential bias of the estimates should be negligible. From Fig. 4.6 it is

apparent that all stratum specific mean standardised ring width values are in the range

of 0.7–1.3. Considering this range, the prediction error estimates in Table 4.4 seem to be

reasonably small to justify the use of such models for prediction purposes, e.g. for reports

such as the NIR (the expected prediction error over all considered models would thus

vary between c. 0.6–3.9 %).

In the next step, the three climatic variables that only integrated data over the pu-

tative vegetation period (April – September) were replaced by variants where each daily

measurement was weighted by a standardised growth curve obtained from P. abies di-

ameter increment data (Fig. 4.7). As can be seen from a comparison of Tables 4.1 and

4.2, this partial replacement of explanatory variables led to a decrease of AIC values in

all four considered strata implying a better goodness-of-fit. It also resulted in a slight

improvement with regard to cross-validation prediction error (Table 4.4). Consequently,

it might be worthwile to investigate how climatic predictors could be weighted in order

to better reflect tree growth.
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In the last step, the ordinary models (Table 4.1) were extended with two additional

explanatory variables, namely the cumulative soil water content of the current and pre-

vious growing period as simulated by the hydrologic model of Leuzinger & Körner (2009)

(Table 4.3). For an adequate application of the hydrologic model, many parameters apart

from daily climate data would be needed. However, many characteristics of the sampling

sites (soil depth, measurements of evapotranspiration, vegetation period, etc.) were only

available for the site described in Leuzinger & Körner (2009) (i.e. Basel/Binningen) and

were thus also used for the other sampling sites. This might partly explain why the ex-

tended models of 3 out of the 4 considered strata have worse goodness-of-fit measures

than the ordinary models (Table 4.4). The notable exception is the extended model for

stratum 7, the stratum with the most reliable data base (40 sampling sites): cumula-

tive soil water content of the previous vegetation period was a very good predictor of

mean standardised ring width (Table 4.3) and contributed to an increased goodness-of-fit

over the original model and the model with weighted predictors (Table 4.4). A thorough

assessment is however pending: Is this only a spurious finding? Or can the regression

models be substantially improved by refining the application of the hydrologic model and

by defining more meaningful drought criteria derived thereof?

Regardless of which of the presented modelling approaches one considers, the esti-

mated prediction error would lie somewhere near 3 %, which seems very acceptable in-

deed, realising that the climate correction factors (Thürig & Schmid 2008) represent, as

has been demonstrated, nothing close to actual measurements of forest biomass and that

past greenhouse gas inventory calculations were based on exactly such climate correction

factors.
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A. Critique of modelling approach

based on BIOME-BGC (by Thomas

Zumbrunn)

In this appendix, I elaborate on some of the potential problems inherent in the GHG

calculation method put forward by Thürig & Schmid (2008), described in detail in Thürig

et al. (2006) and used for the NIR (Heldstab et al. 2009). A consideration of these problems

is important when evaluating the relative merits of the criticised calculation method and

alternative approaches.

A.1 Assessment of predictive accuracy of BIOME-

BGC

The predictive accuracy of the model BIOME-BGC has been validated with measure-

ments at 19 selected sites in Switzerland (Schmid et al. 2006) and it was argued that

BIOME-BGC is sufficiently well calibrated for the purposes of GHG reporting (Thürig

& Schmid 2008). Schmid et al. (2006) present statistical tests on the mean deviation of

the model from measured growth and conclude that the mean underestimation in the

colline region is not significantly different from zero. Yet from their figures it can be

derived that the mean absolute percentual deviation is c. 23 % with a 95 % confidence

interval of [13 %; 32 %] (assuming an approximate normal distribution of the 19 absolute

percentage values). Therefore, without averaging over multiple sites (for which the model

either under- or overestimates growth), significant deviations may result. The statistical

maxim that “absence of evidence is not evidence of absence” also holds true here, i.e. one

cannot show that there is a difference of zero between two populations, and therefore

the statistical tests applied by Schmid et al. (2006) are not very helpful in assessing the

predictive accuracy.
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A.2 Interpretation of multiple regression models

The way Thürig & Schmid (2008) interpret multiple linear regression models relies,

amongst others, on the assumption that the response variable is obtained independently

from the explanatory variables. If this type of independence is not given, interpretation of

the models may become erroneous. As illustrated in Thürig et al. (2006), this assumption

was violated. The response variable is basically a construct, albeit a very complex one

(via the simulation model BIOME-BGC), of climatic variables which are highly correlated

with the explanatory variables (Thürig et al. 2006). Thus it is by no means surprising

that Thürig et al. (2006) obtain relatively high values for the coefficient of determination

R2 (proportion of explained variance) for their multiple regression models. However, the

conclusion that the high values for R2 indicate high predictive accuracy of the models

is deceptive. The missing independence between response variable and explanatory vari-

ables as outlined above prbabably artificially inflates R2 values. Other reasons might be a

misinterpretation of the implications of the coefficient of determination. The coefficient of

determination is only a measure of how well a model fits the very data set with which its

coefficients were estimated. Thus R2 can change dramatically e.g. by taking a subset of the

data set or adding/removing influential points. Furthermore, the R2 value can only grow

but not shrink when explanatory variables are added to the model. To be able to compare

the goodness-of-fit of models with different constellations of explanatory variables, one

could use the adjusted coefficient of determination (adjusted R2) or information criteria

such as Akaike’s “an information criterion” (AIC) which penalise for increasing model

complexity. The regression models in Thürig et al. (2006), after having been reduced

by an unknown model selection procedure, contain between 1 to 5 explanatory variables

(plus an intercept each). Due to the different complexity of the models, the comparison of

goodness-of-fit of these models by means of R2 values is not valid (as mentioned, measures

such as adjusted R2 or AIC should be used instead). Moreover, the 34 models in Thürig

et al. (2006) do not only differ in the constellation of explanatory variables but also in the

number of data points that were used for model fitting. For instance, only 27 data points

were used for the models of strata 5 and 6 with initially 8 explanatory variables (plus an

intercept) in the full models (i.e. before the application of model selection procedures).

The number of data points that are needed to obtain reliable estimates of all model co-

efficients is thus too small. In the given example, initially merely three data points were

used per coefficient estimate, and thus the subsequent model reduction procedures might

have led to erroneous results. Such an overspecification of regression models is a further

source of artificial inflation of (unadjusted) R2 values since the coefficient of determina-
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tion reaches a value of 1 and the residuals all become zero when the number of model

coefficients equals the number of data points (because the residual degrees of freedom

drop to zero).
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