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1 Introduc+on 
 
In this report, the hydraulic head Jme series from the NAQUA QUANT monitoring network is 
analyzed. The study consists of two parts. The goal of the first part is to test the standardized 
groundwater index (SGI) as an indicator of groundwater drought events, compared to historic 
events. The goal of the second part is to use groundwater signatures to cluster different 
groundwater monitoring staJons into smaller groups with similar behavior.  
 
This report is a complement to a delivery package with data and Jupyter Notebooks (readable 
Python scripts) of the analysis, which are the main output of this project. At the end of each 
chapter, a brief descripJon of the used Jupyter Notebook, the input and output data, and the 
produced figures is provided. This report concisely summarizes the main results of this study. 
 
This report is structured as follows. In the second chapter, the data used for the analysis is 
summarized and described. The third chapter briefly describes the modeling of the hydraulic 
head Jme series and how the models are used to gap-fill the head Jme series. The fourth 
chapter describes the analysis of the SGI and how it compares to the current FOEN approach 
based on percenJles. The fidh chapter describes the results of the clustering analysis using 
groundwater signatures. The sixth and final chapter summarizes this report.  
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2 Data descrip+on 
 
2.1 Hydraulic head 0me series 
Time series of hydraulic heads (hereader, heads) from 51 pumping wells and piezometers 
were provided by the FOEN from the QUANT module. For the iniJal screening, the data was 
ploeed in graphs and visually inspected for any clear errors in the data that could impact the 
remainder of the analysis. Ader this iniJal inspecJon, the data from five monitoring staJons 
were updated by the FOEN and new data were delivered and used in this study. As a result, 
all of the 51 staJons could be used for further analysis. 
 
For many staJsJcal analyses, it is important to have conJnuous, gapless Jme series over the 
period of interest. Here, the 30-year period 1993-2023 was chosen as the period of interest. 
This is in line with the 30-year period commonly used in climate studies for staJsJcal (trend) 
analysis. Moreover, as the meteorological data is available from 1990 onwards, this allows for 
a three-year warm-up period for the hydrological model used to simulate the hydraulic heads. 
 
From the 51 staJons, 39 head Jme series had missing data. The minimum and maximum 
percentage of missing data varied between 0 and 65% of the daily head values, with an 
average percentage of 13%. These results are visualized in Figures 1 and 2. Figure 1 shows the 
locaJons of the monitoring staJons and the percentage of missing data. From the data shown 
in Figure 1, it can be observed that there is no clear spaJal paeern in where staJons with 
missing data are located. 
 

 
 
Figure 1. Map of the loca,ons of the monitoring sta,ons used for the analysis. The color 
denotes the percentage of missing data in the daily ,me series from 1993-2023. 
 
Figure 2 shows the temporal data availability of the Jme series. The color denotes the number 
of observaJons per month, and it can be seen that all staJons provide head data with a daily 
measurement frequency. Note that higher frequency data might be available, but that this 
was not used in this study. The data in Figure 2 also indicates that the largest part of the data 

https://www.bafu.admin.ch/bafu/en/home/topics/water/info-specialists/state-of-waterbodies/state-of-groundwater/groundwater-quantity.html
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gaps is at the beginning of the period of interest, simply because the measurement started 
later (at 20 staJons). For all the Jme series with missing data, gap-filling is applied to obtain 
30-year gapless Jme series. 
 

 
 
Figure 2. VisualizaJon of the data availability of the groundwater level data. Note that all 
the ,me series have daily values, most with only a few gaps. At 20 sta,ons, measurements 
started (well) aFer 1993, causing a ‘gap’ at the start of the period of interest (1993-2003). 
 
2.2 Spring discharge data 
In total, 43 Jme series of spring discharge were provided by the FOEN from the QUANT 
module. Out of these, 41 Jme series had data gaps. The percentage of missing data ranges 
between 0% and 100% of the data (staJon Cormoret), with an average of 42%. This average 
percentage of missing data is substanJally higher compared to the head data (13%). Given 
this high percentage of missing spring discharge data, gap-filling is much more challenging. 
Rudolph et al. (2023) tested an adapted version of Pastas on spring discharge data with 
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moderate success, but fundamentally the Pastas model was not designed for this purpose and 
data. It was therefore decided not to gap-fill and/or use the spring discharge data for further 
analysis within this project. It is recommended to explore the use of other (types of) models 
to gap-fill the spring discharge data, for example neural network models. 
 
2.3 Meteorological data 
Meteorological data for the locaJons of the monitoring staJons for the hydraulic heads is 
obtained from MeteoSwiss. Daily precipitaJon sums are taken from the gridded RhiresD 
dataset, and daily average air temperature from the gridded TabsD dataset for the period 
January 1991 to September 2023 (MeteoSwiss, 2023). Individual precipitaJon and air 
temperature Jme series for each groundwater monitoring staJon are extracted by selecJng 
the data from the cell in which the monitoring staJon is located. PotenJal evaporaJon (PET) 
was computed from the air temperature data using the Hamon method implemented in the 
PyET Python package (Vremec et al., 2024).  
 
2.4 Script and output data descrip0on 
The script to preprocess the hydraulic head data is called 00_read_groundwater_data.ipynb. 
The script uses the data from the ‘raw’ folder, where all the data delivered by the FOEN is 
located. The script reads all raw data, and stores it in a format that can be more easily used 
for data analysis and modelling. This preprocessed data is saved into the ‘processed’ folder. 
The head Jme series are stored in ‘heads.csv’ and the metadata in the ‘metadata_heads.csv’. 
This script collects all this data and makes plots of the Jme series that are used for a visual 
inspecJon. 
 
The meteorological data is collected and processed in the script called  
01_get_meteo_data.ipynb, using RhiresD and TabsD data from MeteoSwiss available at the 
Eawag. This script cannot be run without this data, which have to be requested from 
MeteoSwiss. The processed precipitaJon, air temperature and PET data per monitoring 
staJon, however, is saved and available from the ‘processed’ folder. The precipitaJon, 
temperature, and potenJal evaporaJon are stored in ‘precipita,on.csv’, ‘temperature.csv’, 
and ‘evapora,on.csv’, respecJvely. 
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3 Gap-filling the head +me series 
 
3.1 Hydraulic head modelling 
The original head Jme series were gap-filled using heads simulated with a lumped-parameter 
groundwater model from the Pastas modelling sodware (Collenteur et al. 2019). For each 
monitoring staJon, a separate model was constructed and calibrated. The heads were 
simulated using precipitaJon, potenJal evaporaJon, and temperature as model inputs. Other 
stresses on the groundwater system causing water table fluctuaJons were not considered, 
limiJng the performance of the model for some locaJons. This is parJcularly the case for 
those staJons impacted by pumping and river level fluctuaJons. It is stressed here, however, 
that this is a data availability issue rather than a model deficiency, i.e., the model can take 
these stresses into account, but the input data are more difficult to obtain. Including other 
stresses than meteorology was outside the scope of this study. 
 
The models were calibrated on all available head data for each monitoring staJon, by 
minimizing the sum of the squared residuals. The residuals are computed as the simulated 
minus the observed heads. The model performance is evaluated using the coefficient of 
determinaJon (R2), where a score of 1 indicates as a perfect model (i.e., simulated and 
observed heads are equal), and a score below 0 indicates that the mean head would be a 
beeer esJmator. 
 

  
 
Figure 3. Two examples of simulated and observed ,me series. The top panel shows a model 
with good performance (6535 Kestenholz), while the boOom panel shows a model with lower 
performance (6569 MärsteOen - Gugel I). 
 
Two examples of simulated (blue line) and observed heads (black dots) are shown in Figure 3. 
In the example shown in the top panel, the head fluctuaJons are modelled well by the model 
and the input variables. This is clearly not always the case, as can be observed in the lower 
panel in Figure 3. For the head Jme series in the boeom panel, which are affected by pumping, 
the model performed poorly. Poor model performance can thus be used as an (addiJonal) 
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indicaJon that other stresses, pumping, river water infiltraJon, potenJally affect the heads at 
such monitoring staJons. 
 
Figure 4 shows a map of the model performances using the coefficient of determinaJon (R2). 
The R2 ranges between 0.13 and 0.96, and a mean and median of 0.61 and 0.64, respecJvely. 
Where models have a low performance, it may be used as an indicaJon that one or more 
other stresses (i.e., pumping, river stage) are impacJng the groundwater heads. For these 
locaJons, it is unlikely that the heads only show variaJons due to meteorological changes. An 
Excel file (notes.xlsx) is provided with an expert judgment on whether it is suspected that 
stresses other than meteorological stresses likely impact the heads at the staJons. 
 

 
 
Figure 4. Map with the model performance quan,fied using the coefficient of determina,on 
(R2). 
 
3.2 Gap-filling 
The calibrated models are used to gap-fill the 39 head Jme series that have missing data. 
Because the simulated heads have a certain bias with the measurement, the simulated data 
that is used for gap-filling is corrected using the last and first available measurement before 
and ader the gap, respecJvely. By linearly interpolaJng the errors at this point, a correcJon is 
computed for the simulated heads used to fill the gap. This step was found to be essenJal for 
the gap-filling. Figure 5 shows an example of a gap-filled Jme series for the monitoring staJon 
6511 Davos. The red lines at the boeom mark where gaps were filled. In total, 39 out of the 
51 head Jme series were gap-filled. The final result is a gap-filled Jme series for all monitoring 
staJons in the dataset. 
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Figure 5. Example of a gap-filled head ,me series for the monitoring sta,on in 6511 Davos 
(NQG50).  
 
3.3 Script and output data descrip0on 
The Jupyter notebook 02_gws_modellierung.ipynb loads the data from the ‘processed’ 
folder, and is used to model the heads using the Python package Pastas and gap fill the Jme 
series. The file ‘all_,meseries.csv’, saved in the ‘output’ folder, contains all the Jme series 
generated for this exercise. In the folder ‘ts’, all the Jme series for the individual monitoring 
staJons are stored. The notebook also produces several figures, saved in the ‘figures’ folder. 
Figures of the individual models (simulated and observed heads) are stored in the ‘models’ 
folder, and figures of the gap-filled head Jme series are stored in the ‘gap-filled’ folder. 
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4 Standardized Groundwater Index (SGI) 
 
4.1 Calcula0on of the SGI 
The standardized groundwater index (SGI) is an internaJonally used index to compare the 
severity of drought events from historic records of hydraulic heads (Bloomfield and Marchant, 
2013). The index is designed to use 30-year head Jme series, like many other types of climate 
analyses. The gap-filled Jme series are therefore used to compute the SGI for the period 1993-
2023. The advantage of the SGI is that it allows to compare extreme events within a Jme 
series, and between Jme series measured at different locaJons. For each of the gap-filled 
Jme series the SGI was computed using the Pastas sodware. The SGI values typically range 
between -3 and 3, where low values indicate dry condiJons and high levels indicate wet 
condiJons, compared to the same period in other years. Commonly, values around SGI < -2 
are used to idenJfy groundwater droughts. 
 
Figure 6 shows an example of the SGI for the monitoring staJon of 6535 Kestenholz. The top 
panel shows the gap-filled head Jme series, with an approximately one-year gap in 2011. 
During this gap, the Pastas model predicts the lowest hydraulic head. The middle panel shows 
the SGI as a black line, but also as a shaded color in the background for easier interpretaJon. 
For comparison, the boeom panel shows the groundwater drought level determined from the 
percenJle method by the FOEN. The period where the gaps were filled shows some of the 
lowest hydraulic heads, and thus a low SGI. Missing this event (i.e., no gap-filling) would alter 
the relaJve severity of other drought events, making them more extreme. Including this event 
(i.e., with gap-filling), makes the other low event less extreme and reveals that the most 
extreme event actually happened in 2011. This example illustrates how data gaps may impact 
the results of the SGI and why gap-filling can be helpful. 
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Figure 6. Time series of the gap-filled heads (top), the SGI (middle), and the groundwater 
drought level (boOom) for the monitoring sta,on of Kestenholz. 
 
4.2 Comparison of SGI with percen0le-based approach 
The FOEN has internally adopted a percenJle-based approach to categorize drought events 
into different groundwater drought levels. With this approach, the head in one parJcular week 
of the year is compared to the heads in the same week from a reference period (usually the 
years 1991-2020). In that sense, the approach is comparable to how the SGI works. 
 
Figure 7 shows a comparison of the SGI ploeed against the groundwater drought levels for 
the analyzed 51 monitoring staJons simultaneously. Note that the groundwater drought level 
has a discrete scale (1 to 5), whereas the SGI is on a conJnuous scale (~ -3 to 3). It should also 
be noted that the SGI is computed based on the gap-filled Jme series, whereas the percenJle 
approach only used the original head data with gaps. Nonetheless, the groundwater drought 
level and the SGI show a relaJvely strong correlaJon (r=-0.61), indicaJng that both 
approaches give similar results. 
 

 
Figure 7. The percen,le-based warning levels ploOed against the value of the SGI. The 
spearman correla,on is provided at the top right of the figure.  
 
 
4.3 Script and output data descrip0on 
The Jupyter notebook 02_gws_modellierung.ipynb that was used in the previous chapter, also 
computes the SGI and the various figures related to the SGI. The SGI is computed on both 
weekly and monthly average heads. The resulJng SGI values are stored in ‘all_,meseries.csv’, 
saved in the ‘output’ folder. The figures of the SGI are stored in the ‘sgi’ folder in the ‘figures’ 
folder. 
  



 13 

5 Clustering of monitoring sta+ons 
 
5.1 Descrip0on of the clustering approach 
The goal of the second part of this project was to cluster the different monitoring wells into 
smaller groups that show similar behavior. For this purpose, the concept of groundwater 
signatures was used. Groundwater signatures are numerical values that quanJfy the behavior 
observed in the head hydrograph (Heudorfer et al., 2019). For example, a signature may 
quanJfy whether the head has a long or short memory, or if the head shows a clear annual 
cycle or not. Ader compuJng a set of groundwater signatures, the monitoring staJons can be 
clustered based on the numerical values of the signatures. By selecJng different signatures, 
one can choose what characterisJcs of the hydrograph to focus on in the clustering exercise.  
 
The approach can be summarized as follows. First, the selected signatures were computed. 
Second, the signatures were normalized to ensure that the signatures had similar weights for 
the clustering. Third, a clustering algorithm was applied to cluster the monitoring staJons into 
different groups based on the signatures. The basic principle of such clustering algorithms is 
to group staJons where the signatures have similar values. Here, the Ward method was 
applied (Ward, 1963), which is a common method for this type of analysis. Here, the 
monitoring wells were clustered on three characterisJcs groups: seasonality, response Jme, 
and all signatures. 
 
5.2 Seasonality 
This clustering focuses on grouping Jme series with a similar seasonal behavior. For this 
purpose, signatures focusing on quanJfying the seasonal behavior are picked. The three 
selected signatures are the average seasonal fluctuaHon (avg_seasonal_fluctuaJon) the 
Pardé seasonality (parde_seasonality) and the interannual variaHon (interannual_variaJon). 
The clusters resulJng from this analysis are shown in Figure 8, and a map is shown in Figure 
9. Figure 8 shows that many of the clusters contain Jme series with similar paeerns. Cluster 
C0 contains three Jme series with liele to no seasonal paeern. Cluster C1 contains staJons 
with annual cycles combined with much more long-term variaJons exceeding the annual 
cycles. These Jme series show long-term trends that follow the long-term meteorological 
condiJons at the monitoring staJon. All the staJons from cluster C1 are located in northern 
Switzerland. Clusters C2 and C3 contain Jme series that appear to respond to individual 
recharge or precipitaJon events, but with no clear seasonal paeern. Clusters C4 and C5 on the 
other hand, show clear annual cycles, likely from recharge events from snow melt in spring 
and related rises in river levels. The staJons in these clusters are all located in the (pre-) Alpine 
area.    
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Figure 8. Clusters based on signatures quan,fying the seasonality of the heads. 
 

 
Figure 9. Map of the clusters based on seasonal signatures.  
 
5.3 Response 0me 
This clustering grouped the monitoring wells based on their memory or response Jme, i.e., 
how quickly does the groundwater system recede and recover? For this, two signatures were 
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used: the autocorrelaHon Hme (autocorr_Jme) and the fall rate (fall_rate). The resulJng 
clusters are shown in Figure 10, and a map showing the locaJons in Figure 11. The 
hydrographs in each cluster show similar paeerns regarding how fast the heads rise and 
recede. Cluster C3 shows head Jme series with smooth curves and long memory Jmes, 
whereas cluster C2 and C1 show decreasing memory Jmes and faster responses, as visible by 
more peaks. Here, the heads at the staJons in clusters C1 respond fastest to recharge events 
or other stress impulses (i.e., river level changes). The fourth cluster, C0, appears to be a 
cluster with shorter memory Jmes that did not fit in the clusters C1 and C2. In relaJon to 
drought events, it may be expected that the heads in each of these clusters respond faster 
(C1/C2) or slower (C3) to droughts, and may take shorter or longer, respecJvely, to recover. 
 

 
 
Figure 10. Clusters based on signatures quan,fying the memory ,me of the groundwater 
system. 
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Figure 11. Map of the clusters based on signatures focusing at memory ,me. 
 
5.4 General behavior 
For the final clustering exercise, all available signatures were used, except those that showed 
strong correlaJons (r > 0.8). In the case of strong correlaJons, one of the two correlaJng 
signatures was manually chosen, trying to maximize the total number of signatures by 
considering correlaJon with other signatures. This is done to ensure that signatures that focus 
on similar parts of the hydrograph (and thus are correlated), do not have a higher importance 
during clustering.  
 
The resulJng clusters are shown in Figure 12, and a map of the locaJons in Figure 13. For this 
clustering exercise, more clusters were chosen by manually adjusJng the number and 
interpreJng the results. Many of the clusters show Jme series that have very similar behavior, 
both in terms of memory Jmes and temporal variaJons. All clusters have two or more 
staJons, except for C9. This cluster represents a staJon (NQG43) with unique characterisJcs 
in terms of the observed head dynamics. The clusters show no clear spaJal paeern (Figure 
13), but do appear to be related to how far the staJons are located away from more 
mountainous areas. This example of clustering shows that the approach can be employed to 
cluster staJons that observe similar groundwater dynamics, but are not necessarily spaJally 
nearby. 
 
5.5 Script and output data descrip0on 
The Jupyter Notebook 04_signature_clustering.ipynb is used for the clustering exercise. This 
notebook takes the output Jme series from the previous notebook, computes the signatures, 
and performs the clustering. The signatures are stored in the file ‘signatures.csv’ in the 
‘output’ folder. The clusters are stored in the ‘clusters.csv’ file in the same folder. The notebook 
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05_create_maps.ipynb is used to produce the maps shown in this report. All figures are stored 
in the ‘figures’ folder.  
 
 

 
Figure 12. Clusters based on all signatures excluding those with high correla,ons between 
signatures.  
 

 
 
Figure 13. Map of the clusters based on all the signatures.  
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6 Summary 
 
This study invesJgated the use of the standardized groundwater index and clustering based 
on groundwater signatures to analyze hydraulic head Jme series from 51 NAQUA QUANT 
staJons. This report summarizes the main methods and is meant to guide through the data 
and Python scripts that are the main product of this study. 
 
To compute the standardized groundwater index (SGI), the head Jme series were gap-filled 
using lumped-parameter groundwater models and meteorological forcing data. These models 
addiJonally provided insights into where stresses besides meteorology might affect the 
heads. From this analysis, it was found that more than half of the staJons measure heads that 
are affected by other stresses (i.e., river levels or pumping). The gap-filled data was used to 
compute the SGI, which was compared to the percenJle-based approach to quanJfy a 
drought level that is internally used within the FOEN. The results of these two approaches 
were found to be comparable in a qualitaJve analysis. 
 
In the second part, a novel approach to cluster the monitoring staJons, based on the behavior 
of the head dynamics, was explored and tested on the data. To this end, a large number of 
groundwater signatures were computed to quanJfy the behavior observed in the hydraulic 
head Jme series. A clustering algorithm was applied to cluster the monitoring staJon. Based 
on the selected signatures, clusters could be made on focusing on different parts of the 
hydrographs. Here, the staJons were clustered based on signatures focusing on seasonality, 
memory Jme, and the general behavior (many signatures).  
 
Depending on the chosen signatures, different clusters could be idenJfied that group staJons 
where the heads show similar aspects. It is concluded that this type of clustering can be 
helpful when needing to group staJons for a certain behavior, for example the response Jme 
to drought events. For a pracJcal applicaJon, however, the goal of the clustering needs to be 
clearly defined, such that signatures can be selected, and the resulJng clusters can be 
evaluated with a specific goal in mind.  
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