Sur mandat de l'OFEV

Estimation de flux massiques et charges en hydrocarbures chlorés à l'aide d'échantillonneurs passifs de flux

Tests et retours d'expérience sur un site pollué

Rapport final

Octobre 2020

Mentions légales

Mandant

Office fédéral de l'environnement (OFEV), division Sols et biotechnologie, CH-3003 Berne

L'OFEV est un office du Département fédéral de l'environnement, des transports, de l'énergie et de la communication (DETEC).

Mandataire

eOde Sàrl, 7 chemin de Mont-Riant, CH-2000 Neuchâtel. eOde est un bureau de conseils spécialiste des sites et sols pollués et de la géostatistique environnementale.

Auteurs

Hélène Demougeot-Renard, Sabine Brocero, Emilie Sammali, Sonia Tarnawski.

Accompagnement OFEV

Christiane Wermeille, Reto Tietz.

Remarque

Le mandataire porte seul la responsabilité du contenu.

Table des matières

1.	Contexte et objectifs	9
2.	Définitions	10
3.	Matériel et méthodes	11
3.1	Site et contexte de réalisation des essais	11
3.2	Piézomètres et transects	11
3.3	Echantillonneurs passifs de flux	13
3.4	Méthodes d'estimation des flux et des charges dans les transects	15
3.5	Comparaison à 2 sites suisses étudiés précédemment	16
4.	Travaux réalisés	17
4.1	Préparation de la campagne de terrain	17
4.2	Pose des PFM	19
4.3	Retrait des PFM	19
5.	Résultats	20
5.1	Informations préalables	20
5.2	Mesures des flux de Darcy	21
5.3		
5.4	Comparaison aux flux estimés dans 2 autres sites suisses	29
6.	Analyse et interprétation des résultats	30
6.1	Contrôle de la validité des résultats	
6.2	Estimation des flux et des charges dans les transects	31
7.	Enseignements tirés de l'utilisation de PFM sur ce cas d'étude	34
8.	Recommandations générales pour l'utilisation de PFM	38
Liste	s des figures	
	des tableaux	
	rences	
I (CIC		72
۸nr	nexes	
	xe 1 Fiches de suivi de l'exposition des PFMxe 2 Plan d'installation d'installation des PFMxe 2 Plan d'installation d'installat	
	xe 3 Essais de dissolution au sel dans FCR28	
	xe 4 Photographies de pose et retrait des PFM	
	xe 5 Rapport iFLUX	
	xe 6 Flux de Darcy et flux massiques en HCC (perméabilité Alluvions : 1.10-4 m/s)	
	xe 7 Concentrations déduites des PFM <i>vs</i> Concentrations d'échantillons d'eau classiques	
	xe 8 Flux massiques complémentaires estimés dans les transectsxe 9 Charges complémentaires estimées dans les transects	
AIII C	ve a Orialdea combientalies estimees dans les transects	190

Abréviations

1,1,1-TCA 1,1,1-trichloroéthane
1,2-DCA 1,2-dichloroéthane

8HCC somme des 8 hydrocarbures chlorés : perchloroéthène, trichloroéthène, cis-

1,2-dichloroéthène, trans-1,2-dichloroéthène, chlorure de vinyle, 1,1,1-

trichloroéthane, 1,2-dichloroéthane et trichlorométhane

ChlorE somme des 5 chloroéthènes : perchloroéthène, trichloroéthène, cis-1,2-

dichloroéthène, trans-1,2-dichloroéthène et chlorure de vinyle

Cis-1,2-DCE cis-1,2-dichloroéthène
CV chlorure de vinyle

Darcy flux de Darcy

GC/MS chromatographie en phase gazeuse / spectrométrie de masse

HCC hydrocarbures chlorés

PFM échantillonneur passif de flux

Prof. profondeur

PER perchloroéthène TCM trichlorométhane

Trans-1,2-DCE trans-1,2- dichloroéthène

TRI trichloroéthène

1. Contexte et objectifs

Les flux massiques et les charges en polluants traversant une section en aval hydraulique de sources de pollution constituent des éléments importants d'appréciation de l'impact d'un site pollué sur la qualité des eaux souterraines. Ils peuvent également être utiles à la définition de mesures d'assainissement d'un site, en précisant où se trouvent les principaux flux de polluants dans le milieu souterrain, et quelle est l'importance (charge) de l'apport en substances des foyers de pollution dans la nappe. La charge (encore appelée débit massique) est explicitement mentionnée dans l'ordonnance sur les sites contaminés (Art.14 OSites¹) comme élément d'appréciation du but et de l'urgence de l'assainissement au stade de l'investigation de détail d'un site contaminé.

Parmi les différents outils et méthodes pouvant être utilisés pour mesurer et/ou estimer les flux et débits massiques, les échantillonneurs passifs de flux (PFM) sont des dispositifs apparus récemment pour mesurer directement les flux dans les forages. Une étude destinée à dresser un état des connaissances sur ces dispositifs et à évaluer leurs avantages et inconvénients a été menée en 2018 par eOde (Demougeot-Renard 2018). Elle met en évidence le potentiel que constituent ces outils pour mesurer les flux et estimer les charges, mais également le faible nombre de tests réalisés en grandeur nature sur sites réels, notamment en Suisse.

En 2019, la section Sites contaminés de l'Office fédéral de l'Environnement (OFEV) a confié à eOde une étude complémentaire destinée à tester des PFM sur un site contaminé recensé au cadastre suisse des sites pollués. L'étude comprend l'équipement en PFM de 4 forages dans un transect d'un site contaminé aux hydrocarbures chlorés localisé dans le canton du Jura. Le nombre total de PFM commandés par l'OFEV est de 20. L'Office de l'environnement du canton du Jura a complété cette demande, par la commande de 11 PFM supplémentaires, à installer dans d'autres forages du site. La pose et l'exposition des 31 PFM ont été réalisées de manière synchrone pour obtenir une vision globale des flux de polluants sur l'ensemble du site.

Le test de ces dispositifs est intervenu dans le contexte de la deuxième phase d'investigation de détail du site contaminé, réalisée par le bureau Institut Géotechnique.

L'exposition des PFM vise ainsi deux objectifs :

- Fournir des résultats méthodologiques généraux sur l'utilisation de PFM pour évaluer les flux et les charges dans les investigations de sites en Suisse, afin de dégager des recommandations sur leurs conditions d'utilisation pratique et l'interprétation des résultats de mesures produites,
- Fournir des valeurs de flux et de charges spécifiques au site d'essai contribuant à l'interprétation de l'état de pollution de son sous-sol et à ses possibilités d'assainissement, en complément des investigations du sol et des eaux menées par Institut Géotechnique.

Le présent rapport restitue les résultats de ce travail, mené entre Mai 2019 et Mai 2020.

¹ Ordonnance sur l'assainissement des sites pollués du 26 août 1998, RS 814.680.

28.10.2020

2. Définitions

Le flux massique désigne la masse de substances transportées (sous forme dissoute) par les eaux souterraines et traversant une surface unité constitutive d'une section (transect, plan de référence) dans le panache de substances par unité de temps. Le flux massique est exprimé en masse/surface/temps (p.ex. g/m²/j).

Le flux massique combine deux informations sur le transport d'une pollution en nappe : la quantité de substances présentes dans les eaux et la vitesse d'écoulement des eaux. Ce flux est exprimé sous forme d'un vecteur renseignant à la fois sur l'amplitude et la direction du flux :

$$J = q_0 \cdot C = -K \cdot i \cdot C \tag{Eq. 1.}$$

où:

J Flux massique de substances (M/L²/T) (p.ex. g/m²/j)

 q_0 Flux de Darcy, vecteur (L³/ L²/T) (p.ex. m³/j)

C Concentration en substances (M/L³) (p.ex. g/m³)

K Conductivité hydraulique (L/T) (p.ex. m/j)i Gradient hydraulique (L/L), sans dimension

Le flux massique peut varier spatialement du fait de vitesses d'écoulement et de masses de substances dissoutes différentes au sein de la section. Ces variations peuvent être liées à l'hétérogénéité du milieu aquifère, ainsi qu'à celle des sources de pollution. De même, le flux massique peut varier avec le temps en raison de fluctuations temporelles des apports en substances à partir des sources et du régime d'écoulement des eaux souterraines.

La charge (débit massique) désigne en Suisse la masse de substances transportées par les eaux souterraines et traversant une section dans le panache de substances par unité de temps. La charge intègre l'ensemble des flux massiques des différentes surfaces unités constitutives de la section (intégration spatiale). La charge est exprimée en masse/temps (p.ex. g/j). Si la section inclut la totalité du panache, cette charge représente la totalité de la masse de substances transportées à une distance donnée des sources de pollution :

$$M_d = \int_A J. \, dA \tag{Eq. 2.}$$

où:

 M_d Charge (M/T) (p.ex. g/j)

J Flux massique de substances (M/L²/T) (p.ex. g/m²/j), tel que défini dans Eq.1.

dA Surface unité de la section (L²) (p.ex. m²)

A Surface totale de la section (L2) (p.ex. m2)

Comme le flux massique, la charge peut fluctuer au cours du temps.

3. Matériel et méthodes

3.1 Site et contexte de réalisation des essais

Le site d'essai est un site contaminé recensé dans le cadastre des sites pollués du canton du Jura, occupant une parcelle de 6500 m².

Sous le revêtement bitumineux ou le béton, le terrain est formé de remblais, d'Alluvions composées de graviers avec sables et limons, de sables plus ou moins limoneux du Bois de Raube, et de Molasse formée de marne plus ou moins gréseuse. Le toit de la Molasse – localement altéré en sables limoneux - a été rencontré dans les forages à environ 10 m de profondeur.

Une nappe d'eau souterraine est présente dans les Alluvions, la formation du Bois de Raube et la frange altérée de la Molasse, sur une hauteur de 7 m environ, la Molasse marneuse saine formant l'aquiclude. Le niveau statique de la nappe se trouve à environ 3 m sous la surface du terrain, l'écoulement des eaux souterraines s'effectuant globalement vers le Nord-Est.

D'anciennes activités industrielles liées à la production d'outillage et de machines de précision, telles que le chromage ou la trempe, ou encore le stockage d'huiles et de solvants, ont conduit à la dissémination d'hydrocarbures chlorés dans le terrain. Les concentrations de certains composés de la série des chloroéthènes dépassent les demi-valeurs de l'Annexe 1 de l'OSites dans les eaux souterraines en aval à proximité du site. La localisation du site en secteur Au de protection des eaux souterraines, a conduit l'Office de l'environnement du canton du Jura à le classer comme « site contaminé, nécessitant un assainissement », par application des Art. 8 et 9 de l'OSites.

De 2011 à 2016, le site a fait l'objet d'une investigation historique, d'une investigation technique préalable et d'une première phase d'investigation de détail conformes à l'OSites. Une deuxième phase d'investigation de détail a été réalisée en 2019 et 2020. Elle comportait la réalisation de sondages et le prélèvement d'échantillons solides et d'eau souterraine pour analyse chimique, ainsi qu'une étude microbiologique du potentiel de biodégradation des composés chlorés dans les sols et les eaux.

3.2 Piézomètres et transects

Le site comporte une vingtaine de forages équipés en piézomètres réalisés durant les travaux d'investigation préalable et d'investigation de détail. Durant la deuxième phase d'investigation de détail, des forages ont été réalisés avec l'objectif spécifique de disposer de transects dans lesquels les flux peuvent être mesurés à l'aide d'échantillonneurs passifs de flux.

Les forages piézométriques qui ont été équipés en PFM sont **au nombre de 18** et sont organisés en 3 transects perpendiculaires à la direction générale d'écoulement des eaux (**BB', CC' et DD'**) et 1 transect dans la direction d'écoulement (**EE'**) (Figure 1).

Les **16 forages**, **FCR 23 sup et inf à FCR 30 sup et inf**, sont organisés en paires : le forage supérieur (sup) est peu profond et comporte un équipement piézométrique (crépine et massif filtrant) à hauteur des Alluvions, tandis que le forage inférieur (inf) adjacent est plus profond et présente un équipement piézométrique à hauteur de la formation du Bois de Raube. Les tubes pleins et piézométriques ont un diamètre de 3".

Les **2 forages FC11 et FCR18** sont équipés d'une unique crépine et d'un unique massif filtrant sur toute la hauteur des terrains aquifères formés des Alluvions et de la formation du Bois de Raube. Les tubes ont un diamètre de **4.5**".

Les forages sont répartis comme suit dans les transects :

- Les forages FCR22 sup et inf, FCR23 sup et inf sont localisés dans le transect BB' d'orientation Nord-Ouest / Sud-Est perpendiculaire à la direction d'écoulement des eaux ; ce transect se trouve en amont hydraulique d'un puits perdu suspecté constituer un foyer de pollution important du site,
- Les forages FC11, FCR25 sup et inf, FCR26 sup et inf, FCR27 sup et inf sont localisés dans le transect CC' de même orientation que le transect BB', en aval hydraulique immédiat des principaux foyers de pollution suspectés, dont le puits perdu,
- Les forages FCR28 sup et inf, FCR29 sup et inf, FCR30 sup et inf sont alignés dans le transect DD' parallèle aux transects BB' et CC', à plus grande distance des principales sources de pollution du site, considéré par le canton du Jura comme l'« aval à proximité »,
- Le forage FCR18 se trouve en aval du site dans la parcelle adjacente, à environ 65 m du transect BB', en direction du captage d'eau potable de la commune. Cette localisation est dénommée « Grand Aval » dans la suite du texte,
- Les forages FCR23 sup et inf, FCR26 sup et inf, FCR29 sup et inf et FCR18 sont également alignés dans la direction Sud-Ouest / Nord-Est le long du transect EE' orienté dans la direction générale d'écoulement des eaux souterraines.

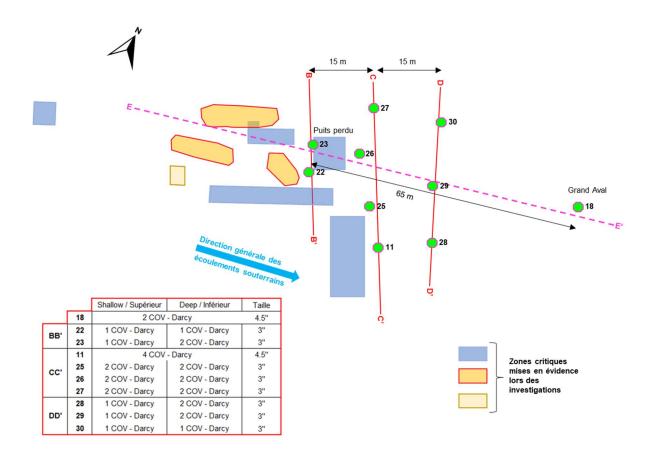


Figure 1 Localisation des forages et des transects équipés en PFM sur fond de plan schématique du site d'essai. Les paires de forages sont représentées par un unique symbole (p.ex. paire FCR22 sup et FCR22 inf représentée par FCR22) pour plus de clarté.

3.3 Echantillonneurs passifs de flux

Les échantillonneurs passifs de flux utilisés sont des dispositifs produits et commercialisés par la société iFLUX (Niel, Belgique). Les échantillonneurs se présentent sous la forme de cylindres de 15 cm de longueur et d'un diamètre standard de 2", ou bien d'un diamètre spécifique. Pour les besoins de cette étude, des PFM s'adaptant aux diamètres 3" et 4.5 " des piézomètres du site d'essai ont été produits.

Parmi l'ensemble des échantillonneurs proposés par la société iFLUX, 2 types ont été utilisés :

- 31 cartouches permettant de mesurer les flux de Darcy (dites « cartouches Darcy » dans la suite du texte),
- 31 cartouches permettant de mesurer les flux d'hydrocarbures chlorés (appelées « cartouches COV » dans la suite du texte) dans les eaux souterraines. Les hydrocarbures chlorés dont les flux ont été mesurés sont au nombre de 8 : perchloroéthène, trichloroéthène, cis-1,2-dichloroéthène, trans-1,2-dichloroéthène, chlorure de vinyle, 1,1,1-trichloroéthane, 1,2-dichloroéthane et trichlorométhane.

Les cartouches Darcy renferment 5 traceurs - alcools présentant différents facteurs de retard - dont la dissolution progressive pendant la durée d'immersion permet de mesurer la vitesse (temporelle) moyenne d'écoulement des eaux.

Les cartouches COV renferment des matériaux adsorbants permettant d'accumuler progressivement les composés chlorés pendant la période d'immersion.

Les cartouches sont analysées par GC/MS dans un laboratoire partenaire de la société iFLUX (laboratoire SGS, Anvers, Belgique) pour mesurer les quantités de traceurs dissous et de substances HCC adsorbées ; les résultats analytiques sont interprétés par la société iFLUX pour en déduire les flux de Darcy et les flux massiques d'HCC.

Figure 2 Cartouches PFM utilisées pour mesurer les flux de Darcy et les flux massiques d'HCC.

Un dispositif multiniveau peut être constitué à partir de ces cartouches, pour être descendu dans les tubes de forage. Les cartouches sont séparées par une ou plusieurs tiges métalliques emboîtables d'une longueur de 30 cm. Pour le site d'essai, il a été décidé de placer une cartouche COV immédiatement au-dessus d'une cartouche Darcy – constituant un « module COV – Darcy » - pour pouvoir mesurer le flux de Darcy et le flux de polluants à des profondeurs presque identiques (différence de 15 cm), et 1 à 4 modules ont été descendus dans les forages.

Le plan d'équipement des forages a été conçu en tenant compte de l'état général des piézomètres : les tubes de quelques forages étaient légèrement endommagés (p.ex. tubes légèrement courbés), et la tête de certains piézomètres ne permettait pas de faire adhérer la surface externe des PFM à la surface interne des tubes en place. Le plan vise également à étudier les variations de flux dans la nappe à des distances croissantes des sources de pollution dans les 2 principales formations aquifères des Alluvions et du Bois de Raube. Dans le détail, l'équipement réalisé est le suivant (Annexes 1 et 2) :

- Dans le transect BB', 5 modules « COV Darcy » ont été descendus dont 2 dans la paire de forages FCR22 (1 module dans FCR22 sup crépiné à hauteur des Alluvions, 1 module dans FCR22 inf crépiné à hauteur du Bois de Raube) et 3 dans la paire FCR23 (1 module dans FCR23 sup, 2 modules séparés de 0.8 m dans FCR23 inf pour capter les variations de flux à faible distance),
- Dans le transect CC', 16 modules « COV Darcy » ont été répartis dans 4 forages, chacun en ayant 4; les paires FCR25, FCR26 et FCR27 comportent 2 modules dans leur forage supérieur et 2 modules dans leur forage inférieur; le forage FC11 comporte 4 modules dans son unique tube piézométrique.
- Dans le transect DD', 8 modules ont été descendus ; les paires FCR28 et FCR29 présentent
 1 module dans leur forage supérieur et 2 modules dans leur forage inférieur ; la paire FCR30 comporte un module dans chacun des forages supérieur et inférieur,
- Le forage FCR18 situé en aval à grande distance du site comporte 2 modules, 1 à hauteur des Alluvions et 1 à hauteur du Bois de Raube dans son unique tube.
- Avec les 7 forages en doublons FCR23, FCR26 et FCR29, et le forage unique FCR18, le transect longitudinal EE' comporte 12 modules, dont 5 sont localisés dans les Alluvions.

Au final, 14 modules (14 Darcy, 14 HCC) ont été posés pour des mesures de flux dans la formation des Alluvions et 17 modules pour des mesures dans celle du Bois de Raube.

Les profondeurs des modules sont variables et contraintes par l'emplacement des crépines. Les distances verticales séparant 2 modules ont été choisies en priorité pour capter les variations de flux à différentes échelles (< 1 m à plusieurs m) et dans les différentes lithologies rencontrées dans les forages. Dans le transect CC', les modules ont été répartis en vue d'estimer les flux et des charges sur l'ensemble de la surface de la section.

Lors de la mise en place des nouveaux piézomètres (FCR17 à FCR30), le parti a été pris de crépiner les horizons apparaissant les plus perméables – au vu de la nature et de la granulométrie des matériaux rencontrés dans les forages – dans l'objectif de capter les flux les plus importants. Les horizons crépinés ne sont de ce fait pas représentatifs de toute la formation du Bois de Raube. Cet élément doit être pris en compte au stade de l'interprétation des résultats.

3.4 Méthodes d'estimation des flux et des charges dans les transects

3.4.1 Variation spatiale des flux dans les transects

Les PFM fournissent des mesures des flux de Darcy et des flux massiques de composés chlorés en différents emplacements assimilables à des points XYZ du milieu souterrain. Leur nombre étant limité (31 valeurs de flux au total pour un volume de sous-sol de l'ordre de 50000 m3), de nombreuses inconnues subsistent sur les valeurs de flux en dehors des points de mesure.

Des méthodes d'estimation peuvent être utilisées pour estimer les flux en dehors des points de mesure et cartographier les variations spatiales de flux dans un transect, ou bien éventuellement dans le volume 3D occupé par l'aquifère. Pour le site d'essai, seules des estimations 2D par transect ont été testées, le nombre total de mesures de flux disponibles étant insuffisant pour envisager une estimation 3D.

Trois grands types de méthodes peuvent être appliqués, comme décrit par (Demougeot-Renard 2018):

- La méthode empirique des polygones consiste à attribuer la valeur de flux mesurée à l'emplacement du PFM à la surface d'un polygone défini empiriquement autour du point de mesure.
- 2. Les méthodes d'interpolation déterministes, telles que la méthode du plus proche voisin ou celle de l'inverse du carré de la distance proposent une estimation mathématique des valeurs à partir des données ; une grille 2D de modélisation est superposée au transect, et les valeurs de flux sont estimées en chacune des mailles de la grille ; dans la méthode du plus proche voisin, la valeur de la donnée la plus proche est attribuée à la maille ; dans la méthode de l'inverse de la distance au carré, les valeurs sont estimées par une combinaison linéaire des données, les pondérations attribuées à chacune des données étant proportionnelles à l'inverse du carré de la distance de séparation avec la maille. Les 2 méthodes ont été expérimentées sur les données.
- 3. Méthode d'interpolation géostatistique, qui permet d'estimer les valeurs de flux par une combinaison linéaire des données sans imposer de répartition spatiale a priori (mesure des variations spatiales à partir des données disponibles au travers du variogramme), avec la possibilité de quantifier l'incertitude d'estimation. Des simulations conditionnelles des flux dans les transects ont été testées dans cette étude.

Les 4 méthodes (empirique, plus proche voisin, inverse du carré de la distance, simulations) ont été appliquées au transect CC' qui comporte le plus grand nombre de points renseignés (16 points XYZ au total dans 4 forages). Seule la méthode empirique a été appliquée aux 2 autres transects BB' et DD', en raison du faible nombre de données (resp. 5 points de mesure XYZ dans 2 forages, et 8 points XYZ dans 3 forages).

3.4.2 Estimation de la charge en HCC dans les transects

Sur la base des estimations de flux obtenues par l'une des méthodes précédentes, il est possible de déduire une estimation de la charge en polluants traversant les transects perpendiculaires à la direction d'écoulement des eaux. Quelle que soit la méthode d'estimation des flux appliquée, le calcul de la charge comporte 2 étapes :

- Calcul de la charge traversant une surface unitaire en multipliant le flux par cette surface; avec la méthode empirique, la surface unitaire est celle des polygones centrés sur les mesures de flux; avec une méthode déterministe ou géostatistique, la surface unitaire est celle des mailles constitutives de la grille de calcul,
- Addition des charges de chacune des surfaces unitaires constitutives du transect, pour obtenir la charge totale dans le transect.

Avec une approche empirique ou une méthode d'interpolation déterministe, une unique valeur de charge est estimée pour un transect. Avec une approche géostatistique, une distribution de valeurs possibles de charge est générée, dont il peut être tiré la valeur la plus probable de la charge, ainsi que l'incertitude associée à cette estimation, sous forme par exemple d'un intervalle de confiance.

Les charges ont été estimées à partir des valeurs de flux obtenues par les 3 types de méthodes d'interpolation dans le transect CC', et à partir des valeurs obtenues par la méthode empirique dans les transects BB' et DD'.

3.5 Comparaison à 2 sites suisses étudiés précédemment

Les résultats obtenus sur le site d'essai ont été comparés à ceux mesurés dans 2 autres sites suisses, dans lesquels des dispositifs Enviroflux et iFLUX ont été testés. Ces mesures ont été réalisées dans le cadre d'un projet de recherche réalisé et coordonné par l'Intitut national de l'environnement industriel et des risques (INERIS) et cofinancé par l'Agence française de l'environnement et de la maîtrise de l'énergie (ADEME) (projet PASSIFLUX, 2015 – 2018). Le bureau eOde était intervenu pour mettre à disposition des sites d'essai et contribuer à l'inteprétation des résultats dans le contexte légal suisse, notamment en ce qui concerne les flux (Demougeot-Renard 2018).

Le premier site d'essai (site 1), localisé dans le canton de Neuchâtel, présentait une faible pollution aux hydrocarbures chlorés dans un aquifère caractérisé par de grandes vitesses d'écoulement des eaux. Le second site (site 2), localisé dans le canton du Jura, était lourdement contaminé, avec des flux de Darcy pouvant être localement faibles à très faibles.

4. Travaux réalisés

4.1 Préparation de la campagne de terrain

4.1.1 Plan d'équipement des forages

L'équipement des forages en PFM a été soigneusement préparé en coordination avec la société iFLUX et le bureau Institut Géotechnique. Afin d'assurer une mesure correcte des flux, plusieurs points de vigilance ont été observés pour l'installation des PFM sur le site :

- Les PFM doivent être immergés durant toute la durée d'exposition, ils ont donc été placés autant que possible en dessous de la zone de fluctuations du niveau de la nappe,
- Les modules COV Darcy ont été placés à hauteur de tubes crépinés en dehors des pas de vis où les tubes ne sont plus ajourés,
- Les modules doivent pouvoir être descendus dans les tubes et remontés au retrait sans rencontrer d'obstacles, en veillant à une bonne adhérence entre la paroi externe des PFM et la paroi interne des tubes de forage. Aussi certains capots de fermeture gênant, ou empêchant la descente des dispositifs multiniveaux dans les forages ont été corrigés, ainsi que des tubes endommagés en surface ou bien courbés à l'intérieur et pouvant devenir problématiques à la pose et au retrait des PFM,
- Les PFM ont été positionnés en dehors de la zone de battement de la nappe lorsqu'il y avait de la phase flottante (LNAPL), ou du fond de l'aquifère en présence de phase organique plus dense que l'eau (DNAPL), car ces produits purs risquaient de saturer les sites d'adsorption des PFM². De l'huile en surface de nappe et des HCC en phase sur le toit de la Molasse ont en effet été trouvés dans certains forages du site d'essai : les forages avec huile ont été écartés du plan d'équipement, tandis que les PFM des forages avec DNAPL ont été positionnés au-dessus du toit de la Molasse où du DNAPL avait été rencontré. Le forage FCR26 inf fait exception : une crépine a été mise en place entre 8 et 10 m à hauteur du Bois de Raube où du DNAPL a été observé. Un module PFM « COV Darcy » y a été positionné à ~9 m de profondeur.

La société iFLUX a fourni au final un plan d'installation des forages, visible en Annexe 2 du rapport.

4.1.2 Prévision de la durée d'exposition des PFM

La durée d'exposition des PFM a été fixée par la société iFLUX, sur la base de prévisions de flux de Darcy et de flux de composés chlorés fournies par eOde. La méthode iFLUX d'estimation de la durée d'exposition n'a pas été communiquée à eOde.

Prévision des flux de Darcy par des essais de dilution au sel

Les flux de Darcy dans les Alluvions et le Bois de Raube ont été mesurés directement dans la paire de forages FCR28 sup et FCR28 inf à partir d'essais de dilution au sel réalisés par eOde le 17 décembre 2019. Les fondements théoriques et les conditions de réalisation des essais sont détaillés en Annexe 3 du rapport.

Les flux mesurés sont des valeurs presque instantanées, mesurées en quelques heures de suivi de la dissolution du sel injecté dans les forages. Ils diffèrent en ce sens des valeurs de flux fournies par les PFM, qui correspondent à des moyennes temporelles des flux au cours de la période d'exposition des capteurs.

Les flux issus de l'interprétation des essais de dilution émanent de mesures sur une hauteur de 60 cm entre 3.4 m à 4.0 m de profondeur dans FCR28 sup, entre 7.4 et 8.0 m de profondeur dans FCR28 inf.

² L'information fournie par les PFM serait alors : Flux > Flux Max mesurable.

La hauteur et la profondeur des flux mesurés avec les PFM sont différentes : hauteur de 15 cm à une profondeur de ~4 m dans FCR28 sup et à une profondeur de ~6.7 et ~7.8 m dans FCR28 inf.

Les flux issus des essais de dilution fournissent donc un ordre de grandeur des vitesses d'écoulement, mais sans être directement comparables aux flux mesurés par les PFM. La comparaison des 2 types de mesure doit donc être menées avec prudence.

Le flux de Darcy a été estimé à **96 ou 144 cm/j dans les Alluvions**, et à **55 ou 82 cm/j dans le Bois de Raube**, suivant les hypothèses retenues, notamment concernant le choix du coefficient de distorsion des directions d'écoulement des eaux causée par l'équipement du forage (Tableau 1).

Tableau 1 Prévision de flux de Darcy (cm/j) et de flux d'HCC (en mg/m²/j) avant la pose des PFM - sur base d'essais de dilution au sel et de concentrations mesurées dans des prélèvements d'eau souterraine en décembre 2019.

Formation	Coefficient de distorsion	Flux de Darcy		Flux de 8HCC					
	I		Nb	Min	Moy	Max			
Alluvions	2	144	10	107	942	3149			
	3	96	10	72	628	2100			
Bois de Raube	2	82	9	88	2694	10031			
	3	55	9	58	1796	6687			

Nb: nombre de valeurs, Min: minimum, Moy: moyenne, Q50: médiane, Max: maximum.

Prévision des flux de composés chlorés à partir de concentrations dans les eaux

Les flux de composés chlorés ont été estimés à partir des flux de Darcy instantanés déduits des essais de dilution au sel, et de concentrations en HCC mesurées dans les eaux souterraines lors d'une campagne de prélèvement d'échantillons menée par Institut Géotechnique du 9 au 11 décembre 2019. Les flux prévisionnels calculés sont des valeurs de flux instantanées, car les flux de Darcy sont ceux mesurés durant les quelques heures de suivi de la dilution du sel dans le forage FCR28, et les concentrations sont celles mesurées dans les eaux au moment du prélèvement des échantillons par pompage. Ils correspondent de plus à des flux moyens sur le volume d'eau échantillonné lors du prélèvement sur la hauteur de crépine. Ils différent donc en ce sens des flux de polluants mesurés par les PFM, qui sont des flux moyens temporels sur la durée d'exposition, correspondant à la lame d'eau traversant les cylindres PFM de 15 cm de hauteur. Ces flux prévisionnels ne sont donc qu'indicatifs des ordres de grandeur de flux pouvant être mesurés dans les PFM.

Les valeurs de flux de Darcy issues des essais de dilution au sel menés dans les forages FCR28 sup et FCR28 inf, ont par ailleurs été appliquées aux 18 forages devant être équipés en PFM, afin d'obtenir une estimation de la gamme de valeurs possibles de flux mesurables. Ces valeurs sont là encore indicatives, car – en plus des réserves mentionnées dans le paragraphe précédent - les flux de Darcy mesurés dans FCR28 sont très probablement différents de ceux qui auraient pu être mesurés dans les autres piézomètres.

Les flux de polluants obtenus à partir de ces calculs prédictifs sont de l'ordre de 600 à 950 mg/m²/j en moyenne dans les Alluvions, et de 1800 à 2700 mg/m²/j en moyenne dans le Bois de Raube, suivant le forage et le coefficient de distorsion considérés. Les flux prévisibles varient fortement d'un forage à l'autre, comme le montre la dispersion des valeurs autour des moyennes (Tableau 1).

Durée d'exposition retenue

Sur la base de ces prévisions, la durée d'exposition proposée par iFLUX était d'une **trentaine de jours**. La durée d'exposition effective a été de 29 jours (jours de pose et de retrait inclus).

4.2 Pose des PFM

Les 18 forages ont été équipés en une journée le 14 janvier 2020, par 4 personnes des sociétés iFLUX et eOde réparties en 2 équipes. La totalité des dispositifs multiniveaux avaient été préparés à l'avance par iFLUX, selon le plan d'installation présenté en Annexe 2. Le niveau statique a été systématiquement mesuré dans chaque piézomètre avant la pose du matériel, afin d'assurer une immersion correcte des PFM pendant toute la durée d'exposition. Chaque forage équipé a fait l'objet d'une fiche précisant les caractéristiques précises du dispositif immergé, dont notamment les numéros de référence des cartouches et leur positionnement dans les forages, ainsi que les conditions de pose et les incidents éventuels (Annexe 1). Des photographies prises lors de la journée de pose sont visibles à l'Annexe 4.

4.3 Retrait des PFM

Les dispositifs ont été retirés des piézomètres le 11 février 2020, par 4 personnes des sociétés iFLUX et eOde réparties en 2 équipes de terrain. Le niveau piézométrique a été relevé dans les forages avant le retrait, et les opérations suivantes ont été menées et documentées dans les fiches de suivi (Annexe 1) :

- Vérification du numéro et de la position des PFM sur le plan d'installation mis à jour après la pose,
- Relevé d'observations de terrain : odeur des cartouches, couleur, dépôt de sédiment, altérations, déchirements, etc...
- Photographie systématique des cartouches.

Les cartouches ont été rapidement emballées dans des sachets zippés, et stockées dans une glacière munie de blocs de congélation, puis transportées au laboratoire d'analyse dans les plus brefs délais.

Aucun incident n'est survenu lors du retrait, permettant de faire analyser la totalité des PFM au laboratoire.

Les photographies prises à la journée de retrait sont visibles à l'Annexe 4.

28.10.2020

5. Résultats

5.1 Informations préalables

Les résultats des mesures de flux par les PFM ont été fournis par iFLUX sous forme d'un rapport illustré de tableaux et cartographies, complété par un fichier excel des données brutes et un bulletin d'analyse du laboratoire SGS (Annexe 5).

Le calcul des valeurs de flux a été réalisé par iFLUX à partir des résultats analytiques du laboratoire SGS, et des informations fournies par eOde et Institut Géotechnique sur les caractéristiques des forages et de leur équipement (Tableau 2). Les formules servant au calcul des flux n'ont pas été communiquées par iFLUX.

Une estimation de la perméabilité moyenne des terrains aquifères était nécessaire. En l'absence d'essais de terrain spécifiques pour mesurer les perméabilités sur le site, des données tirées de la littérature et d'études réalisées dans le secteur ont été rassemblées, avec la collaboration de l'Office de l'environnement du canton du Jura. Sur cette base, deux valeurs de perméabilité ont été retenues pour la formation des Alluvions : 1.10-3 et 1.10-4 m/s, et une valeur pour celle du Bois de Raube : 1.10-5 m/s. iFLUX a accepté de calculer les valeurs de flux pour les 2 variantes de perméabilité dans les Alluvions, ce qui permet d'évaluer l'impact de l'incertitude de ce paramètre sur les flux.

Les informations sur les forages et les terrains aquifères sont utilisées pour calculer un facteur de distorsion (Alpha), qui permet de tenir compte de la différence existant entre les flux mesurés dans les PFM et les flux naturels dans le terrain. Les contrastes de perméabilité créés par le trou de forage, le massif filtrant, le tube crépiné et les matériaux constitutifs du PFM (cylindre, matériau adsorbant) engendrent en effet une convergence, ou au contraire une divergence des lignes de courant. Les flux mesurés dans les PFM doivent donc être corrigés par un facteur de distorsion pour en déduire les flux naturels existant dans l'aquifère. Le facteur de distorsion est plus faible lorsque la perméabilité des Alluvions est supposée égale à 1.10-3 m/s plutôt que 1.10-4 m/s, ce qui se traduit par des flux de Darcy et de polluants légèrement plus forts (cf. Tableau 3 vs Tableau 9 des résultats).

Formation	Alluvions	Alluvions	Bois de Raube	Alluvions	Alluvions	Bois de Raube et Molasse altérée
Diamètre interne piézomètre (mm)	74	74	74	108	108	108
Diamètre externe piézomètre (mm)	89	89	89	124	124	124
Pourcentage d'ouverture crépine (%)	8%	8%	8%	8%	8%	8%
Diamètre du trou de forage (mm)	180	180	180	180	180	180
Perméabilité de l'aquifère (m/s)	10-3	10-4	10-5	10-3	10-4	10 ⁻⁵
Perméabilité du massif filtrant (m/s)	0,0175	0,0175	0,0175	0,0175	0,0175	0,0175
Alpha (-)	0,675	0,724	0,73	0,844	0,931	0,94

Tableau 2 Caractéristiques des forages et des terrains aquifères utilisées pour calculer les flux (tableau issu du rapport iFLUX présenté en Annexe 5). Alpha : coefficient de distorsion.

Les flux commentés ci-après et représentés dans les tableaux et figures de ce chapitre sont ceux calculés dans l'hypothèse où la perméabilité de l'aquifère est de 1.10-3 m/s dans la formation des Alluvions. Les valeurs de flux obtenues avec une perméabilité des Alluvions de 1.10-4 m/s sont présentées dans le Tableau 9 de l'Annexe 6. Les valeurs étant très peu différentes de celles calculées avec la perméabilité de 1.10-3 m/s (Tableau 3), elles ne changent pas l'appréciation des flux fournie cidessous.

5.2 Mesures des flux de Darcy

Les 31 mesures des flux de Darcy sont synthétisées dans le Tableau 3 (5ème colonne) et représentées graphiquement par forages aux Figure 3 et Figure 4 (lignes bleues), et par transects à la Figure 5. Les valeurs de flux mesurées dans les paires de forages sont représentées sur la même verticale dans ces illustrations.

Les flux de Darcy mesurés varient de **15 cm/j** à plus de **107 cm/j**. La capacité maximale des PFM a été atteinte dans 8 d'entre eux installés dans 7 forages, de sorte que la valeur exacte du flux de Darcy n'y est pas connue (seule information : >107 cm/j ou >89 cm/j).

La **moyenne** des 31 flux - calculée en remplaçant les valeurs >Max par Max - est égale à **54 cm/j**. Celle obtenue en sélectionnant uniquement les valeurs mesurées dans la formation des Alluvions est de **72 cm/j**, celle correspondant à la formation des sables du Bois de Raube de **38 cm/j**. Les valeurs les plus fortes – dépassant les capacités des PFM - ont été observées uniquement dans les Alluvions.

Les vitesses d'écoulement des eaux apparaissent donc **en moyenne plus élevées dans les Alluvions** que dans le Bois de Raube.

Tableau 3 Flux de Darcy (en cm/j) et flux massiques en hydrocarbures chlorés (en $mg/m^2/j$) - en fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions : 1.10^{-3} m/s).

	_	551					Cis-	Trans-1,2-	0) /	1,1,1-	40004		o =	01100
Transect	Forage	PFM	Prof	Darcy	PER	TRI	1,2-DCE	DCE	CV	TCA	1,2-DCA	TCM	ChlorE	8HCC
BB' BB'	FCR22 FCR22	O0429 W0485	4.495 4.635	>89.0	550.0	130.0	250.0	1.1	5.9	<0.4	<0.4	<0.4	937.0	938.3
BB'	FCR22	O0424	6.855	>09.0	51.0	8.2	15.0	<0.4	<0.4	<0.4	<0.4	<0.4	75.0	76.2
BB'	FCR22	W0482	6.995	26.0	22.2			2.4						
BB' BB'	FCR23 FCR23	O0427 W0465	3.845 3.995	34.0	36.0	1.5	15.0	<0.4	<0.4	<0.4	<0.4	<0.4	53.3	54.6
BB'	FCR23	O0433	7.235		58.0	4.3	10.0	<0.4	<0.4	<0.4	<0.4	<0.4	73.1	74.3
BB' BB'	FCR23 FCR23	W0480 O0430	7.375 8.005	39.0	25.0	1.7	12.0	<0.4	0.4	<0.4	<0.4	<0.4	39.5	40.7
BB'	FCR23	W0484	8.145	48.0										
000	FC11 FC11	O0410 W0461	3.855 4.005	>107.0	130.0	2.5	3.0	<0.3	<0.3	0.5	0.6	<0.3	136.2	137.5
CC'	FC11	O0412	4.955		120.0	1.1	1.2	<0.3	<0.3	<0.3	0.6	<0.3	123.0	124.3
CC'	FC11 FC11	W0460 O0411	5.095 6.815	>107.0	24.0	0.4	0.4	<0.3	<0.3	<0.3	1.2	<0.3	25.5	27.4
CC'	FC11	W0456	6.965	24.0		0.4	0.4	10.0	10.0	10.5	1.2	10.5	20.0	
CC'	FC11 FC11	O0409 W0457	7.915 8.065	23.0	6.5	0.5	0.3	0.3	0.3	0.3	1.0	0.3	7.9	9.5
CC'	FCR25	O0418	3.785	20.0	32.0	1.7	5.5	<0.4	<0.4	<0.4	<0.4	<0.4	40.0	41.3
CC'	FCR25 FCR25	W0463 O0422	3.935 4.885	21.0	1100.0	110.0	500.0	2.0	8.4	<0.4	<0.4	<0.4	1720.4	1721.7
CC'	FCR25	W0470	5.025	>89.0	1100.0	110.0	500.0	2.0	0.4	\\U.4	\0.4	\0.4	1720.4	
CC'	FCR25 FCR25	O0435 W0464	9.845 9.995	23.0	14.0	43.0	29.0	<0.4	<0.4	<0.4	<0.4	<0.4	86.8	88.0
CC'	FCR25	O0421	10.615	25.0	2800.0	180.0	110.0	1.0	<0.4	0.9	<0.4	<0.4	3091.4	3093.0
CC'	FCR25	W0471	10.755	33.0	40.0	50.4	0.0	70.4	-0.4	10.4	-0.4	10.4	40.4	40.0
CC'	FCR26 FCR26	O0426 W0486	4.525 4.665	62.0	16.0	<0.4	0.8	<0.4	<0.4	<0.4	<0.4	<0.4	18.1	19.3
CC'	FCR26	O0414	5.625		110.0	1.7	2.7	<0.4	<0.4	<0.4	<0.4	<0.4	115.2	116.5
CC'	FCR26	W0483 O0419	5.765 8.275	81.0	21.0	9.3	24.0	<0.4	<0.4	<0.4	<0.4	<0.4	55.1	56.3
CC'	FCR26	W0467	8.415	15.0										
CC'	FCR26 FCR26	O0420 W0477	9.045 9.185	26.0	270.0	120.0	150.0	0.9	<0.4	<0.4	<0.4	<0.4	541.3	542.5
CC'	FCR27	O0413	3.675		3.9	<0.4	0.9	<0.4	<0.4	<0.4	1.4	<0.4	6.0	8.3
CC'	FCR27 FCR27	W0468 O0416	3.815 4.445	28.0	29.0	0.9	1.4	<0.4	<0.4	<0.4	<0.4	<0.4	32.1	33.4
CC'	FCR27	W0469	4.585	>89.0										
CC'	FCR27 FCR27	O0436 W0479	9.775 9.915	71.0	14.0	0.5	0.7	<0.4	<0.4	<0.4	<0.4	<0.4	16.0	17.2
CC'	FCR27	O0437	10.875		13.0	0.5	0.6	<0.4	<0.4	<0.4	<0.4	<0.4	14.9	16.0
CC'	FCR27 FCR28	W0481 O0425	11.015 4.195	45.0	88.0	3.9	67.0	0.4	<0.4	0.5	<0.4	<0.4	159.7	161.0
DD'	FCR28	W0478	4.335	>89.0										l
DD'	FCR28 FCR28	O0428 W0476	6.685 6.825	35.0	32.0	1.7	3.8	<0.4	<0.4	<0.4	<0.4	<0.4	38.3	39.5
DD'	FCR28	O0434	7.785		23.0	1.1	1.1	<0.4	<0.4	<0.4	<0.4	<0.4	26.0	27.2
DD'	FCR28 FCR29	W0475 O0431	7.925 3.975	26.0	7.1	2.5	1500.0	10.0	120.0	<0.4	<0.4	<0.4	1639.6	1640.9
DD'	FCR29	W0462	4.125	>89.0			1500.0	10.0	120.0	\U.4	\0.4	\ \U.4		
DD'	FCR29	O0415 W0472	7.075	57.0	540.0	120.0	160.0	<0.4	13.0	<0.4	<0.4	<0.4	833.4	834.6
DD'	FCR29 FCR29	00432	7.215 8.275	57.0	3700.0	1500.0	1000.0	6.6	2.0	1.8	<0.4	<0.4	6208.6	6211.2
DD'	FCR29	W0473	8.415	54.0	40.0	2.5	0.7	-0.4	-0.4		-0.4	40.4	07.0	00.0
DD' DD'	FCR30 FCR30	O0423 W0474	4.195 4.335	>89.0	16.0	3.5	6.7	<0.4	<0.4	<0.4	<0.4	<0.4	27.0	28.3
DD'	FCR30	O0417	11.815		1000.0	1.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	1003.1	1004.2
DD' GA	FCR30 FCR18	W0466 O0407	11.955 3.625	68.0	16.0	0.4	<0.3	<0.3	<0.3	<0.3	12.0	0.5	17.4	30.2
GA	FCR18	W0458	3.775	39.0										
GA GA	FCR18 FCR18	O0408 W0459	13.215 13.355	35.0	270.0	20.0	7.1	<0.3	0.4	<0.3	<0.3	<0.3	297.8	298.7
GA	I CIX IO	770459	13.333	35.0										

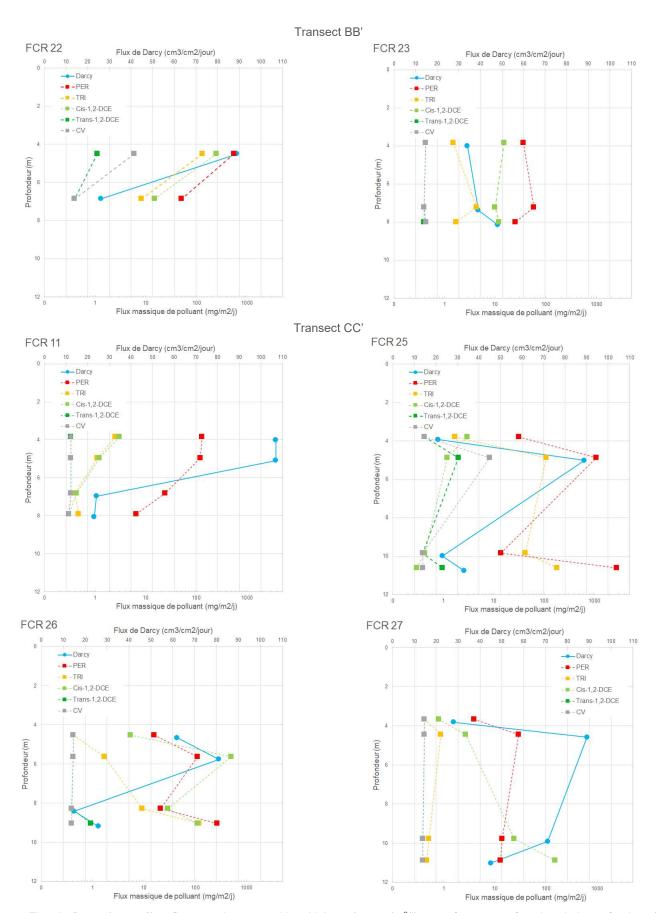


Figure 3 Flux de Darcy (en cm/j) et flux massiques en chloroéthènes (en $mg/m^2/j$) – par forages en fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité Allluvions : 1.10⁻³ m/s). Transects BB' et CC'.

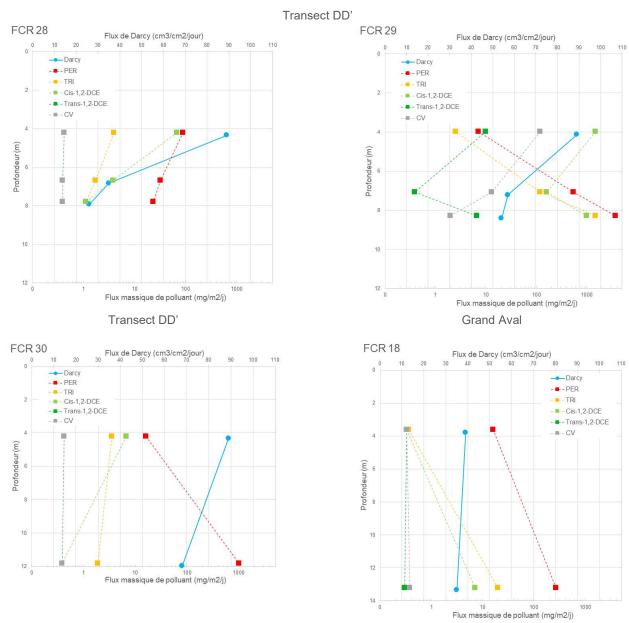
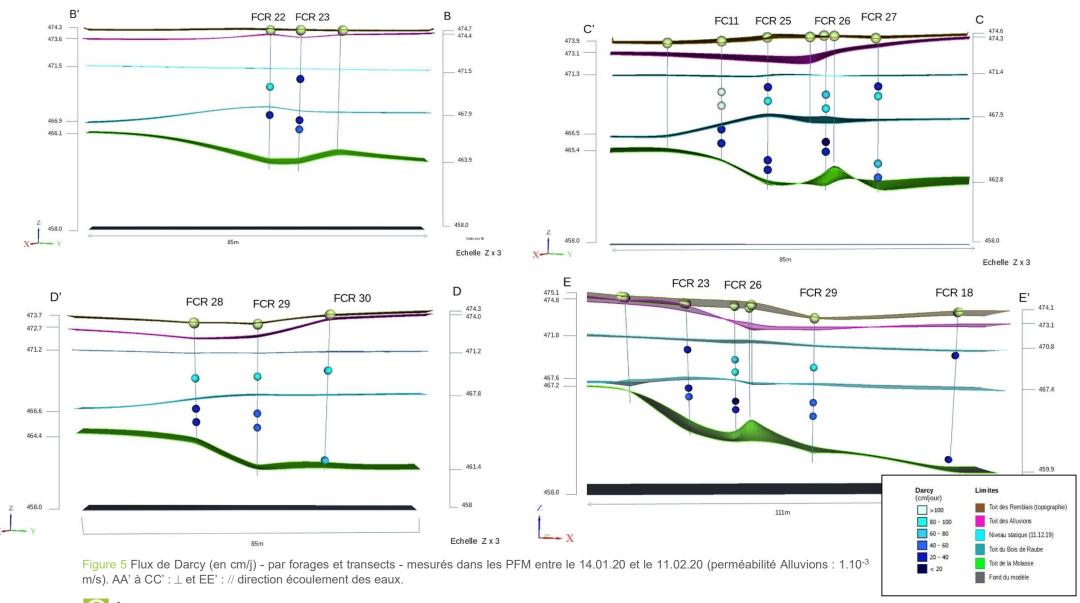



Figure 4 Flux de Darcy (en cm/j) et flux massiques en chloroéthènes (en mg/m²/j) – par forages en fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions : 1.10⁻³ m/s). Transect DD' et Grand Aval.

e de

5.3 Mesures des flux massiques en hydrocarbures chlorés

Gammes de valeurs de flux

On dispose de 31 mesures de flux pour 8 composés chlorés, soit un total de 248 valeurs de flux mesurées dans 18 forages répartis dans les transects et en aval à grande distance du site. Ces valeurs sont synthétisées dans le Tableau 3 et représentées graphiquement par forages et transects aux Figure 3 à Figure 5.

Les flux totaux, somme des flux massiques des **8 composés chlorés** – perchloroéthène, trichloroéthène, cis-1,2-dichloroéthène, trans-1,2-dichloroéthène, chlorure de vinyle, 1,1,1-trichloroéthane, 1,2-dichloroéthane et trichlorométhane – varient de **8 à 6211 mg/m²/j**, leur moyenne étant égale à **565 mg/m²/j**.

Les 5 composés de la série des **chloroéthènes** - perchloroéthène, trichloroéthène, cis-1,2-dichloroéthène, trans-1,2-dichloroéthène et chlorure de vinyle - constituent l'essentiel de ces flux, avec des valeurs allant de **6 à 6209 mg/m²/j**, et une moyenne égale à **563 mg/m²/j**.

Parmi les chloroéthènes, le flux massique de **perchloroéthène est majoritaire**, avec des valeurs allant de 4 à 3700 mg/m²/j, la moyenne étant égale à 359 mg/m²/j, puis dans une moindre mesure le trichloroéthène (0.4 à 1500, avec une moyenne à 73 mg/m²/j), et le cis-1,2-dichloroéthène (0.3 à 1500, avec une moyenne à 125 mg/m²/j). Ces flux de produits de dégradation du PER ont été mesurés dans les forages FCR29 majoritairement, mais également dans FCR22, FCR25, FCR26 et FCR28.

Des flux de chlorure de vinyle ont été mesurés dans 3 forages – FCR22 (transect BB'), FCR25 (transect CC') et FCR29 (transect DD'), principalement dans les Alluvions, les valeurs allant de 0.3 à 120, avec une moyenne à 5 mg/m²/j.

Variation des flux en fonction de la profondeur et des formations lithologiques

Les 14 valeurs de **flux mesurées dans les Alluvions sont deux fois plus faibles** en moyenne que les 17 trouvées dans le Bois de Raube (moyennes resp. égales à 361 et 733 mg/m²/j pour la somme des 8 composés chlorés). Les valeurs les plus fortes ont été mesurées dans le Bois de Raube (maximum égal à 1722 dans les Alluvions, contre 6211 mg/m²/j dans le Bois de Raube).

Les flux massiques de composés chlorés varient fortement avec la profondeur – y compris à petite distance dans les forages. A titre d'illustration, les valeurs les plus proches mesurées dans les forages sont séparées de 0.8 m ou 1.1 m. A ces distances :

- Dans FCR25, les flux de chloroéthènes varient de 40 à 1720 mg/m²/j dans les Alluvions entre 3.8 et 4.9 m de profondeur; de 87 à 3091 mg/m²/j dans la formation du Bois de Raube entre 9.8 et 10.6 m de profondeur. Les Alluvions sont décrites comme des graviers et gravillons avec un peu de sables limoneux et de pierres dans le log de forage. Le Bois de Raube est composé d'une alternance de marnes altérées, de sables très fins et de grès,
- Dans le forage FCR29, les flux de chloroéthènes varient de 833 à 6209 mg/m²/j dans la formation du Bois de Raube, entre 7.2 et 8.3 m de profondeur. Le Bois de Raube est présenté comme du sable limoneux avec gravillons dans le log de forage.

Certains groupes de forages présentent des variations comparables de flux sur leur verticale en fonction de la formation lithologique. Ainsi :

- Les forages FCR22, FC11 et FCR28, ont des flux massiques mesurés à moins de 6 m de profondeur dans les Alluvions plus élevés qu'entre 6 et 8 m dans les sables du Bois de Raube,
- Les forages FCR26, FCR30 et FCR18 ont des flux mesurés dans les Alluvions au contraire plus faibles que ceux observés entre 6 et 12 m dans le Bois de Raube,

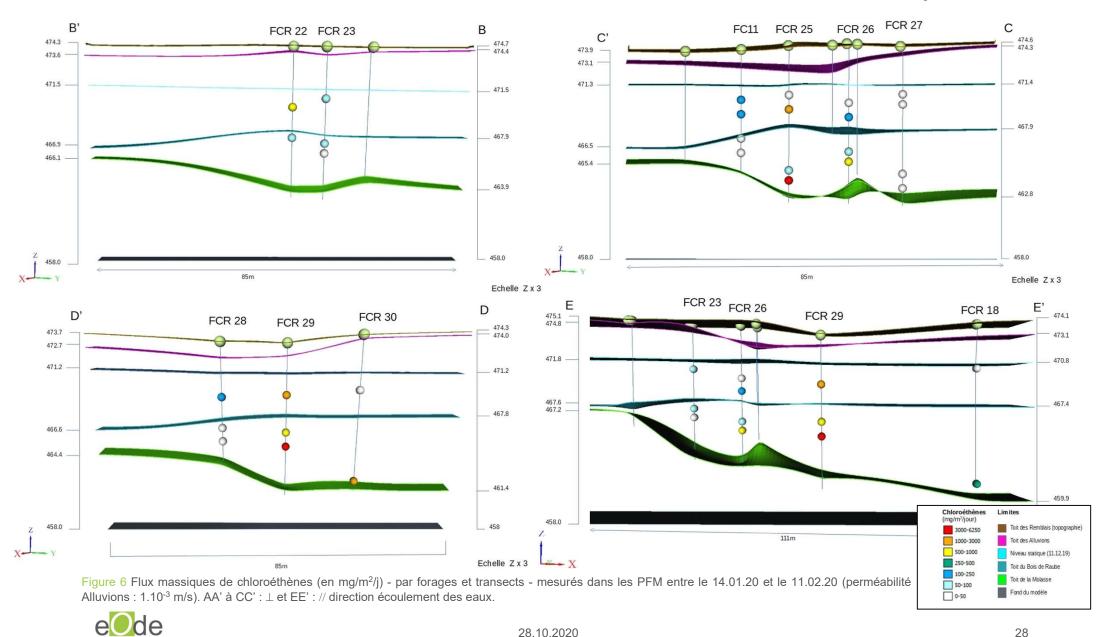
- Les forages FCR25 et FCR29 montrent une alternance de flux élevés et de flux faibles, que ce soit dans les Alluvions ou dans les sables du Bois de Raube,
- Les forages FCR23 et FCR27 ont des flux faibles et du même ordre de grandeur dans les 2 formations lithologiques à toutes les profondeurs échantillonnées.

Flux de polluants vs flux de Darcy

Dans la plupart des forages, les valeurs de flux massiques sont d'autant plus élevées que les valeurs de flux de Darcy sont grandes. On relève néanmoins quelques situations inverses, où les flux de polluants les plus élevés correspondent aux flux de Darcy parmi les plus faibles du forage :

- Dans le forage FCR26, le flux de chloroéthènes de 541 mg/m²/j dans la formation du Bois de Raube est associé à un flux de Darcy de 26 cm/j à ~9 m de profondeur (flux de Darcy de 62 et 81 dans les Alluvions sus-jacentes pour 18 et 115 mg/m²/j de chloroéthènes). Ces flux ont été mesurés à ~9 m de profondeur, dans le seul forage qui a été crépiné à hauteur de DNAPL (cf. §. 4.1.1),
- Dans le forage FCR29, le flux de chloroéthènes de 6209 mg/m²/j dans la formation du Bois de Raube est associé à un flux de Darcy de 54 cm/j à ~8 m de profondeur (flux de Darcy >89 cm/j dans les Alluvions sus-jacentes pour 1640 mg/m²/j de chloroéthènes).

On observe des situations où les flux de Darcy ont des valeurs similaires pour des valeurs contrastées de flux de polluants :


- Dans le forage FCR18 (Grand aval), le flux de chloroéthènes est égal à 17 mg/m²/j dans les Alluvions, alors qu'il est de 298 mg/m²/j dans la formation du Bois de Raube, pour des flux de Darcy du même ordre de grandeur (resp. 39 et 35 cm/j),
- Dans les forages FCR 25, FCR26 et FCR29 dans la même formation (Bois de Raube), des flux de polluants plus élevés ont été mesurés aux plus grandes profondeurs, alors que les flux de Darcy sont du même ordre de grandeur.

Ces contrastes de flux massiques pour des vitesses d'écoulement identiques suggèrent la présence de sources de pollution ou de DNAPL en amont à hauteur des flux les plus élevés, contribuant à un apport plus important de polluants dans les eaux.

Variation des flux entre les transects

Les flux massiques de composés chlorés sont nettement plus faibles dans le transect BB' situé en amont hydraulique du puits perdu et dans le forage FCR18 « Grand Aval ». Les valeurs les plus élevées sont mesurées dans les transects CC' et DD' situés en aval hydraulique des foyers de pollution identifiés par les investigations précédentes.

28.10.2020 28

5.4 Comparaison aux flux estimés dans 2 autres sites suisses

La comparaison des mesures de flux du site d'essai (nommé site 3 dans le Tableau 4) à celles effectuées précédemment dans 2 autres sites montre que :

- Les vitesses d'écoulement des eaux sont plus faibles dans le site d'essai et le site 2 que dans le site 1,
- Les gammes de valeurs de flux de composés chlorés sont du même ordre de grandeur dans le site d'essai du projet et le site 2. Elles sont plus faibles dans le site 1.

Tableau 4 Comparaison des mesures de flux obtenues sur le site d'essai du projet (site 3) à celles de 2 autres sites suisses (sites 1 et 2) équipés par l'INERIS (projet ADEME PASSIFLUX, 2015-2017).

	Site 1	Site 2	Site 3 Objet du projet
Terrains aquifères	Graviers grossiers	Marnes silteuses et graviers grossiers	Graviers et sables limoneux
Concentrations HCC échantillons par pompage	<10 à 100 microg/L	qq. 10000 microg/L	74 à 112100 microg/L
Type de PFM	Enviroflux	iFLUX	iFLUX
Durée d'exposition	2 mois	1 mois	1 mois
Nombre de forages et modules PFM par forages	4 x (2 à 6 modules)	4 x (4 modules)	10 x (2 à 4 modules)
Nombre de transects	-	-	3 x ⊥ écoulement des eaux 1 x // écoulement des eaux
Gamme de flux de Darcy	16 à 967 cm/j	7 à 51 cm/j	15 à >107 cm/j
Gamme de flux de PER	0 à 54 mg/m²/j	3 à 7100 mg/m²/j	4 à 3700 mg/m²/j

6. Analyse et interprétation des résultats

6.1 Contrôle de la validité des résultats

La cohérence des flux fournis par les PFM avec les autres informations acquises sur le site est vérifiée en calculant la concentration en polluants dans les eaux comme le rapport entre le flux massique de polluants et le flux de Darcy fournis par les PFM en chacun des points XYZ de mesure. Ces concentrations représentent des moyennes temporelles de concentrations sur la durée d'exposition des échantillonneurs (~1 mois, janv.- févr. 2020), dans le volume d'eau environnant le PFM. Ces concentrations sont comparées aux concentrations qui ont été mesurées dans les prélèvements d'eau souterraine effectués par Institut Géotechnique en décembre 2019 en période de basses eaux. Ces valeurs sont des mesures instantanées représentatives d'un volume plus grand de l'aquifère (volume d'eau autour du forage sollicité par la pompe après purge). Cette comparaison ne renseigne donc que de manière approchée sur la validité des mesures de flux fournies par les PFM, en raison de la différence de support temporel et spatial des concentrations.

Les deux types de concentrations (Annexe 7) reflètent la même répartition spatiale des polluants dans les eaux, avec le même gradient de concentrations sur la verticale dans les forages (Alluvions>Bois de Raube ou Bois de Raube>Alluvions) et la même décroissance des valeurs à mesure que la distance aux foyers de pollution augmente, dans la direction d'écoulement des eaux (cf. p.ex. transect longitudinal EE').

Les concentrations déduites des flux des PFM apparaissent globalement plus faibles que celles mesurées par un prélèvement classique par pompage. Les différences sont marquées dans les forages où de très fortes concentrations ont été mesurées par échantillonnage conventionnel, proches de la valeur de solubilité des composés, dans les sables du Bois de Raube (cas de FCR25 inf et FCR26 inf : 9368 et 2082 microg/L de chloroéthènes déduits des flux, 112100 et 107100 microg/L analysés dans les prélèvements classiques).

La comparaison la plus poussée pouvant être menée concerne la paire de forages FCR28 sup et inf dans laquelle les essais de dilution au sel ont été réalisés. Les flux de Darcy mesurés par les PFM peuvent être confrontés aux flux de Darcy déduits des essais au sel. Les flux et concentrations peuvent être aussi mis en regard avec les concentrations analysées au laboratoire et les mesures PID effectuées sur le terrain dans les échantillons solides. Les valeurs obtenues par les différents essais et analyses apparaissent cohérentes (du même ordre de grandeur), que ce soit en termes de concentrations que de flux (Tableau 5).

Tableau 5 Comparaison des concentrations en 8HCC et des flux de Darcy déduits des PFM aux valeurs mesurées dans des échantillons d'eau et de sol par des méthodes classiques dans la paire de forages FCR28 sup et inf.

	Prof	Ceau PFM	Ceau Classique	Prof	Darcy PFM	Darcy Sel	Prof	Csol Classique	PID sol
Echelle temporelle		m	h		m	h		mn	s
Echelle spatiale		15 cm	m		15 cm	60 cm			
Unité	m	mg/m³	mg/m³	m	cm/j	cm/j	m	mg/kg mt	mV
Alluvions	4.2	181	141	4.3	>89	96 - 144	-	-	-
Daia da Dauba	6.7	113	249	6.8	35	55 - 82	6 - 7	0.75	25
Bois de Raube	7.8	104	249	6.9	26	55 - 82	7.6 – 7.8	1.3	50

Ceau PFM: concentration en HCC déduite des mesures de flux des PFM

Ceau classique : concentration de HCC mesurée dans un prélèvement d'eau conventionnel

Darcy PFM : Flux de Darcy mesuré par les PFM

Darcy sel : Flux de Darcy calculé à partir d'essais de dilution au sel

Csol classique : concentration en HCC dans du sol prélevé dans des carottes de forage

PID sol : mesure au PID des composés organiques volatiles dans du sol prélevé dans des carottes de forage.

6.2 Estimation des flux et des charges dans les transects

6.2.1 Estimation des flux dans les transects

Les flux massiques de la somme des 5 chloroéthènes et de la somme des 8 HCC ont été interpolés dans le transect CC' à partir des 16 points XYZ de données par 4 méthodes :

- Empiriquement, en affectant la valeur mesurée à une surface environnante,
- Par la méthode du plus proche voisin,
- Par la méthode de l'inverse du carré de la distance,
- Par la génération de 1000 simulations conditionnelles des flux, et leur post-traitement.

La surface du transect CC' traversée par des flux de composés chlorés est estimée à 463 m², sur base du modèle géologique établi par eOde en limitant le transect à la surface piézométrique issue des mesures du niveau de la nappe effectuées en décembre 2019³ par Institut Géotechnique, et au toit de la Molasse saine établi à partir des relevés lithologiques de sondages.

Les cartographies des flux ainsi obtenues sont visibles à la Figure 7, et les gammes de valeurs estimées sont rassemblées dans le Tableau 6. Les résultats obtenus pour les 8HCC sont visibles à l'Annexe 8.

Tableau 6 Flux massiques en chloroéthènes (mg/m²/j) estimés dans le transect CC' par 4 méthodes : empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles.

	Nb	Min	Max	Моу	Ecart-type
Empirique	16	6	3091	377	841
Plus proche voisin	370	6	3091	368	805
Inverse distance carré	350	7	3091	376	559
Simulations [P5%; Moy; P95%]	370	[6 ; 9 ;16]	[122 ;1769 ;3091]	[15 ; 319 ;1474]	[16 ; 308 ;1073]

Nb: nombre, Min: minimum, Max: maximum, Moy: moyenne, P5%: percentile 5%, P95%: percentile 95%.

Les flux massiques de composés chlorés dans les transects BB' et DD' ont uniquement été estimés avec la méthode empirique, car le nombre de points de données est insuffisant pour mettre en œuvre les autres types de méthodes (resp. 5 points de données dans 2 sondages dans BB' et 8 points de données dans 3 sondages dans DD'). Les résultats sont visibles en Annexe 8.

³ Les relevés piézométriques de décembre 2019 ont été préférés à ceux de janvier et février 2020 effectués à la pose et au retrait des PFM, car les mesures concernaient la totalité des forages piézométriques du site en décembre, et qu'elles sont très proches de celles trouvées en janvier et février (écart relatif maximal de 0.03% en janvier, 0.04% en février).

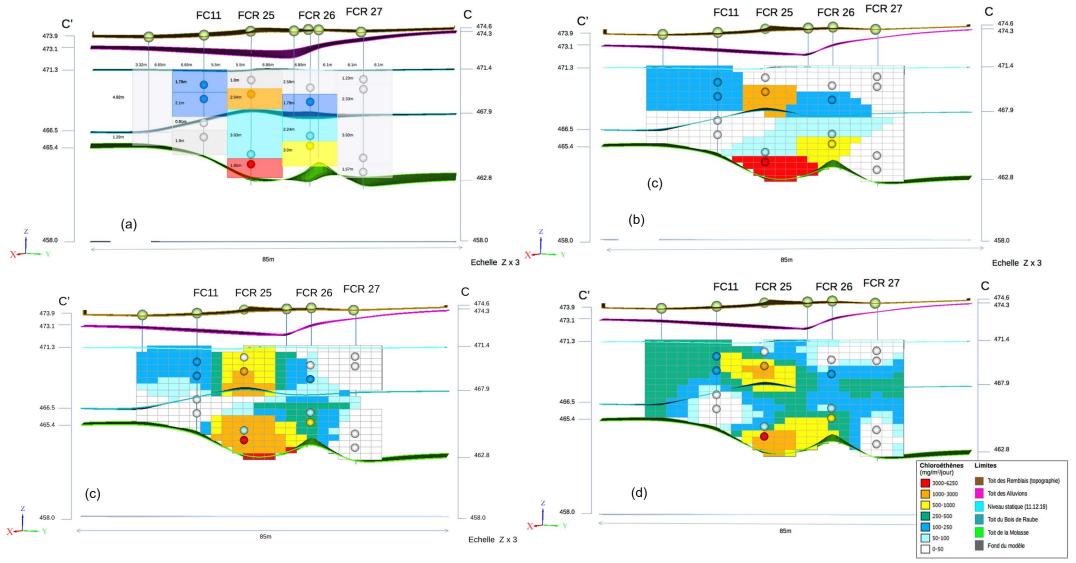


Figure 7 Cartographie des flux massiques de chloroéthènes dans le transect CC' par 4 méthodes : (a) empirique, (b) plus proche voisin, (c) inverse du carré de la distance et (d) simulations conditionnelles (les moyennes des flux simulés dans les mailles sont représentées ici). AA' à CC' : ± et EE' : // direction écoulement des eaux.

6.2.2 Estimation des charges dans les transects

Les flux estimés sur la totalité de la surface du transect CC' ont été utilisés pour calculer la charge en polluants le traversant, en sommant les produits des flux et des surfaces unitaires constitutives du transect. Les résultats obtenus pour les chloroéthènes avec les 4 méthodes d'interpolation sont résumés au Tableau 7. La charge en chloroéthènes apparaît de l'ordre de **147 à 170 g/j** en moyenne suivant la méthode employée, soit de **54 à 62 kg/an** (dans l'hypothèse où la charge estimée durant la période d'exposition des PFM est représentative de la charge sur une année complète). Les charges en 8HCC sont très proches de celles en chloroéthènes, comme le montre le tableau résumé de l'Annexe 9.

Les simulations permettent d'associer aux estimations de charge un intervalle de confiance. L'intervalle de confiance à 90% [7 ; 147 ; 682] indique par exemple que la charge la plus probable est de 147 g/j, avec 90% de chance que la charge réelle soit comprise entre 7 et 682 g/j. L'incertitude d'estimation est élevée pour toutes les méthodes d'estimation, car le nombre de données de flux est faible alors que leur variation spatiale (hétérogénéité de répartition) est élevée. Seule une approche géostatistique permet néanmoins de la quantifier.

Le calcul des charges par formation aquifère, dont la surface dans le transect CC' est identique (231 m² pour chacune), suggère que la charge se trouve majoritairement dans la formation du Bois de Raube à hauteur de ce transect : elle représente 52 à 68 % de la charge totale suivant la méthode d'interpolation utilisée, alors que la charge traversant les Alluvions serait de 32 à 48%.

Tableau 7 Charges en chloroéthènes (g/j) et pourcentages de charge dans les 2 formations aquifères traversant le transect CC' estimés par 4 méthodes : empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles.

	Empi	rique	Plus proche voisin		Inverse dis	tance carré	Simulations	
Surface	487 m²		463 m ²		463 m ²		463 m ²	
	Charge	% Charge	Charge	% Charge	Charge	% Charge	Charge	% Charge
Alluvions	61	38%	55	32%	53	32%	[4 ; 70 ; 355]	48%
Bois de Raube	99	62%	115	68%	112	68%	[4 ; 77 ; 327]	52%
Total	160	100%	170	100%	165	100%	[7 ; 147 ; 682]	100%

[P5%;Moy ;P95%] fournies pour les simulations ; le % de charge a été calculé sur les moyennes.

Les charges en composés chlorés sont très imprécises dans les transects BB' et DD', en raison du faible nombre de données. Les résultats, calculés uniquement sur base des flux estimés empiriquement, suggèrent que la charge est faible dans le transect BB' (50 g/j dans la surface de 209 m² environnant les forages FCR22 et FCR23, soit 18 kg/an) et se trouverait majoritairement dans la partie alluvionnaire des terrains aquifères (85%); la charge serait élevée dans le transect DD' (614 g/j dans la surface de 441 m² environnant les forages FCR28 à FCR29, soit 224 kg/an), et concernerait majoritairement la formation du Bois de Raube (84%). Ces résultats sont visibles en Annexe 9.

7. Enseignements tirés de l'utilisation de PFM sur ce cas d'étude

Les échantillonneurs de type iFLUX ont été retenus pour leur caractère pratique et leurs possibilités de mesure de flux dans des contextes hydrogéologiques contrastés tels que rencontrés en Suisse, suite à l'étude des dispositifs actuellement sur le marché (Demougeot-Renard 2018). Le test de ces échantillonneurs permet de tirer des enseignements sur leur utilisation sur le cas d'étude, et d'apporter des informations complémentaires à l'investigation de détail OSites du site. Ces retours d'expérience sont détaillés dans ce chapitre.

Equipement du site

L'équipement du site d'essai avec ces dispositifs s'est déroulé sans difficultés particulières. L'étape de préparation de la campagne a joué un rôle déterminant dans la réussite de la campagne. Un soin particulier a été porté à la récolte de données précises sur l'équipement des forages existant déjà sur le site et celui envisagé pour les nouveaux forages de la phase d'investigation de détail dans laquelle s'intégrait la pose des PFM. Les informations sur les diamètres des tubes, la position des crépines, la position des pas de vis des tubes, le type de capot de fermeture, la verticalité des tubes des forages existants ont été rassemblées, et complétées par des mesures sur site lorsqu'il y avait des lacunes. Certains forages devant initialement être équipés de PFM ont été abandonnés en raison d'un équipement endommagé ou inadapté.

Les fluctuations du niveau statique de la nappe mesurées lors des précédentes investigations ont été relevées afin de déterminer la profondeur minimale de pose des PFM sans risque de dénoiement.

Les PFM ont pu être adaptés aux caractéristiques de piézomètres classiquement utilisés en Suisse, dans des tubages d'un diamètre de 3" et 4.5", à des profondeurs atteignant 10 à 14 m.

Durée d'exposition

La durée d'exposition des dispositifs est un choix délicat car elle doit permettre de mesurer des valeurs de flux massiques contrastées, telles que celles rencontrées dans les sites contaminés. En cas de concentrations élevées en polluants, les matériaux adsorbants constitutifs des PFM peuvent se trouver saturés si la durée d'exposition est trop longue; en cas de concentrations faibles, les quantités adsorbées peuvent être trop faibles pour être quantifiées si la durée d'exposition est trop courte. S'ajoutait la contrainte supplémentaire de pouvoir mesurer les flux de Darcy dans la campagne planifiée pour ce site. Les alcools traceurs peuvent se retrouver complètement dissous si la durée d'exposition est trop longue, ou non quantifiables si la durée est trop courte.

Les essais de dilution au sel et les analyses d'eau souterraine d'une campagne d'investigation antérieure ont permis d'anticiper les flux qui seraient mesurés par les PFM, et d'en déduire une durée d'exposition. La durée d'exposition retenue – 1 mois – s'est révélée adaptée à la mesure des flux de polluants, les capacités d'adsorption des dispositifs n'ayant pas été atteintes et des flux très faibles ayant dans le même temps pu être mesurés. Elle était probablement un peu trop longue pour les mesures des flux de Darcy, avec une dissolution complète des traceurs dans 8 d'entre eux (Flux>Flux Max mesurable).

La solution de retirer les PFM Darcy avant les PFM HCC n'a pas été retenue, car cela nécessitait de retirer la totalité des dispositifs multiniveaux, et de remplacer les PFM Darcy par des barres, tout en encourant le risque de perturber l'adsorption des polluants par les PFM HCC.

La mesure des flux massiques étant pour cette étude prioritaire par-rapport à celle des flux de Darcy, la durée d'exposition de 1 mois apparaît finalement un bon compromis pour ce site, en dépit de cet inconvénient pour les flux de Darcy.

Présence de LNAPL ou de DNAPL

La présence de phase organique flottante (LNAPL) ou plus dense que l'eau (DNAPL) dans les forages à équiper risque de saturer les sites d'adsorption des matériaux constitutifs des PFM, et de manière plus générale, de les encrasser. Si la phase organique est constituée des polluants d'intérêt (cas des DNAPL pour le site d'essai), les échantillonneurs positionnés à hauteur de la phase fournissent l'information (Flux> Flux Max mesurable).

Dans le cadre de ces essais, il a été décidé de ne pas équiper les forages qui présentaient de la phase flottante en quantité trop importante, et de positionner les PFM en dehors du DNAPL (à l'exception du FCR26 inf), pour éviter de saturer les sites d'adsorption en quelques jours. Eviter les forages avec LNAPL ne constituait pas un inconvénient majeur pour caractériser la pollution aux composés chlorés de ce site, mais peut l'être pour d'autres. Eviter la zone de DNAPL en fond de forage peut induire une sous-estimation des flux et des charges traversant les transects, dont on doit tenir compte au stade de l'interprétation des résultats.

Sur ce site, le seul forage équipé à des profondeurs où du DNAPL a été observé (FCR26 inf) n'a pas montré de saturation des PFM en HCC. Les faibles vitesses d'écoulement des eaux mesurées par les PFM dans ce forage et les autres forages du site à hauteur du Bois de Raube pourraient expliquer cette situation : les concentrations en polluants sont importantes, mais les vitesses d'écoulement sont faibles, induisant un flux relativement modéré pouvant être mesuré durant la période d'exposition.

Calcul des flux à partir des PFM

Les analyses des échantillonneurs au laboratoire après exposition dans les eaux souterraines fournissent des masses de polluants adsorbées et des masses de traceurs dissous, qui sont converties en valeurs de flux en tenant compte des caractéristiques des forages et de la nappe échantillonnée. Ces calculs nécessitent la connaissance précise du diamètre des trous de forages, des diamètres internes et externes des tubes piézométriques, du pourcentage d'ouvertures des crépines et de la perméabilité des massifs filtrants. Nous recommandons de demander explicitement et très tôt (au stade de la planification des travaux) ces informations à la société de forage.

Une estimation de la perméabilité moyenne de l'aquifère est également requise. Pour cette étude, des valeurs issues de précédentes études réalisées aux alentours du site et tirées de la littérature ont été collectées, et 2 valeurs ont été retenues (pour la formation des Alluvions) pour mener une analyse de sensibilité sur les résultats de flux. Dans ce cas particulier, il s'avère que les 2 valeurs fournissent des résultats très proches. Nous recommandons cependant de vérifier que des valeurs de perméabilité de l'aquifère sont disponibles pour le site dès le début du projet, et de prévoir dans le cas contraire, des essais pour les mesurer (p.ex. essais de pompage, slug tests).

Contrôle de la validité des mesures

Le contrôle de la validité des mesures est rendu délicat par le fait qu'aucun référentiel sur les flux réels de polluants n'est disponible. Les seules données pouvant être utilisées pour vérifier la pertinence des mesures de flux sont les concentrations mesurées dans les eaux en respectant le protocole recommandé par l'OFEV dans le cadre des investigations de site (OFEV 2003), et les flux de Darcy mesurés par les essais de dilution au sel pour préparer la campagne de terrain dans un des forages du site. Mais ces informations ne fournissent pas de mesure du flux naturel d'eau et de polluants, dans la mesure où de l'eau est pompée pendant ces essais. Ce sont également des mesures presque instantanées, alors que les PFM mesurent des flux durant une durée d'exposition longue, de 1 mois dans le cadre des tests réalisés dans cette étude. Le volume d'aquifère concerné par les mesures – volume d'appel de la pompe – diffère également de celui des PFM, de plus petite taille. Ces mesures n'ont de plus pas été réalisées spécifiquement pour constituer un référentiel (p.ex. prélèvement des

eaux réalisé entre le 9 et le 11 décembre 2019, exposition des flux menée entre le 14 janvier et le 11 février 2020).

On relève néanmoins que les concentrations en polluants déduites des mesures de flux des PFM – ratios entre flux de polluants et flux de Darcy – sont réparties de la même manière dans l'espace que les concentrations mesurées par pompage dans les forages – les valeurs les plus faibles entre les 2 formations aquifères des Alluvions et du Bois de Raube – étant les mêmes. La répartition dans les forages et les transects est également globalement similaire (forages et transects les plus touchés identiques).

Mais les valeurs issues des PFM apparaissent globalement plus faibles que celles mesurées classiquement. Plusieurs explications peuvent être trouvées à ces divergences :

- Les PFM mesurent l'écoulement naturel des eaux la petite distorsion du champ d'écoulement créée par les dispositifs étant corrigée par le calcul - ce qui n'est pas le cas des échantillons collectés par pompage,
- Les PFM représentent de petites portions d'aquifère leur hauteur étant de 15 cm par opposition aux échantillons d'eau représentant un plus grand volume dépendant de la perméabilité et du débit de pompage, ainsi que de la hauteur de crépine et de la profondeur à laquelle la pompe est installée,
- Les concentrations déduites des PFM sont des moyennes temporelles sur 1 mois, alors que les concentrations des échantillons classiques sont des mesures instantanées,
- Les PFM n'ont pas été positionnés à hauteur de phase pure (à l'exception du FCR26 inf); les eaux échantillonnées par pompage peuvent quant à elles être alimentées par la phase pure du toit de la Molasse par effet de pompage.

Dans la paire de forages FCR28 où les conditions de mesure des concentrations et des vitesses d'écoulement des eaux sont les plus proches de celles des mesures de flux aux PFM (position des essais équivalente), on relève cependant que les concentrations et flux de Darcy sont bien cohérents.

Variabilité spatiale des flux

Les essais menés mettent en évidence les grandes variations de flux qui peuvent être observées dans un contexte hydrogéologique rencontré fréquemment en Suisse (alternance de sables et graviers plus ou moins limoneux reposant sur de la Molasse saine gréseuse), y compris à petite distance (< 1 m). Ils donnent une idée des gammes de valeurs pouvant être mesurées dans des transects perpendiculaires à la direction d'écoulement des eaux souterraines, ou bien dans la direction d'écoulement. Ils viennent compléter les mesures directes de flux déjà réalisées en Suisse avec ce type de dispositifs, encore peu nombreuses.

Estimation des flux et des charges

L'application de différentes méthodes d'interpolation aux données pour estimer les flux dans le transect CC' montre que la répartition spatiale des flux qui peut être obtenue varie significativement d'une méthode à l'autre, sans qu'aucune référence sur la répartition réelle des flux ne permette d'identifier l'estimateur le plus proche de la réalité. Les estimations de la charge en polluants déduites de ces interpolations sont néanmoins assez comparables (du même ordre de grandeur), indiquant que ces différences de répartition des flux n'ont que peu de conséquences sur la charge, pour ce cas particulier.

Le nombre de données disponibles pour l'application d'une méthode d'interpolation est faible (16 au total, ce nombre ayant dû être réduit pour tenir compte de l'équipement des forages et de la présence de LNAPL), ce qui nuit à la précision des modèles obtenus. Cette incertitude est révélée par l'intervalle de confiance attribué aux résultats produits par l'approche géostatistique, particulièrement grand. Le

même niveau d'incertitude affecte les résultats produits par les autres méthodes, mais sans qu'il soit quantifié. Un nombre plus grand de PFM dans le transect permettrait de réduire cette incertitude dans cet aquifère marqué par une grande hétérogénéité de répartition de la pollution.

D'autres caractéristiques de l'équipement peuvent être à l'origine d'imprécisions dans l'estimation de la charge sur ce site. L'absence de mesures de flux dans les terrains proches ou à hauteur du DNAPL peuvent induire une sous-estimation de la masse de polluants traversant les transects, tandis que le positionnement des crépines à hauteur des niveaux a priori les plus perméables de la formation du Bois de Raube - dans l'objectif de capter les flux de polluants les plus importants - pourrait au contraire susciter une sur-estimation de la charge.

Apport à l'investigation de détail du site

Les PFM fournissent des informations complémentaires à la compréhension générale de la pollution du site, à sa dissémination, et aux possibilités de traitement envisageables.

Ils montrent où se trouvent les flux de polluants les plus importants sur la verticale – majoritairement dans la formation du Bois de Raube dans le transect CC' – et comment le panache de polluants se dessine en aval hydraulique des foyers de pollution : les flux de polluants sont encore majoritaires et particulièrement marqués dans le Bois de Raube dans le transect DD', et encore présents à grande distance du site, dans le forage FCR18.

Ils confirment la position et le rôle des foyers de pollution suspectés par les précédentes investigations, dans l'alimentation de la nappe en hydrocarbures chlorés : les flux de polluants sont nettement plus faibles et majoritairement dans la formation supérieure des Alluvions dans le transect BB' situé immédiatement en amont hydraulique du puits perdu. Le rôle du puits est donc confirmé et quantifié en termes de flux et de charge. Un apport de composés chlorés par d'autres foyers de pollution situés en amont de ce puits ne peut pas être exclu, compte-tenu de l'importance des flux trouvés dans les Alluvions.

8. Recommandations générales pour l'utilisation de PFM

Les retours d'expérience menés sur l'utilisation de PFM iFLUX sur le cas d'étude permettent de dégager des recommandations générales sur leur utilisation pour d'autres investigations de sites pollués. Cellesci sont rassemblées dans le Tableau 8 ci-dessous.

Tableau 8 Recommandations générales pour l'utilisation de PFM iFLUX pour mesurer les flux et estimer les charges massiques en polluants dans un site pollué.

Préparation de la campagne d'exposition des PFM	 Visiter les forages à équiper Collecter des informations précises sur : diamètres internes et externes des tubes, position des crépines, position des pas de vis des tubes, type de capot de fermeture, verticalité actuelle des tubes Rassembler des données sur les niveaux statiques et leurs fluctuations dans ces forages.
Durée prévisionnelle d'exposition des PFM	 Estimer des ordres de grandeur des flux attendus à partir de valeurs de perméabilité ou de flux de Darcy et de concentrations en polluants Mesurer si possible la perméabilité moyenne ou des flux de Darcy par des essais hydrauliques (p.ex. essais de pompage, slug tests, essais de dilution au sel) dans les forages Utiliser des concentrations en polluants analysées dans les forages lors de précédentes investigations ou surveillances Une durée prévisionnelle d'exposition sera proposée par iFLUX à partir de ces données.
Présence de LNAPL ou DNAPL dans le forage	Risque de saturation des sites d'adsorption et d'obtention de l'information Flux > Flux Max (correspondant à la capacité maximale d'adsorption des PFM) LNAPL: Mesurer l'épaisseur de LNAPL dans le piézomètre Si celle-ci est faible, pomper la phase, puis descendre rapidement les PFM dans le forage Si celle-ci est importante, éviter d'équiper le forage DNAPL: positionner les PFM au-dessus de la zone de produits purs.
Calcul des flux à partir des masses adsorbées dans les PFM	 Collecter des informations précises sur : diamètre des trous de forage, diamètres internes et externes des tubes piézométriques, pourcentage d'ouverture des crépines, perméabilité des massifs filtrants Les flux seront calculés par iFLUX à partir de ces données et des masses adsorbées de polluants.
Contrôle de la validité des mesures de flux	 Comparer les ordres de grandeur des flux mesurés à ceux calculés à partir de concentrations en polluants et de valeurs de perméabilité (ou flux de Darcy) disponibles Garder à l'esprit que les flux mesurés par les PFM diffèrent des flux ainsi calculés, par la durée et le volume d'eau échantillonnés.
Estimation de la charge dans un transect à partir des mesures de flux	 Utiliser une méthode d'interpolation (empirique ou mathématique) pour estimer les flux sur toute la surface du, transect en dehors des points de mesure des sondages Sommer les flux unitaires dans le transect pour estimer les charges Le nombre de PFM exposés doit être suffisant pour « capter » la variabilité spatiale des flux dans le transect et obtenir une estimation réaliste de la charge. Le nombre et le positionnement requis des PFM dépendent de l'hétérogénéité de répartition de la pollution dans le transect, fonction de la lithologie et du type de polluants.

Neuchâtel, le 28 Octobre 2020

Dempor. Brand

Hélène Demougeot-Renard Directrice eOde

Contribution à l'étude :

- Sabine Brocero, consultante senior, eOde
- Emilie Sammali, consultante junior, eOde
- Sonia Tarnawski, consultante senior, eOde.

Listes des figures

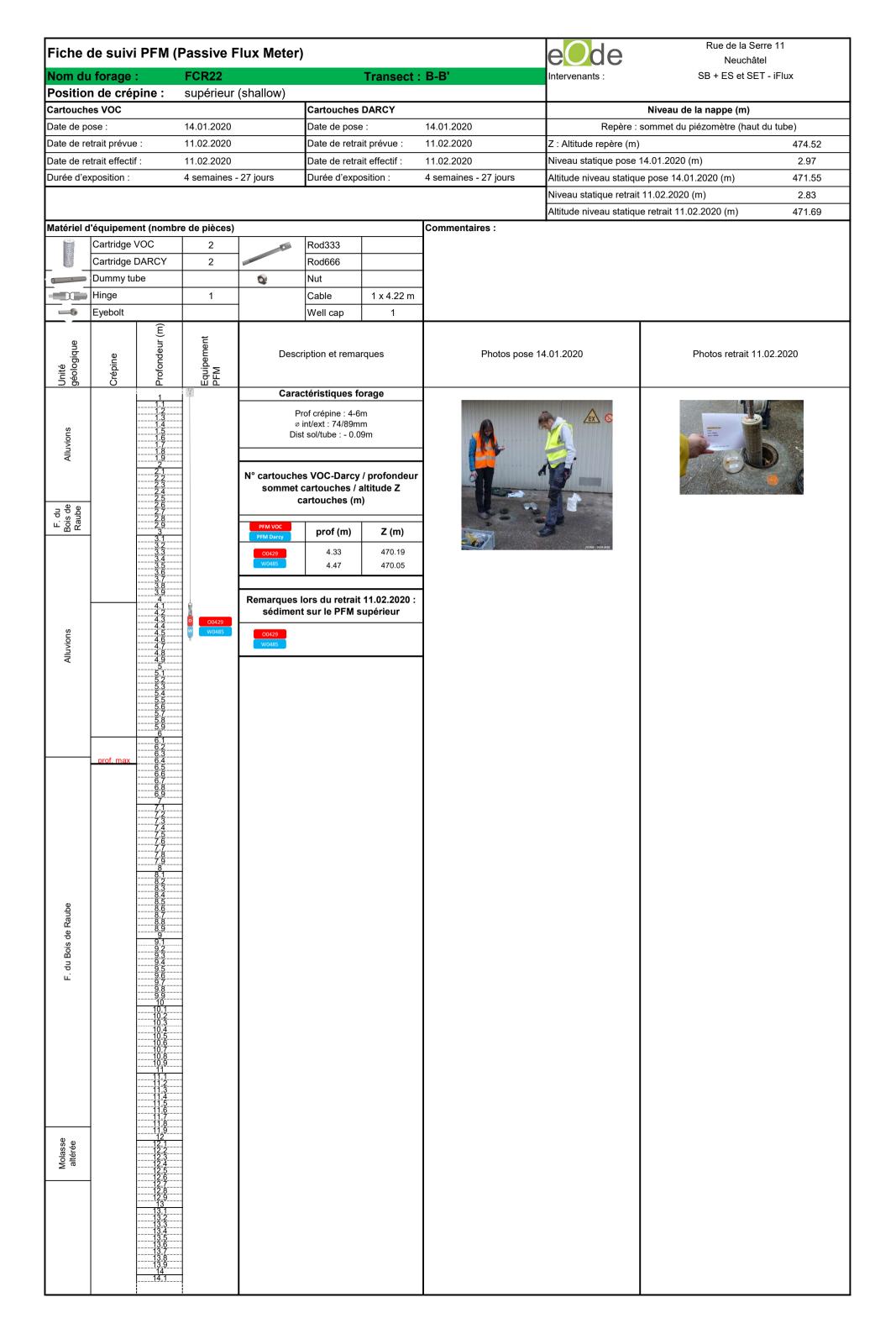
Figure 1 Localisation des forages et des transects équipés en PFM sur fond de plan schématique du
site d'essai. Les paires de forages sont représentées par un unique symbole (p.ex. paire FCR22 sup et
FCR22 inf représentée par FCR22) pour plus de clarté
Figure 2 Cartouches PFM utilisées pour mesurer les flux de Darcy et les flux massiques d'HCC 13
Figure 3 Flux de Darcy (en cm/j) et flux massiques en chloroéthènes (en mg/m²/j) – par forages en
fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité
Allluvions: 1.10-3 m/s). Transects BB' et CC'
Figure 4 Flux de Darcy (en cm/j) et flux massiques en chloroéthènes (en mg/m²/j) – par forages en
fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité
Alluvions: 1.10 ⁻³ m/s). Transect DD' et Grand Aval
Figure 5 Flux de Darcy (en cm/j) - par forages et transects - mesurés dans les PFM entre le 14.01.20 et
le 11.02.20 (perméabilité Alluvions : 1.10 ⁻³ m/s). AA' à CC' : ⊥ et EE' : // direction écoulement des eaux.
25
Figure 6 Flux massiques de chloroéthènes (en mg/m²/j) - par forages et transects - mesurés dans les
PFM entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions : 1.10 $^{-3}$ m/s). AA' à CC' : \bot et EE' : //
direction écoulement des eaux
Figure 7 Cartographie des flux massiques de chloroéthènes dans le transect CC' par 4 méthodes : (a)
empirique, (b) plus proche voisin, (c) inverse du carré de la distance et (d) simulations conditionnelles
(les moyennes des flux simulés dans les mailles sont représentées ici). AA' à CC' : ⊥ et EE' : // direction
écoulement des eaux
Figure 8 Cartographie des flux massiques d'hydrocarbures chlorés dans le transect CC' par 4
méthodes : (a) empirique, (b) plus proche voisin, (c) inverse du carré de la distance et (d) simulations
conditionnelles (les moyennes des flux simulés dans les mailles sont représentées ici). AA' à CC' : \perp
et EE': // direction écoulement des eaux
Figure 9 Cartographie des flux massiques en chloroéthènes (=8HCC) (mg/m²/j) dans les transects BB'
et DD' par la méthode empirique

Liste des tableaux

Tableau 1 Prévision de flux de Darcy (cm/j) et de flux d'HCC (en mg/m²/j) avant la pose des PFM - sur base d'essais de dilution au sel et de concentrations mesurées dans des prélèvements d'eau souterraine en décembre 2019
Tableau 2 Caractéristiques des forages et des terrains aquifères utilisées pour calculer les flux (tableau
issu du rapport iFLUX présenté en Annexe 5). Alpha : coefficient de distorsion
$Tableau\ 3\ Flux\ de\ Darcy\ (en\ cm/j)\ et\ flux\ massiques\ en\ hydrocarbures\ chlorés\ (en\ mg/m^2/j)\ -\ en\ fonction\ de\ la\ profondeur\ (m)\ -\ mesurés\ dans\ les\ PFM\ entre\ le\ 14.01.20\ et\ le\ 11.02.20\ (perméabilité\ Alluvions\ :\ le\ profondeur\ (m)\ -\ mesurés\ dans\ les\ profondeur\ (m)\ -\ mesurés\ (m)\ -\ me$
1.10 ⁻³ m/s)
Tableau 4 Comparaison des mesures de flux obtenues sur le site d'essai du projet (site 3) à celles de 2 autres sites suisses (sites 1 et 2) équipés par l'INERIS (projet ADEME PASSIFLUX, 2015-2017) 29
Tableau 5 Comparaison des concentrations en 8HCC et des flux de Darcy déduits des PFM aux valeurs
mesurées dans des échantillons d'eau et de sol par des méthodes classiques dans la paire de forages
FCR28 sup et inf
Tableau 6 Flux massiques en chloroéthènes (mg/m²/j) estimés dans le transect CC' par 4 méthodes :
empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles
Tableau 7 Charges en chloroéthènes (g/j) et pourcentages de charge dans les 2 formations aquifères
traversant le transect CC' estimés par 4 méthodes : empirique, plus proche voisin, inverse du carré de
la distance et simulations conditionnelles.
Tableau 8 Recommandations générales pour l'utilisation de PFM iFLUX pour mesurer les flux et estimer
les charges massiques en polluants dans un site pollué
Tableau 9 Flux de Darcy (en cm/j) et flux massiques en hydrocarbures chlorés (en mg/m²/j) - en fonction
de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions :
1.10 ⁻⁴ m/s)
Tableau 10 Concentrations en hydrocarbures chlorés (en $mg/m^3 = \mu g/L$) déduites des flux de Darcy et
des flux massiques de composés chlorés mesurés entre le 14.01.20 et le 11.02.20 (perméabilité
Alluvions: 1.10 ⁻⁴ m/s)
$Tableau\ 11\ Concentrations\ en\ hydrocarbures\ chlor\'es\ (en\ mg/m^3\ =\ microg/L)\ mesur\'ees\ par\ Institut$
Géotechnique dans des échantillons d'eau classiques prélevés du 9.12.19 au 11.12.19 60
Tableau 12 Flux massiques en 8HCC $(mg/m^2/j)$ estimés dans le transect CC' par 4 méthodes :
empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles 63
$Tableau\ 13\ Flux\ massiques\ en\ chloroéthènes\ (mg/m^2/j)\ estimés\ dans\ les\ transects\ BB'\ et\ DD'\ par\ la$
méthode empirique
Tableau 14 Charges en 8HCC (g/j) et pourcentages de charge dans les 2 formations aquifères
traversant le transect CC' estimées par 4 méthodes : empirique, plus proche voisin, inverse du carré de
la distance et simulations conditionnelles
Tableau 15 Charges en chloroéthènes (g/j) et pourcentages de charge dans les 2 formations aquifères
traversant les transects BB' et DD' estimées par la méthode empirique
Tableau 16 Charges en 8HCC (g/j) et pourcentage de charge dans les 2 formations aquifères traversant
les transects BB' et DD' estimées par la méthode empirique

Références

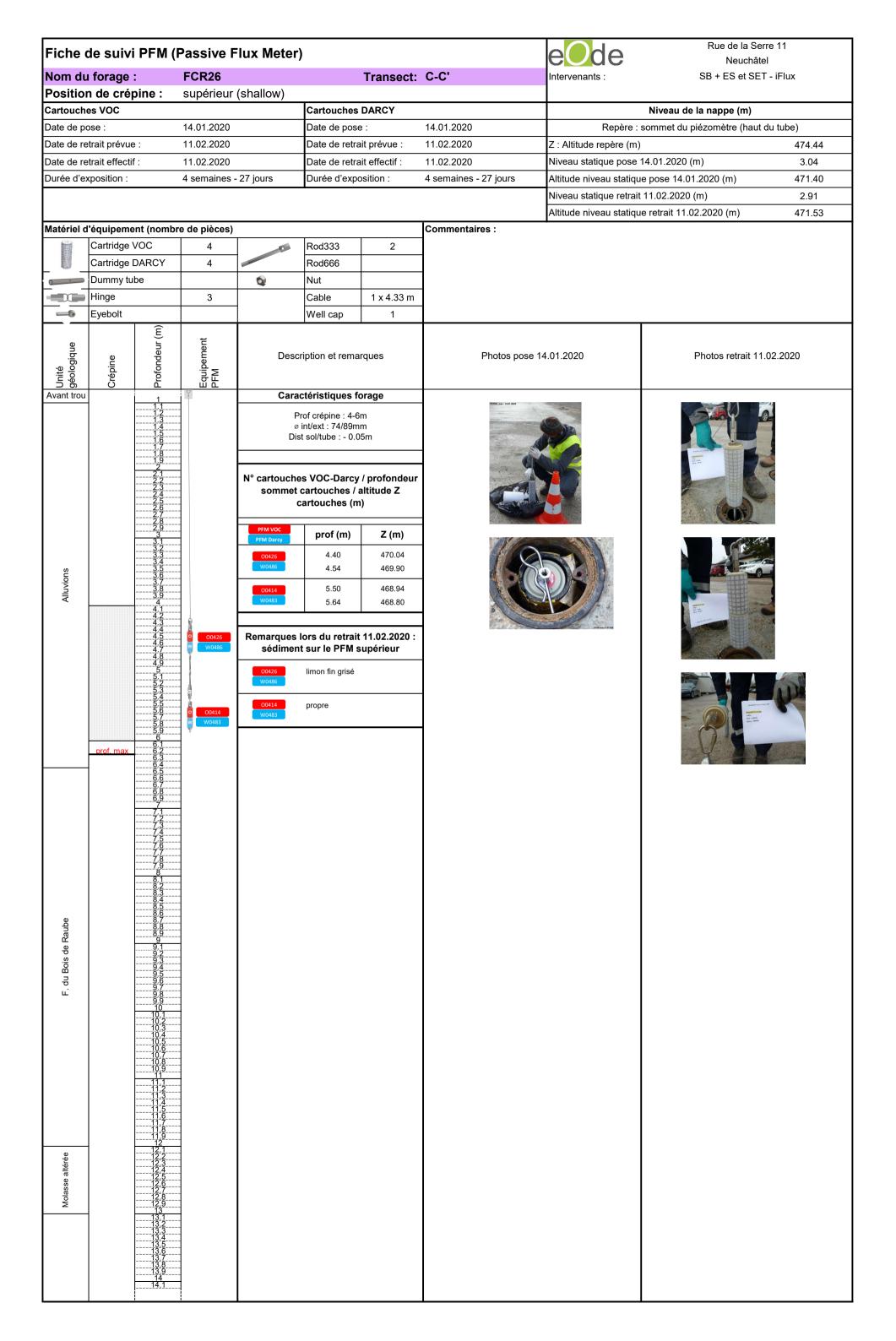
Demougeot-Renard, Hélène. 2018. « Echantillonneurs passifs de flux. Etat des connaissances et recommandations ». OFEV.


OFEV. 2003. « Prélèvements d'eau souterraine en relation avec les sites pollués. Sites contaminés. Estimation de la mise en danger ». VU-4313-F.

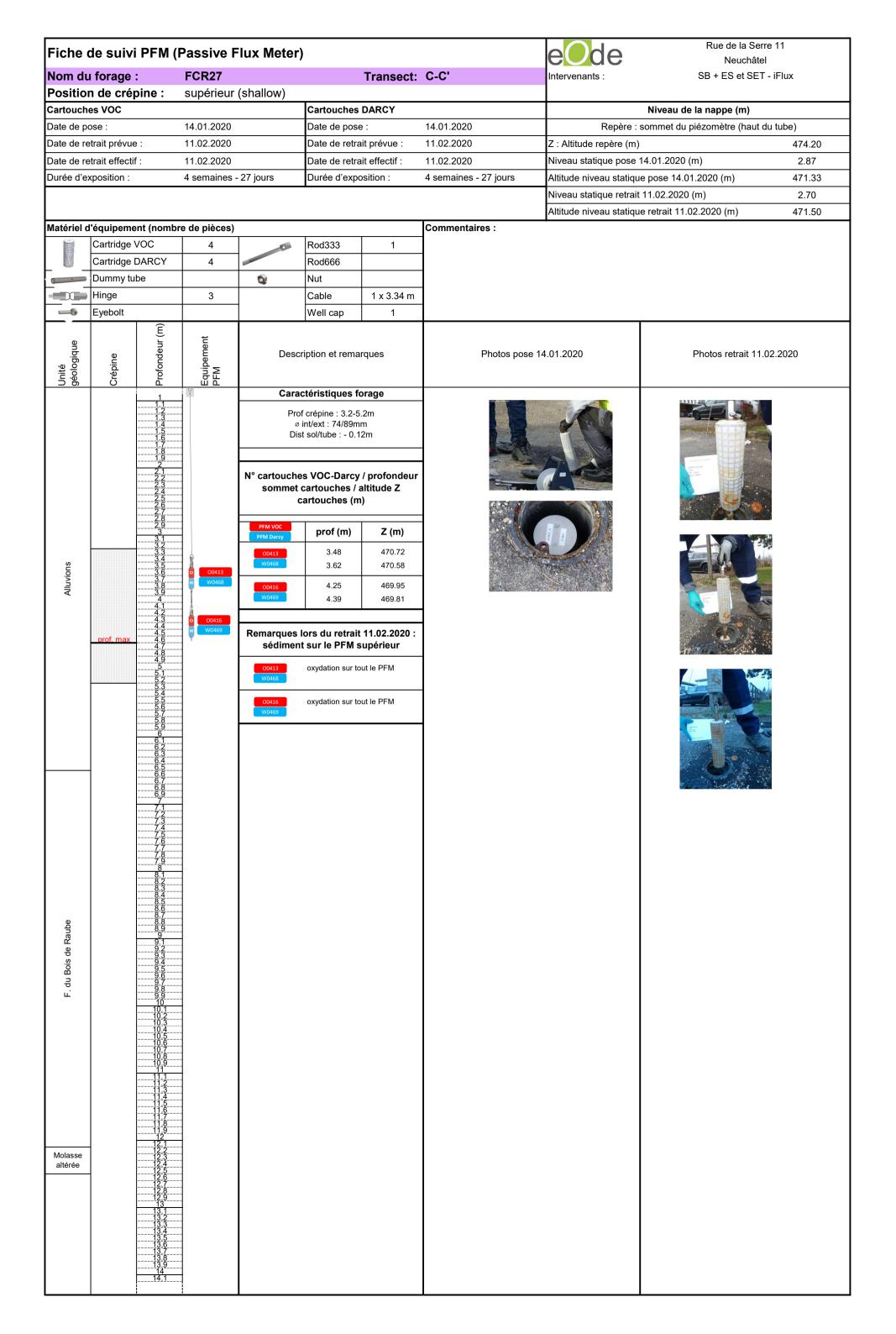
Annexe 1 Fiches de suivi de l'exposition des PFM

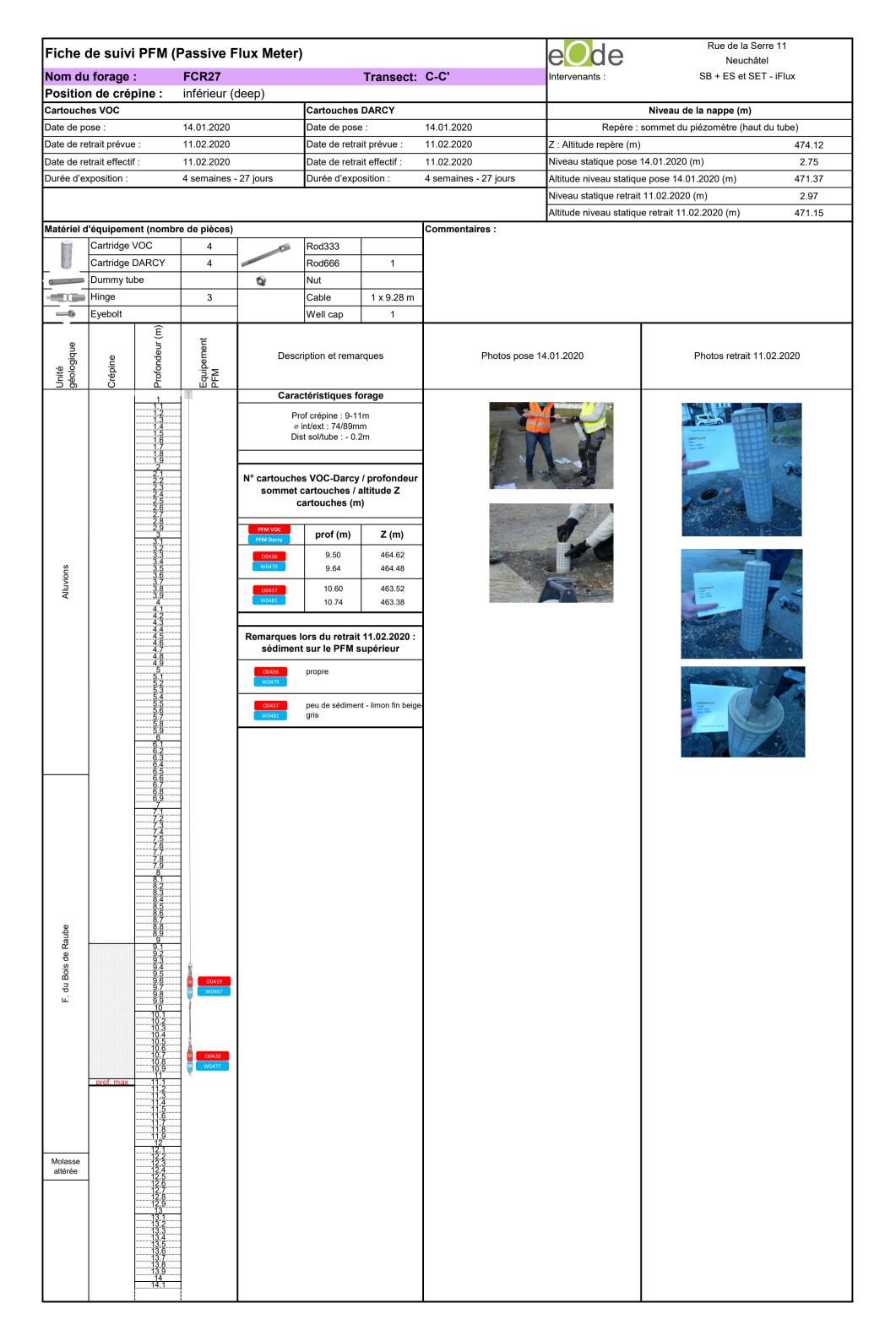
28.10.2020 Annexe 1

Fiche	de suivi	PFM (Passive I	Flux Meter	·)			e de	Rue de la Serre 11 Neuchâtel
lom du	ı forage :		FCR22			Transect :	Intervenants :	SB + ES et SET - iFlux	
	n de crép		inférieur ((deep)					
artouch	es VOC				Cartouches	DARCY			Niveau de la nappe (m)
ate de po			14.01.2020		Date de pose		14.01.2020		sommet du piézomètre (haut du tube)
	trait prévue		11.02.2020		Date de retra		11.02.2020	Z : Altitude repère (m)	
	trait effectif	<u>':</u>	11.02.2020		Date de retra		11.02.2020	Niveau statique pose	
urée d'e	xposition :		4 semaines	- 27 jours	Durée d'expo	osition :	4 semaines - 27 jours		ue pose 14.01.2020 (m) 471.56
								Niveau statique retrait	
							<u> </u>	Altitude niveau statiqu	ue retrait 11.02.2020 (m) 471.70
(755)			re de pièces)	<u> </u>	Tp. 1000	<u> </u>	Commentaires :		
	Cartridge \ Cartridge [2	-	Rod333 Rod666		-		
	Dummy tul		2	0	Nut		-		
	Hinge		1	4	Cable	1 x 6.60 m	+		
	Eyebolt		1	\dashv	Well cap	1 1 1	1		
	Lycbolt	Ê			TVVEII Cap	'			
Unité géologique	Crépine	Profondeur (m)	Equipement PFM	Desc	cription et rema	ırques	Photos pose 1	4.01.2020	Photos retrait 11.02.2020
<u> </u>		1	T	Cara	ctéristiques f	orage			
Alluvions		1.1 1.3 1.4 1.5 1.6 1.7 1.8	Prof crépine : 6.3-7.7m 4						THE STATE OF THE S
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	sommet	es VOC-Darcy cartouches / cartouches (m	altitude Z		. 3	
F. du Bois de Raube]	2.8 2.9 3	_	PFM VOC	prof (m)	Z (m)	1		
		3.1 3.2 3.3	_	O0424	6.70	467.85	1		
		3.4 3.5		W0482	6.84	467.71			
		3.5 3.7 3.8 3.9 4 4.1	-		lors du retrait				
Alluvions		4.2 4.3 4.4 4.5 4.6 4.7	- - - - -	00424 W0482	sédiment fin lim				
∢		9.5 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- - - - - - - - - - -						
		6 6.1 6.2 6.3 6.4 6.6 6.7 6.7	0 00424						
	prof. max	6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7	O 00424 W W0482						
		7.8 7.9 8 8.1 8.2 8.3 8.4 8.5	-						
F. du Bois de Raube		8.6 8.7 8.8 8.9 9 9.1	-						
F. du B		9.3 9.4 9.5 9.6 9.7 9.8	-						
		9.9 10.1 10.2 10.3 10.4 10.5	-						
		10.4 10.5 10.6 10.7 10.8 10.9 11	-						
		11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	- - - -						
Molasse altérée		11.9 12 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	- - -						
		12.6 12.7 12.8 12.9 13 13.1 13.2	- - - -						
		13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9	- - - -						
		13.9 14 14.1	-						

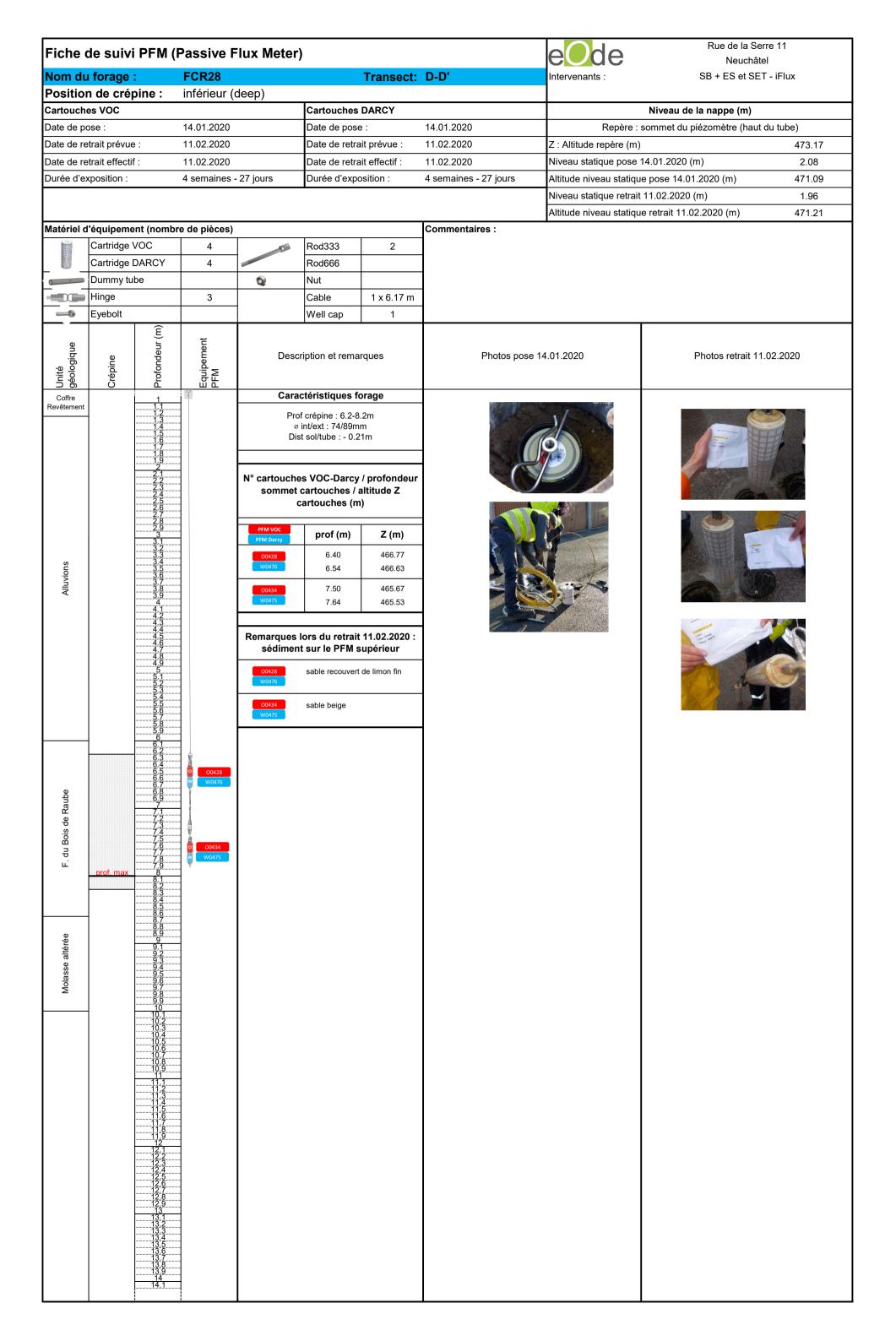

		LI IVI (1 433146 1	Flux Meter	,			ede	Neuchâtel
om du	forage		FCR23			Transect	: B-B'	Intervenants :	SB + ES et SET - iFlux
	n de crép		supérieur	(shallow)					
rtouche	es VOC				Cartouches	DARCY			Niveau de la nappe (m)
te de po			14.01.2020		Date de pos		14.01.2020	· · · · · · · · · · · · · · · · · · ·	sommet du piézomètre (haut du tube)
	trait prévue		11.02.2020		Date de retr		11.02.2020	Z : Altitude repère (m	-
	trait effectif	f :	11.02.2020	27 jours	Date de retr		11.02.2020	Niveau statique pose	
ree a ex	(position :		4 semaines	- 27 jours	Durée d'exp	oosition :	4 semaines - 27 jours	Niveau statique retrai	ue pose 14.01.2020 (m) 471.56 t 11.02.2020 (m) 2.76
									ue retrait 11.02.2020 (m) 471.71
atériel d	'équipeme	nt (nomb	re de pièces)				Commentaires :	, unitado invoca otatiqu	471.71
	Cartridge \		2		Rod333				
	Cartridge I	DARCY	2		Rod666				
	Dummy tu	be		Q	Nut				
	Hinge		1		Cable	1 x 3.41 m			
	Eyebolt	_			Well cap	1			
Unité géologique	Crépine	Profondeur (m)	Equipement PFM	Desc	ription et rema	arques	Photos pose 1	4.01.2020	Photos retrait 11.02.2020
Uni géc	Cré	Pa	Eq.			•			
		1 1 1 2 1 3 1 4 1 1 5 1 6 1 7 1 8 1 9 2 2 1 2 2 2 2 3 2 4 2 5 3 7		N° cartouche sommet	rof crépine : 3-4 int/ext : 74/89n it sol/tube : - 0. es VOC-Darcy cartouches / cartouches (r	5m nm 17m y / profondeur altitude Z			and restriction of the state of
		2.7 2.8 2.9		PFM VOC		7 ()	-		
		3 3.1 3.2	-	PFM Darcy	prof (m)	Z (m)			
(0		3.3 3.4 3.5		O0427 W0465	3.60 3.75	470.87 470.72			
Alluvions		3.6 3.7 3.8 3.9 4 4.1	O 00427 W W0465	Remarques	lors du retrai	it 11.02.2020 :	1		
		4.2 4.3 4.4	-	sédimen	t sur le PFM				
		4.5 4.6 4.7		O0427 W0465	faible quantité	nérale (BTEX?) - de sable fin beige			
		4.8 4.9	-		+ coloration be	eige et noire	-		
		5.1 5.2							
	prof. max	5.3 5.4 5.5	-						
		5.6 5.7	-						
		5.9 5.9 6							
		6.1 6.2 6.3	-						
		6.4 6.5	-						
		6.7 6.8							
		7.1	-						
		7.2 7.3 7.4	-						
		7.5 7.6 7.7	-						
		7.8 7.9	-						
e		8.1 8.2	-						
Raub		8.3 8.4 8.5	-						
s de		8.6 8.7	-						
F. du Bois de Raube		8.9	_						
F. d		9.1 9.2 9.3							
		9.4 9.5 9.6	-						
		9.7 9.8 9.8							
		10 10.1	-						
		10.2 10.3 10.4	-						
		10.5 10.6 10.7							
-		10.4 10.5 10.6 10.7 10.8 10.9	-						
térée		11.1	-						
Molasse altérée		11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	_						
1olas:		11.6 11.7 11.8	-						
2			_						
		12.1 12.2 12.3	-						
		12.4 12.5 12.6	-						
		12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	-						
		12.9 13 13.1	-						
		13.1 13.2 13.3 13.4 13.5 13.6	-						
		13.5 13.6 13.7	-						
		13.8 13.9 14	-						
	İ	14.1	7	1			I		Ī

forage: de crép s VOC ee: ait prévue ait effectif osition:	nt (nombre	## FCR23 Inférieur (1) 14.01.2020 11.02.2020 11.02.2020 4 semaines 4 4 3		Cartouches Date de pose Date de retra Date de retra Durée d'expo	e : ait prévue : ait effectif : osition :	14.01.2020 11.02.2020 11.02.2020 4 semaines - 27 jours	Repère : s Z : Altitude repère (m) Niveau statique pose Altitude niveau statique Niveau statique retrait	
de crép s VOC e : ait prévue ait effectif osition : equipeme Cartridge V Cartridge D Dummy tut dinge	nt (nombre	14.01.2020 11.02.2020 11.02.2020 4 semaines -	- 27 jours	Date de pose Date de retra Date de retra Durée d'expo Rod333 Rod666 Nut	DARCY e: ait prévue : ait effectif : osition :	14.01.2020 11.02.2020 11.02.2020	Z : Altitude repère (m) Niveau statique pose 1 Altitude niveau statique	sommet du piézomètre (haut du tube) 474.45 4.01.2020 (m) 2.91
e : ait prévue ait effectif osition : equipeme Cartridge \(\) Cartridge E Dummy tub Hinge	nt (nombro	11.02.2020 11.02.2020 4 semaines 4 de pièces) 4 4		Date de pose Date de retra Date de retra Durée d'expo Rod333 Rod666 Nut	e : ait prévue : ait effectif : osition :	11.02.2020 11.02.2020	Z : Altitude repère (m) Niveau statique pose 1 Altitude niveau statique	sommet du piézomètre (haut du tube) 474.45 4.01.2020 (m) 2.91
ait prévue ait effectif cosition : equipeme Cartridge V Cartridge E Dummy tub Hinge	nt (nombro	11.02.2020 11.02.2020 4 semaines 4 de pièces) 4 4		Date de retra Date de retra Durée d'expo	ait prévue : ait effectif : osition :	11.02.2020 11.02.2020	Z : Altitude repère (m) Niveau statique pose 1 Altitude niveau statique	474.45 4.01.2020 (m) 2.91
equipement Cartridge Cartridge Commy tubblinge	nt (nombro	11.02.2020 4 semaines e de pièces) 4 4		Date de retra Durée d'expo Rod333 Rod666 Nut	ait effectif :	11.02.2020	Niveau statique pose 1	4.01.2020 (m) 2.91
equipement Cartridge V Cartridge E Dummy tub Hinge Eyebolt	nt (nombr /OC DARCY be	4 semaines de de pièces) 4 4 3		Rod333 Rod666 Nut	osition :		Altitude niveau statique	
equipeme Cartridge V Cartridge E Dummy tub Hinge Eyebolt	nt (nombro /OC DARCY be	e de pièces) 4 4 3		Rod333 Rod666 Nut		4 Semanes - 27 Jours	· · · · · · · · · · · · · · · · · · ·	e pose 14.01.2020 (III) 471.52
Cartridge V Cartridge E Dummy tub Hinge Eyebolt	OC DARCY be	3	0	Rod666 Nut			Tiroda Staticae Time	11.02.2020 (m) 2.76
Cartridge V Cartridge E Dummy tub Hinge Eyebolt	OC DARCY be	3	0	Rod666 Nut				e retrait 11.02.2020 (m) 471.69
Cartridge Dummy tub Hinge Eyebolt	DARCY	3	0	Rod666 Nut		Commentaires :		
Oummy tub linge Eyebolt	be	3	0	Nut		1		
Hinge Eyebolt			Q		1			
yebolt	ofondeur (m)		1					
	ofondeur (m)			Cable	1 x 6.82 m			
Crépine	ofondeur (m	ıt	-	Well cap	1			
	אכ	Equipement PFM	Desc	ription et rema	ırques	Photos pose 1	4.01.2020	Photos retrait 11.02.2020
	1		Cara	ctéristiques f	orage			
	1.1 1.2 1.3 1.4 1.5 1.6 1.7		Ø	f crépine : 6.6-8 int/ext : 74/89m it sol/tube : - 0.1	m			
	1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7		sommet	es VOC-Darcy cartouches / a cartouches (m				
	2.8 2.9 3		PFM VOC	prof (m)	Z (m)			
	3.1 3.2 3.3		PFM Darcy O0433	7.00	467.45			4
	3.4 3.5		W0480	7.14	467.31			TIME ONDS
	3.7 3.8 3.8		O0430	7.77	466.68	1		
	3.9 4 4.1		W0484	7.91	466.54			
	4.2 4.3 4.4 4.5 4.6 4.7 4.7			lors du retrait t sur le PFM s				
	4.9 5 5.1 5.2 5.3 5.4		O0433 W0480	odeur huile min sableux	érale - limon			
	5.5 5.6 5.7 5.8 5.9		00430 W0484					3
	6.1 6.3 6.4 6.5 6.6 6.7							
	6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.8 7.8	0 00433 W W0480						
prof. max	82 83 84 85 86 87 88 89							
	9.2 9.3 9.5 9.5 9.7 9.8 9.9 10 10.1 10.2 10.3							
	10.5 10.6 10.7 10.8 10.9 11 11.1							
	11.3 11.4 11.5 11.6 11.7 11.8 11.9							
	12.1 12.3 12.4 12.6 12.7 12.8 12.9 13.1 13.1 13.2 13.3 13.4 13.5							
	rof. max	1	7,5	Tof. max Tof. m	Tof. max	rof. max Costs Co	chaussette légèrement déchirée Col. max Col.	Chaussette légèrement déchirée

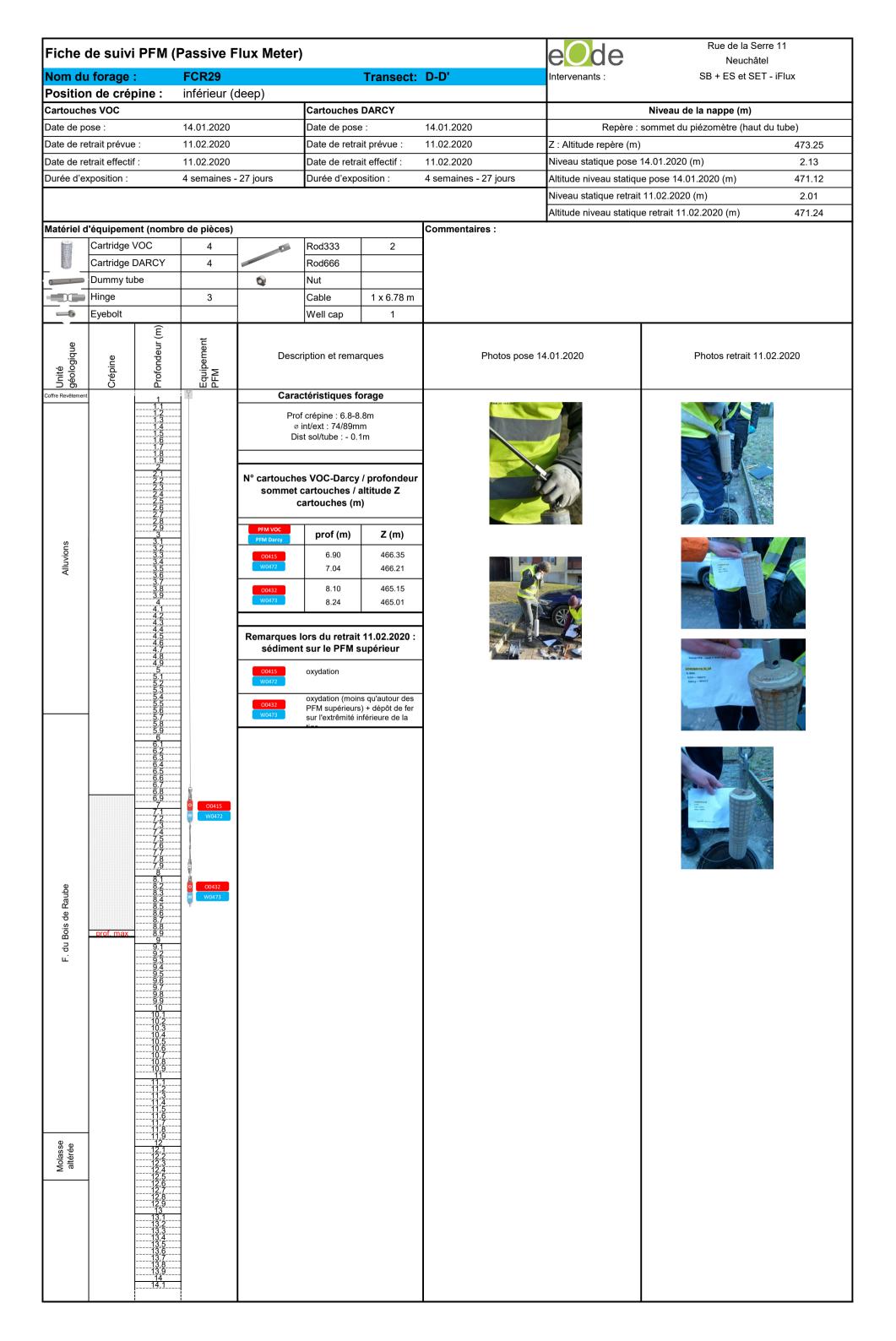


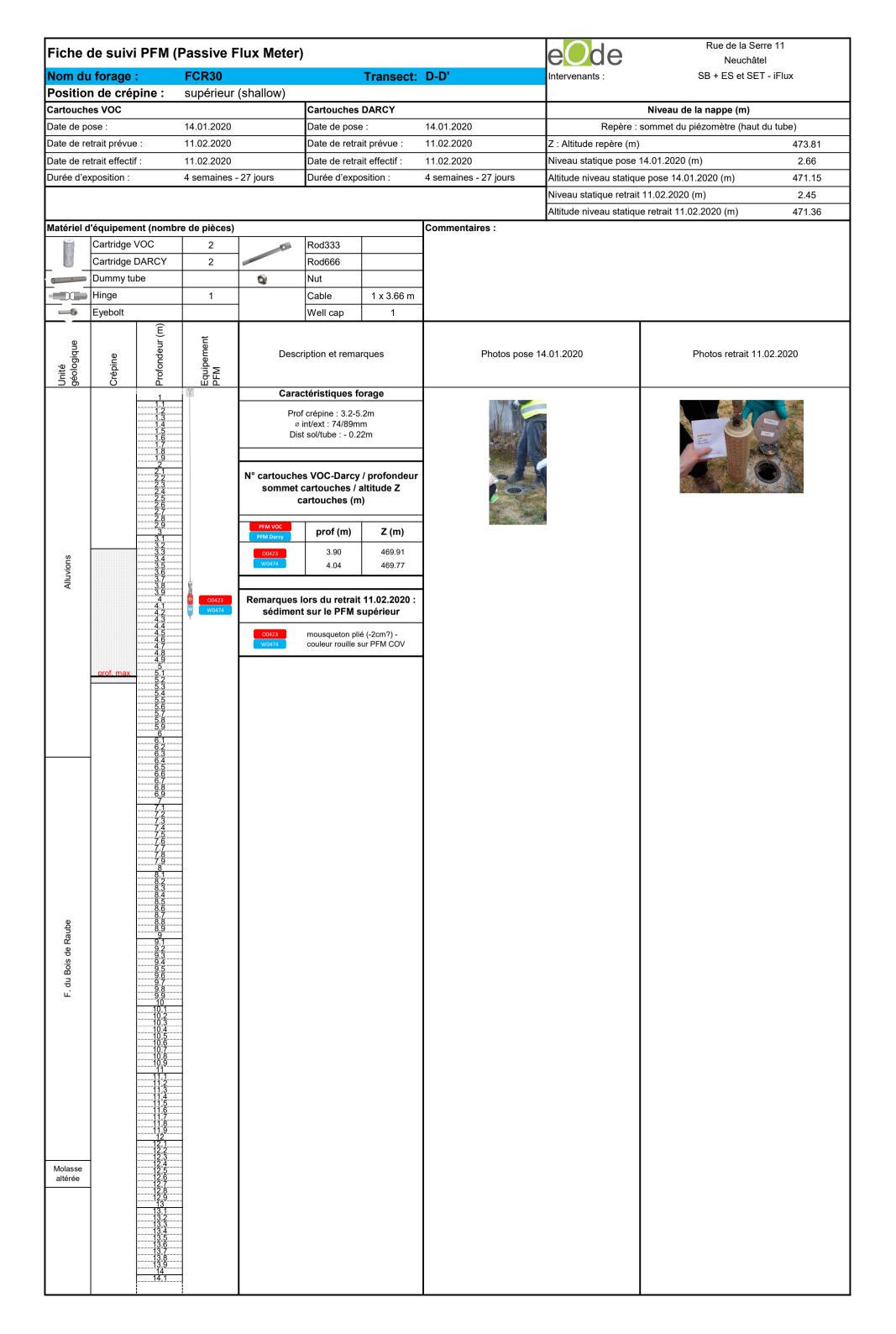

riche (de suivi	PFM (I	Passive F	lux Meter)			e de	Rue de la Serre	11
	ı forage :		FCR25		-	Transect:	C-C'	Intervenants :	Neuchâtel SB + ES et SET -	iFlux
	n de crép		supérieur	(shallow)		mansect.		intervendine :	32 7 23 31 32 1	
artouch		_ *			Cartouches	DARCY			Niveau de la nappe (m)	
ate de po	ose:		14.01.2020		Date de pos	e :	14.01.2020	Repère :	sommet du piézomètre (haut d	lu tube)
ate de re	trait prévue	:	11.02.2020		Date de retra	ait prévue :	11.02.2020	Z : Altitude repère (r	n)	474.15
ate de re	trait effectif	:	11.02.2020		Date de retra	ait effectif :	11.02.2020	Niveau statique pos	e 14.01.2020 (m)	2.83
ourée d'ex	xposition :		4 semaines -	27 jours	Durée d'exp	osition :	4 semaines - 27 jours	Altitude niveau stati	que pose 14.01.2020 (m)	471.32
					-			Niveau statique retra	ait 11.02.2020 (m)	2.71
								Altitude niveau stati	que retrait 11.02.2020 (m)	471.44
latériel d			e de pièces)				Commentaires :			
	Cartridge V		2	1	Rod333	2				
	Cartridge D		2		Rod666					
	Dummy tub	oe		Q	Nut					
	Hinge		3		Cable	1 x 3.29 m				
	Eyebolt				Well cap	1				
Unité géologique	Crépine	Profondeur (m)	Equipement PFM		cription et rem		Photos pose 14	.01.2020	Photos retrait 11.02	2.2020
vant trou		1 1.1 1.2			actéristiques rof crépine : 3.3-		FCRIR.neg S1.1 delay	/		
		1.3 1.4 1.5 1.6 1.7 1.8 1.9			ø int/ext : 74/89i Dist sol/tube : - 0	mm				
		2-1 2-2 2-3 2-4 2-5 2-6 2-7		somme	nes VOC-Darc t cartouches (cartouches ()
		2.8 2.9 3 3.1	: - -	PFM VOC PFM Darcy	prof (m)	Z (m)				
Ø		3.3 3.4		00418 W0463	3.51	470.64				
Alluvions		3.5 3.6 3.7	O0418	W0403	3.66	470.49				
Allu	-	3.8 3.9 4.1 4.2	W W0463	00422 W0470	4.61 4.75	469.54 469.40			Washington and the second seco	
	-	4.3 4.4 4.5 4.6 4.7	0 00422		s lors du retra nt sur le PFM	it 11.02.2020 : supérieur				
	- - - - -	4.8 4.9 5.1 5.2	W W0470	O0418 W0463	limon fin beige	-				
	prof. max	5.3 5.4 5.5 5.6 5.7		00422 W0470	beaucoup de se beige - odeur H	édiment, limon fin C			en e	
	-	5.8 5.9 6 6.1 6.2	-				1			
	-	6.3 6.4 6.5 6.6 7								
		6.8 6.9 7 7.1								
	-	7.2 7.3 7.4 7.5								
		7.5 7.7 7.8								
		7.9 8 8.1								
		8.2 8.3								
ø		8.5 8.6								
₹aub		8.7 8.8 8.9								
du Bois de Raube		9 9.1								
Bois		9.2 9.3 9.4								
F. du		9.5 9.6 9.7								
_		9.8 9.9 10								
		10.1 10.2								
		10.3 10.4 10.5								
		10.3 10.4 10.5 10.6 10.7 10.8 10.9								
		11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8								
		11.4 11.5 11.6								
		11.7 11.8								
ď٦	1	11.9 12 12.1	-							
Molasse Altérée		12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13								
sse A		12.5 12.6 12.7								
Mola		12.8 12.9								
	† [13 13.1 13.2								
		13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9								
		13.6 13.7								
		13.8 13.9 14								
	•	14.1	7	I						

									Rue de la Serre 11
Fiche	de suivi	PFM (Passive F	lux Meter)			eOde	Neuchâtel
	ı forage :		FCR25			Transect:	C-C'	Intervenants :	SB + ES et SET - iFlux
Positio Cartouch	n de crép	oine :	inférieur (deep)	Cartouches	DARCY			Nivoau do la nanna (m)
Date de p			14.01.2020		Date de pos		14.01.2020	Renère :	Niveau de la nappe (m) sommet du piézomètre (haut du tube)
	etrait prévue	:	11.02.2020		Date de pos		11.02.2020	Z : Altitude repère (m)	
	etrait effectif		11.02.2020		Date de retra	•	11.02.2020	Niveau statique pose 1	
Durée d'e	xposition :		4 semaines -	· 27 jours	Durée d'exp	osition :	4 semaines - 27 jours	Altitude niveau statique	e pose 14.01.2020 (m) 471.50
					•			Niveau statique retrait	11.02.2020 (m) 2.82
								Altitude niveau statique	e retrait 11.02.2020 (m) 471.61
(75)			re de pièces)	I .	T	1	Commentaires :		
	Cartridge \ Cartridge [2	-	Rod333 Rod666	1	-		
	Dummy tul		2	9	Nut	'	1		
	Hinge		3	4	Cable	1 x 9.31 m	1		
-6	Eyebolt			-	Well cap	1	1		
Unité géologique	Crépine	Profondeur (m)	Equipement PFM	Desc	ription et rema	ırques	Photos pose 1	4.01.2020	Photos retrait 11.02.2020
与 数 Avant trou		Pro		Cara	ctéristiques f	orago			
Availt tiou		1 1.1 1.2 1.3 1.4 1.5 1.6 1.7		Prof ø	crépine : 9.3-1 int/ext : 74/89m it sol/tube : - 0.2	1.3m ım			
		1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	- - - - - - - - -	sommet	es VOC-Darcy cartouches / cartouches (m			75	
		2.8 2.9 3		PFM VOC	prof (m)	Z (m)	FCRIS 341-1461-2009		7, 32,000
		3.1 3.2 3.3	-	O0435	9.55	464.88	-		
Alluvions		3.4 3.5 3.6	-	W0464	9.70	464.73			
Alluv		3.7 3.8 3.9 4 4.1 4.2	- - - -	00421 W0471	10.32 10.46	464.11 463.97			
		4.3 4.4 4.5 4.6 4.7 4.8	-		lors du retrait t sur le PFM s	: 11.02.2020 : supérieur			
		5.1 5.2 5.3 5.4		00435 W0464	sédiment fin gri				
		5.5 5.6 5.7 5.8 5.6	- - - -	00421 W0471	limon fin beige				
	-	6.1 6.2 6.3 6.4 6.5		extremite inte	rieure de tige déc	coloree (doree)	_		
		6.6 6.7 6.8 6.9 7	- - - -						
		7.2 7.3 7.4 7.5 7.6	-						
		7.7 7.8 7.9 8 8.1	-						
Raube		0.23 0.4 0.5 0.5 0.6 0.8 0.9	- - - - - -						
F. du Bois de Raube		9.1 9.2 9.3 9.4 9.5 9.6							
<u>.</u>		9.7 9.8 9.9 10 10.1	00435 W W0464						
	prof. max	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.1 11.1 11.2 11.3 11.4 11.5 11.6 11.6	O 00421 W W0471						
Molasse Altérée		11.8 12.1 12.1 12.2 12.3 12.4 12.5 12.6 12.6 12.7 12.8 12.9 13.1 13.1 13.1 13.3 13.4 13.5							
		13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1	-						

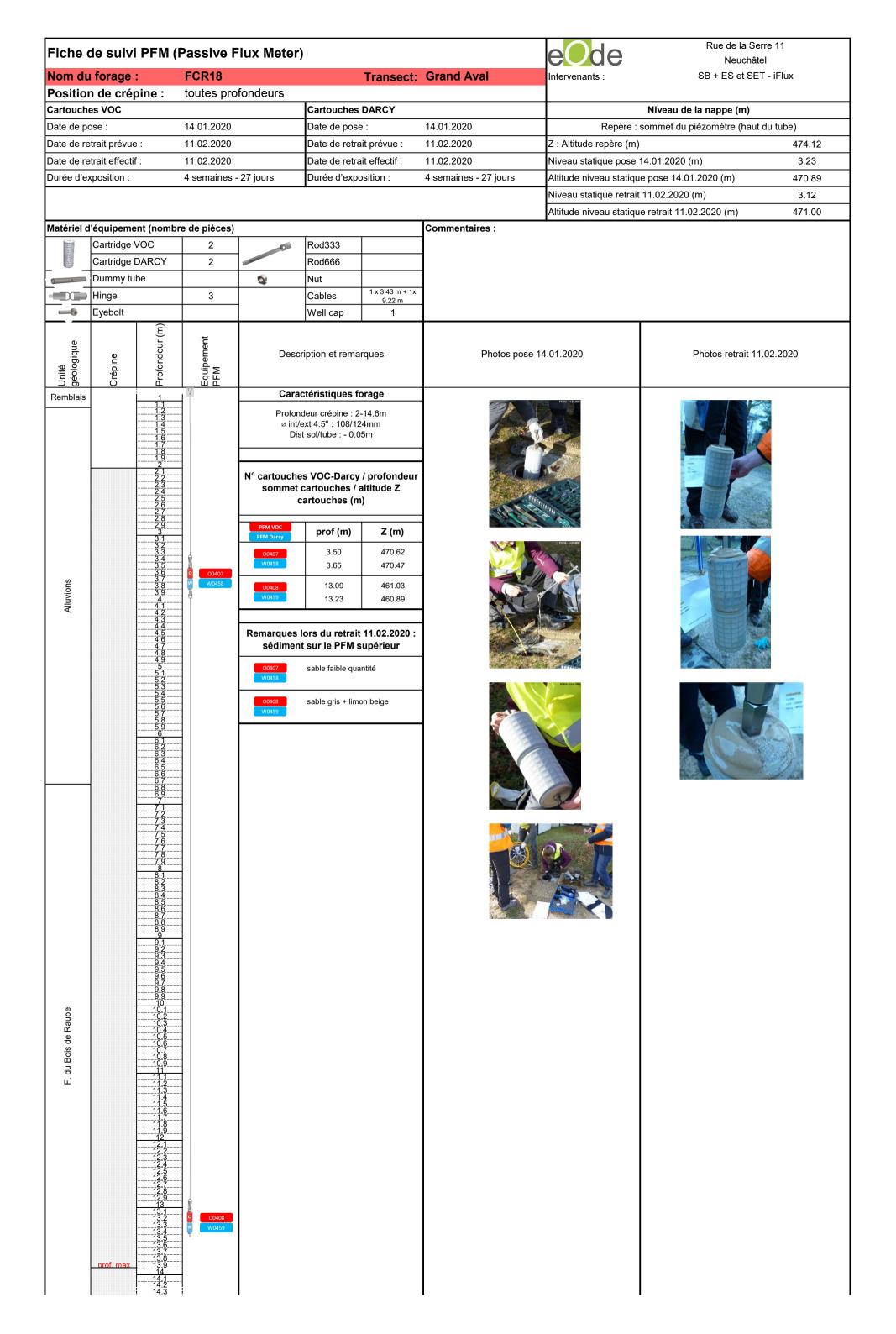


									Rue de la Serre 11
Fiche	de suivi	i PFM (I	Passive F	lux Meter)			e de	Neuchâtel
	forage		FCR26			Transect:	C-C'	Intervenants :	SB + ES et SET - iFlux
	n de cré _l	pine :	inférieur (deep)	lotb	DAROV			Nitro and de la mana (m)
Cartouch Date de p			14.01.2020		Cartouches Date de pos		14.01.2020	Renàre :	Niveau de la nappe (m) sommet du piézomètre (haut du tube)
-	ose : etrait prévue	e :	11.02.2020		Date de pos		11.02.2020	Z : Altitude repère (m)	· · · · · · · · · · · · · · · · · · ·
	etrait effecti		11.02.2020		Date de retra		11.02.2020	Niveau statique pose	
Durée d'e	xposition :		4 semaines -	- 27 jours	Durée d'exp	osition :	4 semaines - 27 jours	Altitude niveau statiqu	e pose 14.01.2020 (m) 471.32
								Niveau statique retrait	11.02.2020 (m) 2.97
							-	Altitude niveau statiqu	e retrait 11.02.2020 (m) 471.44
2755			re de pièces)	<u> </u>	T=	1	Commentaires :		
	Cartridge Cartridge		4	-	Rod333 Rod666	1	-		
	Dummy tu		4	9	Nut	'	-		
	Hinge		3	*	Cable	1 x 8.02 m			
-6	Eyebolt			-	Well cap	1	1		
Unité géologique	Crépine	Profondeur (m)	Equipement PFM	Desc	ription et rema	arques	Photos pose 1	4.01.2020	Photos retrait 11.02.2020
与		<u> </u>		Cara	ctéristiques f	orage			
Availt tiou		1 11 12 13 14 15 16 17 18		Pr ø	rof crépine : 8-11 int/ext : 74/89m st sol/tube : - 0.0	0m nm		-70-97-50300	
		2.1 2.3 2.4 2.5 2.7 2.8	-	sommet	es VOC-Darcy cartouches / cartouches (m				
		2.9 3 3.1		PFM VOC PFM Darcy	prof (m)	Z (m)			
		3.2 3.3 3.4		O0419	8.12	466.29			
Alluvions		3.5 3.6 3.7	_	W0467	8.26	466.15	_		
Alluv		3.8 3.9 4 4.1 4.2		00420 W0477	8.89 9.03	465.52 465.38			
		4.3 4.4 4.5 4.6 4.7 4.8	-		lors du retrait t sur le PFM s	t 11.02.2020 : supérieur			
		5 5.1 5.2 5.3 5.4	- - - -	00419 W0467	limon fin beige				
		5.6 5.7 5.5 5.5 5.7 6		00420 W0477	2 petites tâches légère odeur d'		-		
	_	6.1 6.2 6.3 6.5 6.5 6.7	-						
		6.8 6.9 7 7.1 7.2							
		7.4 7.5 7.6 7.7 7.8 7.9	- - - - - - -						
ЭС		8.1 8.2 8.3 8.4 8.5 8.6 8.7	00419 W W0467						
du Bois de Raube		9.1 9.2 9.3	0 00420 W W0477						
F. du Bo		9.4 9.5 9.6 9.7 9.8 9.9	- - - -						
	prof. max	10.1 10.2							
		10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.1 11.1 11.2 11.3 11.4 11.5 11.6							
Molasse altérée		11.8 11.9 12 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13	- - - - - - - - - - -						
		13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1	-						



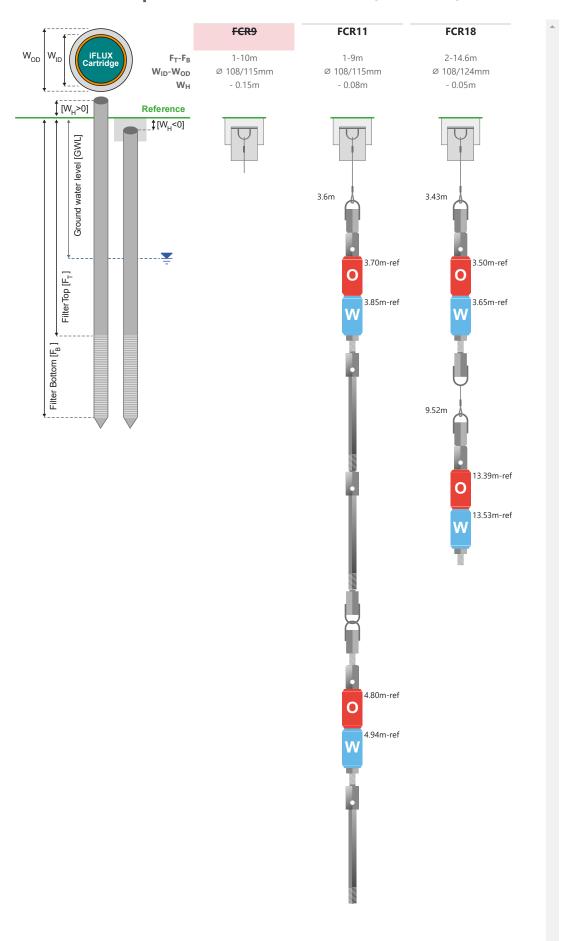


Mathematical Process	iche d	de suivi	i PFM (Passive F	lux Meter)			e Ode	Rue de la Seri Neuchâte	
### Controlled Supplier (Symbles) #### Controlled Supplier (Symbles) #### Controlled Supplier (Symbles) #### Controlled Supplier (Symbles) #### Controlled Supplier (Symbles) ##### Controlled Supplier (Symbles) ##### Controlled Supplier (Symbles) ##### Controlled Supplier (Symbles) ########### Controlled Supplier (Symbles) ###################################							Transect:	D-D'	0 0 0 0		
Control Delica					(shallow)						
Control effect 1.102.2020						Cartouches	DARCY			Niveau de la nappe (m)	
Compared Color 1,000 and color peace effects 1,000 and color peace 1,000 and color pea											
### Separations							<u> </u>			•	
Price point in the process of the pr			f :		07.					<u> </u>	
Processor Proc	uree d'ex	(position :		4 semaines -	· 27 jours	Duree d'exp	osition :	4 semaines - 27 jour			
Contribute of pelevols Contribute of pelevols											
Control Cont	atériel d	'équipeme	ent (nombi	e de pièces)				Commentaires :	Aititude Tiivead Statiq	de retrait 11.02.2020 (III)	471.22
Control Cont				1	-04	Rod333					
Seption Septio		Cartridge	DARCY	2		Rod666					
Photos pass 14.01.2020 Photos		Dummy tu	be		Q	Nut					
Description or remarques Description or remarques Photos poss 14 01 2020				1		-					
Caracteristiques forage Pert caracter 2.7.4 / m = Neces: 7-4/5/2007 Consistent 2.0.1 / m = Noves: 7-4/5/2007 N° cardouches VOC-Darry / profondeur sommet cardouches / attitude Z cardouches / des 25 4 4 03 469 25 4 4 669 11 Remarques fora du refrait \$1,02.2020 : sédiment sur le PFM supérieur autilité de la cardouches / de la cardouche		Eyebolt				Well cap	1			1	
Caracteristiques forage Port origine; 2.74 / 27 places 7.44 / 27 places 7.	Unité géologique	répine	rofondeur (m	quipement FM	Desc	ription et rema	arques	Photos	s pose 14.01.2020	Photos retrait 11.	02.2020
N° cartouches VOC-Barry / profondeur sommet cartouches (m)	⊃ ŏ Coffre	0	1	ш	Cara	ctéristiques f	orage				
Sommet can outches / altitude 2 cardouches (m) Table 2000 A 400 20 20 400 20 11 Remarques for du retart 11 02 2020 1 seddin labys resourcer du limin fix Soldin labys resourcer du limin fix Soldin labys resourcer du limin fix Soldin labys resourcer du limin fix	evêtement		1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9		Pro Ø Dis	of crépine : 2.7-4 int/ext : 74/89m st sol/tube : - 0.7	1.7m nm 12m	-		Control of the Contro	,
BOTH COLUMN A 100 A 148 S2 C A 100			2.1 2.2 2.3 2.4 2.5 2.6 2.7	- - - - - - - -	sommet	cartouches /	altitude Z				
Remarques lors du retail 11.02.2020 : sediment sur le PFRI supériour sediment sediment sur le PFRI supériour sediment			2.8 2.9 3			prof (m)	Z (m)	1			
Remarques lors du retrait 11.02.2020 : sed-iment sur le PFH supérieur de linen fix coul. mix			3.1 3.2 3.3	1	O0425			1			
Remarques fors du retrait 11.02.2020 : sediment sur le PFM supplieur sur	Alluvions		3.4 3.5 3.6 3.7 3.8			I		}			
			3.9 4 4.1 4.2 4.3	O0425 W W0478							
			4.4 4.5 4.6 4.7 4.8		00425 W0478	sable beige rec	couvert de limon fi	n			
		prof. max									
			5.2 5.3 5.4								
and the state of t			5.5 5.6 5.7								
			5.8 5.9								
00 00 00 00 00 00 00 00 00 00 00 00 00											
00 00 00 00 00 00 00 00 00 00 00 00 00			6.4 6.5								
00 00 00 00 00 00 00 00 00 00 00 00 00	e C		6.6 6.7 6.8								
Description of the control of the co	Rauk		6.9 7 7.1	-							
Description of the control of the co	sis de		7.2 7.3 7.4	-							
Description of the control of the co	du Bc		7.7	-							
	ű.		8	_							
			8.1 8.2 8.3	-							
			8.4 8.5 8.6	-							
	45		8.7 8.8 8.9	_							
	ltérée		9	-							
	sse a		9.3 9.4 9.5	-							
	Mola		9.6 9.7	_							
			9.8 9.9 10	1							
			10.1 10.2 10.3	-							
			10.4 10.5 10.6	-							
			10.7 10.8 10.9	-							
			11.1 11.1 11.2	-							
1			11.4	-							
1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2			11.6	-							
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			11.8 11.9 12								
12.5 12.6 12.6 13.1 13.2 13.2 13.3 13.4 13.5 13.6 13.6 13.9 14			12.1 12.2 12.3	-							
12.7 			12.4 12.5 12.6	-							
131 -131 -132 -133 -134 -135 -136 -138 -139 -141			12.7 12.8 12.9	-							
13.4 			13.1 13.1	<u>-</u>							
13.6 			13.3 13.4	-							
			13.5 13.6 13.7	-							
			13.8 13.9 14	-							
			14.1	-	<u> </u>			<u></u>		<u> </u>	

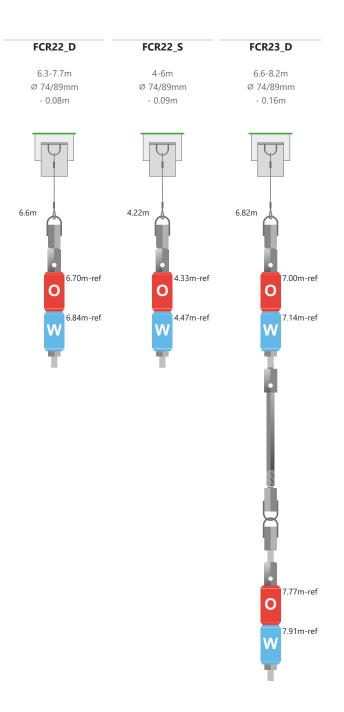


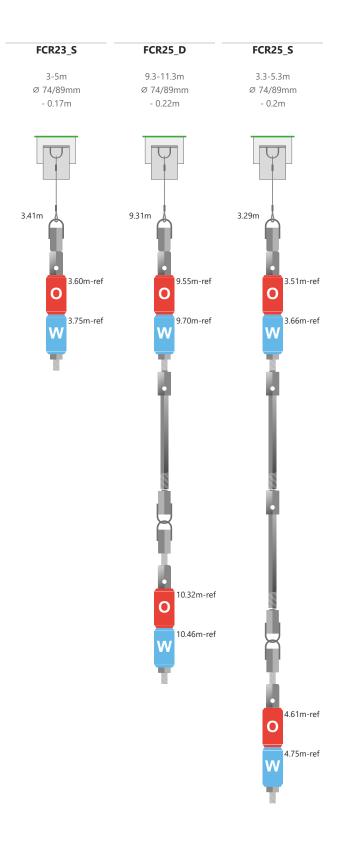
								Rue de la Serre 11	
Fiche de suivi PFM (Passive Flux Meter)						eOde	Neuchâtel		
Nom du forage :		FCR29 Transect:			Transect:	D-D'	Intervenants :	SB + ES et SET - iFlux	
	n de crépine :	supérieur	(shallow)						
Cartouch			Cartouches DARCY				Niveau de la nappe (m)		
Date de p		14.01.2020				14.01.2020		ommet du piézomètre (haut du tube)	
	etrait prévue :	11.02.2020		_ 		11.02.2020	Z : Altitude repère (m)	473.10	
	etrait effectif :	11.02.2020	07.			11.02.2020	Niveau statique pose 14		
Durée d'e	exposition :	4 semaines	- 27 jours	Durée d'exposition :		4 semaines - 27 jours	Altitude niveau statique		
							Niveau statique retrait 1 Altitude niveau statique		
Matériel (d'équipement (nombr	e de nièces)				Commentaires :	Allitude filveau statique	Tetrait 11.02.2020 (III) 471.28	
	Cartridge VOC	2	- 46	Rod333					
	Cartridge DARCY	2		Rod666					
Dummy tube		Q		Nut		1			
	Hinge	1		Cable	1 x 3.48 m	-			
-6	Eyebolt		1	Well cap	1	1			
Unité géologique	Crépine Profondeur (m)	Equipement PFM	Desc	ription et rema	arques	Photos pose 1	Photos retrait 11.02.2020		
Coffre Revêtemer		шс	Cara	ctéristiques forage					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Pro Ø Di:	f crépine : 2.7-4 int/ext : 74/89m st sol/tube : - 0.	1.7m nm 2m			The state of the s	
	22 23 24 25 26		III		altitude Z				
Alluvions	2.9]	PFM VOC	prof (m)	Z (m)	FGRS sep-1401.888			
	3.2 3.3 3.3		00431	3.70	469.40		- 12		
	345 366 376 378 378	O 00431 W W0462	W0462	3.85	469.25	8			
	41 	*		t sur le PFM s	t 11.02.2020 : supérieur				
	4.9 4.8 4.8	-	W0462	-					
	prof. max 5 5.1						FERRY MAY 101-201		
	34456 3456 3667 3667 3667 3667 3666 3667 377 374 374 374 374 374 374 374 374 37								
F. du Bois de Raube	7.9								
Molasse altérée	10.5 10.5 10.6 10.7 10.8 10.7 10.8 11 11 11.2 11.3 11.5 11.7 11.8 12.1 12.1 12.2 12.3 12.4 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5								

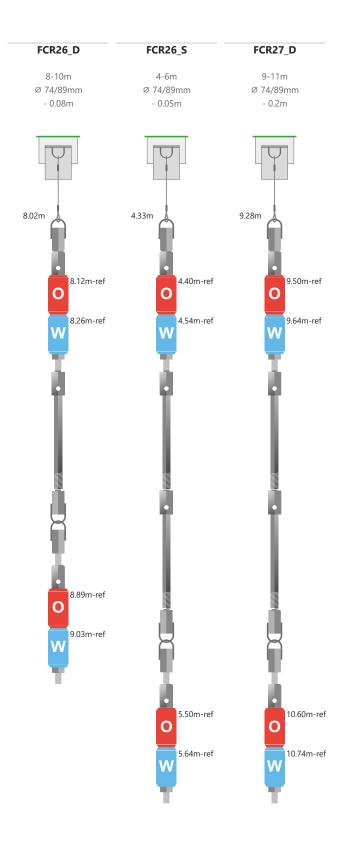
Fiche	de suivi	i PFM (Passive F	lux Meter	<u> </u>			e Ode	Rue de la Serr	
Fiche de suivi PFM (Passive F Nom du forage : FCR30			Tux motor	Transect: D-D'			Intervenants: SB + ES et SET - iFlux			
Nom du forage : FCR30 Position de crépine : inférieur (de			deep)				morvenants.	0D - E0 61 0E1	н тыл	
Cartouches VOC			/	Cartouches	DARCY		Niveau de la nappe (m)			
Date de p	ose :		14.01.2020				14.01.2020	Repère :	sommet du piézomètre (haut d	u tube)
Date de re	etrait prévue	e :	11.02.2020				11.02.2020			473.90
Date de re	etrait effecti	f :	11.02.2020		_		11.02.2020	Niveau statique pose	Niveau statique pose 14.01.2020 (m)	
Durée d'e	xposition :		4 semaines -	- 27 jours	Durée d'exposition :		4 semaines - 27 jours	Altitude niveau statiqu	ue pose 14.01.2020 (m)	471.34
								Niveau statique retrait		2.53
								Altitude niveau statiqu	ue retrait 11.02.2020 (m)	471.37
755			e de pièces)	<u> </u>	<u> </u>	1	Commentaires :			
	Cartridge \		2	0	Rod333		-			
	Cartridge I		2		Rod666 Nut		-			
Dummy tube Hinge		De .	1		Cable 1 x 11.44 m		-			
	Eyebolt		'	-	Well cap	1	-			
	your	Ê			TV OII GUP	<u> </u>				
Unité géologique	Crépine	Profondeur (m)	Equipement PFM	Desc	ription et rema	arques	Photos pose 1	Photos retrait 11.0	02.2020	
<u> </u>		1 1		Cara	ctéristiques f	forage				
		1.1 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1		ø ii Dis	of crépine : 10- nt/ext 3" : 74/89 st sol/tube : - 0.	9mm 14m			Particular of the control of the con	
	2.1 2.3 2.4 2.6 2.6 2.7		- - - - -	N° cartouches VOC-Darcy / profondeur sommet cartouches / altitude Z cartouches (m)						
		2.9 3 3 1	1	PFM VOC	prof (m)	Z (m)	1			
(0		3.2 3.3	1	00417	11.60	462.30				
Alluvions		3.5 3.6 3.7 3.8	- - - -	W0466	11.74	462.16				
		3.9 4 4.1 4.2 4.3		Remarques sédimen	lors du retrai t sur le PFM	t 11.02.2020 : supérieur				
		4.4 4.5 4.6 4.7 4.8		00417 W0466	limon gris-beig	е				
		4.9 5 5.1 5.2	1							
		5.3 5.4 5.5 5.6	-							
		5.8 5.9 6 6.1	-							
	_	6.3 6.4 6.5 6.6 6.7	-							
		6.8 6.9 7 7.1 7.2								
		7.3 7.4 7.5 7.6 7.7								
		7.8 7.9 8 8.1								
		8.3 8.4 8.5 8.6	- - - -							
Raube		8.9 9.1	-							
F. du Bois de Raube		9.2 9.3 9.4 9.5 9.6	- - -							
F. du		9.7 9.8 9.9								
		10 10.1 10.2 10.3	-							
		10.3 10.4 10.5								
		10.6 10.7 10.8]							
		10.9 11 11 1	1							
		11.2 11.3 11.4]							
		11.5 11.6 11.7	0 00417							
	prof. mov	11.8 11.9 12	O 00417 W W0466							
	prof. max	12 12.1 12.2 12.3 12.4	1							
Molasse	1	12.3 12.4 12.5	-							
altérée	1	12.6 12.7]							
		12.9	1							
		13.1 13.2 13.3	_							
		13.4 13.5 13.6	-							
		13.7 13.8 13.9	-							
		14.1	-							
			1						<u> </u>	

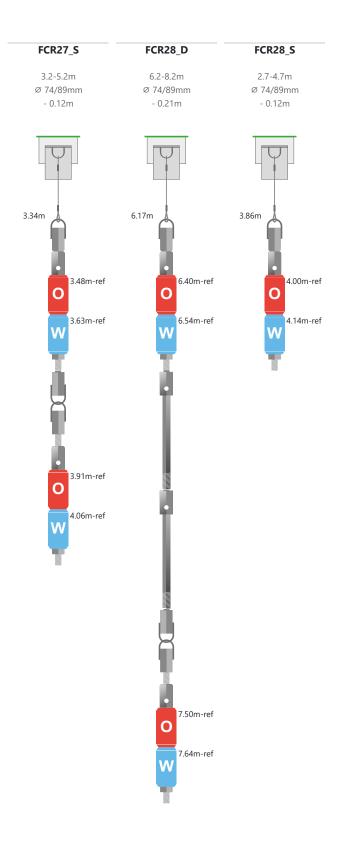


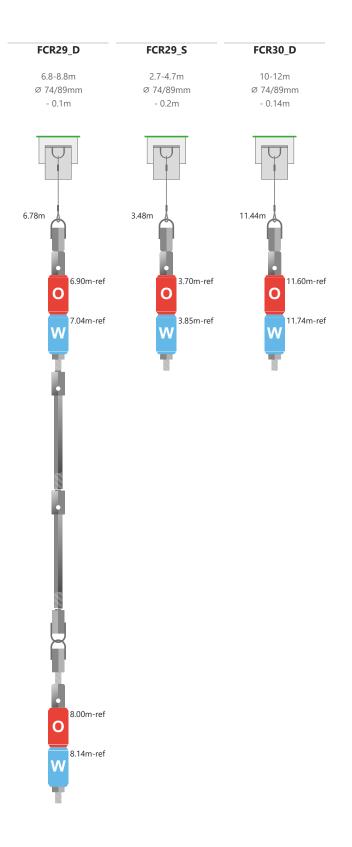
Annexe 2 Plan d'installation des PFM




28.10.2020 Annexe 2


Installation plan for eOde Suisse (19.0167)





3.2-4.2m Ø 74/89mm - 0.22m

iFLUX Sampling

Annexe 3 Essais de dissolution au sel dans FCR28

28.10.2020 Annexe 3

Essais de dilution au sel

Estimation des flux de Darcy dans deux lithologies du site expérimental

Description des essais

Octobre 2020

Table des matières

1.		Objectifs	4
2.		Méthode	5
		Moyens	
3.	1.	Forage d'essai et niveaux lithologiques	7
3.	2.	Acquisition des données	8
3.	3.	Traitement des données	9
4.		Résultats	1
4.	1.	Courbes de dilution du sel	1
4.	2.	Flux de Darcy	1
5		Conclusion 1	2

1. Objectifs

Le site d'essai présente une contamination aux solvants chlorés. La pose d'échantillonneurs passifs de flux (PFM) pour mesurer les flux massiques de polluants dans les eaux souterraines nécessite de disposer au préalable d'une estimation des vitesses d'écoulement des eaux souterraines. Ces vitesses et les concentrations en polluants dans les eaux déterminent en effet l'importance des flux, et par conséquent la durée d'exposition requise pour les PFM.

Les essais de dilution au sel permettent une estimation directe des flux de Darcy dans un forage, et représentent ainsi un moyen simple, rapide et économique de déterminer ces inconnues.

Deux essais ont été réalisés sur le site, dans un forage (FCR28/P/19), dans deux niveaux lithologiques (Alluvions composées de blocs, graviers, pierres et gravillons et formation du Bois de Raube composée de sables et sables fins à très fins) de perméabilité contrastée dans lesquels des PFM devaient être installés.

Le présent document décrit les fondements théoriques et les conditions de réalisation de ces essais, puis les résultats obtenus après traitement et interprétation des données.

28.10.2020 4 / 16

2. Méthode

L'essai de dilution mis en œuvre sur le site est une technique permettant d'estimer le flux de Darcy horizontal dans la portion d'aquifère environnant le puits dans lequel est réalisé l'essai. Les fondements théoriques et les conditions de réalisation de l'essai sont décrits dans (Piccinini, Fabbri, et Pola 2016). Les principaux éléments en sont rappelés ici.

L'essai de dilution consiste à injecter un traceur – dans le cas présent du NaCI - dans une section d'un piézomètre, qui peut être isolée à l'aide de rondelles en plastique. L'eau souterraine dilue progressivement le traceur, dont la courbe descendante de concentration est mesurée.

Si on suppose que la dilution du traceur est causée uniquement par le flux d'eau souterraine traversant le piézomètre, la concentration de traceur diminue au cours du temps selon la relation :

1.
$$\frac{dC}{dt} = -\frac{A \cdot v_a \cdot C}{W}$$

A: section perpendiculaire au flux d'eau souterraine v_a : vitesse apparente C: concentration du traceur W: volume de dilution

L'intégration de cette relation en supposant que la concentration en traceur à l'instant t=0 est C_0 , et en réarrangeant les champs fournit :

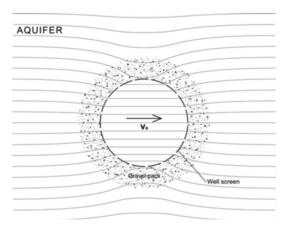


Figure 1 Distorsion du flux causée par la présence d'un piézomètre (Piccinini et al. 2016).

$$2. \quad \ln C = -\left(\frac{2v_a}{\pi r}\right)t + \ln C_0$$

 v_a : vitesse apparente \mathcal{C} : concentration du traceur

 C_0 : concentration initiale du traceur

r: rayon du piézomètre

La représentation graphique du ratio $\ln(C/C_0)$ en fonction du temps doit présenter une relation linéaire si la dilution du traceur est causée uniquement par l'écoulement des eaux souterraines. La pente m de la droite de régression est alors reliée à la vitesse apparente par la relation :

3.
$$v_a = m \frac{\pi \cdot r}{2}$$
 où $m = ln\left(\frac{c}{c_0}\right)$

 v_a : vitesse apparente

 \mathcal{C} : concentration du traceur

 C_0 : concentration initiale du traceur

m: pente

Et le flux de Darcy v_d peut être estimé par la relation :

4.
$$v_a \approx \alpha \cdot v_d$$

Où α est un facteur de distorsion des écoulements des eaux, générée par le piézomètre et son équipement. Le facteur α est généralement compris entre 0.5 et 4 pour les aquifères sableux à graveleux (Drost et al. 1968). Dans le cas de piézomètres ouverts (open pipe piezometers) un facteur de 2 ou 3 est généralement appliqué. Ces deux valeurs ont été utilisées pour les essais réalisés sur le site.

Dans la pratique, la courbe décroissante de sel traceur est mesurée à l'aide d'un conductimètre, fournissant des valeurs de conductivité, et non de concentration en NaCl. Il est de plus nécessaire de tenir compte que l'eau souterraine présente une conductivité non nulle avant l'injection de sel, notée EC_b. Le ratio calculé à partir des données de suivi de la conductivité, fournissant la pente m permettant d'estimer le flux de Darcy, est donc :

$$ln\left(\frac{EC-EC_b}{EC_0-EC_b}\right)$$

28.10.2020 5 / 16

où EC_0 désigne la conductivité à l'instant t=0 où le sel a été injecté, EC la conductivité suivie durant la durée de l'essai et EC_b la conductivité du milieu avant l'injection du sel.

Une fois le flux de Darcy obtenu, le flux massique de substances peut finalement être estimé par la relation (cf. p.ex. (Demougeot-Renard 2018)) :

 $J = v_d \cdot C$

J: flux massique de substance

vd: flux de Darcy

C: concentration du contaminant

28.10.2020 6 / 16

3. Moyens

3.1. Forage d'essai et niveaux lithologiques

Les essais au sel ont été réalisés dans le forage FCR28/P/19, équipé de deux tubes piézométriques, l'un crépiné à hauteur des alluvions, l'autre au niveau de la formation du Bois de Raube (Annexe Figure 9).

Comme illustré dans la Figure 2, deux sections représentant ces formations ont été sélectionnées pour réaliser deux essais de dilution. Une section de 60cm de hauteur s'étendant de 3.4m à 4.0m de profondeur a été isolée par des rondelles en plastique dans les Alluvions, formées de pierres, graviers et gravillons, dont la perméabilité est reconnue comme la plus élevée de l'aquifère. Une section de 60cm entre 7.40 et 8.00 m de profondeur a été retenue dans la formation du Bois de Raube, présentant des sables très fins, limoneux, dont la perméabilité est évaluée comme la plus faible de l'aquifère.

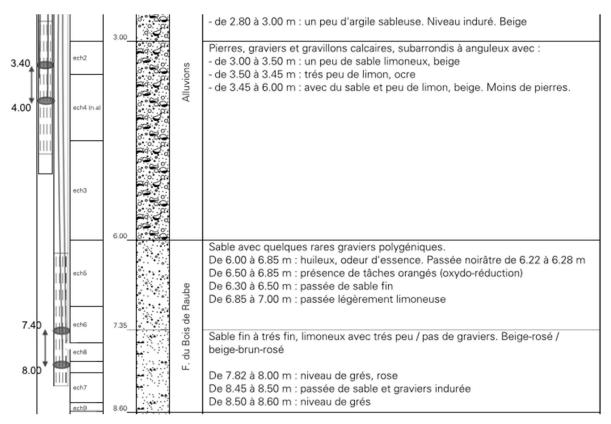


Figure 2 Représentation des sections sélectionnées pour les essais au sel, sur un extrait de la coupe géologique et technique du forage PCF28/P/19.

28.10.2020 7 / 16

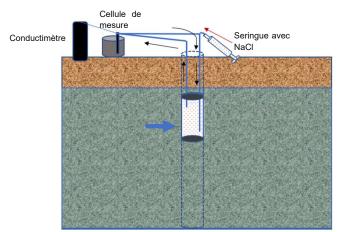


Figure 3 Schéma du dispositif de l'essai.

3.2. Acquisition des données

Afin de réaliser l'essai de dilution, un dispositif de mesure préparé par le CHYN a été utilisé. Il consistait en un conductimètre, une pompe péristaltique, une cellule de mesure, une section isolée de piézomètre une seringue d'injection de la saumure, deux tuyaux de pompage de l'eau dans la section, et d'un dispositif de connexion en « Y » des tuyaux et de la seringue (voir Figure 3 et Figure 8 de l' Annexe).

Les différents éléments ont ensuite été organisés comme illustré dans la Figure 3 et selon les différentes étapes détaillées ci-après :

- 1. Mise en place de l'essai au sel: Le dispositif d'isolation de la section du piézomètre est introduit et placé à la hauteur sélectionnée. Les tuyaux sont connectés à la pompe péristaltique et sont raccordés à la cellule de mesure connectée au conductimètre. La sortie de la cellule de mesure est connectée à un « Y » au bout duquel se trouve la seringue contenant la solution de saumure et retournant dans le piézomètre.
- 2. **Mise en marche de la pompe péristaltique** : Une fois tout le matériel mis en place et bien raccordé, la pompe péristaltique peut être enclenchée. Les fuites d'eau doivent être évitées et la vitesse de pompage réglée au minimum.
- 3. Paramétrage du conductimètre et relevé de la conductivité initiale: Une fois tout le système en place et fonctionnant correctement, le conductimètre est allumé et le pas de temps des mesures est sélectionné afin de représenter au mieux l'essai de dilution. La mesure une fois lancée, la conductivité initiale EC_b est relevée et enregistrée.
- 4. **Injection du sel** : une solution de 50mL de saumure de 0.75g/L est injectée par une seringue dans le tuyau redescendant dans le piézomètre.
- 5. Relevé maximal et ponctuel manuel des conductivités : La conductivité augmentant rapidement une fois le sel injecté, la valeur maximale approximative EC₀ affichée est relevée à titre prédictif. Ensuite, les valeurs EC ont été relevées toutes les deux minutes.
- 6. **Arrêt des mesures** : Les mesures ont été arrêtées quand le rapport de (EC-EC_b) / (EC₀-EC_b s'approchait de 2/3.

Les deux essais de dilution au sel ont été réalisés le 17.12.2019 et ont duré respectivement deux et trois heures. Les données de conductivité ont été enregistrées automatiquement dans le conductimètre à intervalle de 10 (Alluvions) et 30 (Bois de Raube) secondes.

28.10.2020 8 / 16

3.3. Traitement des données

Une fois les résultats obtenus, les valeurs de conductivité en fonction du temps ont été introduites dans un tableur excel (voir par exemple graphe de la Figure 4).



Figure 4 Graphe de la variation de la conductivité en fonction du temps de l'essai n°1 réalisé dans la formation du Bois de Raube.

Les premières données des essais ont été écartées. Les premières secondes de l'essai ne sont en effet pas représentatives de l'effet de la dilution puisque la saumure doit en premier lieu se mélanger à l'eau présente dans le piézomètre et donc nécessite un temps d'homogénéisation. Ainsi, les données à interpréter ont été sélectionnées à partir de la valeur la plus haute correspondant au pic EC₀.

Les données de conductivité à partir du pic sont ensuite utilisées pour calculer le ratio -ln[(EC-EC_b)/(EC₀-EC_b)], celui-ci étant représenté graphiquement en fonction du temps. Une courbe de tendance linéaire est ajustée sur ces valeurs par la méthode des moindres carrés proposée dans excel.

La pente de la droite m peut ensuite être relevée et appliquée dans la formule précédément présentée : $v_a=m\frac{\pi\cdot r}{2}$ (cf. équation 3). La vitesse apparente est ensuite convertie en flux de Darcy par application d'un facteur de distorsion. Les calculs ont été réalisés pour deux facteurs : 2 et 3.

28.10.2020 9 / 16

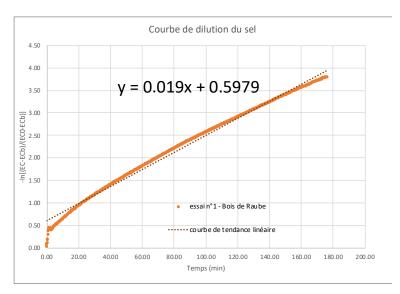


Figure 5 : Graphe du ratio -ln[(EC-ECb)/(EC0-ECb)] en fonction du temps de l'essai n°1 réalisé dans la formation du Bois de Raube, utilisé pour estimer le flux de Darcy.

28.10.2020 10 / 16

4. Résultats

4.1. Courbes de dilution du sel

Les courbes de dilution du sel représentant les ratios $-\ln[(EC-EC_b)/(EC_0-EC_b)]$ en fonction du temps obtenues dans les deux niveaux lithologiques du forage FCR28/P/19 sont représentées ensemble à la Figure 6.

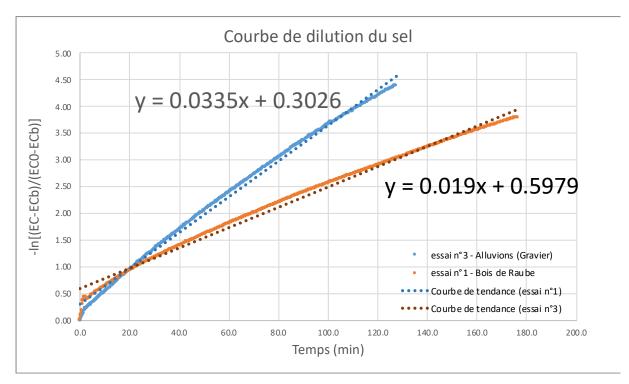


Figure 6 Graphe des ratio -ln[(EC-ECb)/(EC0-ECb)] en fonction du temps des essais réalisés dans les Alluvions et la formation du Bois de Raube.

La pente m de la droite de régression ajustée sur les données des Alluvions apparaît plus forte (m_{All} = 0.0335) que celle obtenue sur les données de la formation du Bois de Raube (m_{Raube} = 0.019).

4.2. Flux de Darcy

L'essai dans les **Alluvions** (essai n°3 des graphes) correspondant à la profondeur la moins importante et pour laquelle la perméabilité est la plus élevée a duré près de 2 heures. La courbe de dilution présente une tendance linéaire validant l'essai. La pente obtenue de 0.0335 conduit à une estimation **du flux de Darcy de 1.67x10**-5 **et 1.11x10**-5 **m/s**, suivant que le coefficient de distorsion retenu est de 2 ou 3.

L'essai dans la formation du **Bois de Raube** (essai n°1 des graphes) correspondant à la profondeur la plus importante et pour laquelle la perméabilité est plus faible a duré près de 3 heures La courbe de dilution présente une tendance linéaire validant l'essai. La pente obtenue de 0.019 conduit à une estimation du flux de Darcy de **9.48x10**-6 et **6.32x10**-6 m/s, suivant le coefficient de distorsion retenu.

28.10.2020 11 / 16

Le détail des résultats est présenté dans les tableaux ci-dessous.

Tableau 1 Détail des calculs réalisés pour estimer les flux de Darcy à partir des résultats des 2 essais au sel menés dans le forage FCR28/P/19.

Abbréviations					
Va	vitesse apparente				
Vd	vitesse de Darcy				
α	facteur de distorsion				
EC0	conductivité initiale max				
ECb	conductivité de base naturelle				

	Paramètre				
	Rayon du forage	38.1	mm		
	pente gravier	0.034	-		
	pente bois de raube	0.019	-		
	Va gravier	2.01	mm/min	3.3421E-05	m/s
	Va bois de raube	1.14	mm/min	1.8958E-05	m/s
α=2	Vd gravier	1.00	mm/min	1.6711E-05	m/s
u-2	Vd bois de raube	0.57	mm/min	9.4788E-06	m/s
a:-2	Vd gravier	0.67	mm/min	1.114E-05	m/s
α=3	Vd bois de raube	0.38	mm/min	6.3192E-06	m/s

28.10.2020 12 / 16

5. Conclusion

Les deux essais se sont déroulés sans problème et ont fourni des résultats satisfaisants au niveau de la qualité des données. Les seuls incidents ont concerné en léger manque d'étanchéité dans la cellule de mesure et en la présence de particules fines dans les eaux pompées, mais sans que cela n'affecte la qualité et le traitement des données.

Les valeurs présentaient une tendance linéaire, témoignant de la mesure des écoulements horizontaux dans l'aquifère par ces essais (Piccinini, Fabbri, et Pola 2016).

Les essais de dilution au sel ont permis d'estimer les vitesses d'écoulement des deux principales lithologies de l'aquifère présentes dans le site investigué. La différence de perméabilité mise en avant sur les logs de forage a été vérifiée par les essais.

Les flux de Darcy estimés par les essais ont été utilisés pour estimer les flux massiques de polluants à attendre dans les différents piézomètres du site, et à déterminer ainsi la durée d'exposition des PFM avant leur pose.

Les flux de Darcy issus de l'essai au sel seront de plus comparés aux flux de Darcy mesurés par les PFM, pour un contrôle et une validation des résultats obtenus par les 2 méthodes.

28.10.2020 13 / 16

Figures

Figure 1 Distorsion du flux causée par la présence d'un piézomètre (Piccinini et al. 2016) 5
Figure 2 Représentation des sections sélectionnées pour les essais au sel, sur un extrait de la coupe
géologique et technique du forage PCF28/P/19
Figure 3 Schéma du dispositif de l'essai
Figure 4 Graphe de la variation de la conductivité en fonction du temps de l'essai n°1 réalisé dans la
formation du Bois de Raube9
Figure 5 : Graphe du ratio -ln[(EC-ECb)/(EC0-ECb)] en fonction du temps de l'essai n°1 réalisé dans la
formation du Bois de Raube, utilisé pour estimer le flux de Darcy
Figure 6 Graphe des ratio -ln[(EC-ECb)/(EC0-ECb)] en fonction du temps des essais réalisés dans les
Alluvions et la formation du Bois de Raube11
Figure 8 Dispositif d'isolement de la section d'intérêt
Figure 9 Dispositif installé pour l'essai
Figure 9 Log du forage sélectionné pour les essais de dilution

Tableaux

Annexe

Figure 8 Dispositif installé pour l'essai	15
Figure 9 Log du forage sélectionné pour les essais de dilution	16

Bibliographie

Demougeot-Renard, Hélène. 2018. « Echantillonneurs passifs de flux. Etat des connaissances et recommandations ». OFEV.

Drost, Walter, Dietmar Klotz, Arnd Koch, Heribert Moser, Ferdinand Neumaier, et Werner Rauert. 1968. « Point Dilution Methods of Investigating Ground Water Flow by Means of Radioisotopes ». *Water Resources Research* 4 (1): 125-46. https://doi.org/10.1029/WR004i001p00125.

Piccinini, L., P. Fabbri, et M. Pola. 2016. « Point Dilution Tests to Calculate Groundwater Velocity: An Example in a Porous Aquifer in Northeast Italy ». *Hydrological Sciences Journal* 61 (8): 1512-23. https://doi.org/10.1080/02626667.2015.1036756.

28.10.2020 14 / 16

Annexes

Dispositif de l'essai au sel

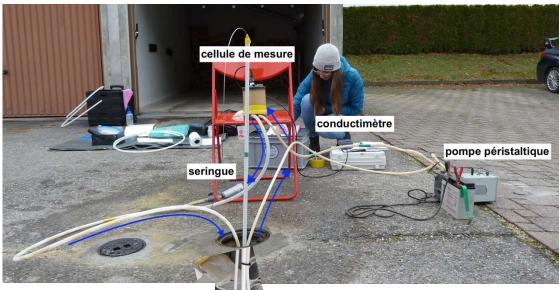


Figure 8 Dispositif installé pour l'essai

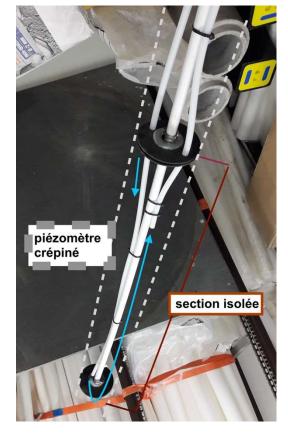


Figure 7 Dispositif d'isolement de la section d'intérêt

28.10.2020 Annexes

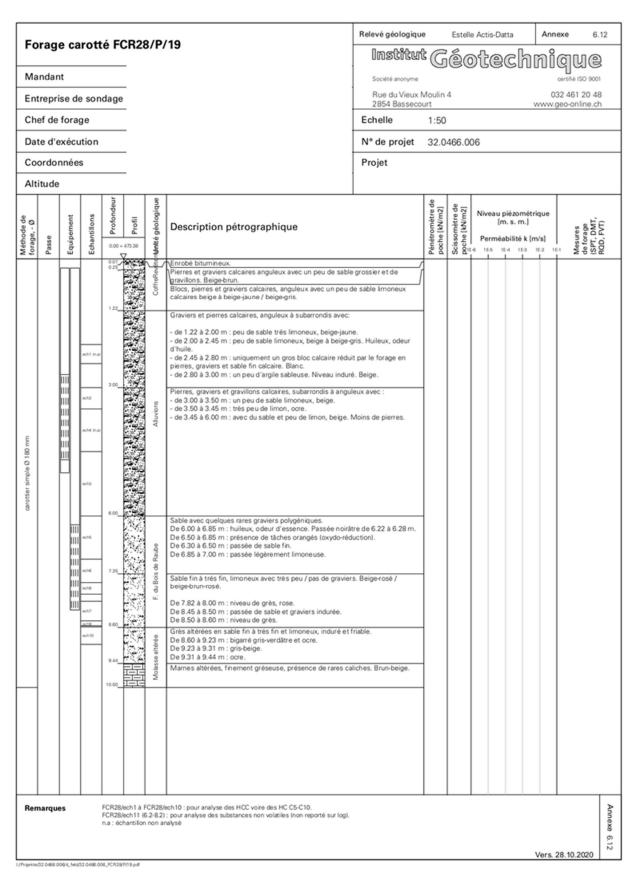
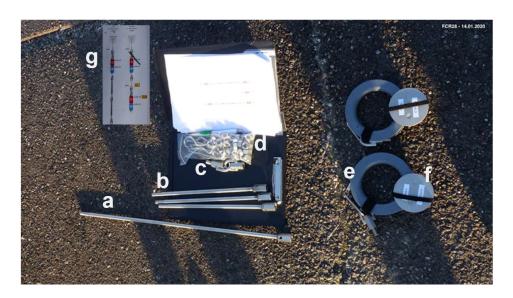


Figure 9 Log du forage sélectionné pour les essais de dilution.

28.10.2020 Annexes

Annexe 4 Photographies de pose et retrait des PFM

28.10.2020 Annexe 4


Planches photos

- Matériel
- Montage
- Installation
- Retrait

Matériel

Sonde piézométrique

Tiges en acier 66 cm (a) ou 33 cm (b)

Boulons d'attaches intermédiaires (c)

Boulons et goupilles (d)

Filins acier préparés à l'avance à la longueur voulue (e)

Bonde reposant sur le piézomètre avec le nom du piézomètre et la longueur du filin qui y est accroché (f). Elle permet l'obturation du piézomètre, et retient l'ensemble du dispositif en place.

Plans d'installation des PFM (g)

Cartouche PFM COV dans son emballage d'origine de plastique aluminisé fermé hermétiquement. Diamètre 3", hauteur 15 cm.

Cartouche PFM Darcy déballée. Diamètre 3", hauteur 15 cm.

Montage

Cartouches PFM COV et Darcy (4.5") installés sur une tige 33 cm

Goupille permettant de tenir les PFM en cours d'installation

Tige rigide permettant de "pousser" les modules PFM si le piézomètre est déformé

Installation

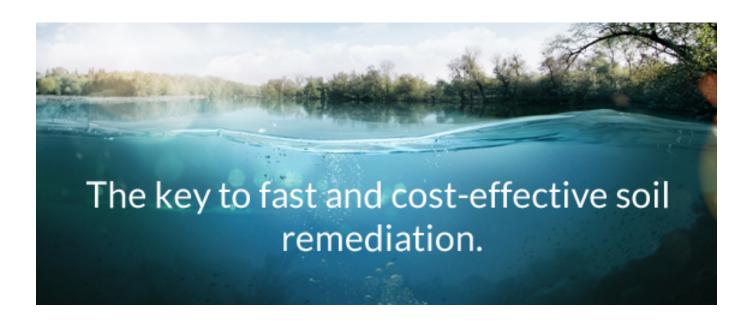
Mise en place de deux modules PFM COV-Darcy séparés par des tiges de 66cm dans le piézomètre FCR 29 inf. La présence d'un décalage au niveau des pas de vis des raccords de tubes du piézomètre a nécessité l'usage de la tige rigide pour la mise en place du dispositif.

La mise en place des PFM peut prendre du temps, avant d'avoir recours à la tige rigide pour pousser les modules à la profondeur souhaitée, il est préférable d'attendre que les modules coulent par eux même.

Retrait

Retrait des PFM : les modules sont pris en photo et toutes les observations (état des PFM, odeur, couleur, dépôt de sédiment, ...) sont notées sur les fiches de terrain (cf. Annexe 1)

Annexe 5 Rapport iFLUX


28.10.2020 Annexe 5

eOde Suisse

30-04-2020

Rapport des mesures de flux, Jura Suisse

Contents

1	Status	1
2	Description	1
3	Results Summary 3.1 Equipement des piézomètres	2
4	Results Interpretation 4.1 Vitesses d'écoulement	4 4
5	Groundwater Flux	6
6	Mass Fluxes	7
7	Graphs	10
- /	ANNEXES	

1 Status

2 Description

Une campagne de mesure des flux d'eau souterraine et de polluants (VOCI) a été réalisée à la demande d'eOde, de l'OFEV et du Canton du Jura dans la période janvier-février 2020, pour un site dans le Jura Suisse, dans le cadre d'un projet de démonstration de iFLUX.

En tout, 31 échantillonneurs composés chacun d'une cartouche pour le flux d'eau souterraine et d'une cartouche pour le flux de VOCI ont été installés dans 18 piézomètres disposés selon 3 transects (BB', CC' et DD') et 1 point de mesure situé en aval hydrogéologique (Grand Aval).

3 Results Summary

3.1 Equipement des piézomètres

L'équipement des piézomètres avec les échantillonneurs iFLUX a été réalisé avec la clé de répartition suivante :

Transect BB':

- 1 échantillonneur dans les piézomètres FCR22-S, FCR22-D et FCR23-S.
- 2 échantillonneurs dans le piézomètre FCR23-D.

Transect CC':

- 4 échantillonneurs dans le piézomètre FCR11.
- 2 échantillonneurs dans les piézomètres FCR25-S, FCR25-D, FCR26-S, FCR26-D, FCR27-S et FCR27-D.

Transect DD':

- 1 échantillonneur dans les piézomètres FCR28-S, FCR29-S, FCR30-S et FCR30-D.
- 2 échantillonneurs dans les piézomètres FCR28-D et FCR29-D.

Grand Aval:

- 2 échantillonneurs dans le piézomètre FCR18.

Les échantillonneurs ont été installés et récoltés avec succès par iFLUX respectivement le 14/01/2020 et le 11/02/2020. La durée d'exposition qui en résulte est de 28 jours. Cette durée d'exposition a été déterminée sur base des données de concentration disponibles et des perméabilités estimées du sous-sol.

Les résultats d'analyse montrent que ce temps d'exposition était approprié pour mesurer les flux de polluants et les mesures profondes de flux d'eau souterraine. Concerant les mesures de flux d'eau moins profondes, les résultats d'analyse indiquent que le temps d'exposition était trop long, étant donné que les couches moins profondes (alluvions récents) avaient des perméabilités attendues nettement plus élevées que celles des couches plus profondes (Formation du Bois de Raube et molasse

altérée). Dès lors, pour certaines des mesures non profondes, seules les limites inférieures de flux ont pu être déterminées.

3.2 Facteur de distorsion du champ de flux (Alpha)

Afin d'estimer les vitesses d'écoulement ainsi que les flux de masse sur base des mesures réalisées avec les échantillonneurs dans les piézomètres, il y a lieu de diviser ces mesures par un facteur de correction: alpha.

Ce facteur est calculé sur base des dimensions du trou de forage et du piézomètre mesuré ainsi que des perméabilités de l'aquifère, du massif filtrant, du piézomètre et de l'échantillonneur.

La géologie supérieure du site est constituée de 3 couches avec des alluvions au sommet, éventuellement couverts par du remblai. Ceux-ci reposent sur (ou sont recoupés par) la formation moins perméable du Bois de Raube. La base de l'aquifère est formée par la Molasse, qui est altérée à son sommet.

Etant donné l'incertitude concernant les valeurs de perméabilités à appliquer à l'horizon des alluvions, 2 scénarios ont été considérés pour cette formation: un scénario avec une perméabilité de 1.10-3m/s et un second avec une perméabilité de 1.10-4m/s.

Concernant le massif filtrant, un gravier de calibre 4/8 mm a été utilisé avec une perméabilité théorique moyenne estimée à 1,75.10-1m/s. Etant donné que cette perméabilité correspond à un gravier pur et que les observations de terrains réalisées lors de la récolte des échantillonneurs ont montré une accumulation moyenne à faible de sédiment constitué de sables grossiers à très fins sur la partie supérieure (capuchon) des cartouches, une perméabilité plus faible a été considérée pour le massif filtrant, estimée sur base d'un mélange de sable et de gravier.

Les facteurs alpha appliqués ainsi que les valeurs utilisées pour leur calcul sont présentés dans le tableau ci-dessous. Afin de ne pas surcharger ce rapport, la discussion des résultats se limitera au scénario 1 avec une perméabilité des alluvions à 1.10-3 m/s, suivant l'approche du cas le plus défavorable.

	Pz 74mm			Pz 108mm		
Formation	Alluvions	Alluvions	Bois de Raube	Alluvions	Alluvions	Bois de Raube et Molasse altérée
Diamètre interne piézomètre (mm)	74	74	74	108	108	108
Diamètre externe piézomètre (mm)	89	89	89	124	124	124
Pourcentage d'ouverture crépine (%)	8%	8%	8%	8%	8%	8%
Diamètre du trou de forage (mm)	180	180	180	180	180	180
Perméabilité de l'aquifère (m/s)	10 ⁻³	10-4	10 ⁻⁵	10 ⁻³	10-4	10 ⁻⁵
Perméabilité du massif filtrant (m/s)	0,0175	0,0175	0,0175	0,0175	0,0175	0,0175
Alpha (-)	0,675	0,724	0,73	0,844	0,931	0,94

3.3 Résultats des mesures de flux

3.3.1 Vitesses d'écoulement

Les vitesses de Darcy estimées dans l'eau souterraine varient entre 15 et >107 cm/jour.

Le profil des vitesses selon la profondeur indique la présence d'un horizon peu perméable entre 3,62 et 3,75 m-ns avec des vitesses estimées comprses entre 21et 39 cm/j. Vient alors un horizon plus perméable entre 3,85 et 5,64 m-ns avec des valeurs comprises entre 81 et >107 cm/j, à une exception près (62 cm/j dans le FCR26_S à 4,54 m-ns). A partir de 6,54 m-ns, les vitesses diminuent nettement et atteignent un minimum qui varie selon le transect considéré entre 15 et 26 cm/j à des profondeurs comprises entre 6,84 et 8,26 m-ns. Après avoir atteint leur minimum, les valeurs augmentent avec la profondeur selon un motif en dents de scie, indiquant une hétérogénéité accrue, pour atteindre des valeurs de 45, 68 et 35 cm/j aux profondeurs respectives de 10,74, de 11,74 et 13,23 m-ns. Cette dernière étant la plus grande profondeur mesurée.

3.3.2 Flux de masse

Des flux de masse ont été mesurés pour les chloroéthènes (PER, TCE, DCE et CV) ainsi que certains chloroéthanes (TCM, TCA et DCA). De manière générale, les flux mesurés pour les éthènes sont beaucoup plus élevés que ceux pour les éthanes. A l'exception d'une valeur de 12 mg/m²/j mesurée pour le 1,2-dichloroéthane (DCA) à 3,5 m-ns dans le piézomètre Grand Aval FC18 et de 1,8 mg/m²/j mesuré pour le 1,1,1-trichloroéthane à 8,1 m-ns dans le piézomètre FCR29_D, toutes les valeurs pour les éthanes sont inférieures à 0,5 mg/m²/j. La grande majorité des valeurs étant inférieures à la limite de détection du laboratoire.

Parmi les éthènes, 64

En considérant les différents transects, il apparait que les flux mesurés aux transects CC' et DD' représentent plus de 90

1) Pour le PER:

Le flux le plus élevé a été mesuré au transect DD' dans le piézomètre FCR29_D (3700 mg/m²/j à 8,1 m-ns). Dans le FCR30_D à 11,6 m-ns et le FCR29_D à 6,9 m-ns, des valeurs respectives de 1000 et 540 mg/m²/j ont été enregistrées.

Des valeurs élevées ont également été mesurées au transect CC' dans les piézomètres FCR25_D à 10,32 m-ns, le FCR25_S à 4,61 m-ns et le FCR26_D à 8,89 m-ns (respectivement 2800, 1100 et 270 mg/m²/j).

Au transect BB', la valeur la plus élevée a été mesurée dans le FCR22_S à 4,33 m-ns (550 mg/m²/j).

Enfin, au Grand Aval (piézomètre FCR18), une valeur relativement élevée de 270 mg/m²/j a été mesurée à 13,09 m-ns.

2) Pour le TCE:

Comme pour le PER, et la différence est encore plus nette ici, le flux le plus élevé a été mesuré au transect DD' dans le piézomètre FCR29_D (1500 mg/m²/j à 8,1 m-ns). Dans le FCR29_D à 6,9 m-ns, une valeur de 120 mg/m²/j a encore été enregistrée.

Des valeurs élevées ont également été mesurées au transect CC' dans les piézomètres FCR25_D à 10,32 m-ns, le FCR26_D à 8,89 m-ns et le FCR25_S à 4,61 m-ns (respectivement $180, 120 \text{ et } 110 \text{ mg/m}^2/\text{j}$).

Au transect BB', la valeur la plus élevée a été mesurée dans le FCR22_S à 4,33 m-ns (130 mg/m²/j).

Enfin, au Grand Aval (piézomètre FCR18), une valeur plus faible de 20 mg/m²/j a été mesurée à 13,09 m-ns.

3) Pour le DCE (somme):

Comme pour le TCE (et le PER), le flux le plus élevé a été mesuré au transect DD'. Par contre, c'est le FCR29_S qui présente ici le flux le plus élevé à 3,7 m-ns (1510 mg/m²/j). Dans le FCR29_D à 8,1 et 6,9 m-ns des valeurs respectives de 1007 et 160 mg/m²/j ont été enregistrées.

Des valeurs relativement élevées ont également été mesurées au transect CC' dans les piézomètres FCR25_S à 4,61 m-ns, FCR26_D à 8,89 m-ns et FCR25_D à 10,32 m-ns (respectivement 502, 151 et 111 mg/m²/j).

Au transect BB', la valeur la plus élevée a été mesurée dans le FCR22_S à 4,33 m-ns (251 mg/m²/j).

Enfin, au Grand Aval (piézomètre FCR18), une valeur plus faible de 7,4 mg/m²/j a été mesurée à 13,09 m-ns.

4) Pour le CV:

Comme pour le DCE le flux le plus élevé a été mesuré au transect DD' dans le FCR29_S à 3,7 m-ns (120) $mg/m^2/j$). Dans le FCR29_D à 6,9 et 8,1 m-ns des valeurs respectives de 13 et 2 $mg/m^2/j$ ont été enregistrées. Ces valeurs sont en contraste élevé avec les valeurs mesurées au droit des autres transects:

- CC': 8 mg/m²/j dans le FRC25_S à 8 m-ns,
- BB': 6 mg/m²/j dans le FRC22_S à 4,33 m-ns,
- -GA: les résultats sont inférieurs à la limite de détection.

Enfin, étant donné la faiblesse des valeurs de flux pour les chloroéthanes par rapports aux chloroéthènes, celles-ci n'ont pas fait l'objet d'une discussion détaillée. L'ensemble des résultats et leur représentation graphique sont présentés sous l'onglet Tables & Figures.

4 Results Interpretation

4.1 Vitesses d'écoulement

Les vitesses d'écoulement mesurées sont généralement plus élevées dans les alluvions que dans la formation du Bois de Raube et de la Molasse altérée. Au droit du piézomètre Grand Aval FCR18, la cartouche éxposée aux alluvions n'a pas donné de résultat significativement différent de celle exposée à la base de la formation du Bois de raube, ce qui était inattendu vu la différence de perméabilité attendue entre les 2 formations mesurées. Cela peut-être expliqué par la présence dans les alluvions d'un horizon peu profond et de plus faible perméabilité dans laquelle la mesure a été réalisée. Cet horizon a également été détecté au droit des piézomètres FCR27_S, FCR25_S et FCR23_S entre 3,62 et 3,75 m-ns. Un troisième niveau de mesure intermédiaire dans le FCR18 aurait peut-être permis de préciser le profil des écoulements.

Par ailleurs, les observations de terrain réalisées lors de la récolte des échantillonneurs ont montré la présence d'oxydes de Fe et probablement aussi de Mn qui peuvent former des croutes dans la zone de fluctuation de la nappe et considérablement réduire sa perméabilité localement.

4.2 Flux de masse

Les flux mesurés en PER indiquent la présence de sources résiduelles de contamination (produit mère).

Le flux élevé mesuré au transects CC' dans le FCR25_S à 4,61 m-ns peut être expliqué par le flux détecté au transect BB' à 4,33 m-ns. Au droit du transect DD', selon les résultats dans le FCR29_D à 8,1 m-ns et dans une moindre mesure à 6,9 m-ns ce flux semble avoir "plongé" de 3-4 m où le flux maximum pour le PER a été enregistré.

Une source importante a également été détectée plus en profondeur, vers 10,3 m-ns dans le FCR25_D et 11, 6m-ns dans le FCR30_D. Cette (ces) source(s) indique(nt) une accumulation probable de la contamination sur le toit imperméable de la Molasse.

De manière générale, une dégradation semble se produire étant donné l'apparition de flux de TCE, de DCE et de CV. Cependant, les flux mesurés en DCE sont plus élevés que les flux mesurés en TCE. En combinaison avec les flux beaucoup plus faibles mesurés en VC, cela semble indiquer une dégradation incomplète de la contamination et expliquer l'accumulation du DCE.

La carte reprenant la localisation des points de mesures ainsi que les cartes d'interprétation sont reprises en annexes du rapport fourni au format PDF sous l'onglet Downloads.

Des graphiques d'interprétation sont également repris à titre informatif en annexe du rapport. Pour les unités de ces graphiques, il y a lieu de se référer aux tableaux reprenant les résultats.

5 Groundwater Flux

Well	Cartridge	Installation	Retrieval	Days	Depth	Alpha	Water flux
FCR11	W0461	2020-01-14	2020-02-11	28	3.85	0.844	>107
FCR11	W0460	2020-01-14	2020-02-11	28	4.94	0.844	>107
FCR11	W0456	2020-01-14	2020-02-11	28	6.81	0.844	24
FCR11	W0457	2020-01-14	2020-02-11	28	7.91	0.94	23
FCR18	W0458	2020-01-14	2020-02-11	28	3.65	0.844	39
FCR18	W0459	2020-01-14	2020-02-11	28	13.23	0.94	35
FCR22_D	W0482	2020-01-14	2020-02-11	28	6.84	0.73	26
FCR22_S	W0485	2020-01-14	2020-02-11	28	4.47	0.675	>89
FCR23_D	W0480	2020-01-14	2020-02-11	28	7.14	0.73	39
FCR23_D	W0484	2020-01-14	2020-02-11	28	7.91	0.73	48
FCR23_S	W0465	2020-01-14	2020-02-11	28	3.75	0.675	34
FCR25_D	W0464	2020-01-14	2020-02-11	28	9.70	0.73	23
FCR25_D	W0471	2020-01-14	2020-02-11	28	10.46	0.73	33
FCR25_S	W0463	2020-01-14	2020-02-11	28	3.66	0.675	21
FCR25_S	W0470	2020-01-14	2020-02-11	28	4.75	0.675	>89
FCR26_D	W0467	2020-01-14	2020-02-11	28	8.26	0.73	15
FCR26_D	W0477	2020-01-14	2020-02-11	28	9.03	0.73	26
FCR26_S	W0486	2020-01-14	2020-02-11	28	4.54	0.675	62
FCR26_S	W0483	2020-01-14	2020-02-11	28	5.64	0.675	81
FCR27_D	W0479	2020-01-14	2020-02-11	28	9.64	0.73	71
FCR27_D	W0481	2020-01-14	2020-02-11	28	10.74	0.73	45
FCR27_S	W0468	2020-01-14	2020-02-11	28	3.62	0.675	28
FCR27_S	W0469	2020-01-14	2020-02-11	28	4.39	0.675	>89
FCR28_D	W0476	2020-01-14	2020-02-11	28	6.54	0.73	35
FCR28_D	W0475	2020-01-14	2020-02-11	28	7.64	0.73	26
FCR28_S	W0478	2020-01-14	2020-02-11	28	4.14	0.675	>89
FCR29_D	W0472	2020-01-14	2020-02-11	28	7.04	0.73	57
FCR29_D	W0473	2020-01-14	2020-02-11	28	8.24	0.73	54
FCR29_S	W0462	2020-01-14	2020-02-11	28	3.85	0.675	>89
FCR30_D	W0466	2020-01-14	2020-02-11	28	11.74	0.73	68
FCR30_S	W0474	2020-01-14	2020-02-11	28	4.04	0.675	>89

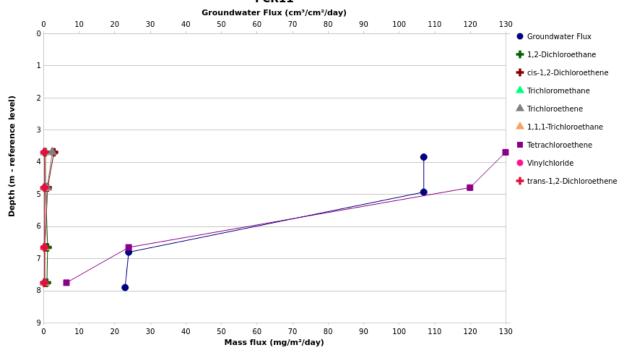
Depth unit: m below reference level Water flux unit: cm³/cm²/day ND = not determined

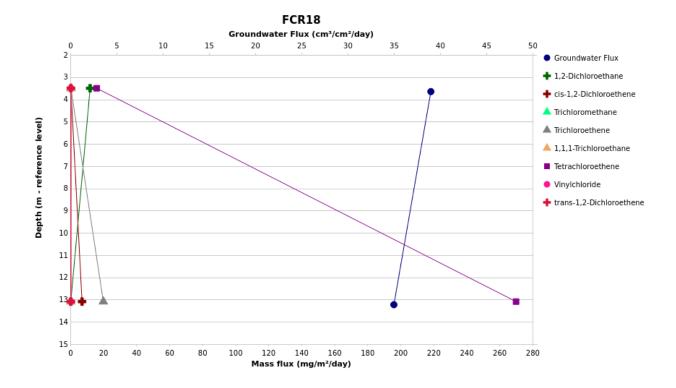
6 Mass Fluxes

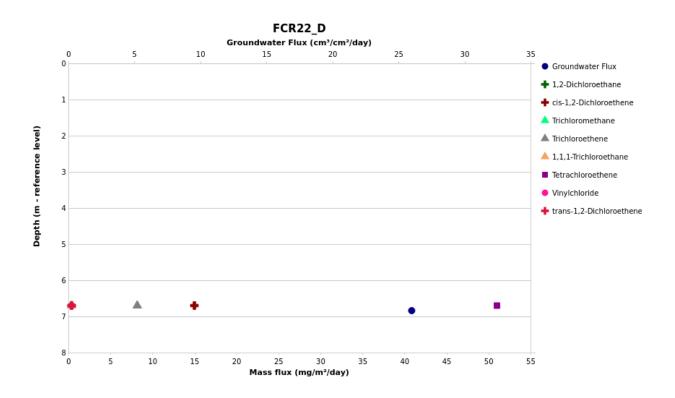
Well	Cartridge	Installation	Retrieval	Days	Depth	Alpha	1,2-Dichloroethane	cis-1,2-Dichloroethene
FCR11	O0410	2020-01-14	2020-02-11	28	3.70	0.844	0.59	3.0
FCR11	O0412	2020-01-14	2020-02-11	28	4.80	0.844	0.63	1.2
FCR11	O0411	2020-01-14	2020-02-11	28	6.66	0.844	1.2	0.43
FCR11	O0409	2020-01-14	2020-02-11	28	7.76	0.94	1.0	0.3
FCR18	O0407	2020-01-14	2020-02-11	28	3.50	0.844	12	<0.33
FCR18	O0408	2020-01-14	2020-02-11	28	13.09	0.94	<0.3	7.1
FCR22_D	O0424	2020-01-14	2020-02-11	28	6.70	0.73	< 0.39	15
FCR22_S	O0429	2020-01-14	2020-02-11	28	4.33	0.675	<0.42	250
FCR23_D	O0433	2020-01-14	2020-02-11	28	7.00	0.73	< 0.39	10
FCR23_D	O0430	2020-01-14	2020-02-11	28	7.77	0.73	< 0.39	12
FCR23_S	O0427	2020-01-14	2020-02-11	28	3.60	0.675	<0.42	15
FCR25_D	O0435	2020-01-14	2020-02-11	28	9.55	0.73	< 0.39	29
FCR25_D	O0421	2020-01-14	2020-02-11	28	10.32	0.73	<0.39	110
FCR25_S	O0418	2020-01-14	2020-02-11	28	3.51	0.675	<0.42	5.5
FCR25_S	O0422	2020-01-14	2020-02-11	28	4.61	0.675	<0.42	500
FCR26_D	O0419	2020-01-14	2020-02-11	28	8.12	0.73	<0.39	24
FCR26_D	O0420	2020-01-14	2020-02-11	28	8.89	0.73	< 0.39	150
FCR26_S	O0426	2020-01-14	2020-02-11	28	4.40	0.675	< 0.42	0.8
FCR26_S	O0414	2020-01-14	2020-02-11	28	5.50	0.675	<0.42	2.7
FCR27_D	O0436	2020-01-14	2020-02-11	28	9.50	0.73	<0.39	0.74
FCR27_D	O0437	2020-01-14	2020-02-11	28	10.60	0.73	< 0.39	0.62
FCR27_S	O0413	2020-01-14	2020-02-11	28	3.48	0.675	1.4	0.88
FCR27_S	O0416	2020-01-14	2020-02-11	28	4.25	0.675	<0.42	1.4
FCR28_D	O0428	2020-01-14	2020-02-11	28	6.40	0.73	< 0.39	3.8
FCR28_D	O0434	2020-01-14	2020-02-11	28	7.50	0.73	<0.39	1.1
FCR28_S	O0425	2020-01-14	2020-02-11	28	4.00	0.675	<0.42	67
FCR29_D	O0415	2020-01-14	2020-02-11	28	6.90	0.73	< 0.39	160
FCR29_D	O0432	2020-01-14	2020-02-11	28	8.10	0.73	< 0.39	1000
FCR29_S	O0431	2020-01-14	2020-02-11	28	3.70	0.675	< 0.42	1500
FCR30_D	O0417	2020-01-14	2020-02-11	28	11.60	0.73	< 0.39	<0.39
FCR30_S	O0423	2020-01-14	2020-02-11	28	3.90	0.675	<0.42	6.7

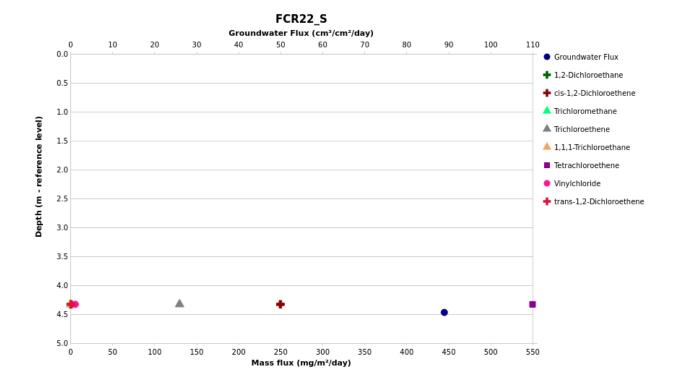
Parameter mass flux units: mg/m²/day Depth unit: m below reference level <x = flux detection limit

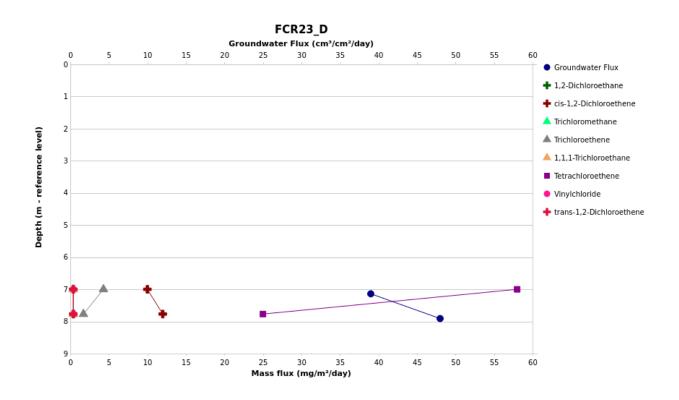
Well	Cartridge	Trichloromethane	Trichloroethene	1,1,1-Trichloroethane	Tetrachloroethene	Vinylchloride
FCR11	00410	<0.33	2.5	0.46	130	<0.33
FCR11	O0412	<0.33	1.1	< 0.33	120	<0.33
FCR11	O0411	<0.33	0.4	< 0.33	24	<0.33
FCR11	O0409	<0.3	0.47	<0.3	6.5	<0.3
FCR18	O0407	0.49	0.36	< 0.33	16	<0.33
FCR18	O0408	<0.3	20	<0.3	270	0.38
FCR22_D	O0424	<0.39	8.2	< 0.39	51	<0.39
FCR22_S	O0429	<0.42	130	< 0.42	550	5.9
FCR23_D	O0433	<0.39	4.3	< 0.39	58	<0.39
FCR23_D	O0430	<0.39	1.7	< 0.39	25	0.43
FCR23_S	O0427	< 0.42	1.5	< 0.42	36	<0.42
FCR25_D	O0435	< 0.39	43	< 0.39	14	<0.39
FCR25_D	O0421	< 0.39	180	0.89	2800	< 0.39
FCR25_S	O0418	< 0.42	1.7	< 0.42	32	< 0.42
FCR25_S	O0422	< 0.42	110	< 0.42	1100	8.4
FCR26_D	O0419	< 0.39	9.3	< 0.39	21	< 0.39
FCR26_D	O0420	< 0.39	120	< 0.39	270	< 0.39
FCR26_S	O0426	< 0.42	< 0.42	< 0.42	16	<0.42
FCR26_S	O0414	< 0.42	1.7	< 0.42	110	< 0.42
FCR27_D	O0436	<0.39	0.51	< 0.39	14	<0.39
FCR27_D	O0437	< 0.39	0.47	< 0.39	13	< 0.39
FCR27_S	O0413	< 0.42	< 0.42	< 0.42	3.9	<0.42
FCR27_S	O0416	< 0.42	0.88	< 0.42	29	<0.42
FCR28_D	O0428	< 0.39	1.7	< 0.39	32	< 0.39
FCR28_D	O0434	<0.39	1.1	< 0.39	23	<0.39
FCR28_S	O0425	< 0.42	3.9	0.46	88	<0.42
FCR29_D	O0415	<0.39	120	<0.39	540	13
FCR29_D	O0432	<0.39	1500	1.8	3700	2.0
FCR29_S	O0431	<0.42	2.5	<0.42	7.1	120
FCR30_D	O0417	<0.39	1.9	< 0.39	1000	<0.39
FCR30_S	O0423	<0.42	3.5	<0.42	16	<0.42

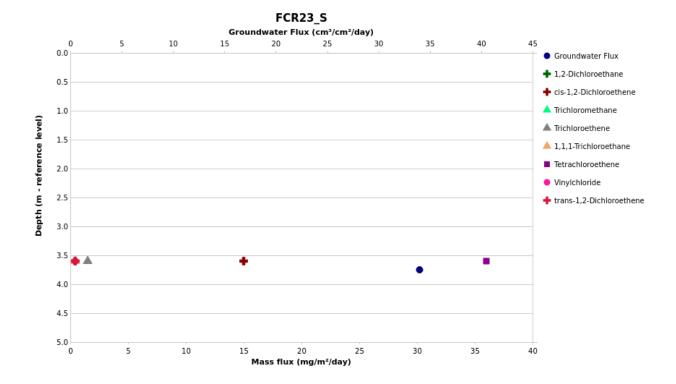

Parameter mass flux units: mg/m²/day Depth unit: m below reference level <x = flux detection limit

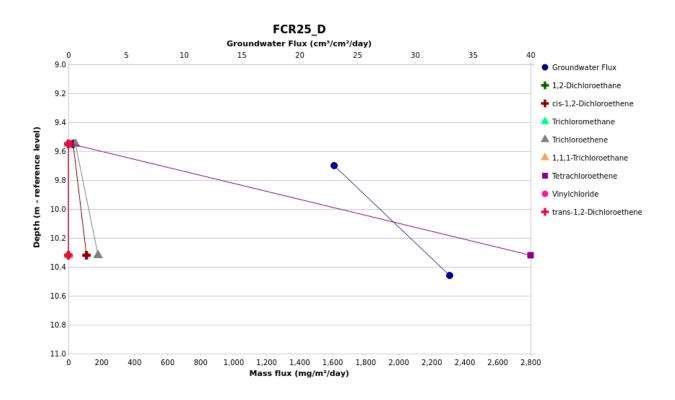

Well	Cartridge	trans-1,2-Dichloroethene
FCR11	O0410	<0.33
FCR11	O0412	<0.33
FCR11	O0411	<0.33
FCR11	O0409	<0.3
FCR18	O0407	< 0.33
FCR18	O0408	<0.3
FCR22_D	O0424	<0.39
FCR22_S	O0429	1.1
FCR23_D	O0433	<0.39
FCR23_D	O0430	<0.39
FCR23_S	O0427	<0.42
FCR25_D	O0435	<0.39
FCR25_D	O0421	0.97
FCR25_S	O0418	<0.42
FCR25_S	O0422	2.0
FCR26_D	O0419	<0.39
FCR26_D	O0420	0.93
FCR26_S	O0426	<0.42
FCR26_S	O0414	<0.42
FCR27_D	O0436	<0.39
FCR27_D	O0437	<0.39
FCR27_S	O0413	<0.42
FCR27_S	O0416	<0.42
FCR28_D	O0428	<0.39
FCR28_D	O0434	<0.39
FCR28_S	O0425	0.42
FCR29_D	O0415	<0.39
FCR29_D	O0432	6.6
FCR29_S	O0431	10
FCR30_D	O0417	<0.39
FCR30_S	O0423	<0.42

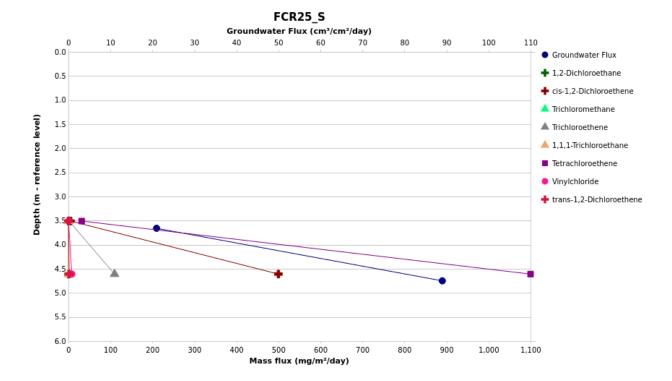

Parameter mass flux units: mg/m²/day Depth unit: m below reference level <x = flux detection limit

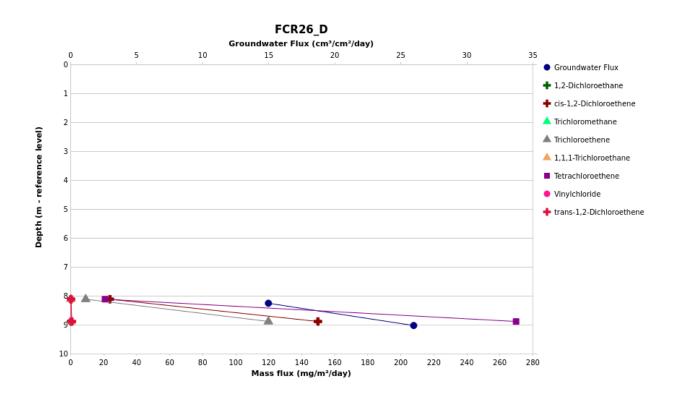

7 Graphs

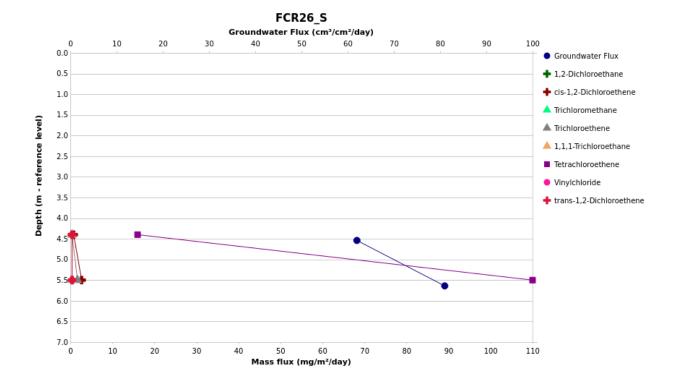


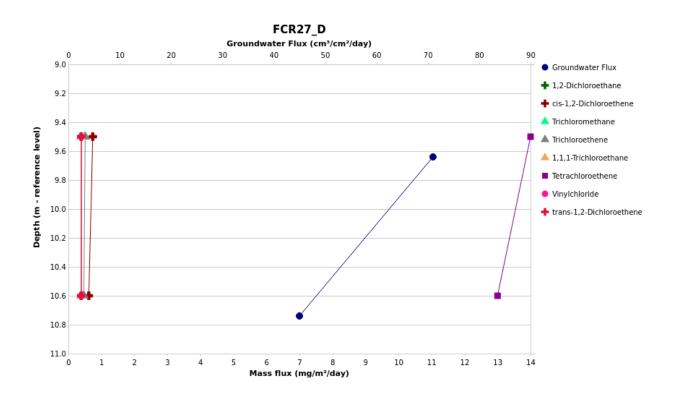


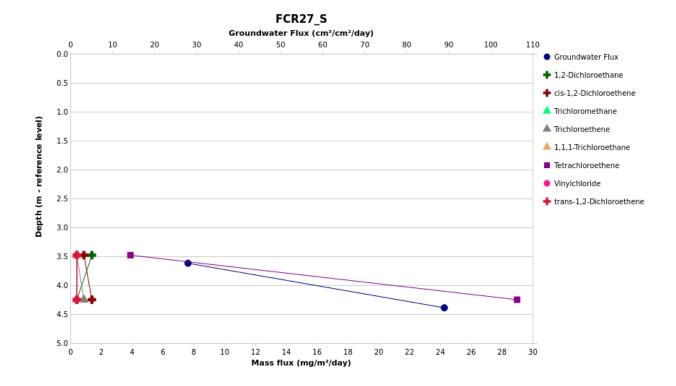


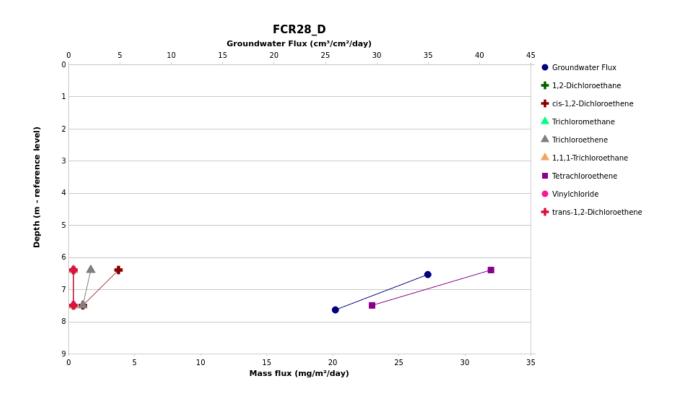


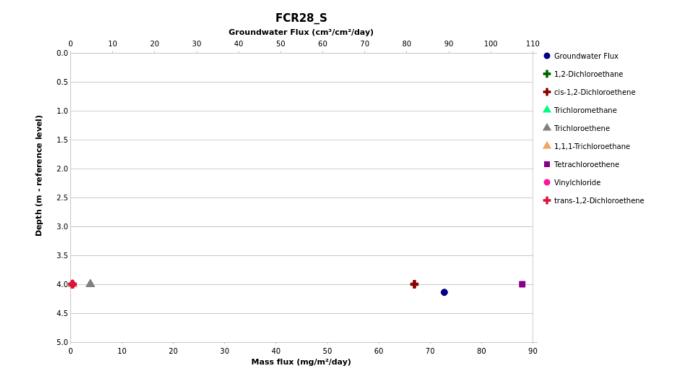


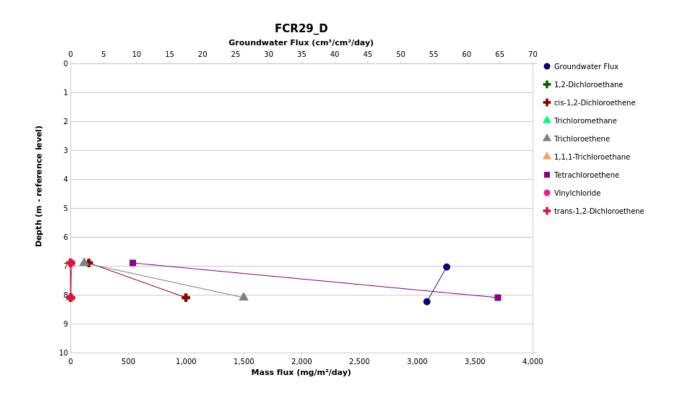


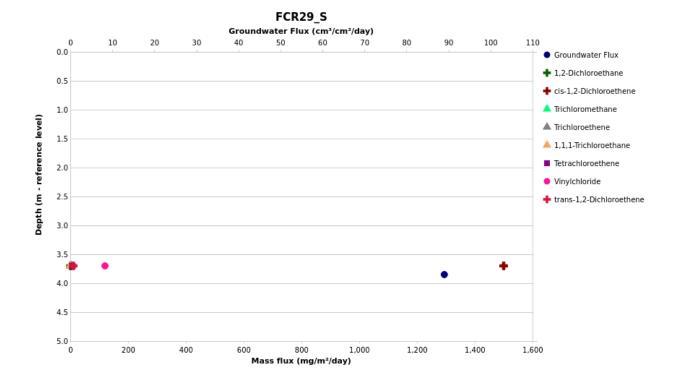


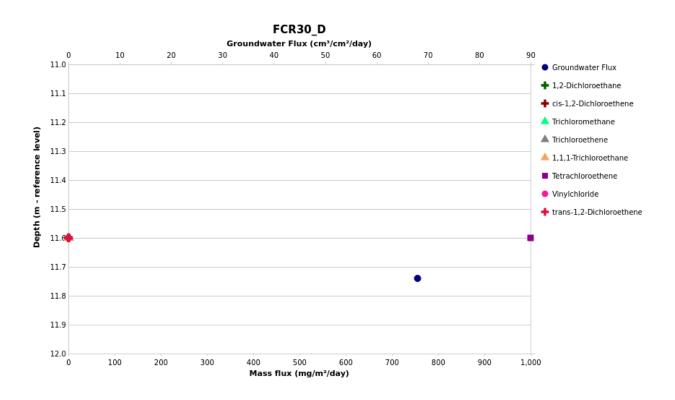


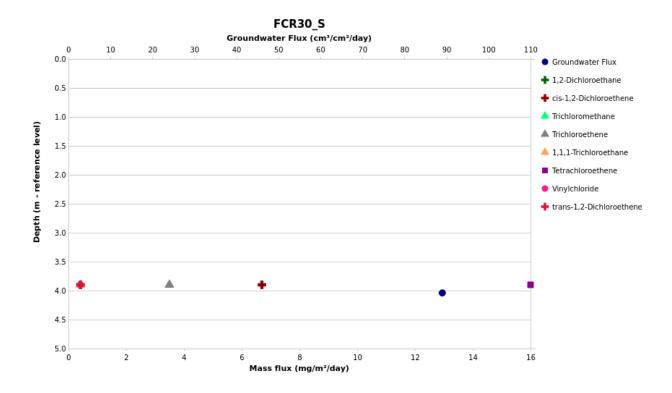












Annexes 1: Plan d'installation iFLUX

Installation Plan

On site registration form

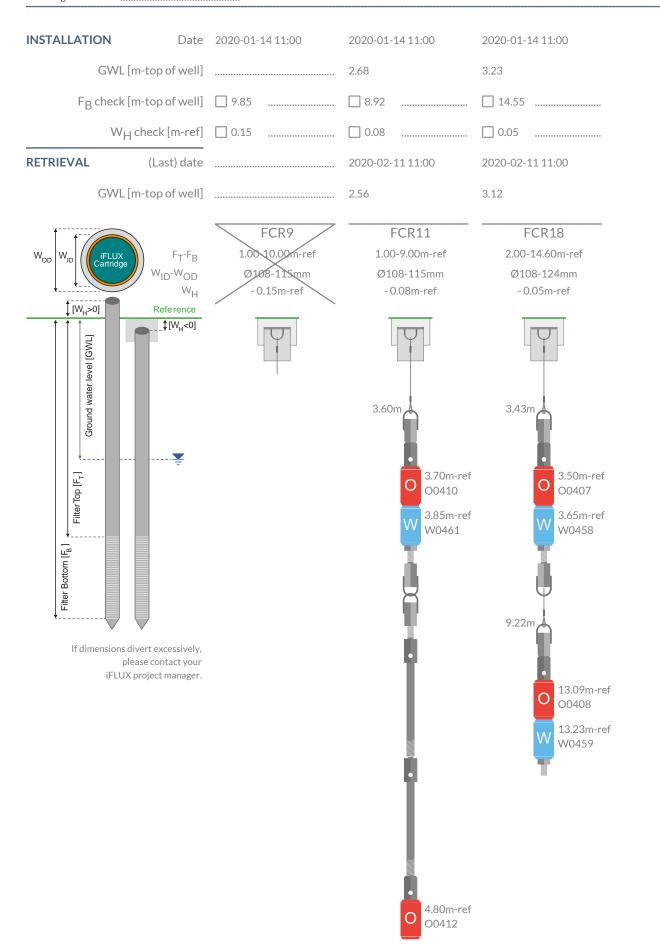
eOde Suisse

19.0167

Site information

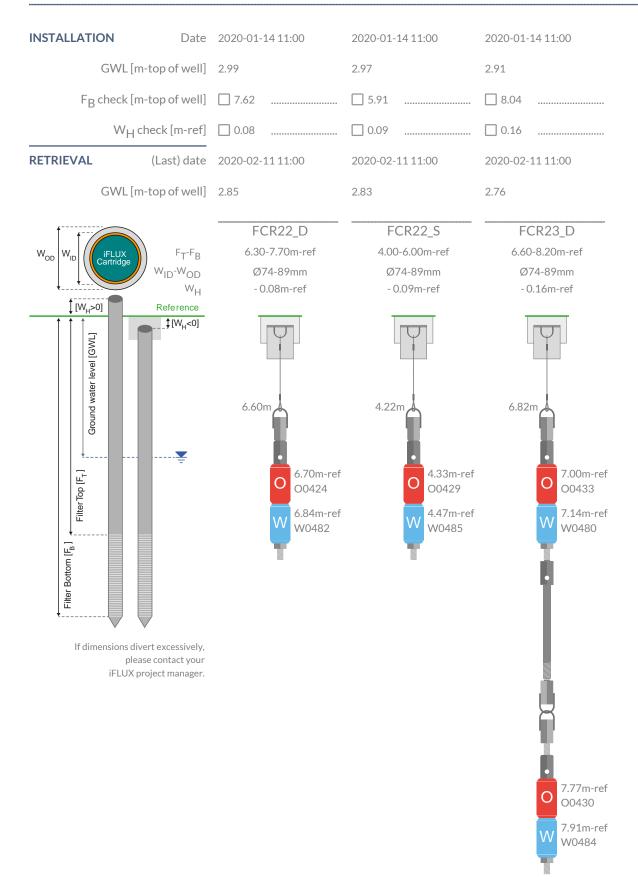
Location:

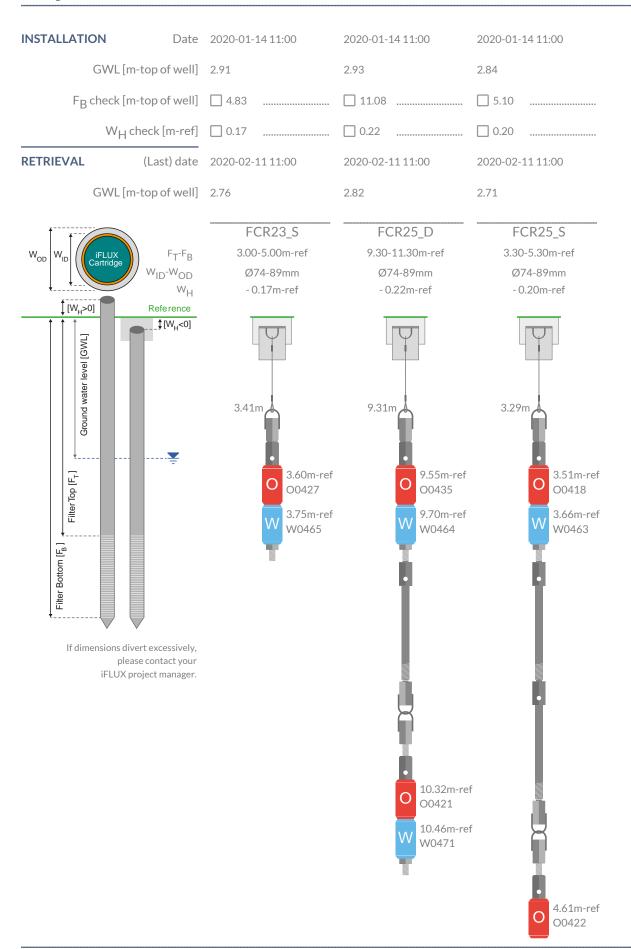
eOde Suisse

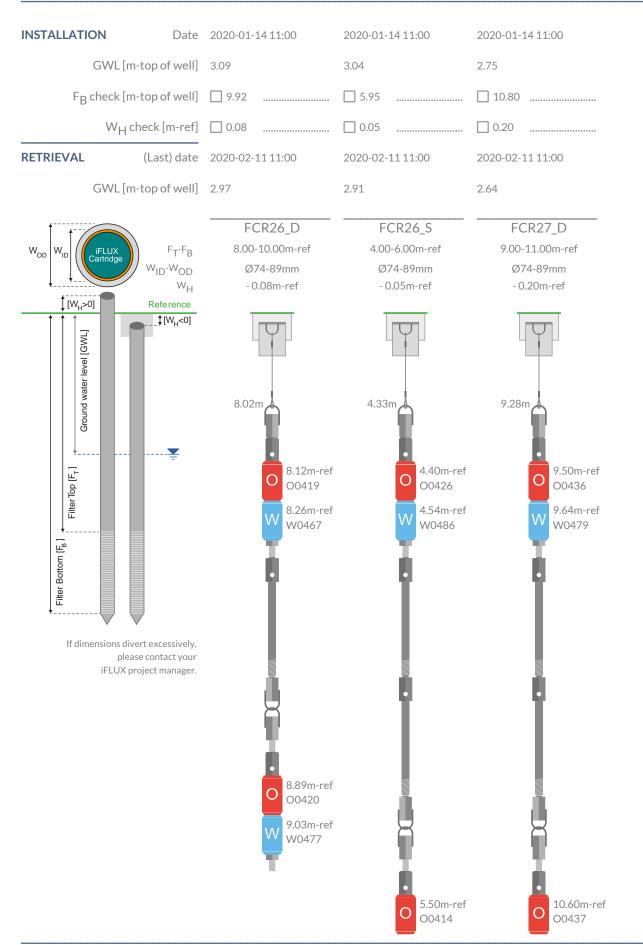

Address:

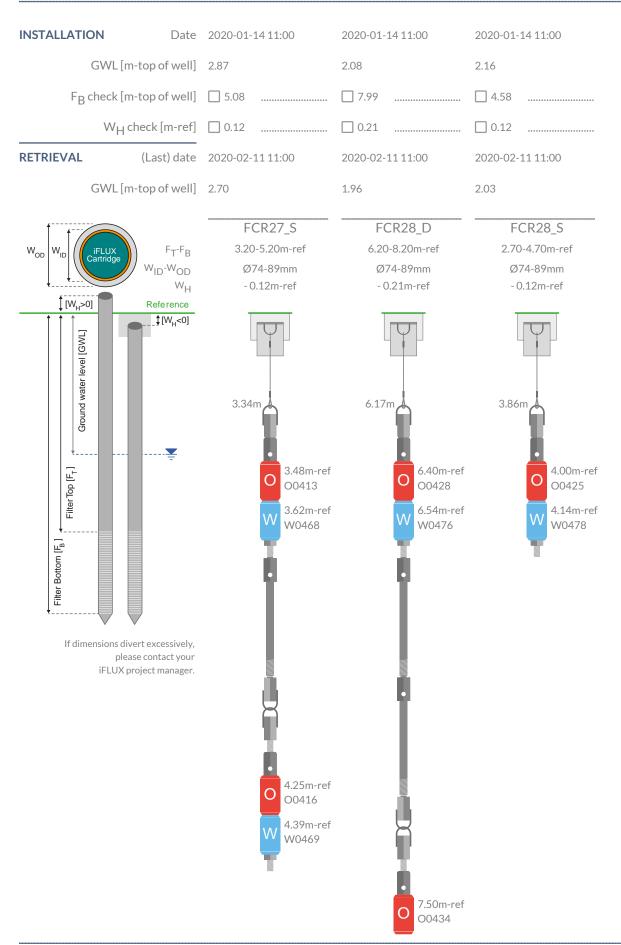
Jura

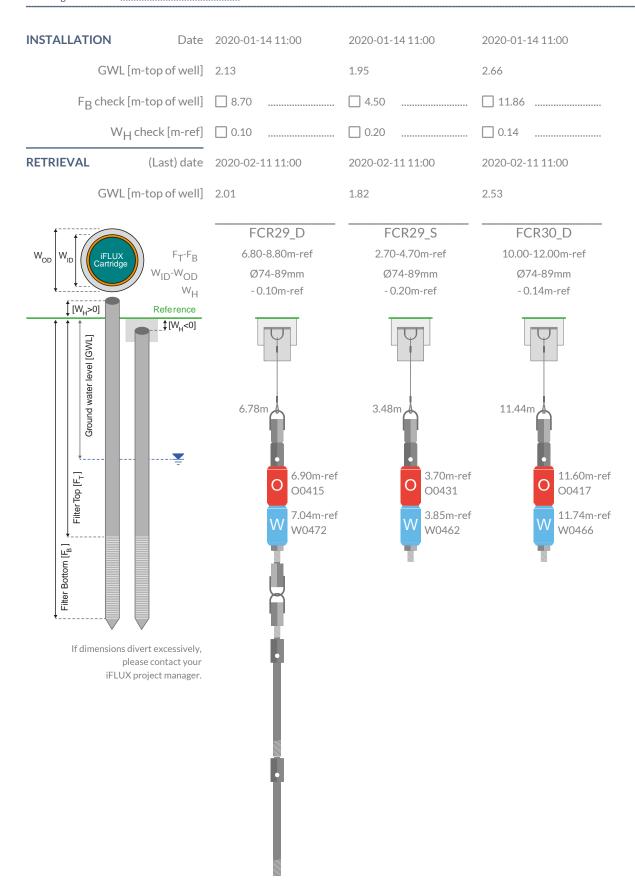
Suisse

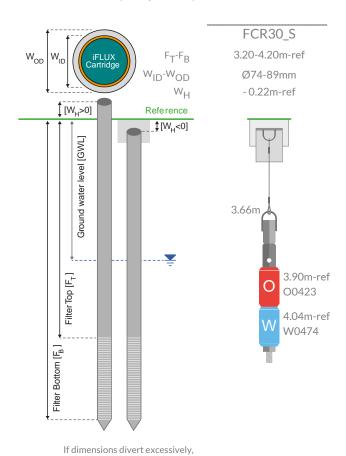

Contact info:


Hélène Demougeot-Renard helenedemougeotrenard@gmail.com

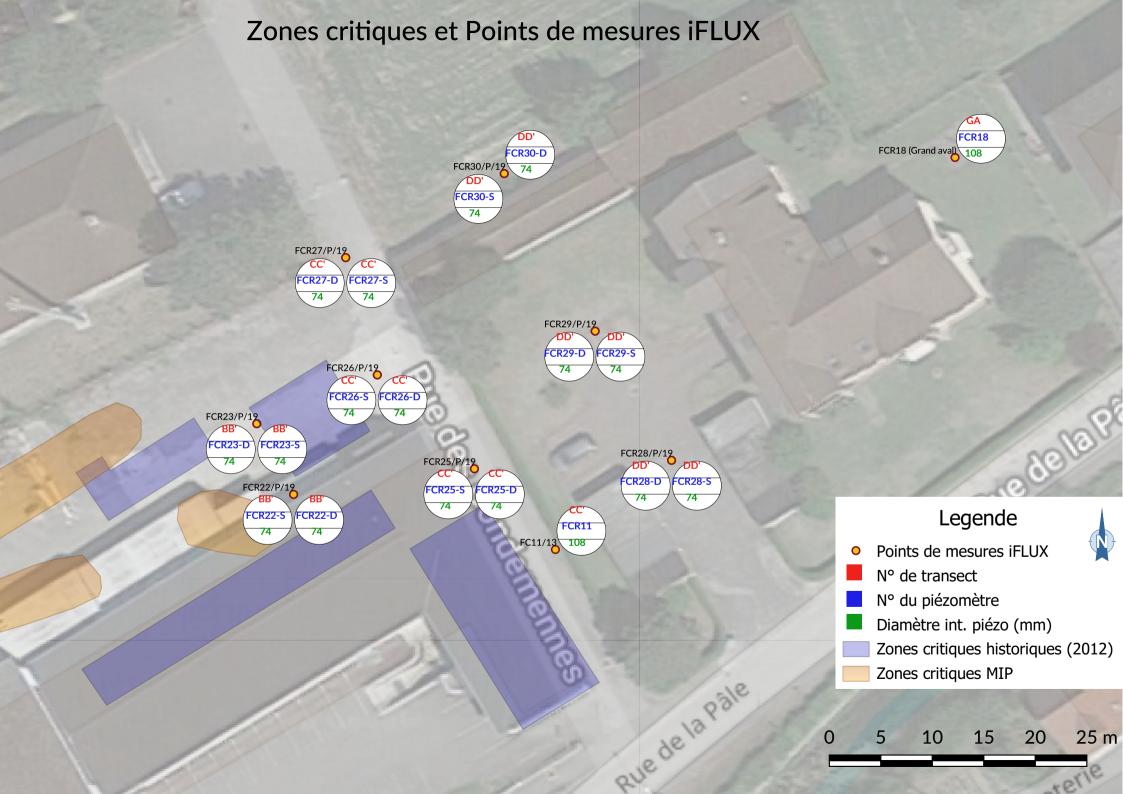


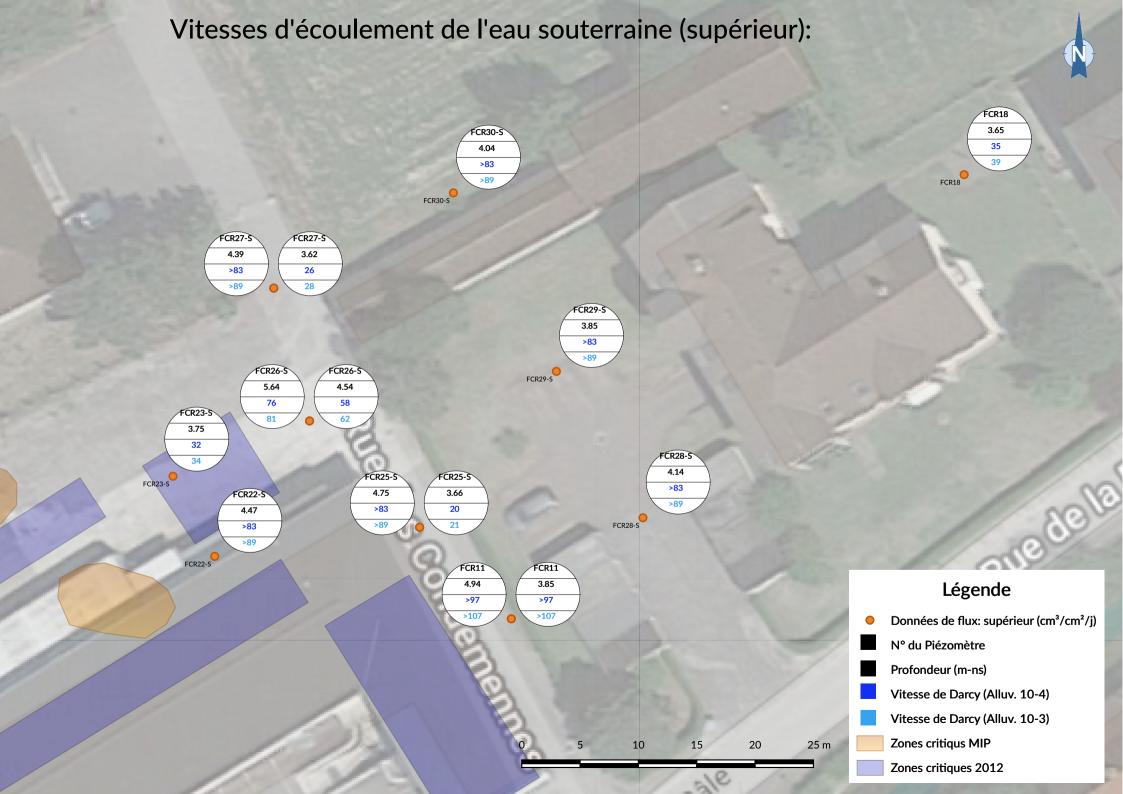




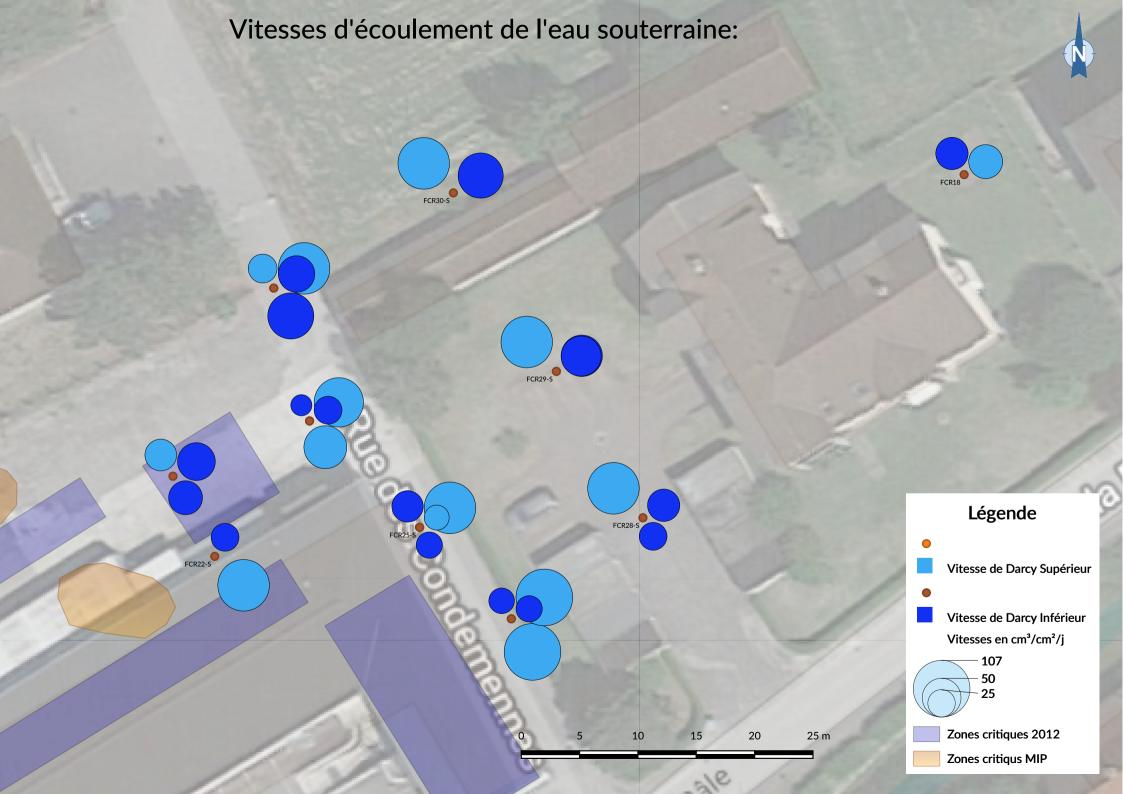


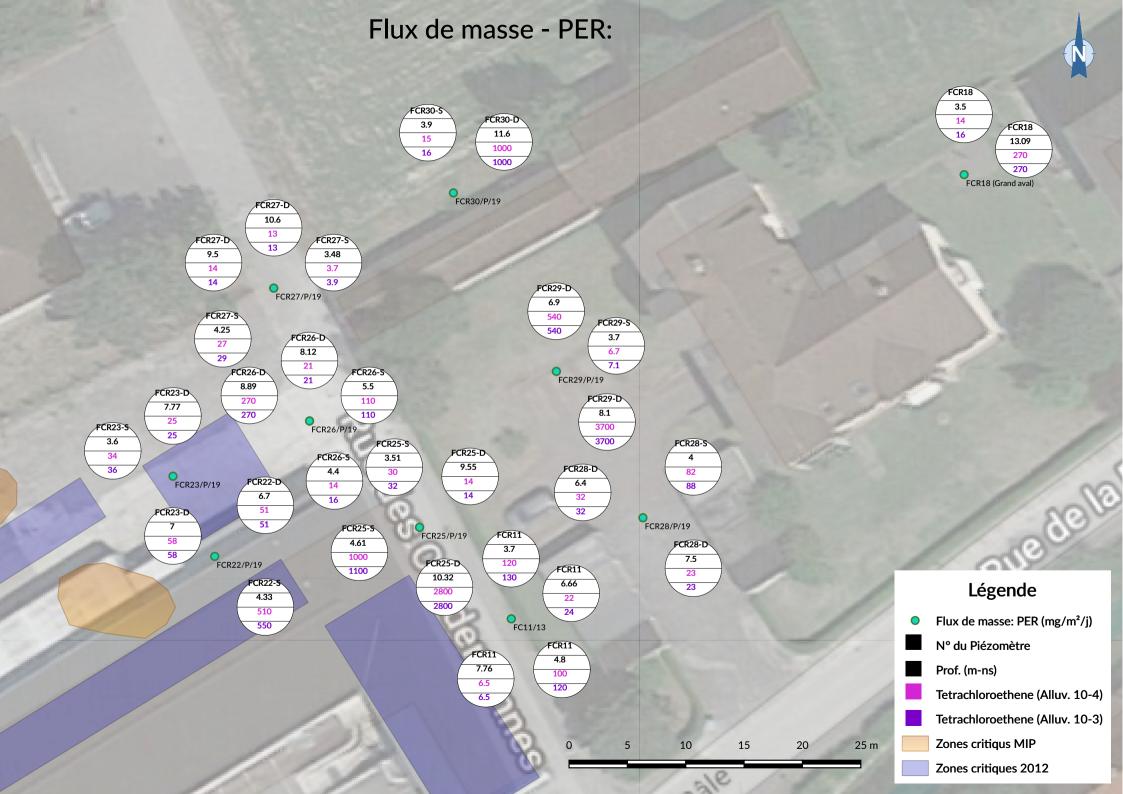
INSTALLATION Date 2020-01-1411:00 GWL [m-top of well] 2.56 F_B check [m-top of well] □ 3.98 W_H check [m-ref] □ 0.22 RETRIEVAL (Last) date 2020-02-1111:00

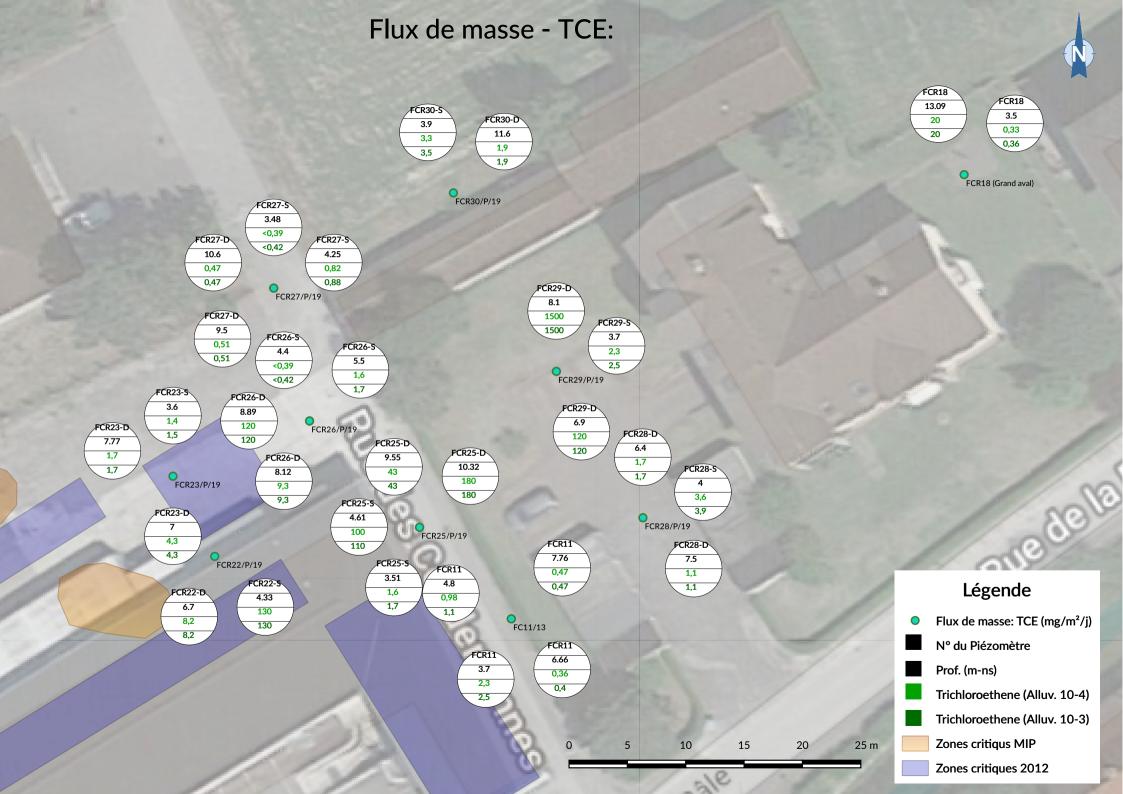

GWL [m-top of well] 2.45

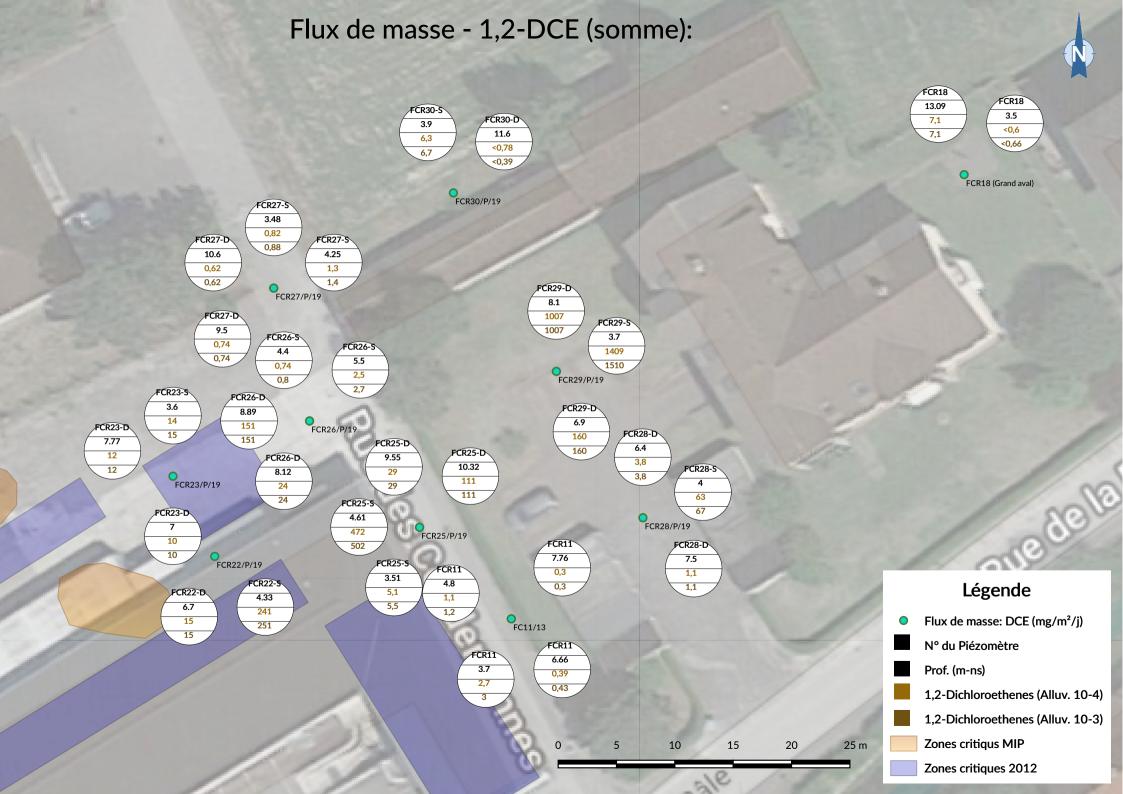


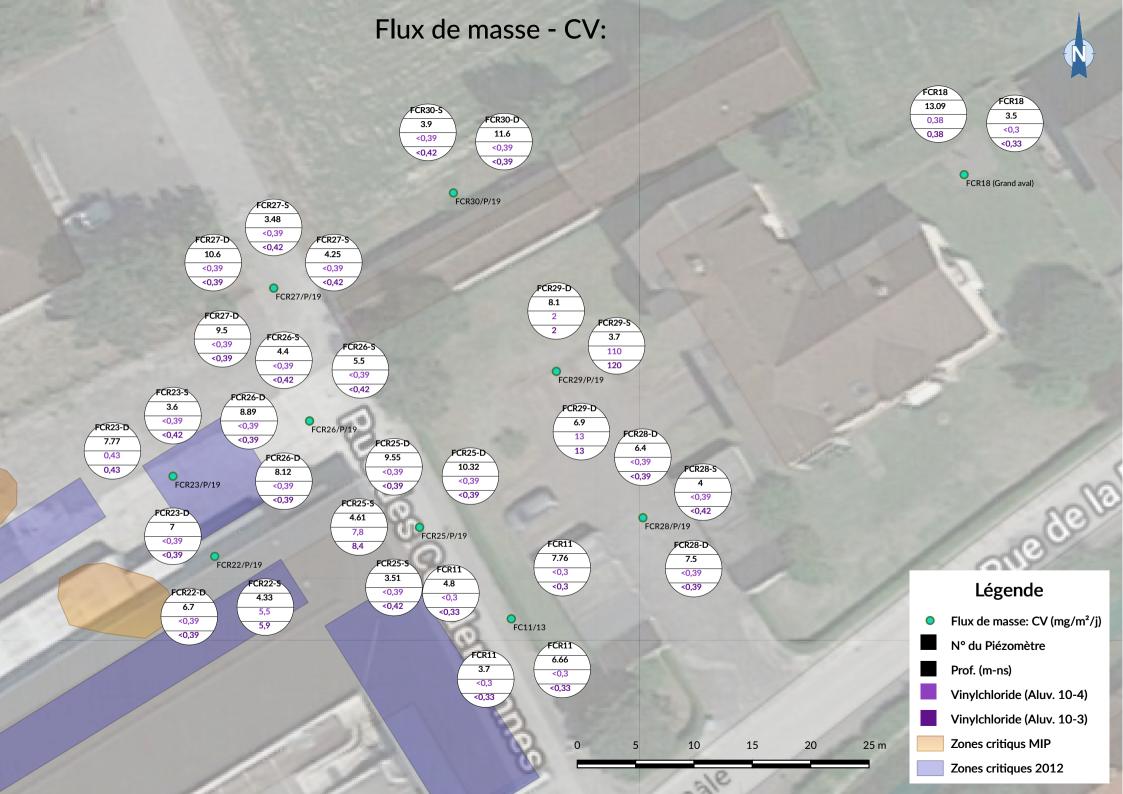

please contact your iFLUX project manager.

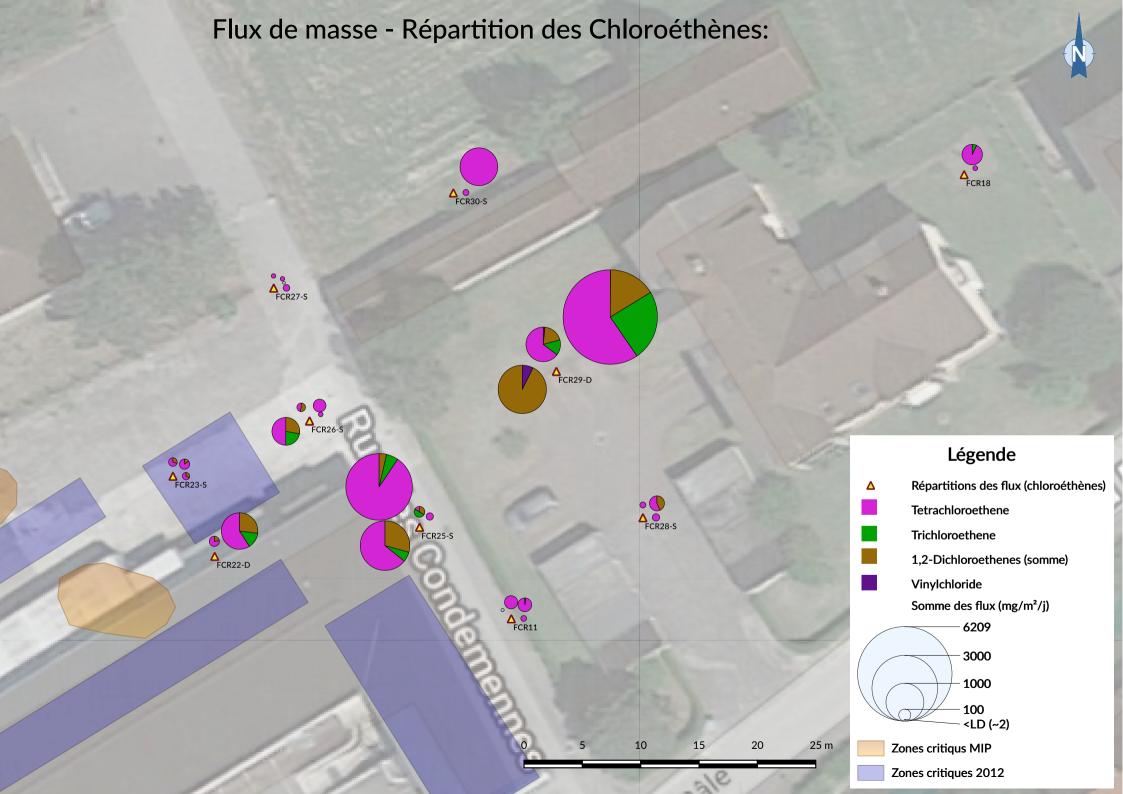

Notes at Install	
Notes at Retrieval	
Notes at Retrieval	
Notes at Retrieval	

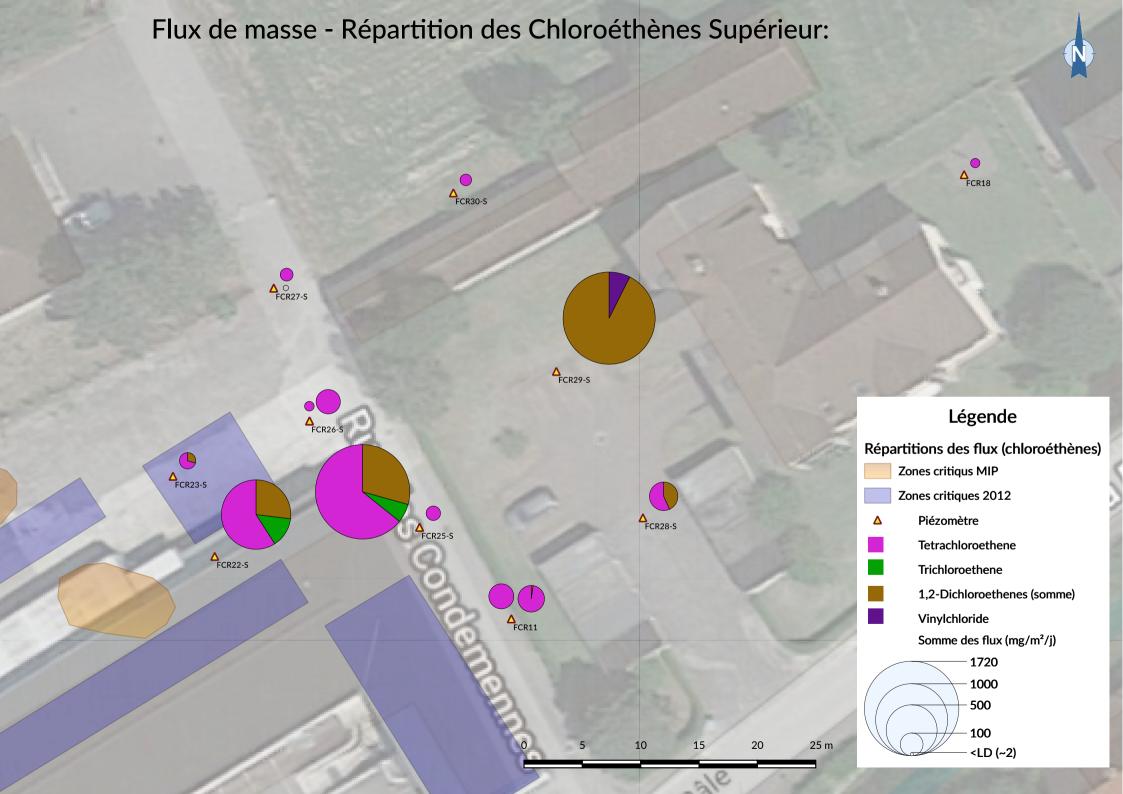

Annexes 2: Cartes des résultats

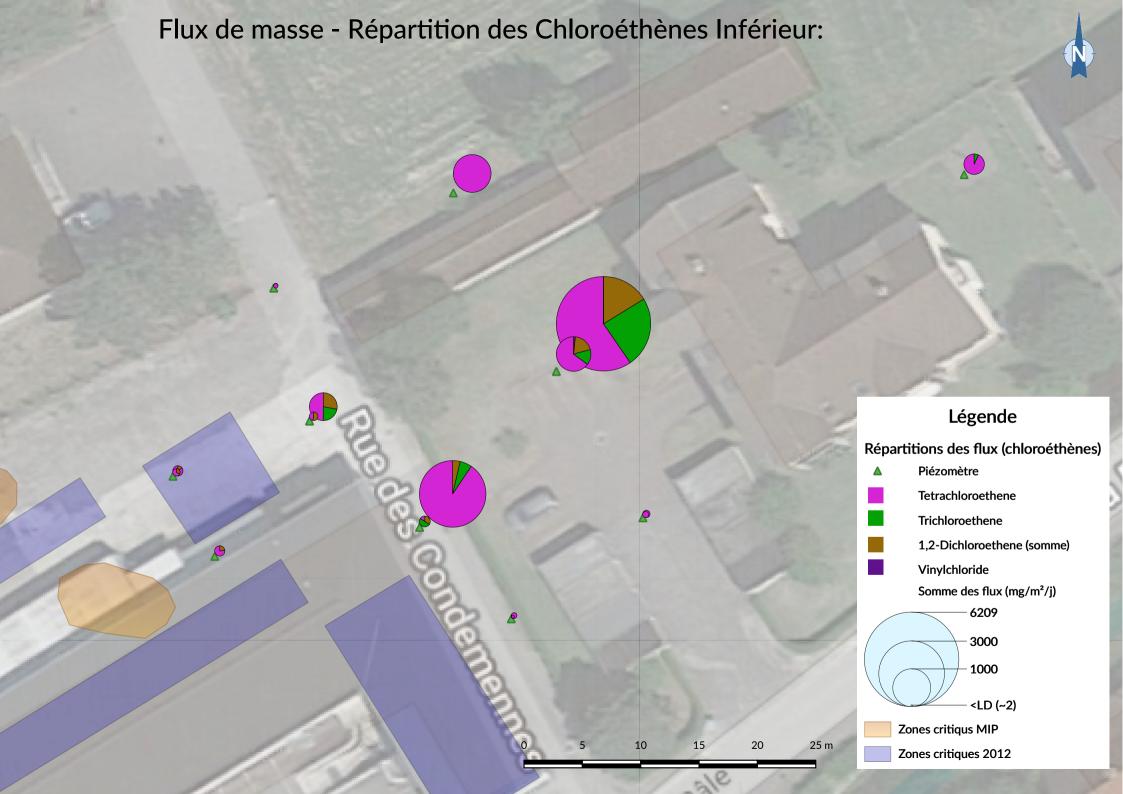


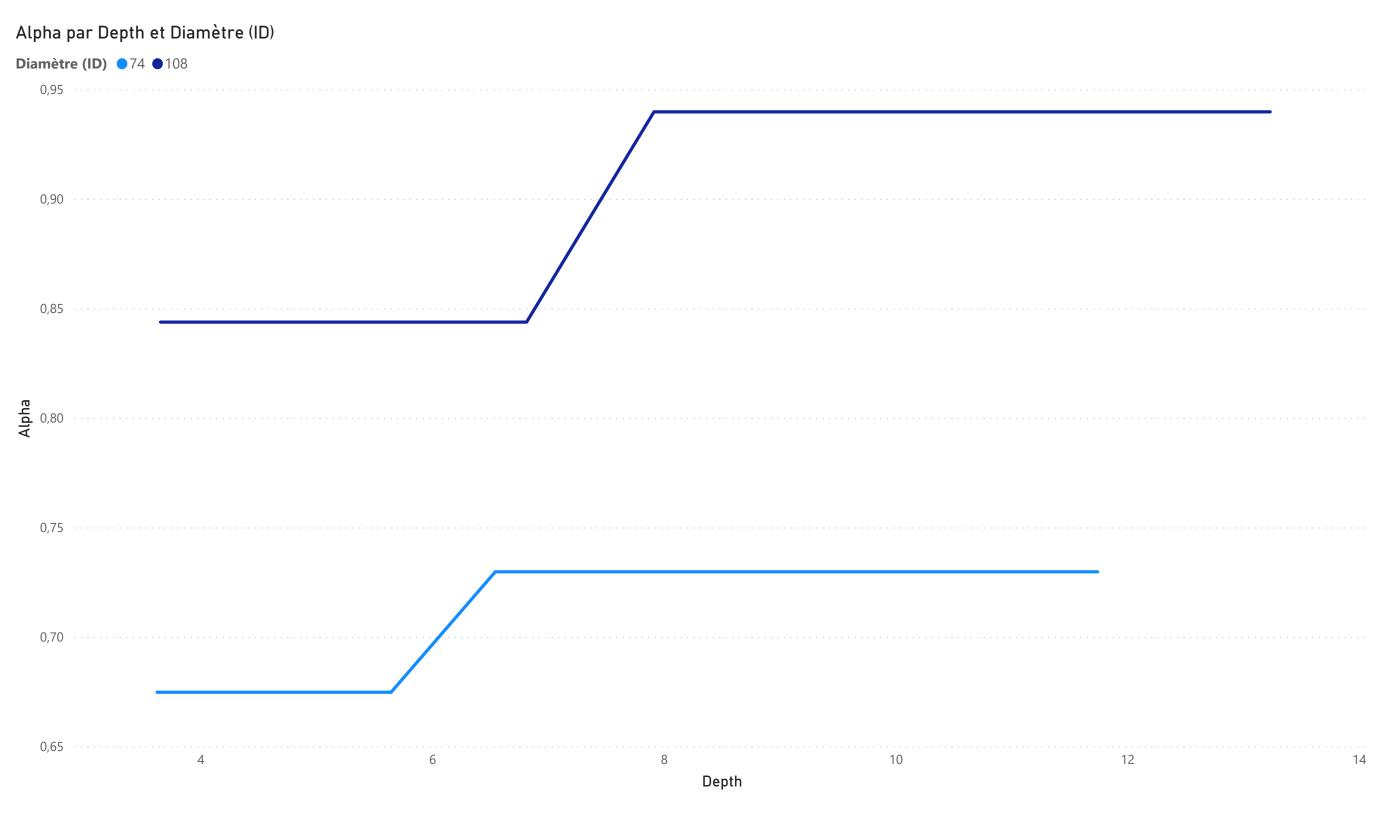


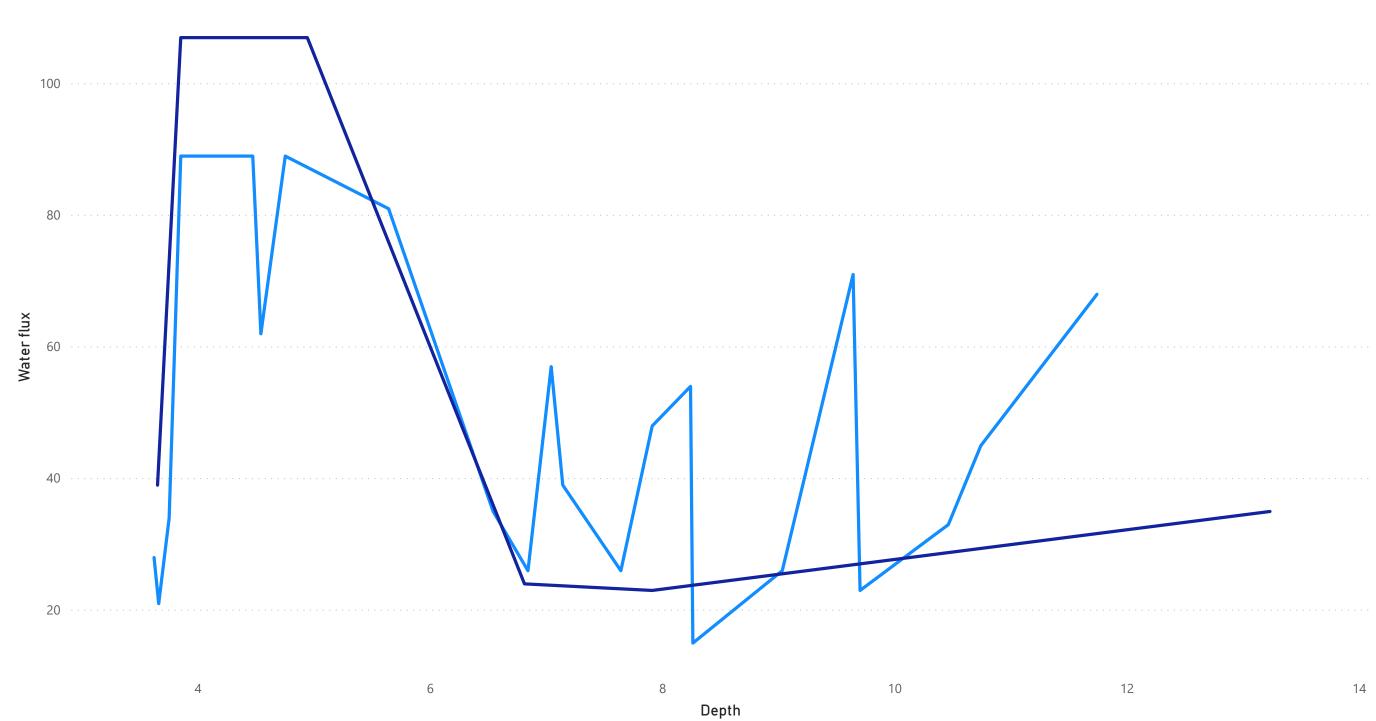


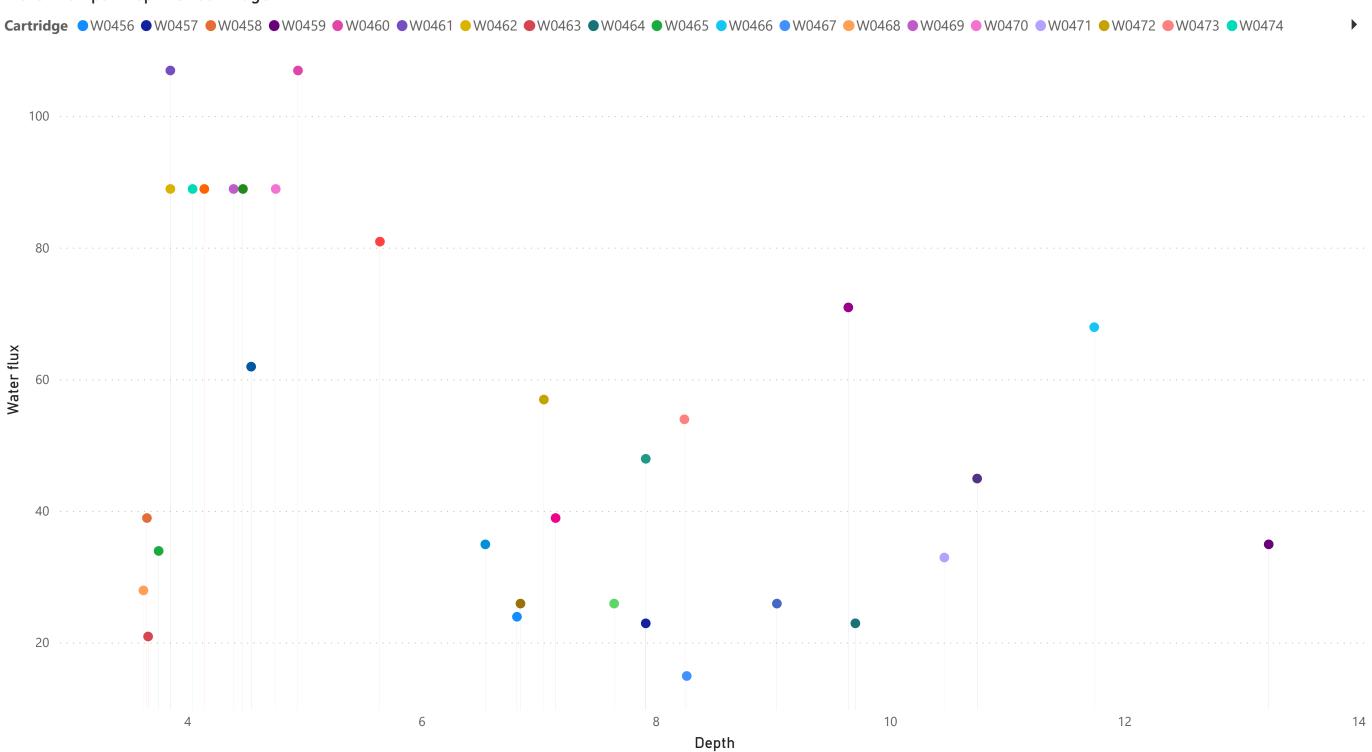


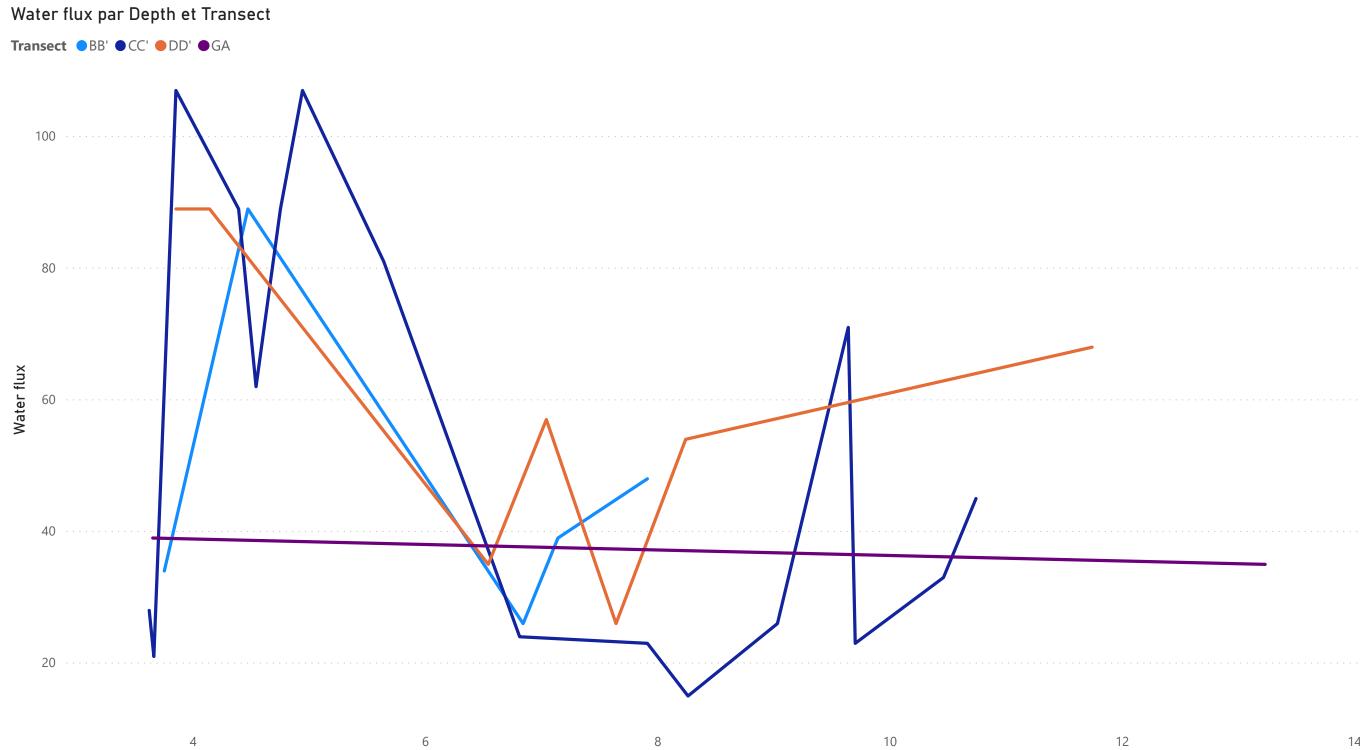




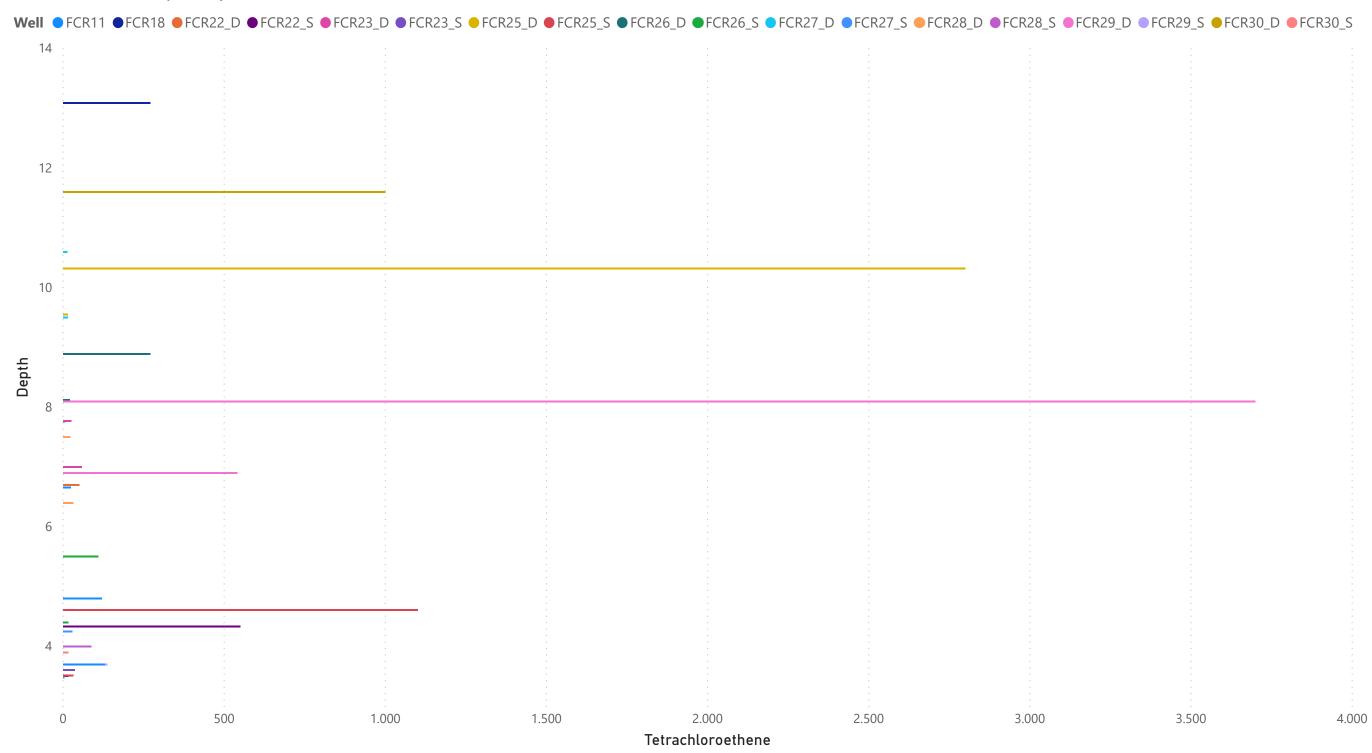


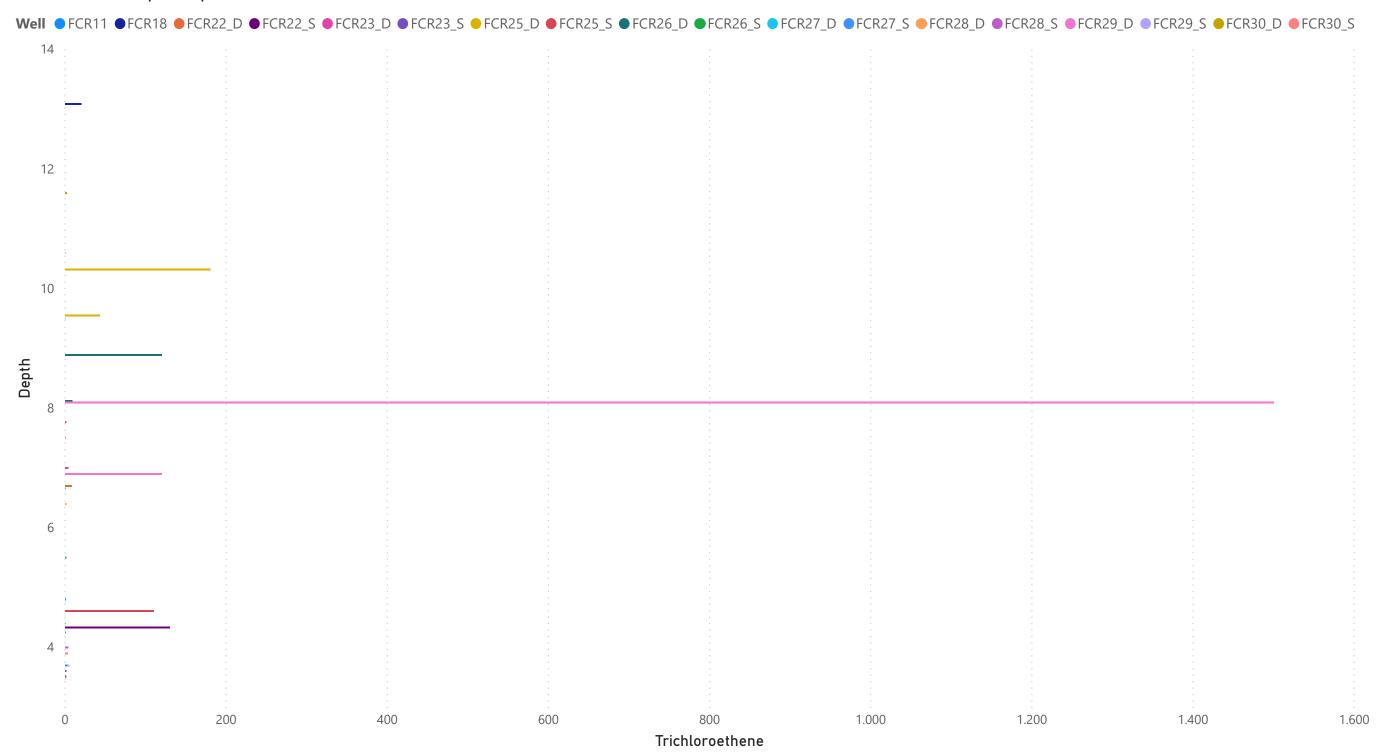



Annexes 3: Graphiques réalisés avec BI (à titre informatif)

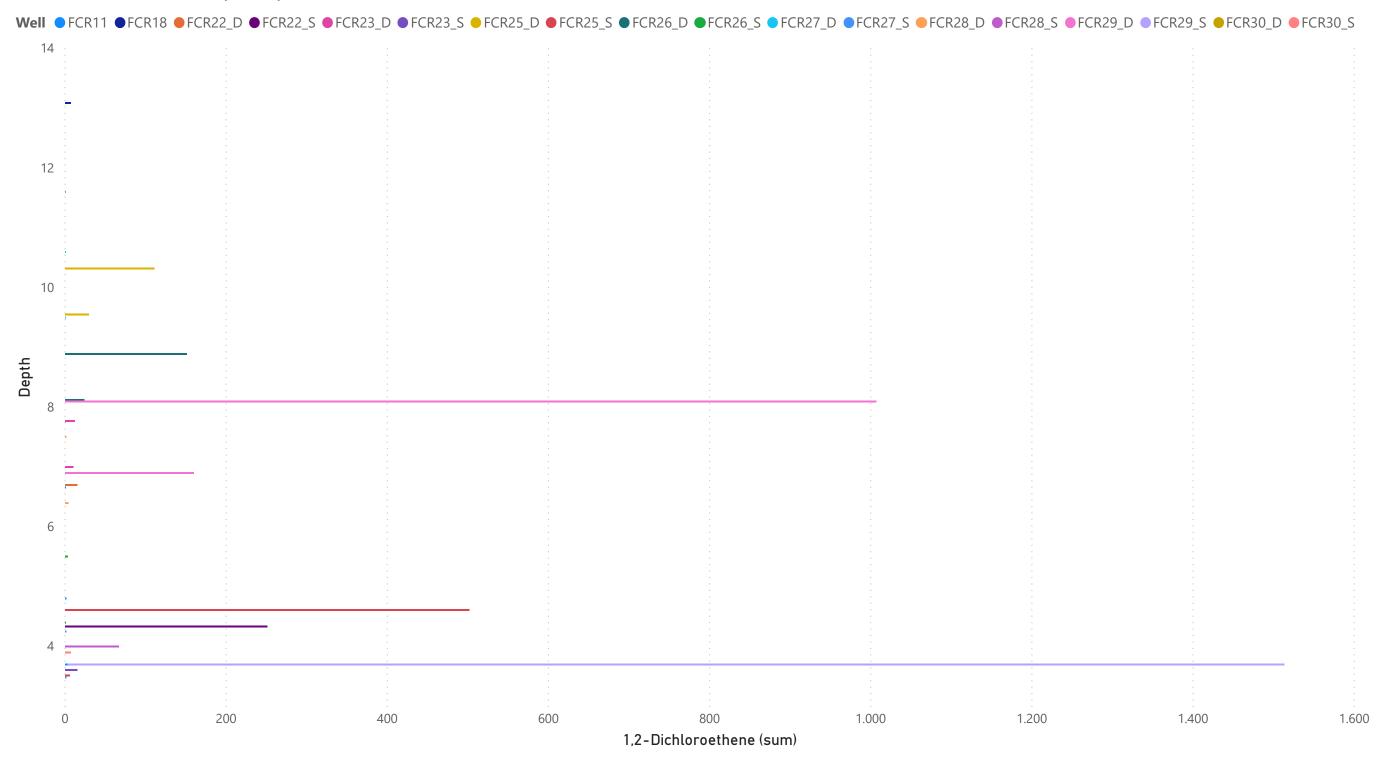


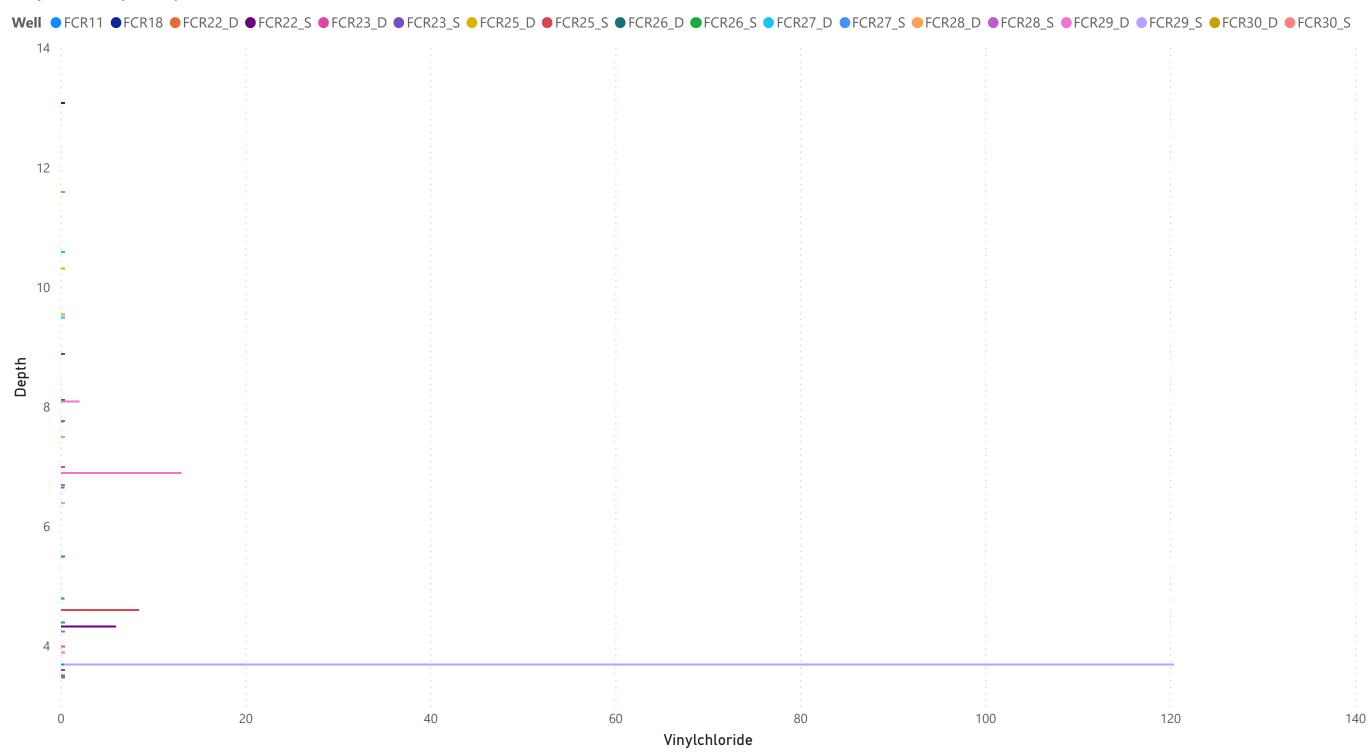
Diamètre (ID) ●74 **●**108

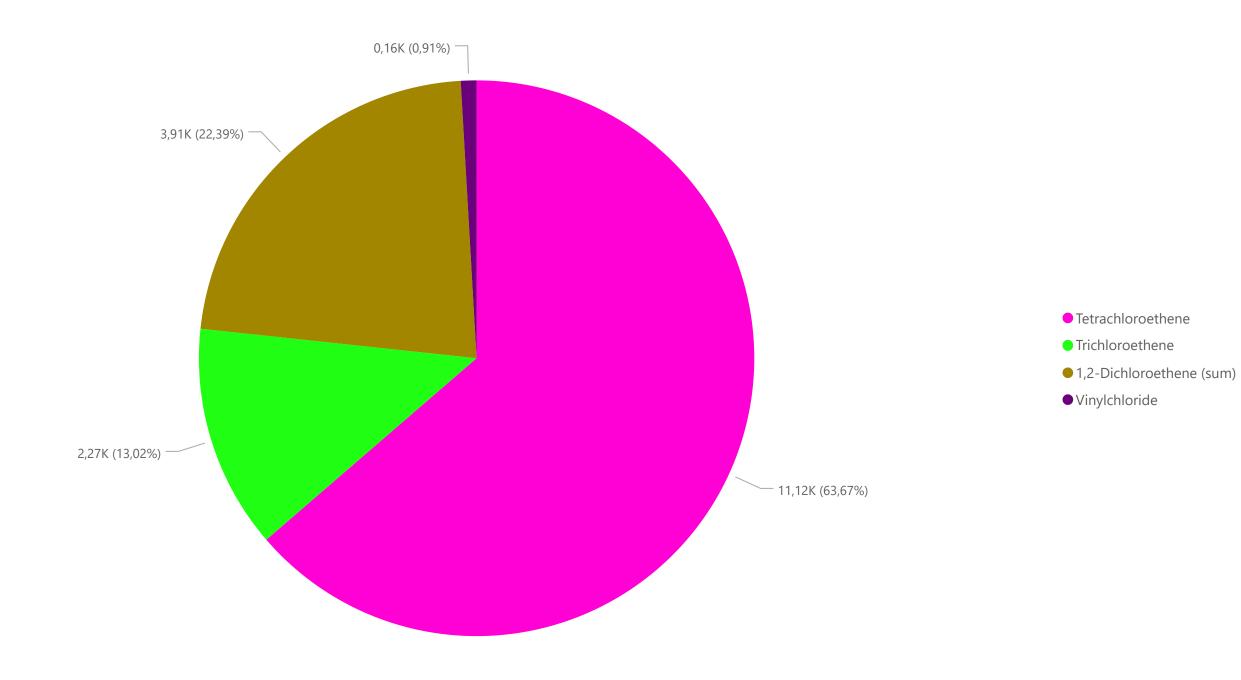

Water flux par Depth et Cartridge

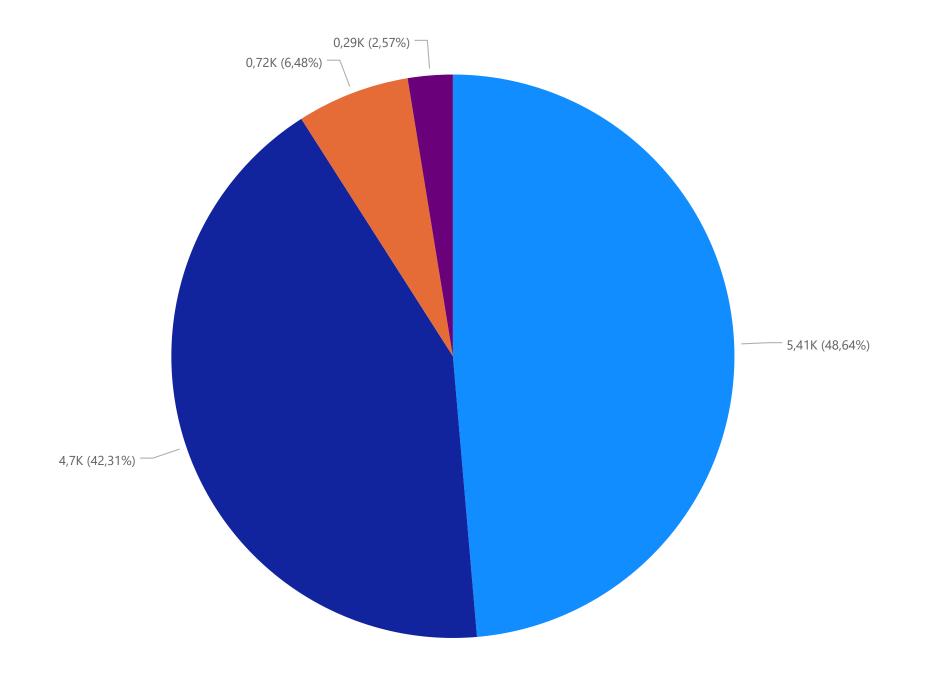


Depth


Tetrachloroethene par Depth et Well

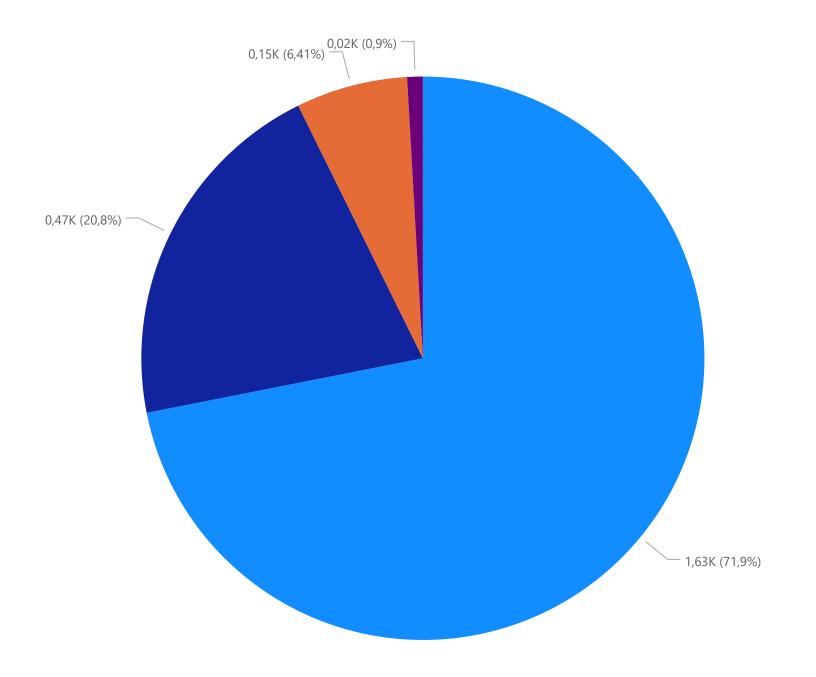

Trichloroethene par Depth et Well


1,2-Dichloroethene (sum) par Depth et Well


Vinylchloride par Depth et Well

Tetrachloroethene, Trichloroethene, 1,2-Dichloroethene (sum) et Vinylchloride

Tetrachloroethene par Transect

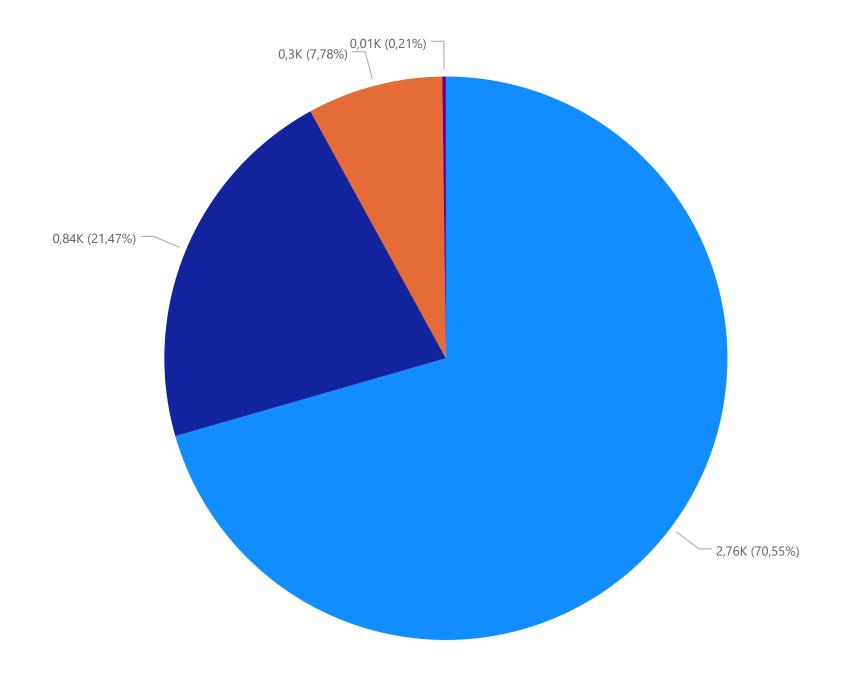


Transect

DD'

CC'BB'

Trichloroethene par Transect


Transect

OD'

● CC'

● BB'

1,2-Dichloroethene (sum) par Transect

Transect

OD'

● CC'

● BB'

Vinylchloride par Transect

Transect

OD'

• CC'

● BB'

Annexes 4: Certificats d'analyses du laboratoire

LABORATORIUM **KLANT**

iFlux BVBA Rudi Herman Laboratorium manager Klant SGS Belgium NV Laboratorium Adres Galileilaan 15 Environment, Health and Safety

B-2845 Niel België

erik@ifluxsampling.com

Spoorstraat 12 Adres

Postbus 78

4430 AB 's-Gravenpolder

Erik Contactpersoon

+31 (0) 88 214 62 00 Telefoon

Telefoon

+31 (0) 88 214 62 99 Fax Fax nl.envi.cs@sgs.com Email Email

GP20-04108 Standard project SGS referentie Project 12-02-2020 19.0167 eOde Suisse Aanvraag Ontvangen Klant Ref

04-03-2020 Gerapporteerd

ADDITIONELE OPDRACHT INFO

Monsternameverslag aanwezig Niet aanwezig 19.0167 eOde Klant opdracht omschrijving

MONSTER IDENTIFICATIE

SGS Belgium NV Environment, Health and Safety Haven 407 Polderdijkweg 16 B-2030 Antwerpen t +32 (0)3 545 86 71 f +32 (0)3 545 86 79 e be.environment@sgs.com

GP20-04108.001	W0456	
GP20-04108.002	W0457	
GP20-04108.003	W0458	
GP20-04108.004	W0459	
GP20-04108.005	W0460	
GP20-04108.006	W0461	
GP20-04108.007	W0462	
GP20-04108.008	W0463	
GP20-04108.009	W0464	
GP20-04108.010	W0465	
GP20-04108.011	W0466	
GP20-04108.011	W0467	
GP20-04108.013	W0468	
GP20-04108.014	W0469	
GP20-04108.015	W0470	
GP20-04108.016	W0471	
GP20-04108.017	W0472	
GP20-04108.018	W0473	
GP20-04108.019	W0474	
GP20-04108.020	W0475	
GP20-04108.021	W0476	
GP20-04108.022	00407	
GP20-04108.023	O0408	
GP20-04108.024	O0409	
GP20-04108.025	O0410	
GP20-04108.026	O0411	
GP20-04108.027	O0412	
GP20-04108.028	O0413	
GP20-04108.029	O0414	
GP20-04108.030	O0415	
GP20-04108.031	O0416	
GP20-04108.032	O0417	
GP20-04108.033	O0418	
GP20-04108.034	O0419	
GP20-04108.035	O0420	
GP20-04108.036	00421	
GP20-04108.037	O0422	
GP20-04108.038	O0423	
GP20-04108.039	O0424	
GP20-04108.040	O0425	
GP20-04108.041	O0426	
GP20-04108.042	O0427	
GP20-04108.046	W0477	
GP20-04108.047	W0478	
GP20-04108.048	W0479	
GP20-04108.049	W0480	
GP20-04108.050	W0481	
GP20-04108.051	W0482	
GP20-04108.052	W0483	
GP20-04108.053	W0484	
GP20-04108.054	W0485	
GP20-04108.055	W0486	
GP20-04108.056	O0428	
GP20-04108.057	O0429	
GP20-04108.058	O0430	
GP20-04108.059	O0431	
GP20-04108.060	O0432	
GP20-04108.061	O0433	

GP20-04108.062	O0434		
GP20-04108.063	O0435		
GP20-04108.064	O0436		
GP20-04108.065	O0437		

OPMERKINGEN

Het laboratorium beschikt over een erkenning voor de met een E gemarkeerde analyses.

HANDTEKENINGEN

Rudi Herman Lab Operations Manager

Behoudens andersluidende overeenkomst worden alle opdrachten en documenten uitgevoerd en uitgegeven op basis van onze algemene voorwaarden. Op eenvoudig verzoek worden deze voorwaarden opnieuw aan u toegezonden. De aandacht wordt gevestigd op de beperking van aansprakelijkheid, de vergoedings-en bevoegdheidskwesties bepaald door deze voorwaarden. Elke houder van dit document dient te weten dat de informatie vervat in dit document enkel de bevindingen van SGS op het ogenblik van haar tussenkomst en binnen de grenzen van de eventuele instructies van de opdrachtgever, bevat. De resultaten in dit verslag hebben alleen betrekking op de geteste of bemonsterde objecten. SGS is enkel aansprakelijk ten aanzien van haar opdrachtgever en dit document stelt de bij een handelstransactie betrokken partijen niet vrij van hun plicht al hun rechten en verplichtingen uit te oefenen voortspruitend uit de handelsdocumenten. Elke niet toegestane wijziging evenals de namaak of vervalsing van de inhoud of het uitzicht van dit document is onwettig en overtreders zullen vervolgd worden.

Indien het/de monster(s) waarop de resultaten van dit rapport betrekking hebben werd(en) genomen en /of aangeleverd door de klant of door een derde partij, voorgedragen door de klant, dan houden de resultaten geen enkele waarborg in voor de representativiteit van welke goederen dan ook en hebben enkel betrekking op het/de monster(s). SGS aanvaardt geen enkele aansprakelijkheid met betrekking tot de oorsprong van het /de monster(s), waarvan het/ze beweerd wordt afkomstig te zijn.

Prestatiekenmerken van geaccrediteerde verrichtingen zijn opvraagbaar. In de bijlage is informatie vermeld over de houdbaarheid en conserveringsaspecten van de aangeleverde monsters. Toelichting op analyseresultaten gemarkeerd met een *** treft u ook aan in deze bijlage. De rapportages van eventuele externe uitbestedingen zijn bijgevoegd aan dit rapport.

SGS Belgium NV Environment, Health and Safety Haven 407 Polderdijkweg 16 B-2030 Antwerpen

t +32 (0)3 545 86 71 f +32 (0)3 545 86 79 e be.environment@sgs.com

url www.be.sgs.com

	Monste	rnummer	GP20-04108.001	GP20-04108.002	GP20-04108.003	GP20-04108.004	GP20-04108.005	
		Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent	
	Bemonsterir	gsdiepte						
	Bemons	terd door	iFLUX	iFLUX	iFLUX	iFLUX	iFLUX	
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020	
	Bemonsterir	ngsplaats						
	Ontvangstdatum Monster		13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020	
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat	
Traceralcoholen en VOCL [GC-MS]								
Methanol	μg/g ds	20	300	140	110	90	78	
Ethanol	μg/g ds	20	<40	<40	<40	<40	<40	
Isopropanol	μg/g ds	20	880	870	860	64	<40	
tert-Butanol	μg/g ds	2.0	5500	5400	4400	4000	85	
2,4-Dimethyl-3-pentanol	μg/g ds	2.0	2300	2300	2200	2000	2000	
Droge stof [Conform CMA 2/II/A.1] Droge stof	gew %	-	44.6	45.2	44.2	45.6	43.9	

	Monste	rnummer	GP20-04108.006	GP20-04108.007	GP20-04108.008	GP20-04108.009	GP20-04108.010	
		Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent	
	Bemonsterir	gsdiepte						
	Bemons	terd door	iFLUX	iFLUX	iFLUX	iFLUX	iFLUX	
	Bemonsteringsdatum Bemonsteringsplaats Ontvangstdatum Monster		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020	
			13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020	
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat	
Traceralcoholen en VOCL [GC-MS]								
Methanol	μg/g ds	20	70	59	49	45	58	
Ethanol	μg/g ds	20	<40	<40	<40	<40	<40	
Isopropanol	μg/g ds	20	<40	<40	2700	130	100	
tert-Butanol	μg/g ds	2.0	78	160	4900	4300	4900	
2,4-Dimethyl-3-pentanol	μg/g ds	2.0	2000	1800	1900	1900	2500	
Droge stof [Conform CMA 2/II/A.1]								
Droge stof	gew %	-	43.7	45.7	45.4	43.4	45.2	

	Monste	rnummer	GP20-04108.011	GP20-04108.012	GP20-04108.013	GP20-04108.014	GP20-04108.015
		Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsterir	ngsdiepte					
	Bemons	terd door	iFLUX	iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsterir	ngsplaats					
	Ontvangstdatum Monster		13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Traceralcoholen en VOCL [GC-MS]							
Methanol	μg/g ds	20	62	52	26	29	<40
Ethanol	μg/g ds	20	<40	<40	<20	<20	<40
Isopropanol	μg/g ds	20	<40	1500	2000	41	<40
tert-Butanol	μg/g ds	2.0	1500	6100	4900	340	400
2,4-Dimethyl-3-pentanol	μg/g ds	2.0	2100	2400	2200	2700	2600
Droge stof [Conform CMA 2/II/A.1]							
Droge stof	gew %	-	42.9	44.4	60.2	52.6	48.5

	Monste	rnummer	GP20-04108.016	GP20-04108.017	GP20-04108.018	GP20-04108.019	GP20-04108.020	
		Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent	
	Bemonsterin	gsdiepte						
	Bemons	terd door	iFLUX	iFLUX	iFLUX	iFLUX	iFLUX	
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020	
	Bemonsterir	ngsplaats						
	Ontvangstdatum Monster		13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020	
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat	
Traceralcoholen en VOCL [GC-MS]								
Methanol	μg/g ds	20	28	24	27	24	22	
Ethanol	μg/g ds	20	<20	<20	<20	<20	<20	
Isopropanol	μg/g ds	20	140	250	170	<20	110	
tert-Butanol	μg/g ds	2.0	4400	2200	2500	130	4500	
2,4-Dimethyl-3-pentanol	μg/g ds	2.0	2300	2000	2100	2200	2100	
D								
Droge stof [Conform CMA 2/II/A.1] Droge stof	gew %	-	55.5	63.3	52.8	55.0	52.0	

	Monsternummer	GP20-04108.021	GP20-04108.022	GP20-04108.023	GP20-04108.024	GP20-04108.025
	Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdiepte		Consent	Consent	Consent	Corponi
	Bemonsterd door		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020
			11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsteringsplaats		40.00.000	40.00.000	40.00.000	40.00.000
	Ontvangstdatum Monster		13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Traceralcoholen en VOCL [GC-MS]						
Methanol	μg/g ds 20	21				
Ethanol	μg/g ds 20	<20				
Isopropanol	μg/g ds 20	76				
tert-Butanol	μg/g ds 2.0	4100				
2,4-Dimethyl-3-pentanol	μg/g ds 2.0	2200				
Droge stof [Conform CMA 2/II/A.1]						
Droge stof	gew %	52.7	38.5	36.8	39.5	40.9
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds 0.50		37	<1.0	3.5	1.8
Cis-1,2-dichlooretheen	μg/g ds 0.50		<1.0	24	1.0	9.0
Trans-1,2-dichlooretheen	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
Trichloormethaan	μg/g ds 0.50		1.5	<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds 0.50		1.1	67	1.6	7.7
1,1,1-Trichloorethaan	μg/g ds 0.50		<1.0	<1.0	<1.0	1.4
1,1,2-Trichloorethaan	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds 0.50		<1.0	<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds 0.50		48	900	22	400
Vinylchloride	μg/g ds 0.50		<1.0	1.3	<1.0	<1.0

SGS Belgium NV Environment, Health and Safety Haven 407 Polderdijkweg 16 B-2030 Antwerpen t +32 (0)3 545 86 71 f +32 (0)3 545 86 79 e be.environment@sgs.com

	Monsternum	mer GP20-04108.026	GP20-04108.027	GP20-04108.028	GP20-04108.029	GP20-04108.030
	Ma	trix Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdie		20.20	30.20	3 0123111	55.25
	Bemonsterd d		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdat		11-02-2020	11-02-2020	11-02-2020	11-02-2020
				11-02-2020	11-02-2020	11-02-2020
	Bemonsteringspla					
	Ontvangstdatum Mons	ster 13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid R0	G Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Droge stof [Conform CMA 2/II/A.1]						
Droge stof	gew % -	40.0	36.3	36.2	35.7	35.6
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds 0.5	0 3.7	1.9	3.4	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds 0.5	0 1.3	3.7	2.1	6.5	400
Trans-1,2-dichlooretheen	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
Trichloormethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds 0.5	0 1.2	3.3	<1.0	4.1	310
1,1,1-Trichloorethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloorethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds 0.5	0 73	350	9.4	270	1400
Vinylchloride	μg/g ds 0.5	0 <1.0	<1.0	<1.0	<1.0	34

	Monsternumme	r GP20-04108.031	GP20-04108.032	GP20-04108.033	GP20-04108.034	GP20-04108.035
	Matr	x Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdiep	e				
	Bemonsterd do		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatu		11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsteringsplaa					
	Ontvangstdatum Monste		13-02-2020	13-02-2020	13-02-2020	13-02-2020
Bernanden						
Parameter	Eenheid RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Droge stof [Conform CMA 2/II/A.1]						
Droge stof	gew %	35.6	36.8	37.6	34.9	36.3
	V					
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds 0.50	3.4	<1.0	13	61	390
Trans-1,2-dichlooretheen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	2.4
Trichloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds 0.50	2.1	4.9	4.1	24	310
1,1,1-Trichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds 0.50	68	2600	76	54	700
Vinylchloride	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0

	Monsternu	mmer	GP20-04108.036	GP20-04108.037	GP20-04108.038	GP20-04108.039	GP20-04108.040
	,	Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	' Bemonsteringso		Consent	Corponi	Consent	Consoni	Consent
	Bemonsterd		iFLUX	iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringso		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020
			11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsterings						
	Ontvangstdatum Mo	onster	13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Droge stof [Conform CMA 2/II/A.1]							
Droge stof	gew %	-	40.2	38.7	38.8	40.4	41.9
Vluchtige verbindingen [GC/MS]							
Monochloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds	0.50	280	1200	16	38	160
Trans-1,2-dichlooretheen	μg/g ds	0.50	2.5	4.8	<1.0	<1.0	1.0
Trichloormethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds	0.50	460	260	8.4	21	9.3
1,1,1-Trichloorethaan	μg/g ds	0.50	2.3	<1.0	<1.0	<1.0	1.1
1,1,2-Trichloorethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds	0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds	0.50	7200	2600	39	130	210
Vinylchloride	μg/g ds	0.50	<1.0	20	<1.0	<1.0	<1.0

	Monsternummer	GP20-04108.041	GP20-04108.042	GP20-04108.046	GP20-04108.047	GP20-04108.048
	Matrix		Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdiepte		30.23	33.23	33.23	30.20
	Bemonsterd door		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsteringsplaats					
	Ontvangstdatum Monster		13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Farameter	Lennera RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Traceralcoholen en VOCL [GC-MS]						
Methanol	μg/g ds 20			24	24	21
Ethanol	μg/g ds 20			<20	<20	<20
Isopropanol	μg/g ds 20			1700	<20	25
tert-Butanol	μg/g ds 2.0			4900	650	1400
2,4-Dimethyl-3-pentanol	μg/g ds 2.0			2200	2200	2300
Droge stof [Conform CMA 2/II/A.1]						
Droge stof	gew % -	42.2	37.2	51.9	52.6	53.4
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,2-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,3-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,4-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,2,3-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,2,4-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
1,3,5-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0			
Dichloormethaan	μg/g ds 0.50	<1.0	<1.0			
1,1-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0			
1,2-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0			
Cis-1,2-dichlooretheen	μg/g ds 0.50	1.9	35			
Trans-1,2-dichlooretheen	μ g/g ds 0.50	<1.0	<1.0			
Trichloormethaan	μ g/g ds 0.50	<1.0	<1.0			
Trichlooretheen	μ g/g ds 0.50	<1.0	3.6			
1,1,1-Trichloorethaan	μ g/g ds 0.50	<1.0	<1.0			
1,1,2-Trichloorethaan	μ g/g ds 0.50	<1.0	<1.0			
Tetrachloormethaan	μ g/g ds 0.50	<1.0	<1.0			
Tetrachlooretheen	μ g/g ds 0.50	37	86			
Vinylchloride	μg/g ds 0.50	<1.0	<1.0			

	Monste	rnummer	GP20-04108.049	GP20-04108.050	GP20-04108.051	GP20-04108.052	GP20-04108.053	
		Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent	
	Bemonsterir	igsdiepte						
	Bemons	terd door	iFLUX	iFLUX	iFLUX	iFLUX	iFLUX	
	Bemonsteringsdatum Bemonsteringsplaats Ontvangstdatum Monster		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020	
			13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020	
Parameter	Eenheid	RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat	
Traceralcoholen en VOCL [GC-MS]								
Methanol	μg/g ds	20	21	21	<20	<20	<40	
Ethanol	μg/g ds	20	<20	<20	<20	<20	<40	
Isopropanol	μg/g ds	20	98	49	140	25	79	
tert-Butanol	μg/g ds	2.0	3400	3300	4500	920	3500	
2,4-Dimethyl-3-pentanol	μg/g ds	2.0	2000	2200	2100	1900	2500	
Droge stof [Conform CMA 2/II/A.1]								
Droge stof	gew %	=	52.9	53.4	55.6	54.3	41.0	

	Monsternumme	er GP20-04108.054	GP20-04108.055	GP20-04108.056	GP20-04108.057	GP20-04108.058
	Matr	x Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdiep		30.23	33.23	33.23	00.20
	Bemonsterd do		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatur		11-02-2020	11-02-2020	11-02-2020	11-02-2020
			11 02 2020	11 02 2020	11 02 2020	11 02 2020
	Bemonsteringsplaat		40.00.0000	40.00.0000	40.00.0000	40.00.0000
	Ontvangstdatum Monste		13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
Traceralcoholen en VOCL [GC-MS]						
Methanol	μg/g ds 20	<40	<40			
Ethanol	μg/g ds 20	<40	<40			
Isopropanol	μg/g ds 20	<40	44			
tert-Butanol	μg/g ds 2.0	350	2800			
2,4-Dimethyl-3-pentanol	μg/g ds 2.0	2500	2600			
, , , , , , , , , , , , , , , , , , , ,	100					
Droge stof [Conform CMA 2/II/A.1]						
Droge stof	gew % -	41.8	43.4	40.9	41.6	41.9
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds 0.50			<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds 0.50			9.9	600	31
Trans-1,2-dichlooretheen	μg/g ds 0.50			<1.0	2.7	<1.0
Trichloormethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds 0.50			4.3	320	4.3
1,1,1-Trichloorethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
1,1,2-Trichloorethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds 0.50			<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds 0.50			83	1300	64
Vinylchloride	μg/g ds 0.50			<1.0	14	1.1

SGS Belgium NV Environment, Health and Safety Haven 407 Polderdijkweg 16 B-2030 Antwerpen t +32 (0)3 545 86 71 f +32 (0)3 545 86 79 e be.environment@sgs.com

url www.be.sgs.com

	Monsternummer	GP20-04108.059	GP20-04108.060	GP20-04108.061	GP20-04108.062	GP20-04108.063
	Matrix	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
	Bemonsteringsdiepte					
	Bemonsterd door		iFLUX	iFLUX	iFLUX	iFLUX
	Bemonsteringsdatum		11-02-2020	11-02-2020	11-02-2020	11-02-2020
		11-02-2020	11-02-2020	11-02-2020	11-02-2020	11-02-2020
	Bemonsteringsplaats					
	Ontvangstdatum Monster	13-02-2020	13-02-2020	13-02-2020	13-02-2020	13-02-2020
Parameter	Eenheid RG	Resultaat	Resultaat	Resultaat	Resultaat	Resultaat
D						
Droge stof [Conform CMA 2/II/A.1]	2011.9/	39.9	39.2	38.3	40.6	39.4
Droge stof	gew % -	39.9	39.2	36.3	40.6	39.4
Vluchtige verbindingen [GC/MS]						
Monochloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Dichloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds 0.50	3500	2700	26	2.9	74
Trans-1,2-dichlooretheen	μg/g ds 0.50	24	17	<1.0	<1.0	<1.0
Trichloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlooretheen	μg/g ds 0.50	5.9	3800	11	2.8	110
1,1,1-Trichloorethaan	μg/g ds 0.50	<1.0	4.7	<1.0	<1.0	<1.0
1,1,2-Trichloorethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloormethaan	μg/g ds 0.50	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachlooretheen	μg/g ds 0.50	17	9500	150	58	35
Vinylchloride	μg/g ds 0.50	290	5.1	<1.0	<1.0	<1.0

	Monste	rnummer	GP20-04108.064	GP20-04108.065
		Matrix	Sorbent	Sorbent
	Bemonsterir	ngsdiepte		
	Bemons	terd door	iFLUX	iFLUX
	Bemonsterin	ngsdatum	11-02-2020	11-02-2020
	Bemonsterir	ngsplaats		
	Ontvangstdatum	Monster	13-02-2020	13-02-2020
Parameter	Eenheid	RG	Resultaat	Resultaat
Droge stof [Conform CMA 2/II/A.1]				
Droge stof	gew %	-	40.5	38.0
Vluchtige verbindingen [GC/MS]		0.50		
Monochloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,2-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,3-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,4-Dichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,2,3-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,2,4-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
1,3,5-Trichloorbenzeen	μg/g ds	0.50	<1.0	<1.0
Dichloormethaan	μg/g ds	0.50	<1.0	<1.0
1,1-Dichloorethaan	μg/g ds	0.50	<1.0	<1.0
1,2-Dichloorethaan	μg/g ds	0.50	<1.0	<1.0
Cis-1,2-dichlooretheen	μg/g ds	0.50	1.9	1.6
Trans-1,2-dichlooretheen	μg/g ds	0.50	<1.0	<1.0
Trichloormethaan	μg/g ds	0.50	<1.0	<1.0
Trichlooretheen	μg/g ds	0.50	1.3	1.2
1,1,1-Trichloorethaan	μg/g ds	0.50	<1.0	<1.0
1,1,2-Trichloorethaan	μg/g ds	0.50	<1.0	<1.0
Tetrachloormethaan	μg/g ds	0.50	<1.0	<1.0
Tetrachlooretheen	μg/g ds	0.50	36	34
Vinylchloride	μg/g ds	0.50	<1.0	<1.0
Viriyionionae	pg/g ds	0.50	~1.0	71.0

GP20-04108 **ANALYSERAPPORT**

BIJLAGE

LIGHTED A A BUILDO	EN CONCEDITEDING	OBMEDICINIOEN.
HOUDBAARHEIDS:	EN CONSERVERINGS	OPMERKINGEN

Alle monsters zijn correct geconserveerd bij het laboratorium aangeleverd.

Annexe 6 Flux de Darcy et flux massiques en HCC (perméabilité Alluvions : 1.10⁻⁴ m/s)

Tableau 9 Flux de Darcy (en cm/j) et flux massiques en hydrocarbures chlorés (en mg/m 2 /j) - en fonction de la profondeur (m) - mesurés dans les PFM entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions : 1.10^{-4} m/s).

Transect	Forage	PFM	Prof	Darcy	PER	TRI	Cis- 1,2-DCE	Trans- 1,2-DCE	CV	1,1,1- TCA	1,2-DCA	тсм	ChlorE	8HCC
BB'	FCR22	O0429	4.495		510.0	130.0	240.0	1.1	5.5	<0.4	<0.4	<0.4	886.6	887.8
BB' BB' BB'	FCR22 FCR22 FCR22	W0485 O0424 W0482	4.635 6.855 6.995	>83.0	51.0	8.2	15.0	<0.4	<0.4	<0.4	<0.4	<0.4	75.0	76.2
BB'	FCR23	O0427	3.845		34.0	1.4	14.0	<0.4	<0.4	<0.4	<0.4	<0.4	50.2	51.4
BB' BB'	FCR23 FCR23	W0465 O0433	3.995 7.235	32.0	58.0	4.3	10.0	<0.4	<0.4	<0.4	<0.4	<0.4	73.1	74.3
BB' BB'	FCR23 FCR23	W0480 O0430	7.375 8.005	39.0	25.0	1.7	12.0	<0.4	0.4	<0.4	<0.4	<0.4	39.5	40.7
BB'	FCR23 FC11	W0484 O0410	8.145 3.855	48.0	120.0	2.3	2.7	<0.3	<0.3	0.4	0.5	<0.3	125.6	126.8
CC'	FC11 FC11	W0461 O0412	4.005 4.955	>97.0	100.0	1.0	1.1	<0.3	<0.3	<0.3	0.6	<0.3	102.7	103.9
CC'	FC11 FC11	W0460 O0411	5.095 6.815	>97.0	22.0	0.4	0.4	<0.3	<0.3	<0.3	1.1	<0.3	25.5	27.4
CC' CC' CC'	FC11 FC11 FC11	W0456 O0409 W0457	6.965 7.915	22.0	6.5	0.5	0.3	<0.3	<0.3	<0.3	1.0	<0.3	7.9	9.5
CC'	FCR25	O0418	8.065 3.785		30.0	1.6	5.1	<0.4	<0.4	<0.4	<0.4	<0.4	37.5	38.7
CC'	FCR25 FCR25	W0463 O0422	3.935 4.885	20.0	1000.0	100.0	470.0	1.9	7.8	<0.4	<0.4	<0.4	1579.7	1580.9
CC'	FCR25 FCR25 FCR25	W0470 O0435 W0464	5.025 9.845 9.995	>83.0	14.0	43.0	29.0	<0.4	<0.4	<0.4	<0.4	<0.4	86.8	88.0
CC' CC'	FCR25 FCR25	00421 W0471	10.615 10.755	23.0 33.0	2800.0	180.0	110.0	1.0	<0.4	0.9	<0.4	<0.4	3091.4	3093.0
CC'	FCR26	O0426	4.525		14.0	<0.4	0.7	<0.4	<0.4	<0.4	<0.4	<0.4	15.9	17.1
CC'	FCR26 FCR26	W0486 O0414	4.665 5.625	58.0	110.0	1.6	2.5	<0.4	<0.4	<0.4	<0.4	<0.4	114.9	116.1
CC'	FCR26 FCR26	W0483 O0419	5.765 8.275	76.0	21.0	9.3	24.0	<0.4	<0.4	<0.4	<0.4	<0.4	55.1	56.3
CC' CC'	FCR26 FCR26 FCR26	W0467 O0420 W0477	8.415 9.045 9.185	15.0 26.0	270.0	120.0	150.0	0.9	<0.4	<0.4	<0.4	<0.4	541.3	542.5
CC'	FCR27	O0413	3.675		3.7	<0.4	0.8	<0.4	<0.4	<0.4	1.3	<0.4	5.7	7.8
CC' CC'	FCR27 FCR27	W0468 O0416	3.815 4.445 4.585	26.0	27.0	0.8	1.3	<0.4	<0.4	<0.4	<0.4	<0.4	29.9	31.1
CC'	FCR27 FCR27	W0469 O0436	9.775	>83.0	14.0	0.5	0.7	<0.4	<0.4	<0.4	<0.4	<0.4	16.0	17.2
CC' CC'	FCR27 FCR27 FCR27	W0479 O0437 W0481	9.915 10.875 11.015	71.0 45.0	13.0	0.5	0.6	<0.4	<0.4	<0.4	<0.4	<0.4	14.9	16.0
DD'	FCR28	O0425	4.195		82.0	3.6	63.0	0.4	<0.4	0.4	<0.4	<0.4	149.4	150.6
DD'	FCR28 FCR28	W0478 O0428	4.335 6.685	>83.0	32.0	1.7	3.8	<0.4	<0.4	<0.4	<0.4	<0.4	38.3	39.5
DD' DD'	FCR28 FCR28	W0476 O0434	6.825 7.785	35.0	23.0	1.1	1.1	<0.4	<0.4	<0.4	<0.4	<0.4	26.0	27.2
DD'	FCR28 FCR29	W0475 O0431	7.925 3.975	26.0	6.7	2.3	1400.0	9.4	110.0	<0.4	<0.4	<0.4	1528.4	1529.6
DD' DD'	FCR29 FCR29	W0462 O0415	4.125 7.075	>83.0	540.0	120.0	160.0	<0.4	13.0	<0.4	<0.4	<0.4	833.4	834.6
DD' DD'	FCR29 FCR29	W0472 O0432	7.215 8.275	57.0	3700.0	1500.0	1000.0	6.6	2.0	1.8	<0.4	<0.4	6208.6	6211.2
DD' DD'	FCR29 FCR30	W0473 O0423	8.415 4.195	54.0	15.0	3.3	6.3	<0.4	<0.4	<0.4	<0.4	<0.4	25.4	26.6
DD'	FCR30 FCR30	W0474	4.335	>83.0									1003.1	1004.2
DD'	FCR30	O0417 W0466	11.955	68.0	1000.0	1.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		
GA GA	FCR18 FCR18	O0407 W0458	3.625 3.775	35.0	14.0	0.3	<0.3	<0.3	<0.3	<0.3	11.0	0.5	15.2	27.0
GA GA	FCR18 FCR18	O0408 W0459	13.215 13.355	35.0	270.0	20.0	7.1	<0.3	0.4	<0.3	<0.3	<0.3	297.8	298.7

Annexe 7 Concentrations déduites des PFM vs Concentrations d'échantillons d'eau classiques

Tableau 10 Concentrations en hydrocarbures chlorés (en $mg/m^3 = \mu g/L$) déduites des flux de Darcy et des flux massiques de composés chlorés mesurés entre le 14.01.20 et le 11.02.20 (perméabilité Alluvions : 1.10⁻⁴ m/s).

Transect	Forage	PFM	Prof	PER	TRI	Cis- 1,2-DCE	Trans- 1,2-DCE	CV	1,1,1- TCA	1,2-DCA	ТСМ	ChlorE	8HCC
BB'	FCR22	O0429	4.495	618.0	146.1	280.9	1.2	6.6	0.5	0.5	0.5	1052.8	1054.2
BB' BB'	FCR22 FCR22	W0485 O0424	4.635 6.855	196.2	31.5	57.7	1.5	1.5	1.5	1.5	1.5	288.4	292.9
BB' BB'	FCR22 FCR23	W0482 O0427	6.995 3.845	105.9	4.4	44.1	1.2	1.2	1.2	1.2	1.2	156.9	160.6
BB' BB'	FCR23 FCR23	W0465 O0433	3.995					1.0		1.0	1.0		
BB'	FCR23	W0480	7.235 7.375	148.7	11.0	25.6	1.0		1.0			187.4	190.4
BB' BB'	FCR23 FCR23	O0430 W0484	8.005 8.145	52.1	3.5	25.0	0.8	0.9	0.8	0.8	0.8	82.3	84.8
CC.	FC11 FC11	O0410 W0461	3.855 4.005	121.5	2.3	2.8	0.3	0.3	0.4	0.6	0.3	127.3	128.5
CC'	FC11 FC11	O0412 W0460	4.955 5.095	112.1	1.0	1.1	0.3	0.3	0.3	0.6	0.3	114.9	116.1
CC'	FC11 FC11	O0411 W0456	6.815 6.965	100.0	1.7	1.8	1.4	1.4	1.4	5.0	1.4	106.2	114.0
CC'	FC11 FC11	O0409 W0457	7.915 8.065	28.3	2.0	1.3	1.3	1.3	1.3	4.3	1.3	34.2	41.2
CC'	FCR25 FCR25	O0418 W0463	3.785 3.935	152.4	8.1	26.2	2.0	2.0	2.0	2.0	2.0	190.7	196.7
CC'	FCR25 FCR25	O0422 W0470	4.885 5.025	1236.0	123.6	561.8	2.2	9.4	0.5	0.5	0.5	1933.0	1934.4
CC'	FCR25 FCR25	O0435 W0464	9.845 9.995	60.9	187.0	126.1	1.7	1.7	1.7	1.7	1.7	377.3	382.4
CC'	FCR25 FCR25	O0421 W0471	10.615 10.755	8484.8	545.5	333.3	2.9	1.2	2.7	1.2	1.2	9367.8	9372.8
CC'	FCR26	O0426	4.525	25.8	0.7	1.3	0.7	0.7	0.7	0.7	0.7	29.1	31.2
CC.	FCR26 FCR26	W0486 O0414	4.665 5.625	135.8	2.1	3.3	0.5	0.5	0.5	0.5	0.5	142.3	143.8
CC'	FCR26	W0483 O0419	5.765 8.275	140.0	62.0	160.0	2.6	2.6	2.6	2.6	2.6	367.2	375.0
00 00 00	FCR26 FCR26	W0467 O0420	8.415 9.045	1038.5	461.5	576.9	3.6	1.5	1.5	1.5	1.5	2082.0	2086.5
CC'	FCR26 FCR27	W0477 O0413	9.185 3.675	13.9	1.5	3.1	1.5	1.5	1.5	5.0	1.5	21.6	29.6
CC'	FCR27 FCR27	W0468 O0416	3.815 4.445	32.6	1.0	1.6	0.5	0.5	0.5	0.5	0.5	36.1	37.5
CC'	FCR27	W0469	4.585										
CC'	FCR27 FCR27	O0436 W0479	9.775 9.915	19.7	0.7	1.0	0.5	0.5	0.5	0.5	0.5	22.6	24.2
CC'	FCR27 FCR27	O0437 W0481	10.875	28.9	1.0	1.4	0.9	0.9	0.9	0.9	0.9	33.0	35.6
DD' DD'	FCR28 FCR28	O0425 W0478	4.195 4.335	98.9	4.4	75.3	0.5	0.5	0.5	0.5	0.5	179.5	180.9
DD'	FCR28	O0428	6.685	91.4	4.9	10.9	1.1	1.1	1.1	1.1	1.1	109.4	112.7
DD'	FCR28	W0476 O0434	6.825 7.785	88.5	4.2	4.2	1.5	1.5	1.5	1.5	1.5	99.9	104.4
DD'	FCR28 FCR29	W0475 O0431	7.925 3.975	8.0	2.8	1685.4	11.2	134.8	0.5	0.5	0.5	1842.2	1843.7
DD' DD'	FCR29 FCR29	W0462 O0415	4.125 7.075	947.4	210.5	280.7	0.7	22.8	0.7	0.7	0.7	1462.1	1464.1
DD' DD'	FCR29 FCR29	W0472 O0432	7.215 8.275	6851.9	2777.8	1851.9	12.2	3.7	3.3	0.7	0.7	11497.4	11502.2
DD'	FCR29 FCR30	W0473 O0423	8.415 4.195	18.0	3.9	7.5	0.5	0.5	0.5	0.5	0.5	30.4	31.8
DD' DD'	FCR30 FCR30	W0474 O0417	4.335 11.815	1470.6	2.8	0.6	0.6	0.6	0.6	0.6	0.6	1475.1	1476.8
DD' GA	FCR30 FCR18	W0466 O0407	11.955 3.625	41.0	0.9	0.8	0.8	0.8	0.8	30.8	1.3	44.5	77.4
GA GA	FCR18 FCR18	W0458 O0408	3.775 13.215	771.4	57.1	20.3	0.9	1.1	0.9	0.9	0.9	850.8	853.4
GA	FCR18	W0459											

 $\begin{table}{llll} \textbf{Tableau 11 Concentrations en hydrocarbures chlorés (en mg/m$^3 = microg/L) mesurées par Institut Géotechnique dans des échantillons d'eau classiques prélevés du 9.12.19 au 11.12.19. \\ \end{table}$

Transect	Forage	Prof orifice pompe	Organo	PER	TRI	Cis- 1,2-DCE	Trans- 1,2-DCE	CV	1,1,1- TCA	1,2-DCA	тсм	ChlorE
вв'	FCR22	Sup		250	42	1.2	1.2	17	<0.1	-	-	504.2
BB'	FCR22	Inf	Tr, Od	248	34	1.3	1.3	15	<0.1	-	-	463.3
BB'	FCR23	4.4	Tr	314	65	4	4	111	<0.1	_	_	1162.0
BB'	FCR23	Inf	Tr, Od	307	39	2.6	2.6	38	<0.1	-	_	766.6
CC'	FC11	8.7	Tr	231	15	311	3	131	<0.1	_	_	691
CC'	FCR25	4.6	Tr, Od	484	30	136	0.76	15	<0.1	_	_	665.8
CC'	FCR25	10.4	TTr, Od	93201	7164	11641	55	2.7	13	-	_	112063.7
CC'	FCR26	5.4	Tr	307	3.1	6	0.3	1.5	<0.1	_	_	317.9
CC'	FCR26	9.2	Tr, Od	52711	19918	33825	368	227	2.8	-	_	107049.0
CC'	FCR27	3.6	TTr, Od, H	75	1.4	4	<0.1	1.5	<0.1	_	_	82.9
CC'	FCR27	10.1	Tr, Od	4642	37	45	0.57	<0.1	<0.1	-	_	4724.6
DD'	FCR28	4.0	Tr	140	0.55	0.38	<0.1	<0.1	<0.1	_	_	140.93
DD'	FCR28	8.0	TTr	246	2.2	1.1	0.18	<0.1	<0.1	-	_	504.2
DD'	FCR29	4.0	Tr, Od	246	1.2	171	1.2	288	<0.1	_	_	707.4
DD'	FCR29	8.0	TTr, Od	7260	1973	2941	19	53	2.2	-	_	12246.0
DD'	FCR30	4.1	Tr, Of, H	72	1.4	0.85	<0.1	0.2	<0.1	-	-	74.4
DD'	FCR30	11.0	Tr, Od	8141	27	4.2	0.14	<0.1	<0.1	-	-	8172.2
GA	FCR18	13.9		-	146	89	0.13	0.13	0.18	-	-	2180.9

Organo : critère organoleptique, Tr : trouble, TTr : très trouble, Od : odeur, H : huile.

Annexe 8 Flux massiques complémentaires estimés dans les transects

Tableau 12 Flux massiques en 8HCC (mg/m²/j) estimés dans le transect CC' par 4 méthodes : empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles.

	Nb	Min	Max	Моу	Ecart-type
Empirique	16	8	3093	378	841
Plus proche voisin	370	8	3093	369	805
Inverse distance carré	350	9	3093	378	559
Simulations [P5% ; Moy ; P95%]	370	[8;11;17]	[123 ; 1683 ; 3093]	[16 ; 319 ; 1527]	[15 ; 290 ; 1075]

Nb: nombre, Min: minimum, Max: maximum, Moy: moyenne, P5%: percentile 5%, P95%: percentile 95%.

Tableau 13 Flux massiques en chloroéthènes (mg/m²/j) estimés dans les transects BB' et DD' par la méthode empirique.

	Nb	Min	Max	Moy	Ecart-type
Transect BB'	5	82	1053	354	398
Transect DD'	8	30	11497	1769	3492

Nb : nombre, Min : minimum, Max : maximum, Moy : moyenne.

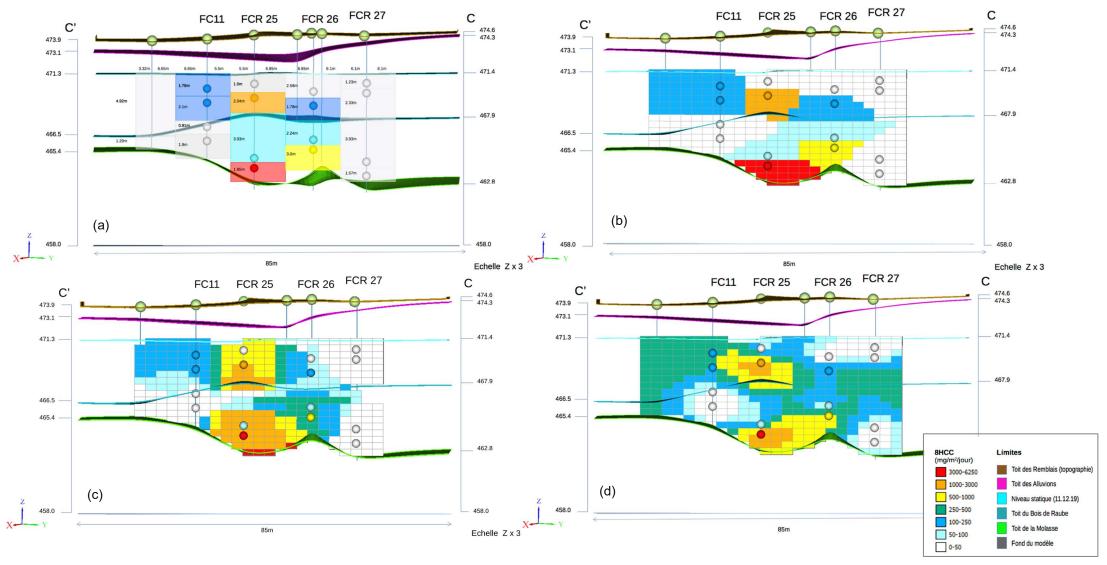


Figure 8 Cartographie des flux massiques d'hydrocarbures chlorés dans le transect CC' par 4 méthodes : (a) empirique, (b) plus proche voisin, (c) inverse du carré de la distance et (d) simulations conditionnelles (les moyennes des flux simulés dans les mailles sont représentées ici). AA' à CC' : \(\pm \) et EE' : // direction écoulement des eaux.

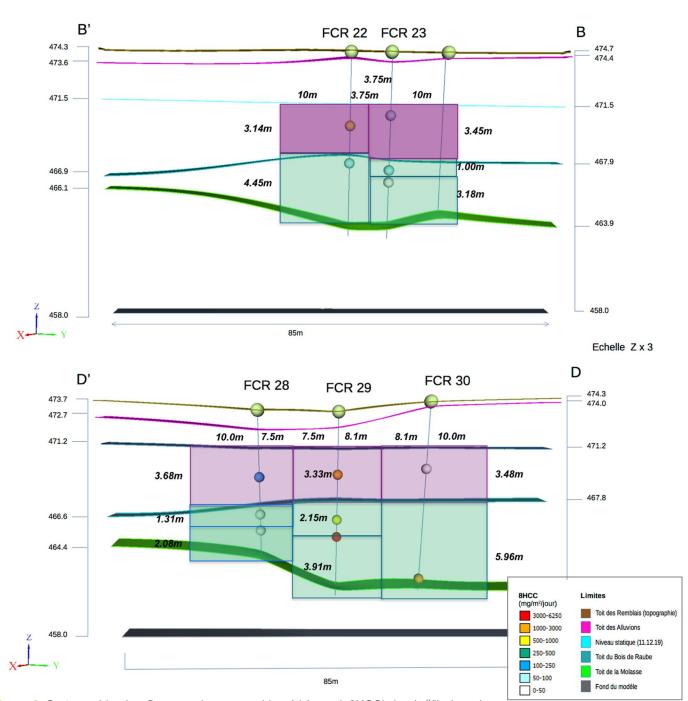


Figure 9 Cartographie des flux massiques en chloroéthènes (=8HCC) (mg/m²/j) dans les transects BB' et DD' par la méthode empirique.

Annexe 9 Charges complémentaires estimées dans les transects

Tableau 14 Charges en 8HCC (g/j) et pourcentages de charge dans les 2 formations aquifères traversant le transect CC' estimées par 4 méthodes : empirique, plus proche voisin, inverse du carré de la distance et simulations conditionnelles.

	Empirique		Plus proche voisin		Inverse distance carré		Simulations	
Surface	487 m²		463 m²		463 m²		463 m²	
	Charge	% Charge	Charge	% Charge	Charge	% Charge	Charge	% Charge
Alluvions	61	38%	55	32%	53	32%	[4;72 ;363]	49%
Bois de Raube	100	62%	116	68%	112	68%	[4;76 ;343]	51%
Total	161	100%	171	100%	165	100%	[8;148 ;706]	100%

[[]P5%;Moy;P95%] fournies pour les simulations; le % de charge a été calculé sur les moyennes.

Tableau 15 Charges en chloroéthènes (g/j) et pourcentages de charge dans les 2 formations aquifères traversant les transects BB' et DD' estimées par la méthode empirique.

	Transe	ect BB'	Transect DD'		
Surface	209	m ²	441 m²		
	Charge	% Charge	Charge	% Charge	
Alluvions	43	85%	97	16%	
Bois de Raube	7	15%	517	84%	
Total	50.3	100%	614	100%	

Tableau 16 Charges en 8HCC (g/j) et pourcentage de charge dans les 2 formations aquifères traversant les transects BB' et DD' estimées par la méthode empirique.

	Transe	ect BB'	Transect DD'		
Surface	20)9	441		
	Charge	% Charge	Charge	% Charge	
Alluvions	43	84%	97	16%	
Bois de Raube	8	16%	517	84%	
Total	51	100%	614	100%	

