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1 Introduction 

The FOEN continuously measures the water temperature of watercourses at around 80 

measuring stations in Switzerland. Temperature is a major factor that influences physical, 

chemical, biological and ecological processes in aquatic ecosystems (Magnuson et al. 1979; 

Webb 1996; Caissie 2006), such as the dispersal of ectothermic organisms like fish, their 

behaviour and their survival (Buisson et al. 2008; McCullough et al. 2009). In 

hydromorphologically complex rivers, water temperature can vary greatly over time and 

space (Caissie 2006; Tonolla et al. 2010). Moreover, in the context of global warming, the 

importance of temperature is steadily increasing, since the thermal regime is changing and 

will continue to change at local, regional and global scales (IPCC 2014). The thermal regime 

of streams and rivers is primarily influenced by incoming shortwave solar radiation, air 

temperature, flow regime, riparian conditions, such as shade, streambed substrata and 

upwelling subsurface water, such as groundwater inflows (Webb & Zhang 1999; Malard et al. 

2001; Webb et al. 2003). In addition, temperature loggers of automatic measuring stations 

are from time to time not sufficiently covered with water at periods of low discharge or can 

even fall completely dry. For these reasons, it is difficult to quantify spatio-temporal variability 

of water temperature exclusively using conventional in-situ methods (e.g. temperature 

loggers), in which case measurements with thermal infrared (TIR) sensors could be an 

effective alternative. 

All bodies whose temperatures are above absolute zero (0 °K = -273.15 °C) emit thermal 

radiation. TIR sensors detect thermal radiation in the 3-5 and 7-14 µm wavelength range, 

which is emitted from the upper ~50 μm of any surface (Lillesand et al. 2008); thus allowing 

the radiation temperature to be determined. TIR imagery has already been successfully used 

to determine the spatial temperature heterogeneity of watercourses and floodplains (Faux et 

al. 2001; Torgersen et al. 2001; Cristea & Burges 2009; Tonolla et al. 2010, 2012; Wawrzyniak 

et al. 2013; Fricke & Baschek 2015; Fullerton et al. 2018), to identify areas of groundwater-

surface water interactions (Loheide & Gorelick 2006; Deitchman & Loheide 2009; Eschbach et 

al. 2016; Wawrzyniak et al. 2016), to determine thermal mixing dynamics and velocity fields 

(Andrews et al. 2011; Cardenas et al. 2011), to calibrate and validate stream temperature 

models (Cristea & Burges 2009; Loheide & Gorelick 2006; Cardenas et al. 2014), to monitor 

the success of restoration projects (Shuman & Ambrose 2003; Loheide & Gorelick 2006) and 
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to identify warm and cold refuges critical for the survival of many biota, including fish (Madej 

et al. 2006; Torgersen et al. 1999, 2006; Tonolla et al. 2012; Fullerton et al. 2018). 

The main advantage of TIR measurements over in-situ point measurements is their large-

scale and non-invasive nature (i.e. you do not go into the water). When recording water 

temperature using TIR, however, various factors that may have a relevant influence on the 

measurements must be considered (Fig. 1). Particularly noteworthy examples of such factors 

are atmospheric absorption and emissions which are influenced by factors such as humidity, 

wind and sky radiation, the reflection of other objects near the watercourse (e.g. trees), 

emissivity (i.e. how much radiation is emitted by an object), surface characteristics (e.g. 

roughness, turbidity), mixed pixels (i.e. terrestrial-aquatic areas captured in a single thermal 

pixel) and the vertical stratification of the body of water (i.e. the different temperatures near 

the bottom and on the surface). For detailed summaries, see Dugdale et al. (2016) and the 

appendices in Tonolla et al. (2010, 2012). 

 
Figure 1. Sources of emitted and reflected TIR radiation in thermal remote sensing of rivers and streams. 
Image source: Torgersen et al. (2001). 

 
One of the most important regulating factors in terms of water temperature is riparian 

vegetation (Rutherford et al. 1997; Caissie 2006). Vegetation cover can affect the heat flux by 

decreasing wind currents, altering the microclimate above the water surface (i.e. air 

temperature and relative humidity) and reducing penetration of solar radiation into the 

ground (increased absorption and reflection by the canopy). Since a reduction of shortwave 

solar radiation by either riparian vegetation or topography can significantly inhibit river 

warming (Rutherford et al. 1997, 2004; Johnson 2004), the spatio-temporal evolution of 
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riparian shading plays a key role in temperature regulation. High resolution remote sensing 

products are well suited to the spatial and temporal detection and quantification of shaded 

areas (Adeline et al. 2013). The emergence and sophistication of drone based remote sensing 

products represent a promising method for assessing the properties and effects of shading 

on small to medium river systems (Movia et al. 2016). 

2 Objectives 

The main aim of our study was to investigate the suitability of high-resolution thermal 

infrared and multispectral remote sensing for the characterization of spatio-temporal thermal 

heterogeneity and riparian vegetation shading. Our measurements were carried out in 

parallel and in coordination with other investigations (Bern University of Applied Sciences, 

Fischwerk environmental office) at a FOEN measuring station located on a 

hydromorphologically homogenous river. The results and empirical findings of these 

measurements are expected to contribute to the efficient mapping and monitoring of 

complex patterns of surface water temperature and riparian vegetation shading in river 

systems using the innovative tools presented in this manuscript.  

3 Material and Methods 

3.1 Study site and experimental design 

The constrained, single thread reach of the 6th order Glatt River in canton Zurich (Switzerland; 

CH1903-LV03: 678040 / 269720) that was selected for this study is approximately 1.2 km 

long, has a mean average channel width of approximately 18 m and an average channel 

slope of approximately 7‰ (Fig. 2). A gauging station is located at the downstream end of 

the study reach (Glatt – Rheinsfelden; nr. 2415) at 336 m.a.s.l. and it has a catchment area of 

417 km² with a mean elevation of 503 m.a.s.l. At this station, the mean annual water 

temperature in 2017 was 13.1 °C (range: 2.3 – 25.2 °C), the average discharge was 6.5 m3/s 

(range: 2.7 – 38.2 m3/s), HQ2 was 55.8 m3/s and HQ10 was 90.2 m3/s, (FOEN 2018a). The Glatt 

joins the Rhine River approximately 260 m downstream from the gauging station. The flow 

regime of the Glatt at the station is “pluvial inférieur”. A wastewater treatment plant is located 

approximately 450 m upstream from the start of the reach. Nevertheless, the reach water is 



7 
 

rich in total phosphorous (100-130 µg P/L; FOEN 2018b) and a large number of macrophytes 

and algae grow on the river substrate. 

 

Figure 2. Study reach. Indicated is the perimeter of the analysed drone data (TIR: thermal infrared; MS: 
multispectral), the drone TIR-thermoscans and thermomaps generated with an Acoustic Doppler Current 
Profiler (ADCP). The locations of in-situ temperature loggers, side channels and stationary TIR camera 
are also illustrated. Source background map: Swissimage Geodata © swisstopo. 
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Thermal infrared (TIR) and multispectral images were remotely collected by drones over three 

days in order to spatially map continuous surface water temperature patterns and riparian 

vegetation shading under different meteorological conditions along the Glatt reach (Chap. 

3.2). In addition, stationary TIR images were taken at one min intervals over a period of two 

days to continuously assess surface water temperature (Chap. 3.3.1). Furthermore, 

temperature loggers were also deployed for approximately one month along and across the 

entire study reach, to continuously assess water temperature at one min intervals and cross-

check remotely sensed water temperature (Chap. 3.3.2). Finally, water temperature was also 

assessed with an Acoustic Doppler Current Profiler (Chap. 3.3.3). 

3.2 High-resolution drone surveys 

Approximately 750 m of the study reach were mapped in summer 2018 on two sunny days 

with clear skies and on one cloudy day in the morning, at noon, and in the afternoon (Tab. 1). 

Drone flights were scheduled to coincide with minimum (morning) and maximum (afternoon) 

daily water temperatures and were up to15 minutes long in order to minimize fluctuations in 

water temperature and shade during the flights. Meteorological conditions for the different 

dates and flights varied, with higher air and water temperatures but lower air humidity in the 

afternoon of the two sunny days and almost constant conditions on the cloudy day (Tab. 1). 

Discharge and water temperature were similar on the two sunny days, while discharge was 

higher and water temperature lower on the cloudy day (Tab. 1). Sunlight did not reach the 

gauging station during the morning flights of August 21 and 22 (low solar irradiance in Tab. 

1). 
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Table 1. Characterization of the hydrological and meteorological conditions during the drone surveys. 
TIR: thermal infrared imagery of the entire reach; MS: multispectral imagery of the entire reach. 
Hydrological and meteorological data averaged over the respective TIR flight times. 

Variables August 21 2018 August 22 2018 September 2 2018 

Time of first and 
last image & Type 
of drone surveyA 

08:21-
08:37 
MS 
 
08:52-
09:03 
TIR 
 
09:08-
09:20 
MS 

12:13-
12:25 
MS 
 
12:32-
12:43 
TIR 
 
12:49-
13:02 
MS 

15:33-
15:42 
MS 
 
15:53-
16:04 
TIR 
 
16:09-
16:20 
MS 

 
 
 
 
08:49-
09:00 
TIR 
 
09:04-
09:18 
MS 

 
 
 
 
12:30-
12:41 
TIR 
 
13:12-
13:25 
MS 

 
 
 
 
15:50-
16:01 
TIR 
 
16:10 
16:30 
MS 

 
 
 
 
09:31-
09:41 
TIR 
 
09:49-
10:01 
MS 

 
 
 
 
13:02-
13:13 
TIR 
 
13:23-
13:39 
MS 

 
 
 
 
15:54-
16:06 
TIR 
 
16:09-
16:21 
MS 

Ground pixel  
size (m) 

MS: 0.09-0.10 
TIR: 0.19-0.22 

Discharge (m3/s)B 1.8 2.0 2.0 1.9 2.0 2.0 2.6 2.6 2.6 
Water temp. (°C)C 19.8 21.7 23.0 19.8 21.9 23.1 16.3 16.7 16.8 
Rel. humidity (%)D 74.7 45.7 39.2 78.8 49.5 29.5 77.3 71.2 81.4 
Wind speed (m/s)D 0.0 5.2 5.4 0.0 5.8 2.5 2.5 1.0 0.0 
Air temp. (°C)D 21.0 29.4 30.8 20.1 29.0 33.1 15.5 16.8 16.6 
Global solar 
irradiance (W/m²)E 

70 758 601 62 753 615 115 167 140 
AFlight start and end times (local time, hh:mm); BRecorded at the gauging station; CRecorded with logger #3; DRecorded at 
approximately 2 m from ground with a handheld Windmate 300 (WeatherHawk, Logan, UT, USA; accuracy: wind speed and 
relative humidity ± 3%, air temperature ± 1 °C, manufacturer's specification). E Recorded on the roof of the gauging station with 
a Global-Pyranometer (CPM 11, Kipp & Zonen, Netherland; sensitivity: 7-14 µV/W/m², manufacturer's specification; data source: 
BFH). 

 

3.2.1 Assessment of riparian shading using multispectral images 

In order to assess the influence of riparian vegetation shading on the river surface, two kinds 

of shade were considered (Fig. 3): (i) the shaded area right underneath the overhanging 

vegetation canopy and (ii) shadows cast by vegetation and topography. The latter can be 

assessed by directly mapping the shaded areas on the water’s surface, whereas the shaded 

area underneath overhanging vegetation had to be approximated by mapping the area of 

overhanging high vegetation and assuming that the area covered and therefore shaded by 

the vegetation remains constant (sun nadir, 100% shaded) during the day. An additional 

assumption was that if there was no direct sunlight (e.g. no sun, or cloudy), then the area was 

classified as 100% shaded.  
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Figure 3: Schematic representation of the two shade types defined in this study. 

 
Multispectral images (five spectral bands; Appendix A) were acquired by the MicaSense 

RedEdge™ camera mounted on the Wingtra One™ fixed-wing drone. The image datasets 

were than processed with Pix4D Mapper software (Pix4D 2018). This software relies on 

automatic feature detection and matching algorithms to retrieve the internal and external 

orientation of oblique images. Photogrammetric processing derives point clouds, digital 

elevation models (DEM) and orthoimages of the different bands. 12 ground reference 

points (GCPs) were used to improve the horizontal accuracy of the generated orthoimages 

and automated and manual co-registration to a reference dataset ensured optimal alignment 

(Fig. 4). The accuracy of the imagery co-registration was within two times the pixel size. 

However, the accuracy was spatially heterogeneous due to distortion effects caused by 

instable terrain (vegetation canopy) and different numbers of images covering the terrain 

(generally deteriorating towards the edges). Nevertheless, the data acquisition design 

guaranteed that the highest possible number of images covered the river, meaning the 

lowest errors can be expected in this area. The post-processed ground pixel size of the 

multispectral orthoimages was approximately 10 cm. 
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Figure 4. Post-processing workflow for shade assessment using drone multispectral images. 

 
A supervised maximum likelihood landcover classification was applied to the co-registered 

multispectral data to derive the spatial extent of water, vegetation and sediment (e.g. stones) 

areas (Fig. 4). Moreover, digital elevation information, the Swiss (WSL) national vegetation 

height model (Ginzler & Hobi 2015) and manual corrections were applied to increase 

classification accuracy. Vegetation was further subdivided into high and low overhanging 

vegetation in order to separate out vegetation that may generate shade.  

The acquisition concept was intended to illustrate the spatial dynamic of the shade during 

the day as well as before and after acquisition of the thermal data (on August 21, Tab. 1). 

Therefore, the multispectral data was also acquired under non-optimal illumination 

conditions in the morning and in the late afternoon resulting in weak illumination, low 

contrasts and a low solar illumination angle. These strongly heterogeneous illumination 

conditions presented several challenges in relation to processing and analysis of the imagery. 

Furthermore, the topographical and environmental settings of the study site also posed 

several challenges in terms of data processing: (i) the dense vegetation canopy complicated 

detection and matching of image features, (ii) there was restricted space in which to set 

sufficient GCPs within the study area, (iii) due to the topography, there were some very darkly 

shaded areas that created saturation effects which influenced the landcover classification and 

limited automatization efforts. The suboptimal acquisition conditions during the morning and 
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afternoon flights introduced several artefacts into the data that were manually excluded 

before analysis (Fig. 4). 

Shade Detection & Analysis 

Three approaches to automatically identify and map shaded areas were tested: (i) the shade 

index according to Rikimaru et al. (2002), (ii) shade identification and segmentation based on 

Ma et al. (2008), (iii) automated shade segmentation based on Polidorio et al. (2003). These 

three approaches rely on saturation indices, colour intensity and unique brightness as well as 

colour features of shaded areas. Unfortunately, these approaches did not perform well in the 

Glatt valley due to the high level of detailed information in the data (high spatial resolution, 

heterogeneous landcover conditions and visibility of subaequeous structures) and the 

heterogeneity and peculiarity of the study area that presented variable spectral properties for 

shaded area. For example, sub-surface aquatic vegetation (macrophytes and algae) in the 

river have the same spectral signature as shaded areas on the riverbanks and stones, which 

resulted in misclassifications. Therefore, a manual selection of the segmented imagery 

combined with the intensity values established by Rikimaru (2002) yielded the best results 

and was used for the final analysis of shadows cast by vegetation and topography. 

The shaded area directly underneath the overhanging vegetation was firstly derived from the 

Swiss (WSL) national vegetation height model (Ginzler & Hobi 2015) but was found to be of 

insufficient quality. Therefore, the classified multispectral drone images and the derived 

digital height model were used to establish which vegetation within the defined river channel 

was over 2m. This was then classified on the mapped area as high vegetation, resulting in a 

defined shaded area underneath the overhanging vegetation. This shaded area was assumed 

to be constant during the all of surveys (100% shaded area). 

Finally, in order to quantify the spatial and temporal dynamic of riparian shading on the 

studied reach of the Glatt River, four different shade properties were calculated and 

summarized: 

i. percentage of overall shadow area cast by vegetation and topography relative to the 

entire study area; 

ii. percentage of shadow area cast from vegetation and topography on the left and right 

sides of the river (separated by the river centre line, Fig. 3) relative to the entire left and 

right sides of the study area, respectively; 



13 
 

iii. percentage of shaded area underneath overhanging vegetation (assumed to be constant 

during the different surveys); 

iv. comparison between the shade data derived from the drone based remote sensing and 

the manually mapped shade transects supplied by the Fischwerk environmental office. 

3.2.2 Assessment of water temperature using drone thermal infrared images 

Thermal infrared (TIR) images were acquired with a thermomap™ thermal camera (Appendix 

A) mounted on an ebee classic™ fixed-wing drone system. According to the manufacturer, 

temperature sensitivity (i.e. the smallest temperature difference that can be detected) is 0.1 

°C, accuracy is unknown and the thermal recording range is -40 – +160 °C. The TIR image 

datasets were processed with Pix4D Mapper software (Pix4D 2018).  

Nine distinct topographical features were extracted from the multispectral data and chosen 

as GCPs in the post-processing workflow (Fig. 5). In addition, tie points were incorporated for 

automatic and manual co-registration once the TIR orthoimages had been generated. The 

multispectral data presented in section 3.2.1 was used to produce a water mask that filtered 

out all vegetation, sediment and mixed pixels in order to assure that only pure water pixels 

were used in further analysis (Fig. 5).  

 
Figure 5. Post-processing workflow for temperature assessment using drone TIR images. 
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Illumination effects resulting from the topography, the optical permeability of the shallow 

water and the general heterogeneity of the different landcover classes posed difficulties in 

the classification of vegetation and sediment. For example, algae and macrophythes were 

detectable on the riverbed and were classified as vegetation even though they were totally 

submerged (Appendix B). Therefore, an aggressive filtering of water pixels was necessary in 

order to ensure reliable analysis of the actual water area. This approach resulted in an 

underestimation of the actual water area but minimized errors resulting from misclassification 

(sub-pixel mixing). The co-registered and water masked TIR orthoimages were then used to 

provide surface water temperature data (Tr: radiant temperature; radiant temperature is 

equivalent to the emitted energy of an object) with a high spatial resolution. The post-

processed ground pixel size of the TIR orthoimages was approximately 20 cm. 

In addition to the TIR images collected over the entire study reach with the drone, so-called 

thermoscans of the area between two artificial weirs in front of the gauging station (Fig. 2) 

were performed on August 12 (11:00 – 12:00; sunny) and September 2 (11:00 – 12:30; cloudy) 

at approximately 60 min and 30 min intervals, respectively.  

Analysis 

The drone TIR orthoimages were analysed using R software version 3.5.1 (R Core Team 2018). 

First, mosaics were converted from ESRI Geodatabase Raster Datasets to TIFF images, in order 

to guarantee readability in R while keeping the file size. Second, four correction steps were 

performed before analysing the TIR orthoimages (Fig. 5): 

i. based on the thermal camera sensitivity, temperatures were rounded to one decimal 

point; 

ii. small temperature classes (i.e. < 10 pixels) were not considered representative and 

therefore discarded; 

iii. pixels with a Tr above a certain threshold were discarded because they were clearly not 

water pixels or contained artefacts. The threshold was set as the mean Tk of all the 

orthoimages plus 1 °C and then rounded; 

iv. to account for atmospheric and other environmental effects, Tr values were corrected 

assuming a linear relationship between Tr and Tk (Lebourgeois et al. 2008; Lee et al. 

2016). Tr was calculated by averaging all water TIR pixels that fell within a circular region 

(radius set to 0.5 m, ca. two TIR-pixels, to account for the inaccuracy of the RTK-GPS 
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receiver and the TIR orthoimages) around the location of the temperature loggers. The Tk 

measured by the in-situ temperature loggers was calculated as the average temperature 

throughout the duration of the TIR flights. 

The following statistics (Fig. 5) were then calculated for each corrected drone TIR orthoimage 

using the “raster” (Hijmans 2017) and the “SDMTools” packages (VanDerWal et al. 2014): 

i. six basic thermal statistics: number of pixels, mean, standard deviation, min. and max. 

temperature, temperature amplitude; 

ii. seven landscape metrics according to Faye et al. (2016): 

- three diversity metrics: thermal patch richness (number of temperature classes present 

in the thermal mosaic), Simpson’s thermal diversity index (indicates the probability 

that two pixels selected randomly would belong to different temperature classes), 

Shannon’s thermal diversity index (quantifies the uncertainty in predicting the 

temperature of one pixel that is chosen randomly in the thermal mosaic); 

- two aggregation metrics: thermal aggregation index (quantifies to what extent pixels 

of the same temperature class are spatially aggregated), thermal cohesion index 

(quantifies the physical connectedness between patches of the same temperature); 

- one shape metric: thermal landscape shape index (standardized measure of the total 

edge of a given thermal class); 

- One subdivision metric: thermal patch density (number of patches per unit area).  

Thermal gradients along the river centreline and two longitudinal profiles set at four meters 

parallel to the centreline were also investigated by extracting the temperature values for 

pixels spaced 10 meters apart that fell on the corresponding lines (Fig. 6). The centreline was 

derived using a tailored toolbox in ArcMap and the two parallel lines were generated by 

applying a buffer around the centreline. To investigate temperature variations within cross 

sections perpendicular to the approximately 750 m long reach and to detect potential cold-

water inflows, 72 transects spaced at 10 meter intervals were defined (Fig. 6). For each of the 

transects, the pixels from the TIR orthoimage that fell on the cross-section lines were 

extracted and used to draw boxplots and levelplots. A further approach used to detect 

inflows was a “change point” analysis that was performed using the “changepoint” package 

(Killick & Eckley 2014). This analysis allows points where statistical properties change (e.g. 

mean and standard deviation) to be identified within a dataset (Fricke & Baschek 2015). 
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Finally, the cold patch detection approach introduced by Wawrzyniak et al. (2016) was 

employed, in which the median water temperature within a five-meter buffer around the river 

centreline was calculated and then the areas with a temperature at least 0.5 °C colder than 

this value were defined as cold-water patches (Fig. 6). 

   
Figure 6. Left: Example of centreline, left and right side river lines, and cross sections for the analysis of 
thermal gradients and inflow detection. Flow direction is from bottom to top. Right: Schematic 
representation of the cold patch detection approach introduced by Wawrzyniak et al. (2016). 

 

3.3 In-situ measurements 

3.3.1 Assessment of water temperature using a stationary thermal infrared camera 

Stationary thermal infrared (TIR) images were continuously recorded at one min intervals on 

August 12 (07:50-16:50; sunny) and September 2 (08:50-16:10; cloudy) using a FLIR t620 

thermal camera (FLIR Systems Inc., Wilsonville, OR, USA) vertically (nadir) mounted on a 

wooden bar located approximately three meters above the water’s surface and 1.5 meters 

from the right river bank near the gauging station (Fig. 2). According to the manufacturer, 
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temperature sensitivity is < 0.04 °C, measurement accuracy ±2 °C (± 2 %) and thermal 

recording range -40 – +650 °C.  

TIR images from the stationary camera were analysed by extracting the radiant surface water 

temperature of the pixel located in the middle of each image (centre spot) and comparing 

this with the water temperature recorded by the closest logger (#3, Fig. 2). 

3.3.2 Assessment of water temperature using temperature loggers 

The kinetic water temperature (Tk; kinetic temperature is the contact heat energy of an 

object) was continuously recorded at one min intervals using Vemco Minilogg II temperature 

loggers (AMIRIX Systems Inc., Halifax, NS, Canada; temperature range −30 to 80 °C, 

resolution 0.01 °C, accuracy ±0.1 °C, manufacturer's specification). In total, 19 loggers were 

placed in protective stainless-steel cases, which have minimal influence on instantaneous 

temperatures (±0.1 °C; Malard et al. 2001), and deployed over the entire study reach (Fig. 2). 

The recording period lasted for approximately one month, from August 7 at 23:47 until 

September 2 at 16:13. Two loggers were either lost due to a small flood event on August 14 

(ca. 20.5 m3/s) or to human intervention. One logger (#2) was replaced on August 17 

(resulting in 37% of the data being lost), the other logger (#12) was not replaced (Fig. 2). 

After the sampling period, the loggers’ inter-accuracy was checked in a temperature-

controlled water bath. The average temperature across all the loggers (n=18, 6h, 1-min 

interval) was calculated and then the maximum temperature difference determined for each 

individual logger. Maximal differences ranged from +0.17 °C to -0.09 °C (Appendix C, Tab. 

C1).  

Analysis 

The Tk values recorded with the loggers were used to characterize the temporal dynamic of 

the water temperature along and across the reach. Moreover, they were used to validate and 

correct the radiant surface water temperature (Tr) that had been estimated by means of 

infrared thermography (Chap. 3.2.2). 

The temporal dynamic of the water temperature was investigated using six thermal variables 

calculated for the Tk from each temperature logger over the entire sampling period (for 

calculations see Arscott et al., 2001): (i) minimum Tk, (ii) maximum Tk, (iii) average Tk, (iv) Tk 

pulse (amplitude; i.e. the difference between maximum and minimum Tk), (v) maximum 
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kinetic rate of thermal heating (maximum temperature difference per hour), and (vi) 

maximum kinetic rate of thermal cooling (minimum temperature difference per hour). In 

addition, three temperature-related metrics of specific relevance to fish were also calculated 

(for calculations see Wolter, 2007): (vii) cumulative kinetic degree-days (cumulative sum 

temperature of the average daily temperatures over the sampling period), (viii) cumulative 

kinetic degree-days above 24 °C, and cumulative kinetic degree-days below 20 °C. In order to 

calculate the degree-day variables, days with no complete data (i.e. full days) were eliminated 

for all loggers; as a result 25 days out of 27 days were used for these calculations. As already 

stated above, 37% of the data from logger #2 was lost (10 days). Thus, results from this 

logger could not be directly compared with the other loggers. 

Thermal stratification and side channels 

During the surveys no significant thermal stratification was found (Ts = 0.0 ± 0.01 °C, max. Ts 

= 0.2 °C) (Appendix C, Tab. C2). Thus, the Tk recorded by the loggers can be considered to be 

indicative of the overall water column temperature and consequently be used for validation 

and correction of the radiant surface water temperature (Tr) estimated by means of infrared 

thermography. 

The temperatures of the 16 side channels found during the field survey (Fig. 2) ranged 

between 12.6 and 16.1 °C and the average temperature for all of the side channels was 14.7 ± 

0.9 °C (Appendix C, Tab. C3). These channels are most probably groundwater-fed and could 

have an influence on the water temperature of the Glatt River. Logger #18 was located in a 

3rd order side channel that delivered, by far, the largest discharge (ca. 65 L/s in August-

September; FOEN 2018c), all the other side channels discharged very little water or were dry 

on the survey dates. 

3.3.3 ADCP-Thermomaps 

Parallel to the drone TIR thermoscans (Chap. 3.2.2), kinetic water temperature (Tk) was 

continuously recorded at one sec intervals in the area between two artificial weirs in front of 

the gauging station (Fig. 2) using a SonTek M9 Acoustic Doppler Current Profiler (ADCP, San 

Diego, CA USA; temperature range −5 to 45 °C, resolution 0.01 °C, accuracy ±0.1 °C, 

manufacturer's specification) that was mounted on a SonTek Hydroboard II and coupled and 

synchronized with a differential GPS (sub-meter position accuracy). Data was collected on 
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August 12 (11:00 – 13:00; sunny) and September 2 (11:15 – 13:15; cloudy) at approximately 15 

min and 30 min intervals, respectively. The ADCP-thermomaps were evaluated to see if they 

could be used to measure spatio-temporal changes in water temperature. 

4 Results 

4.1 Assessment of riparian shading using multispectral images  

4.1.1 Spatio-temporal quantification of shade distribution and dynamics  

The high-resolution multispectral drone based data allowed the spatial distribution of shade 

on the river surface and the spatio-temporal dynamic of shade coverage to be quantified. On 

August 21 the shadow cast by vegetation and topography ranged from 83% of the entire 

study area at 08:21 to 17% at 12:13 (Fig. 7 “All”). Shaded areas directly underneath the 

overhanging vegetation canopy contributed only a very small amount to the total shaded 

area (ca. 9%; Fig. 7 “Vegetation All”). Similar trends were also detected on August 22 

(Appendix D). Therefore, the general topographical setting as well as the structure and height 

of the riparian vegetation played a far more important role in determining the shaded area of 

the study site. The diurnal shadow evolution on the left and right sides of the river followed 

the path of the sun over the horizon. As the general orientation of the study site is N-S, more 

shadows were cast in the morning on the right/eastern side of the river, whereas in the 

afternoon more shadows were cast on the left/western side of the river (Fig. 7 “left”, “right”). 

It should be noted that in the morning (08:21 vs 09:08) and in the afternoon (15:33 vs 16:09) 

there was only an approximate 40 min timespan between the datasets, but the shaded area 

generated by the vegetation canopy changed by approximately 15% in the morning and 7% 

in the afternoon (Fig. 7 “All”). 
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Figure 7. Percentage coverage of oblique shadows cast by vegetation and topography on the left and 
right sides of the rivers and the entire study area (“all”), and percentage coverage of the shaded area 
underneath the  overhanging vegetation (“vegetation”) on August 21 (see Fig. 3). Percentages relative to 
area covered. 

 
Figure 8 shows an example of the evolution of shade dynamics on one selected section of the 

study reach. In the morning, at approximately 08:20, the local topography and vegetation 

cast a shadow over the entire river (Fig. 8a). Approximately 45 min later, the sun had already 

reached the river’s surface, thus reducing the shaded area (Fig. 8b). As expected, the lowest 

shade coverage was detected around noon (Fig. 8c) when the sun was almost perpendicular 

to the river’s surface. However, within approximately 35 minutes the shaded area had already 

changed (Fig. 8d). In the afternoon, the river was again almost completely in shade (Figs. 8e 

& 8f).  

The temporally dense shade datasets from August 21 clearly show that shade coverage is 

highly dependent on topography and vegetation, and that considerable changes can occur 

very quickly (Figs. 7 & 8). 
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Figure 8. Results of the shade classification at different times on August 21 (sunny) on one selected 
section of the Glatt river. The grey area shows the oblique shadows cast by vegetation and topography 
and the blue area show the shaded area underneath the overhanging vegetation. The combination 
results in the total shaded area. The results show the survey times: a) 08.21, b) 09:08, c) 012:13, d) 12:49, 
e) 15:33, f) 16:09. Flow direction is from right to left. Background maps: NirGB orthoimages from August 
21. It should be noted that the artefact introduced by increasing wind during the afternoon in the NW 
part of Fig. 8f was manually excluded before final analysis. 
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4.1.2 Drone shade quantification vs manually mapped shade  

Manual field observations were conducted by the Fischwerk environmental office to map the 

shade on the study area around 10 days before the drone data acquisition. During this field 

survey, the shaded area of the entire river each was divided into four categories by visually 

estimating stretches of homogeneous shade coverage along the river at three times of the 

day (morning 08:39-09:48, noon 12:10-12:48, afternoon 15:21-16:23). The shade categories 

were 0-25%, 25-50%, 50-75% and 75-100%.  

Good agreement between the manually estimated sahde coverage and the shaded areas 

quantified from the multispectral drone data could be found (Fig. 9). The local differences 

were mostly small and mainly the result of a few percentage discrepancies between the 

multispectral derived sahde and the manually estimated ones, which resulted in a different 

(higher or lower) category. Although, Figures 7 and 8 clearly showed how quickly the shaded 

areas can change within a short time-span. Therefore, because the drone data acquisition 

took around 12 minutes and the manually conducted field surveys lasted around one hour, it 

can be expected that the uncertainty of the shaded area mapped by the drone is lower than 

for the manual approach.  



23 
 

 
Figure 9. Comparison of the shade coverage derived from drone remote sensing (MS: multispectral 
orthoimages) and from manual mapping in the field (Fischwerk data): a) morning, b) noon c) afternoon. 
The line in the middle of the channel visualizes the ratio of shade (%) within that area of the river from 
the Fischwerk acquisition, and the underlying greyscale areas show the shade ratio (%) in the same areas 
derived from the drone based data. Drone images were acquired on August 21 at 09:08-09:20, 12:13-
12:25 and 15:33-15:42. Flow direction is from bottom to top. Background maps: NirGB orthoimages from 
August 21. 
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4.2 Assessment of water temperature  

4.2.1 Validation and correction of surface water radiant temperature 

Drone TIR derived radiant temperatures (Tr) can be overestimated (noon and afternoon) or 

underestimated (morning) compared to in-situ Tk measurements (Table 2). The highest 

overestimations were reported for August 22 when Tr was 5.1±0.4 °C warmer on average than 

Tk. After correction, to account for atmospheric and other environmental effects, the mean 

differences between Tr and Tk were considerably reduced to 0.0/0.1 ± 0.1/0.2 °C. However, 

some local differences of up to 0.5 °C remained (Tab. 2). 

Table 2.Comparison between Tr and Tk. Tk: kinetic temperature measured by in-situ temperature loggers; 
Tr: radiant temperature derived from the drone TIR images. Corrected: Tr corrected assuming a linear 
relationship between Tr and Tk (Lebourgeois et al. 2008; Lee et al. 2016). Only loggers located in the 
centre of the river (# 2, 5, 9, 15; Fig. 2) were used to build this relationship because the water in the 
centre is expected to be better mixed due to turbulence and active vertical exchange than near the river 
banks and because environmental effects that might affect Tr are normally less pronounced in the centre 
of the river. Min, max, mean and SD (standard deviation) were calculated using data from all of the 
loggers except for loggers #1 and #16. 

Date Day time Tr – Tk raw  Tr – Tk corrected 
Min Max Mean ± SD  Min Max Mean ± SD 

21 August 
2018 

Morning -0.3 0.8 0.1 ± 0.3  -0.3 0.0 -0.1 ± 0.1 
Noon 2.4 4.0 3.2 ± 0.4  -0.1 0.2 0.0 ± 0.1 
Afternoon 3.6 5.0 4.2 ± 0.4  -0.1 0.3 0.1 ± 0.1 

22 August 
2018 

Morning -0.3 0.3 0.1 ± 0.2  -0.3 0.0 -0.1 ± 0.1 
Noon 3.0 3.9 3.5 ± 0.3  -0.1 0.2 0.0 ± 0.1 
Afternoon 4.4 6.0 5.1 ± 0.4  -0.1 0.5 0.1 ± 0.2 

2 September 
2018 

Morning -1.3 0.0 -0.9 ± 0.5  -0.3 0.0 0.0 ± 0.1 
Noon 0.2 0.5 0.3 ± 0.1  -0.2 0.1 0.0 ± 0.1 
Afternoon 0.0 0.6 0.2 ± 0.2  -0.1 0.1 0.0 ± 0.0 

 

4.2.2 Quantification of the temporal thermal dynamic of the water using in-situ 

loggers 

Over the entire reach, the Tk of all of the loggers, except #18, recorded a similar temporal 

temperature dynamic (Fig. 10; Appendix E). Tk ranged from a minimum of 16.0 °C (logger 

#16) to a maximum of 24.2 °C (loggers #11 & #14), while the average temperature ranged 

from 19.9 ± 1.7 °C (logger #16) to 20.4 ± 1.9 °C (logger #14) during the recording period. 

Logger #10, which was located in a shallow standing pool (Appendix C, Table C2), recorded 

the highest rate of thermal heating (1.4 °C/h; Appendix E). However, Logger #18 recorded a 

completely different temporal temperature dynamic, with a much lower average temperature 

(16.1 ± 0.7 °C), a reduced temperature amplitude (6 °C) and much higher rates of thermal 
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heating and cooling (3.2 & -1.7 °C, respectively) (Fig. 10; Appendix E). This logger was located 

in a 3rd order side channel on the left side of the river, which is probably fed by cold ground-

water. No clear thermal gradient from upstream to downstream or clear difference between 

loggers located on the left or right sides of the river could be detected (Fig. 10). 

Figure 10. Characterization of the temporal dynamic of the water temperature (°C) recorded by each in-
situ logger located on the left (L), in the centre (C) and on the right (R) of the river, and in a 3rd order side 
channel on the left of the river (TL; logger #18). See Figure 2 for the logger locations. Recording period 
lasted from August 7 at 23:47 until September 2 at 16:13. Logger #12 was either lost as the result of a 
small flood event on August 14 (ca. 20.5 m3/s) or due to human intervention. Logger #2 was replaced on 
August 17, resulting in a loss of 37% of the data. Boxplots show the 25th and 75th percentiles, median 
(straight line in the box), mean (dashed line), whiskers (90th and 10th percentiles) and outliers (black dots). 

 

4.2.3 Quantification of the temporal thermal dynamic of the water using a stationary 

thermal infrared camera 

The TIR radiant temperatures (Tr) measured by a stationary camera correlated very well with 

the in-situ logger Tk measurements (0.80 < r2 < 0.99; Fig. 11). On the sunny day, Tr was lower 

than Tk (mean: -0.64 ± 0.19 °C; range: -0.12 – -1.18 °C), whereas on the cloudy days Tr was 

slightly higher than Tk (mean: 0.13 ± 0.10 °C; range: -0.15 – 0.45 °C). This was probably due to 

the differences between water temperature and air temperature (difference between sunny 

and cloudy days) that have an impact on atmospheric emissions and absorption and thus 

may induce an overestimation or underestimation of Tr.  
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Figure 11. Comparison between radiant temperature (Tr) from a stationary TIR camera and kinetic 
temperature (Tk ) measured by in-situ temperature logger #3 on A) August 12 (07:50-16:50; sunny) and 
B) September 2 (08:50-16:10; cloudy). C) Example of stationary TIR image with spot (cross) Tr 
measurement (August 12 at 12:02). Battery failure and/or replacement resulted in 9.2% and 2.5% of the 
data being lost for A) and B), respectively. Please note different x- and y-axes scales. See Figure 2 for 
location of logger #3 and stationary TIR camera. 

 

4.2.4 Quantification of the spatial thermal dynamic of the water using drone thermal 

infrared images 

The high resolution TIR drone data allowed the spatial distribution and dynamic of thermal 

patterns to be quantified. A distinct daily variation in radiant surface water temperatures was 

detected on the two sunny days, whereas the temperature was more uniform on the cloudy 

day (Figs. 12-16; Appendix F, Figs. F1-F4). From morning to afternoon of the sunny day on 

August 21, the average surface temperature and temperature amplitude over the entire reach 

increased by 3.2 °C and 0.4 °C, respectively (Fig. 13). Whereas, on the cloudy day on 

September 2, the average surface temperature and temperature amplitude over the entire 

reach were relatively uniform and increased by only 0.6 °C and 0.1 °C, respectively (Fig. 13). 

The temperature distribution over the entire study reach was almost uniform, with 

temperature differences (amplitude) between a minimum of 0.0 °C (morning of September 2) 

and a maximum of 0.7 °C (afternoon of August 21) (Figs. 12 & 13).  

C) 
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Figure 12. Temperature corrected TIR orthoimages (spatial distribution of radiant temperature (Tr) values 
per pixel) of the entire study reach in the morning, noon and afternoon of August 21. Note that for the 
top three images, the temperature scale was kept constant (19.6 – 23.3 °C) for all three periods of the 
day, whereas for the bottom three images each period of the day is represented with the exact 
temperature range (thus showing more temperature differences; however most of these differences lie 
within the possible image error range of ± 0.5 °C). See Table 1 for exact flight times. Flow direction is 
from south to north. Background maps: RGB orthoimages of August 21. 
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Figure 13. Pixel frequency distribution of corrected radiant temperature (Tr) over the entire study reach in 
the morning, at noon and in the afternoon of August 21 (sunny) and September 2 (cloudy). Statistics for 
each histogram include six basic statistics: total number of pixels (Pt), mean radiant temperature (TrMean), 
standard deviation of radiant temperature, (TrSd), minimum radiant temperature (TrMin), maximum 
radiant temperature (TrMax) and radiant temperature amplitude (TrAmp). Please note the different x- and y-
axes scales. See Table 1 for exact flight times and Figures 12 & F1 (appendix F) for corresponding TIR 
orthoimages. 
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Some slightly warmer areas were detected at the start of the study reach on all three survey 

days (Fig. 12 bottom & Fig. 14; Appendix F, Figs. F1, F3 & F4). Analysis of the centreline data 

showed some correlation between downstream distance and decreasing temperature on the 

two sunny days (0.22 ≤ r2 ≤ 0.69). Moreover, temperature variability within the cross sections 

increased from morning to afternoon (box amplitude in Fig. 14), which was further influenced 

by the number of temperature pixels on each cross-section. The downstream longitudinal 

gradient might also have been influenced by the wastewater treatment plant located 

approximately 450 m upstream of the start of the reach. However, this trend was not 

confirmed by the in-situ measurements (Fig. 10) and most differences were within the 

possible TIR image error range of ± 0.5 °C (Tab. 2). Therefore, no longitudinal downstream 

cooling effect could be confirmed.  

 
Figure 14. Corrected thermal gradients of the radiant surface temperature (Tr) of the entire study reach in 
the morning, at noon and in the afternoon of August 21. Boxplots represent temperature variations in 72 
cross sections (spaced by 10 m) perpendicular to the ca. 750 m long reach. Boxplots show the 25th and 
75th percentiles, median (black line in the box), mean (red line in the box), whiskers (25th - 1.5 x IQR; 75th 
+ IQR) and outliers (dots). Grey-black boxes on the x-axis show the total number of pixels (n) in each 
boxplot (the darker the colour, the higher the “n” value) with n_a: afternoon, n_n: noon, n_m: morning. 
Flow direction is from left to right. See Table 1 for exact flight times and Figure 12 for corresponding TIR 
orthoimages. 
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The calculated landscape metrics depicted similar spatial heterogeneity in radiant surface 

water temperature on the two sunny days, while on the cloudy day different patterns were 

observed (Fig. 15). In general, the temperature pixels were more spatially aggregated and 

connected (AI and CI) on the cloudy day, whereas the thermal landscapes on the sunny days 

had greater temperature diversity (PR, SIDI and SHDI), especially in the morning and in the 

afternoon. This spatial temperature heterogeneity was probably increased by the higher air 

temperature and greater ambient effects (e.g. shadow) on the sunny day. 

Figure 15. Landscape metrics for corrected radiant temperature (Tr) over the entire study reach in the 
morning, at noon and in the afternoon of August 21 (sunny), August 22 (sunny) and September 2 
(cloudy). The seven metrics include the thermal aggregation index (AI), thermal cohesion index (CI), 
thermal patch richness (PR), Simpson’s thermal diversity index (SIDI), Shannon’s thermal diversity index 
(SHDI), thermal landscape shape index (LSI) and thermal patch density (PD). Please note the different y-
axis scales. See Table 1 for exact flight times and Figures 12 & F1 (appendix F) for corresponding TIR 
orthoimages. 

 



31 
 

As part of this study, levelplots were also developed, which were a very useful representation 

for analysing thermal variation of radiant surface temperatures over the entire study reach 

(Fig. 16). In figure 16, it is possible to see the warming effect from morning to afternoon, the 

slight longitudinal cooling effect from upstream to downstream and the greater thermal 

heterogeneity of the two sunny days. Moreover, it can also be seen that the water 

temperature is slightly warmer on the right than on the left side of the river (sunny days, 

afternoon in Fig. 16).  

 

Figure 16. Levelplots of corrected thermal variation of radiant surface temperature (Tr) with pixels (n > 
100’000) of the entire TIR orthoimage in the morning, at noon and in the afternoon of August 21 (sunny), 
August 22 (sunny) and September 2 (cloudy). White areas represent no data (feature matching not 
possible due to the ambient conditions on September 2 and bridge = no water pixels for August surveys). 
Flow direction is from left to right. Please note the different temperature scales on September 2. See Table 
1 for exact flight times and Figures 12 & F1 (appendix F) for corresponding TIR orthoimages.  

 

4.2.5 ADCP-Thermomaps 

On the sunny day, the mean water Tk mapped using an ADCP mounted on a Hydroboard 

correlated very well with the measurements from the in-situ logger Tk (r2 = 0.99; Fig. 17 left), 
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although ADCP-Tk was higher than the logger Tk (mean 0.46 ± 0.07 °C; range: 0.38 – 0.56 °C). 

This temperature difference was probably due to the spatial heterogeneity of the ADCP 

measurements (Fig. 17 right) and accuracy of both sensors (± 0.1 °C). Some spatial thermal 

heterogeneity was also confirmed by the drone TIR thermoscans (Appendix F, Fig. F5). Over 

the five sampling intervals on the cloudy day (11:15 – 13:15), both ADCP and the loggers 

delivered only slight temperature differences of approximately 0.1 °C, which correspond to 

the sensors’ accuracies. 

  

Figure 17. Left: Comparison between mean kinetic water temperature mapped with an ADCP and kinetic 
temperature measured by in-situ temperature logger #3 on August 12 (11:00-13:00; sunny). Error bars 
show the standard deviation of the ADCP measurements. Right: Example of the spatially continuous 
temperature data collected using the ADCP in one sec intervals (August 12 11:00). See Figure 2 for 
location of logger #3 and area mapped with the ADCP.  

 

5 Discussion and Conclusions 

Our study has proven multispectral and thermal infrared remote sensing to be a 

valuable tool for high temporal and spatial resolution quantitative assessment of 

riparian shading and instream temperatures. However, the study has also revealed some 

important considerations that should to be taken into account, which are outlined below. 

5.1 Assessment of riparian shading using multispectral images 

The application of drone based high resolution multispectral data is well suited to the 

detection and quantification of riparian shading in river systems. It was possible to 

quantify the shaded areas directly underneath the overhanging vegetation canopy using a 
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semi-automatic vegetation classification in combination with elevation information and some 

manual corrections. The extent of the oblique shadows cast by vegetation and topography 

could be quantified in the spectral data using segmentation, intensity mapping and some 

manual correction. The post-processing workflow presented in Figure 4 allowed high spatial 

resolution shade distribution to be mapped and diurnal shade dynamics to be assessed 

using multi-temporal drone flights. Furthermore, our study clearly showed that shadows cast 

by vegetation and topography is extremely dynamic and can change considerably in 

just a few minutes (Figs. 7 & 8). Therefore, we believe that shade quantification performed 

with multispectral drone data is more precise and objective than field surveys. It is 

particularly important to note that drone surveys can be performed on a large scale and at a 

high frequency, allowing this method to adjust to the quickly changing conditions mentioned 

above. 

The selected study site on the Glatt River has been shown to pose certain challenges in terms 

of the optical permeability of the water due to its shallowness, the spectral heterogeneity 

(colour intensity and illumination properties) of the study reach and feature matching. 

Therefore, it was necessary to perform some manual steps and make manual corrections to 

the data in order to accurately quantify the shade. Landcover and shade classification was 

constrained by the complexity of the study area and the fact that the high resolution of the 

drone imagery made fully automatic classification challenging. However, in addition to the 

spectral information, drone surveys also provide spatial information e.g. points clouds and 

surface models. Combining this information has been shown to improve automatic landcover 

classification (e.g. Milani et al. 2018) and could also improve shade detection and 

quantification in more heterogeneous areas.  

5.2 Assessment of water temperature using thermal infrared 

images 

The use of a high-end stationary thermal infrared (TIR) camera allowed very accurate 

measurements of surface water temperature to be made (Fig. 11). Application of such 

cameras at fixed locations (e.g. gauging stations) in well-mixed rivers represents a promising 

solution for continuous measurement and monitoring of water temperature. However, before 

the general suitability and reliability of such measurements can be established, tests over a 
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longer period and under different meteorological and hydrological conditions (possibly 

also at different study sites and with different TIR cameras) should be performed. 

The application of drone based TIR data is well suited to the detection and 

quantification of longitudinal and lateral thermal patterns (2D) and the temporal 

dynamic of surface water temperature in well-mixed river systems (Figs. 12-16). Our study 

applied and further developed several analysis tools for cold-water detection (Fricke & 

Baschek 2015; Wawrzyniak et al. 2016; levelplots; Chap. 3.2.2). However, cold water inflow or 

patches of cold water were not detected in the study reach. The discharge of the small cold-

water side channels found in the study reach (Chap. 3.2.2) was probably not large enough to 

considerably change the water temperature of the Glatt River and no substantial effects of 

shade on the water temperature were detectable because the residence time of water was 

very short (straight channel with no large pools and mainly fast flowing water). Nevertheless, 

we believe that remotely sensed TIR imagery is well suited to  2D detection of surface 

temperature differences (suggestion: ± 0.5 – 1 °C). Furthermore, it is a reliable method 

for acquiring information at a scale detailed enough for the detection of cold (e.g. 

groundwater or tributary) or warm (e.g. wastewater or other industrial waters) water 

inflows and ecologically relevant thermal refuges (e.g. Torgersen et al. 2001; Tonolla et al. 

2012; Deitchman & Loheide 2009; Wawrzyniak et al. 2013; Eschbach et al. 2016; Fullerton et 

al. 2018), which may be critical for the survival of many biota, including fish. However, TIR 

imagery is less suitable for taking absolute temperature measurements, and there are certain 

limitations and considerations that need to be considered when applying thermal infrared 

measurements in fluvial environments in order to ensure that the data acquired is of 

reasonable quality and that appropriate analysis can be carried out. 

The selected study site of the Glatt River posed a number of challenges because of the low 

water level (exposed sediment), overhanging vegetation and the large number of algae and 

macrophytes, which ultimately complicated the definition of pure-water pixels and the 

corresponding correct temperature signature. Moreover, the acquisition of thermal images 

under different meteorological (sunny vs. cloudy) and day-time conditions (e.g. humidity, 

wind, sky radiation) influenced atmospheric absorption and emissions and ultimately the 

accuracy and comparability of the TIR measurements. Therefore, in-situ temperature 

measurements (e.g. loggers) are absolutely necessary to validate and correct surface 
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water radiant temperatures estimated by means of infrared thermography. In our study, 

realistic thermal infrared errors were estimated to be ± 0.5 °C (Chap. 4.2.1), which agrees with 

several other studies (Torgersen et al. 2001; Wawrzyniak et al. 2013; Lee et al. 2016). 

Moreover, in-situ temperature measurements provided critical information on the temporal 

thermal dynamic of the water. 

An alternative for the characterization of 2D temperature patterns, especially in complex 

rivers (narrow valley, overhanging vegetation with sediment, algae and macrophytes exposed 

above the water’s surface) where thermal remote sensing survey is not feasible or data 

analysis is extremely challenging, is the use of an Acoustic Doppler Current Profiler (ADCP) 

temperature sensor mounted to a board and synchronized with a differential GPS (sub-

meter position accuracy; Chap. 4.2.5). Our study showed the potential of this method, 

possibly also in combination with a fast-tracking thermometer (temperature response time 

0.1 sec), for spatio-temporal analysis of river temperatures (i.e. thermomaps). 

General suggestions and further applications 

For a comprehensive thermal characterization of complex river systems, and in order to 

assess thermal patterns that could affect the distribution of biota and ecosystem processes, 

both spatially and temporally, extensive temperature surveys may be required. For river 

surveys with remotely sensed TIR imagery, it is possible to make the following general 

suggestions (site and study goal specific): 

• perform mid-afternoon TIR surveys when the water temperature can be expected to be 

more stable, near the daily maximum which is likely to be most limiting to aquatic biota. 

Alternatively, perform late afternoon-evening (after sunset) surveys when maximum 

thermal heterogeneity can be expected and in order to minimize erroneous temperature 

measurements caused by solar reflection; 

• perform parallel multispectral and TIR surveys between 13:00 and 16:00 when the 

windows of optimum illumination and river temperature overlap. 

• conduct TIR surveys when river discharge is low and stable in order to reveal thermal 

heterogeneity resulting from local variability of radiative warming and advective heat 

contributions (Dugdale et al. 2016); 

• perform TIR surveys under the following conditions: short measurement distances (< 300 

m), low humidity (< 50% relative humidity), low wind (< 15 m/s), low sensor angle (≤ 30°, 
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better nadir or near nadir, e.g. 7°) and low water turbidity (inorganic sediment, clay-silt 

concentrations < 50’000 mg/L) in order to reduce problems linked to atmospheric and 

background effects, emissivity and surface characteristics (Appendices in Tonolla et al 

2010, 2012). 

TIR imagery also has great potential for a broad range of further applications: 

• quantification and dense monitoring of surface water temperature in medium to large 

rivers and lakes. Advantages: sufficient pure-water pixels and fewer environmental effects 

than in small streams; 

• calibration, validation and improvement of stream temperature models (e.g. Cristea & 

Burges 2009; Loheide & Gorelick 2006; Cardenas et al. 2014).  We are currently  

collaborating with EAWAG to evaluate the thermal effect (i.e. thermopeaking) of water 

inflow near hydropower plants using a combination of remotely sensed TIR imagery, 2D 

thermal modelling and in-situ surveys; 

• monitoring the success of restoration projects, for example in terms of cold-water 

thermal refuges for fishes. 

In conclusion, we consider the two recent studies by Wawrzyniak et al. (2016; characterization 

of temporal variability and spatial distribution of cold water patches along a 50 km river 

reach) and Fullerton et al. (2018; characterization of frequency, size, and spacing of cool 

thermal patches suitable for Pacific salmon along 11’308 km of 2nd–7th order rivers and the 

potential influences of climate change on availability of cool patches) to be excellent 

examples of the effective use of remotely sensed TIR imagery in river management and 

fundamental fluvial science that can also be applied in Switzerland. Finally, the fast pace of 

drone and sensor technology development has the potential to enable more frequent, 

automatic and precise thermal assessments and efficient mapping of larger freshwater areas 

to be carried out. 
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7 Appendix 

7.1 Appendix A: Technical specifications of the cameras used 

Multispectral camera 

The multispectral MicaSense RedEdge™ camera has a lens focal length of 5.5 mm, a field of 

view of 87.4°and includes five spectral bands: blue (Band 1: 460–510 nm), green (Band 2: 545–

575 nm), red (Band 3: 630–690 nm), NIR (Band 4: 820–860 nm) and red-edge (Band 5: 712–

722 nm).  

Drone thermal infrared camera 

The thermamap™drone thermal infrared camera has an uncooled 14-bit Vanadium Oxide 

microbolometer focal-plan-array detector operating in the 7.5–13.5 μm spectral range. The 

camera has a field of view of 69° x 56° with a horizontal resolution of 1.889 mrad and an 

image size of 640 pixels x 512 scanning lines. Emissivity of the camera is automatically set to 

1 (i.e. perfect absorber/radiator) and cannot be modified. To calibrate absolute temperature 

accuracy, a shutter is regularly closed in-flight (at a known temperature). Optical calibration 

(camera internal orientation, focal plane, etc.) is performed during the post-processing 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/field-of-view
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/field-of-view
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workflow. The camera has a fixed focus allowing a flight operation altitude between 40 and 

150 m. 

Stationary thermal camera 

The stationary thermal camera has an internally calibrated focal plane array, uncooled 

microbolometer operating in the 7.5–14 μm spectral range. The camera has a field of view of 

45° x 34° with a horizontal resolution of 1.3 mrad and an image size of 640 pixels x 480 

scanning lines. Atmospheric transmission correction for this camera is automatic and based 

on inputs for distance, atmospheric temperature and relative humidity. To be consistent with 

thermal images acquired by the drone an emissivity value of 1 was set. 

7.2 Appendix B: Water mask 

   
Figure B1. Pronounced example of how the masking of the water area underestimated the actual water 
surface. Therefore, an aggressive filtering/masking was necessary to ensure reliable analysis of the actual 
water area.   
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7.3 Appendix C: Loggers accuracy, thermal stratification and side 

channels 

Logger accuracy 

Table C1. Logger inter-accuracy was checked in a temperature-controlled water bath using the average 
temperature of all the loggers minus the average temperature of each single logger. L#: logger number. 
See Figure 2 (main text) for logger locations. Logger #12 was either lost as the result of a small flood 
event on August 14 2018 (ca. 20.5 m3/s) or because of human intervention. 
L # Inter-accuracy (°C) 
1 -0.09 
2 -0.02 
3 0.05 
4 -0.07 
5 -0.01 
6 -0.07 
7 -0.07 
8 0.08 
9 0.17 
10 -0.05 
11 0.05 
13 0.02 
14 -0.08 
15 -0.08 
16 0.04 
17 0.03 
18 0.08 
19 0.01 
 

Thermal stratification 

Measurements of thermal stratification were conducted on the survey dates of August 12, 

August 21 and September 2. Water Tk was measured at each temperature logger location at 

approximately 10 cm below the water surface and at 10 cm above the river bottom with a 

Flowatch Flowmeter (JDC Electronic SA; resolution 0.1 °C, accuracy ± 0.2 °C, manufacturer's 

specifications). Thermal stratification was then calculated as the surface Tk minus the bottom 

Tk = Ts (Tab. C2). The water was considered stratified when Ts exceeded the ± 0.2 °C accuracy 

of the sensor. 
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Table C2. Thermal stratification at individual logger locations on three survey dates. Ts = surface Tk – 
bottom Tk, representing the stratification temperature threshold (i.e., stratified when Ts > 0.2 °C). L#: 
logger number; NA: not available; h: water depth; v: flow velocity measured at ca. 60% water depth with 
a SonTek FlowTracker 2 (Xylem Inc., San Diego, CA, USA; resolution 0.0001 m/s, accuracy ±1% of 
measured velocity, manufacturer's specifications). See Figure 2 (main text) for logger locations. 

L # Habitat type 
Thermal stratification Ts (°C) h (m) v (m/s 

12.08.2018  
(14:35-15:40) 

21.08.2018 
(12:50-16:40) 

02.09.2018 
(10:20-15:15) 

21.08.2018 

1 Run 0.0 0.0 0.0 0.46 0.24 
2 Fast flowing run 0.0 0.0 0.0 0.62 0.54 
3 Run 0.1 0.0 0.0 0.60 0.20 
4 Backwater 0.0 0.2 0.0 0.26 0.30 
5 Riffle/step -0.1 0.0 0.1 0.68 0.06 
6 Riffle/step 0.1 0.0 0.0 0.56 0.44 
7 Fast flowing run -0.1 0.0 -0.1 0.40 0.42 
8 Fast flowing run 0.2 0.0 0.0 0.76 0.35 
9 Run -0.1 0.0 0.1 0.44 0.01 
10 Standing pool 0.0 0.0 0.0 0.14 0.04 
11 Slow flowing pool 0.0 0.0 0.0 0.24 0.05 
12 Fast flowing run -0.1 NA NA NA NA 
13 Slow flowing pool -0.1 0.0 0.0 0.48 0.06 
14 Run 0.0 0.0 0.0 0.30 0.23 
15 Fast flowing run 0.1 0.0 0.1 0.52 0.57 
16 Pool -0.1 0.1 0.0 0.78 0.23 
17 Fast flowing run 0.0 0.0 -0.1 0.46 0.32 
18 Run 0.0 0.0 0.0 0.14 0.03 
19 Fast flowing run 0.0 0.0 0.0 1.10 0.30 
 

Logger locations and side channels 

The logger locations were determined for each survey date with a RTK-GPS (Trimble R10, 

Trimble Inc., Sunnivale, CA, USA; horizontal accuracy during the surveys < ±3 cm). 

Additionally, the locations of side channels that could influence the water temperature of the 

main channel were measured on August 22. 

16 side channels, 13 on the left side of the river and three on the right side of the river, were 

found during the field survey (Fig. 2 main text) and their temperature was measured with a 

Flowatch Flowmeter (JDC Electronic SA; resolution 0.1 °C, accuracy ± 0.2 °C, manufacturer's 

specifications) (Tab. C3). 
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Table C3. Temperature of side channels on August 22, 2018 (10:40 – 13:40). L: side channel on the left 
side of the river; R: side channel on the right side of the river. L12 is where Logger #18 was located. NA: 
not available. Water temperature measured with a Flowatch Flowmeter (JDC Electronic SA; resolution 0.1 
°C, accuracy ± 0.2 °C, manufacturer's specifications). See Figure 2 (main text) for side channel locations. 
Side channel Temperature (°C) Comments 
L1 13.9  
L2 12.6  
L3 14.8  
L4 14.6  
L5 14.5  
L6 14.3  
L7 14.5  
L8 15.0  
L9 14.2  
L10 14.9  
L11 16.0  
L12 16.1  
L13 NA Street pipe, dry on August 22 2018 
R1 15.5  
R2 NA Street pipe, dry on August 22 2018 
R3 NA Street pipe, dry on August 22 2018 
 

7.4 Appendix D: Shade on August 21 

 
Figure D1. Percentage coverage of oblique shadows cast by vegetation and topography on the left and 
right sides of the rivers and the entire study area (“all”), and percentage coverage of the shaded area 
underneath the overhanging vegetation (“vegetation”) on August 22 2018. Percentages relative to area 
covered. 
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7.5 Appendix E: Temporal dynamic of water temperature 

Table E1. Characterization of the temporal dynamic of water temperature (°C) by each in-situ logger. 
Recording period lasted from August 7, 2018 at 23:47 until September 2, 2018 at 16:13. L#: logger 
number; TkMin: minimum kinetic temperature; TkMax: maximum kinetic temperature; TkAv: average kinetic 
temperature; TkAmp: kinetic temperature amplitude; TkHeat: maximum kinetic rate of thermal heating; TkCol: 
maximum kinetic rate of thermal cooling; TkCum: cumulative kinetic degree-days; TkCum24: cumulative 
kinetic degree-days above 24 °C; TkCum20: cumulative kinetic degree-days below 20 °C. Logger #12 was 
either lost as the result of a small flood event on August 14, 2018 (ca. 20.5 m3/s) or due to human 
intervention. Logger #2 was replaced on August 17, 2018, resulting in the loss of 37% of the data. See 
Figure 2 (main text) for logger locations. 
L # TkMin TkMax TkAv TkAmp TkHeat TkCol TkCum TkCum24 TkCum20 
1 16.1 23.5 20.1 7.5 0.8 -0.8 504.8 0 11 
2 16.1 23.2 19.8 7.2 0.8 -0.8 320.2 0 8 
3 16.1 23.9 20.2 7.8 0.9 -0.8 507.5 0 9 
4 16.1 23.6 20.1 7.5 0.8 -0.8 505.8 0 11 
5 16.1 23.6 20.1 7.6 0.9 -0.8 506.0 0 11 
6 16.3 23.8 20.2 7.6 1.0 -0.6 507.6 0 9 
7 16.1 23.9 20.2 7.8 0.9 -0.8 507.2 0 9 
8 16.1 23.9 20.2 7.8 0.9 -0.8 507.3 0 9 
9 16.1 23.6 20.2 7.6 0.9 -0.8 506.8 0 9 
10 16.1 23.5 20.1 7.4 1.4 -0.8 505.8 0 11 
11 16.1 24.2 20.3 8.1 1.0 -0.8 509.8 0 9 
13 16.1 23.4 20.1 7.3 0.8 -0.8 504.3 0 11 
14 16.1 24.2 20.4 8.1 0.9 -0.8 512.1 0 5 
15 16.1 23.9 20.2 7.9 0.9 -0.8 508.7 0 9 
16 16.0 23.2 19.9 7.1 0.8 -0.8 500.0 0 11 
17 16.1 23.9 20.2 7.8 0.9 -0.7 507.7 0 9 
18 15.4 21.5 16.1 6.0 3.2 -1.7 402.2 0 25 
19 16.0 24.0 20.3 8.0 0.9 -0.7 509.4 0 7 
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7.6 Appendix F: Thermal infrared images collected using a drone 

 

Figure F1. Temperature corrected TIR orthoimages (spatial distribution of radiant temperature (Tr) values 
per pixel) of the entire study reach in the morning, noon and afternoon of August 22, 2018 (top) and 
September 2, 2018 (bottom). Note that on the three images for each day, the temperature scale was kept 
constant for all three times of the day, See Table 1 (main text) for exact flight times. Flow direction is 
from south to north. Missing parts in the orthoimages from September 2 were due to impossible feature 
matching caused by the ambient conditions. Background maps: RGB orthoimages from August 21 and 
September 2, respectively. 
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Figure F2. Pixel frequency distribution of corrected radiant temperature (Tr) over the entire study reach in 
the morning, at noon and in the afternoon of August 22, 2018 (sunny). Statistics for each histogram 
include six basic statistics: total number of pixels (Pt), mean radiant temperature (TrMean), standard 
deviation of radiant temperature, (TrSd), minimum radiant temperature (TrMin), maximum radiant 
temperature (TrMax) and radiant temperature amplitude (TrAmp). Please note the different x- and y-axis 
scales. See Table 1 (main text) and Figure F1 for corresponding TIR orthoimages. 
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Figure F3. Corrected thermal gradients of the radiant surface temperature (Tr) of the entire study reach in 
the morning, at noon and in the afternoon of August 22, 2018. Boxplots represent temperature variations 
in 72 cross sections (spaced by 10 m) perpendicular to the ca. 750 m long reach. Boxplots show the 25th 
and 75th percentiles, median (black line in the box), mean (red line in the box), whiskers (25th - 1.5 x IQR; 
75th + IQR) and outliers (dots). Grey-black boxes on the x-axis show the total number of pixels (n) in each 
boxplot (the darker the colour, the higher the “n” value) with n_a: afternoon, n_n: noon, n_m: morning. 
Flow direction is from left to right. See Table 1 (main text) for exact flight times and Figure F1 for 
corresponding TIR orthoimages. 
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Figure F4. Corrected thermal gradients of the radiant surface temperature (Tr) of the entire study reach in 
the morning, at noon and in the afternoon of September 2, 2018. Boxplots represent temperature 
variations in 72 cross sections (spaced by 10 m) perpendicular to the ca. 750 m long reach. Boxplots show 
the 25th and 75th percentiles, median (black line in the box), mean (red line in the box), whiskers (25th - 
1.5 x IQR; 75th + IQR) and outliers (dots). Grey-black boxes on the x-axis show the total number of pixels 
(n) in each boxplot (the darker the colour, the higher the “n” value) with n_a: afternoon, n_n: noon, n_m: 
morning. Flow direction is from left to right. See Table 1 (main text) and Figure F1 for corresponding TIR 
orthoimages. Missing sections between reach meter 400 and 650 were due to the inability to perform 
feature matching as a result of ambient conditions. 
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Figure F5. Drone TIR thermoscans. Temperature corrected TIR orthoimages (spatial distribution of radiant 
temperature, Tr, values per pixel) of the area between two artificial weirs in front of the gauging station. 
Top two images: August 12, 2018 (sunny; 11:00 – 12:00); Bottom four images: September 2, 2018 (cloudy; 
11:00 – 12:30). Note that the temperature scale was kept constant for all times of each day. Flow 
direction is from right to left. Background maps: RGB orthoimages from August 12 and September 2, 
respectively. Note that most temperature differences in the images from September 2 are within the 
possible TIR image-error of ± 0.5 °C. Therefore, they probably do not represent real temperature 
differences. Moreover, reflection artefacts due to the railway bridge are also visible in these images. 
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