Veranstalter

CHYN

Das CHYN, eines der Kompetenzzentren der Universität Neuchâtel, ist eine internationale Referenz für die Forschung und Bildung in Hydrogeologie und Geothermie.

Das CHYN stellt sich massgeblichen gesellschaftlichen Herausforderungen: Verbesserung der Kenntnisse über erneuerbare Ressourcen von Wasser und Energie, Entwicklung von Strategien für ihre nachhaltige Nutzung und Weitergabe dieses Wissens. Das CHYN sichert die Ausbildung von Spezialisten durch einen innovativen Bachelor-Studiengang "Natürliche Systeme", durch einen Master-Studiengang, ausgerichtet auf eine Vielzahl von grundlegenden und angewandten Aspekten der Hydrogeologie und Geothermie, durch eine Doktorandenschule und durch einzigartige Weiterbildungsprogramme.

www.unine.ch/chyn

Veranstaltungen Altlasten Schweiz

Wir würden uns freuen, Sie an unseren Veranstaltungen begrüßen zu dürfen.

ALTLASTEN SCHWEIZ

-Symposium 2023-

Das Symposium Altlasten Schweiz soll als Austauschplattform für die Altlasten-Fachleute in der Schweiz dienen. Der Anlass findet normalerweise im Herbst statt und ist für alle Interessensvertreter offen: Behörden, Fachbüros, Inhaber, Sanierungsfirmen, Analytiklabors, Forschung, etc. Jedes zweite Jahr liegt der Fokus auf einem anderen aktuellen Thema.

ALTLASTEN SCHWEIZ

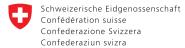
-Workshop 2024-

Der Workshop Altlasten Schweiz findet alle zwei Jahre statt und bietet die Möglichkeit, sich in Gruppen zu einem aktuellen Thema auszutauschen. Die Teilnehmerzahl ist beschränkt.

ALTLASTEN SCHWEIZ

—Symposium 2023—

3. Symposium Altlasten Schweiz | BAFU


Sanierung alter Siedlungsabfalldeponien

Mittwoch, 13. September 2023

Landhaus Solothurn, Landhausquai, 4500 Solothurn

Sanierung alter Siedlungsabfalldeponien

3. Symposium Altlasten Schweiz | BAFU

Beschreibung

In der Schweiz gibt es rund 15'000 Ablagerungsstandorte wovon viele mit Siedlungsabfällen gefüllt sind.

Diese alten Siedlungsabfalldeponien sind nicht selten sanierungsbedürftig, weil die Abbauprodukte der organischen Abfälle Gewässer verunreinigen oder deren Deponiegase in Gebäude gelangen können.

Die Sanierung dieser Altlasten zeigt, dass es sehr schwierig ist, langfristig wirksame Sanierungsvarianten zu finden, welche nicht am Kriterium der Verhältnismässigkeit scheitern.

Ziel der Tagung

Die Tagung soll aufzeigen, was der Stand der Technik ist bei der Untersuchung und Sanierung alter Siedlungsabfalldeponien.

Zielpublikum

Fachleute, Behörden und Interessierte, die sich mit Fragen im Zusammenhang mit belasteten Standorten und Altdeponien beschäftigen.

Organisatorisches

Auskünfte

Reto Tietz, Projektleitung BAFU T +41 (0)58 462 19 43 reto.tietz@bafu.admin.ch

Anmeldung

bis 22. August 2023

CHYN, Nathalie Challandes Badertscher, Rue Emile Argand 11, 2000 Neuchâtel T +41 (0)32 718 26 30 events.sipol@unine.ch

oder www.unine.ch/sites_pollues_suisse (Online-Formular)

Kosten

CHF 230.- inklusive Mittagessen, Pausenerfrischung, Apéro, e-Dokumentation und MwST.

Datum. Zeit

Mittwoch, 13. September 2023 9.30 - ca. 17.00 Uhr, anschliessend Apéro

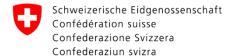
0rt

Landhaus Solothurn, Landhausquai, 4500 Solothurn www.solothurn-city.ch

T +41 (0)32 626 46 76

In der Altstadt, direkt an der Aare gelegen. Nur wenige Gehminuten vom Hauptbahnhof entfernt. (siehe Plan auf der Rückseite)

Unterlagen / Übersetzung


Die Unterlagen sind in Deutsch und Französisch verfügbar und können vor der Tagung heruntergeladen werden. Die Referierenden halten ihre Vorträge in Deutsch oder Französisch; eine Simultanübersetzung (d/f) wird vor Ort zur Verfügung gestellt.

Programm

Ab 8:45	Ankunft und Kaffee	
9:30	Stellung der Altlastenbearbeitung in der aktuellen Umweltpolitik (d)	K. Schneeberger, Direktorin BAFU
	Einleitung: Sanierung alter Kehrichtabfalldeponien (d)	R. Tietz, BAFU
	Aerobisierung von Siedlungsabfalldeponien, Methoden, Erfahrungen, Kosten, Klimarelevanz, Ökobilanz (d)	R. Schuler, Sieber Cassina + Partner M. Ritzkowski, HiiCCE T. Kägi, Carbotech
	Pause	•
	Passive Entlüftungsgräben: optimale Variante bei sanierungsbedürftigen Kehrichtdeponien? Deponie am Finkenrain, Winterthur (d)	M. Hoffmann, Friedlipartner AG
	Anwendung eines multiplen Verfahrens zur Charakterisierung der Schadstoffbelastung und ihrer Verbreitung in Schutzgütern Alte Deponie in Châtillon (f)	L. Thüler, Prona Romandie SA R. Dalla Piazza, SEn FR
12:45	Mittagessen	
14:25	Förderprogramm zur Vermeidung von Deponiegasemissionen (d)	D. Aepli, Stiftung KliK
	Erfahrungen aus der Aerobisierung der Deponien Sass Grand, Bever GR und Kehlhof, Berg TG (d)	W. Meier, Ingenias AG
	Sanierung der Deponien im Stadtmist, Solothurn (d)	M. Brehmer, AfU SO R. Dürrenmatt, BHG
	Aerobisierung der Deponie Hardwald, Weiningen (d)	J. Egestorff, AWEL ZH
	Der forensische Ansatz für gesunde Flüsse (f)	AL. Zufferey, Riverexpertise
	Infoblock BAFU Stand der Arbeiten betreffend mit PFAS belastete Standorte und andere Aktualitäten (d)	M. Schwab-Wysser, BAFU R. Kettler, BAFU
	Schlusswort (d)	B. Hitzfeld, Chefin Abteilung Boden und Biotechnologie, BAFU
17:00	Apéro	

Programm

Ab 8:45	Ankunft und Kaffee	
9:30	Stellung der Altlastenbearbeitung in der aktuellen Umweltpolitik (d)	K. Schneeberger, Direktorin BAFU
	Einleitung: Sanierung alter Kehrichtabfalldeponien (d)	R. Tietz, BAFU
	Aerobisierung von Siedlungsabfalldeponien, Methoden, Erfahrungen, Kosten, Klimarelevanz, Ökobilanz (d)	R. Schuler, Sieber Cassina + Partner M. Ritzkowski, HiiCCE T. Kägi, Carbotech
	Pause	ii ragi, carbotoii
	Passive Entlüftungsgräben: optimale Variante bei sanierungsbedürftigen Kehrichtdeponien? Deponie am Finkenrain, Winterthur (d)	M. Hoffmann, Friedlipartner AG
	Anwendung eines multiplen Verfahrens zur Charakterisierung der Schadstoffbelastung und ihrer Verbreitung in Schutzgütern Alte Deponie in Châtillon (f)	L. Thüler, Prona Romandie SA R. Dalla Piazza, SEn FR
12:45	Mittagessen	
14:25	Förderprogramm zur Vermeidung von Deponiegasemissionen (d)	D. Aepli, Stiftung KliK
	Erfahrungen aus der Aerobisierung der Deponien Sass Grand, Bever GR und Kehlhof, Berg TG (d)	W. Meier, Ingenias AG
	Sanierung der Deponien im Stadtmist, Solothurn (d)	M. Brehmer, AfU SO R. Dürrenmatt, BHG
	Aerobisierung der Deponie Hardwald, Weiningen (d)	J. Egestorff, AWEL ZH
	Der forensische Ansatz für gesunde Flüsse (f)	AL. Zufferey, Riverexpertise
	Infoblock BAFU Stand der Arbeiten betreffend mit PFAS belastete Standorte und andere Aktualitäten (d)	M. Schwab-Wysser, BAFU R. Kettler, BAFU
	Schlusswort (d)	B. Hitzfeld, Chefin Abteilung Boden und Biotechnologie, BAFU
17:00	Apéro	

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Umwelt BAFU Direktion

Die Altlastenbearbeitung in der aktuellen Umweltpolitik

Katrin Schneeberger, Direktorin BAFU

Q

Solothurn

Quelle: www.stadtmist.so.ch

Ziele des BAFU

- Bekämpfung des Klimawandels und Anpassung an die Veränderung des Klimas
- Langfristiger Schutz und nachhaltige Nutzung der natürlichen Ressourcen
- Stärkung der Kreislaufwirtschaft
- Schutz vor Naturgefahren für Menschen und Sachwerte
- Schutz von Menschen und Umwelt vor übermässiger Belastung

Schwerpunkte der Umweltpolitik

Klima

Vermeidung von Methangasemissionen durch die Belüftung von alten Siedlungsabfalldeponien

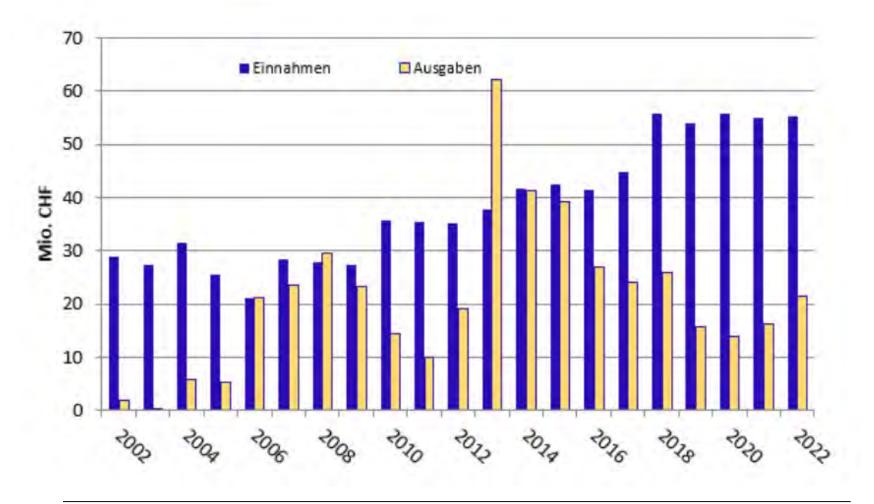
Schwerpunkte der Umweltpolitik

Ressourcenschonung und Kreislaufwirtschaft

Vermeidung von Abfällen bei Sanierungen (in-situ Massnahmen, wie Belüftung)

Verwertung von Abfällen bei Sanierungen (z.B. thermische Verwertung im Stadtmist SO)

Schwerpunkte der Umweltpolitik


Biodiversität

Ökologische Aufwertungsmassnahmen im Rahmen von Altlastensanierungen (vgl. Stadtmist SO)

Finanzierung durch den VASA-Fonds

Herausforderungen

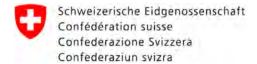
Gestern bei der Josefwiese: Die Stadt lässt Teile des Parks mit Holzschnitzeln und einem Vlies abdecken. Fotor Urs Japaiss

«Wir wollen hier die Kleinsten schützen»

Dioxin Die Stadt Zürich wird nächstens 6000 Quadratmeter Boden rund um die Josefwiese wegen erhöhter Schadstoffwerte austauschen. Gestern wurden erste Sofortmassnahmen ergriffen.

Quelle: TA 1.2.2023

Alerte aux PFAS: Monthey aux avant-postes



Quelle: Le Temps 13.12.2022

Erfolgsfaktoren der Altlastenbearbeitung in der Schweiz

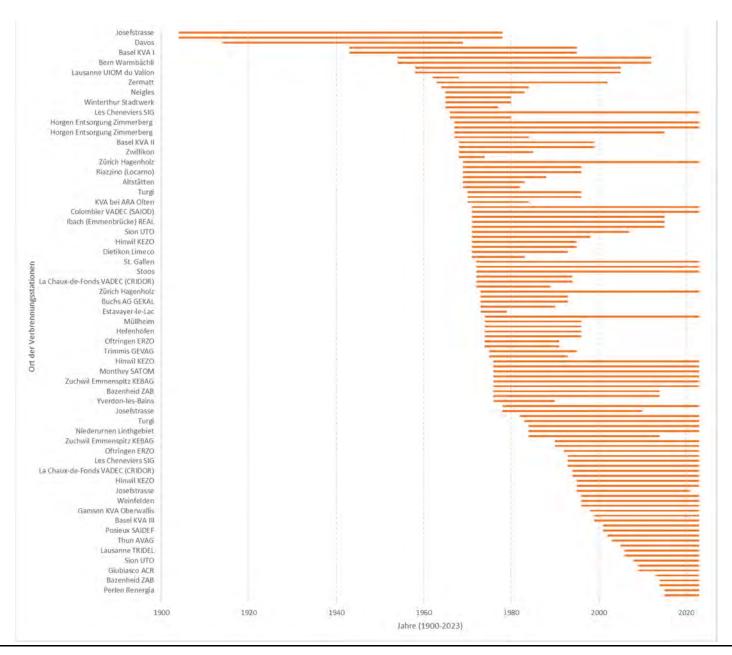
Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK **Bundesamt für Umwelt BAFU** Abteilung Boden und Biotechnologie

—Symposium 2023—

Sanierung alter Kehrichtdeponien

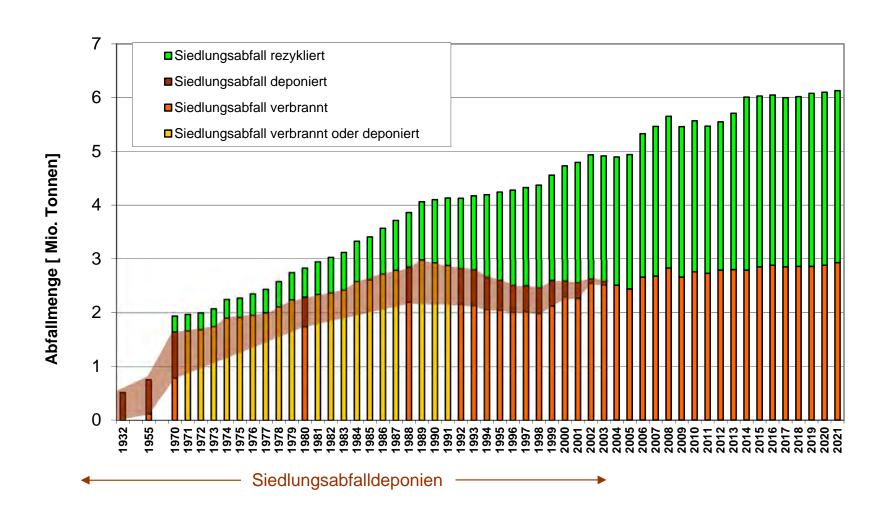
Reto Tietz, Sektion Altlasten, BAFU

Stimmungsbild Stinkberg 1963

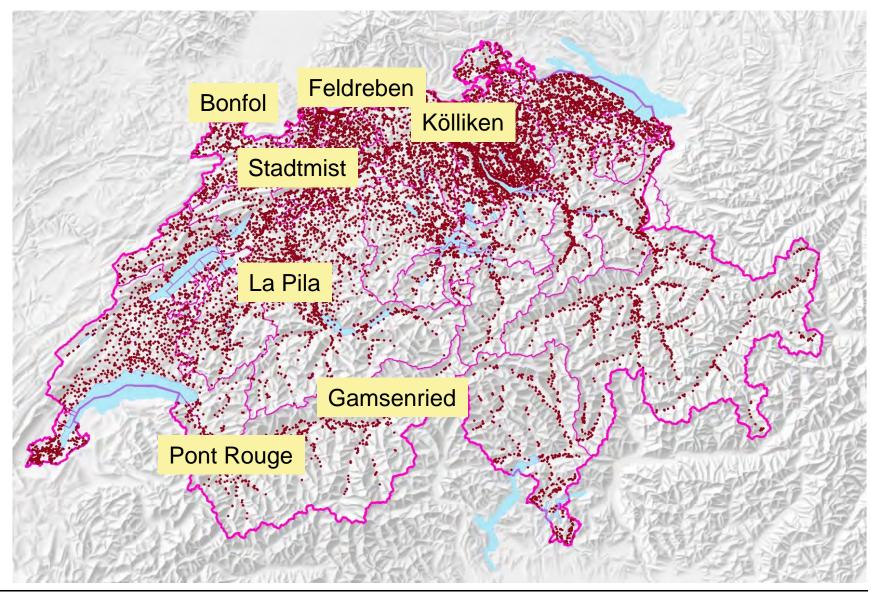

Q

Gesetzgebung

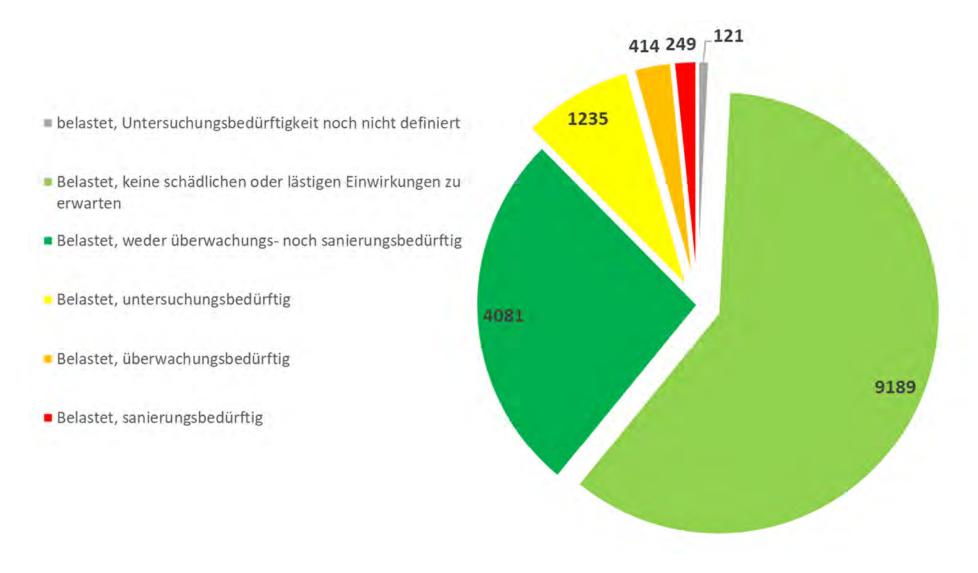
- 1955: **Gewässerschutzgesetz**
 - → keine gewässerverunreinigenden Stoffe in Gewässern
- 1971: Revision Gewässerschutzgesetz
 - → Schliessung von gewässergefährdenden Deponien
- 1976: Deponierichtlinie
 - → Zuweisung der Siedlungsabfälle auf Klasse III Deponien
- 1991: Technische Verordnung über Abfälle (TVA)
 - → Bewilligungspflicht, Anforderungen an Standort, Technik, Betrieb und Abfälle
- 2000: Deponieverbot für brennbare Abfälle
- 2015 Verordnung über die Vermeidung von Abfällen (VVEA)


O

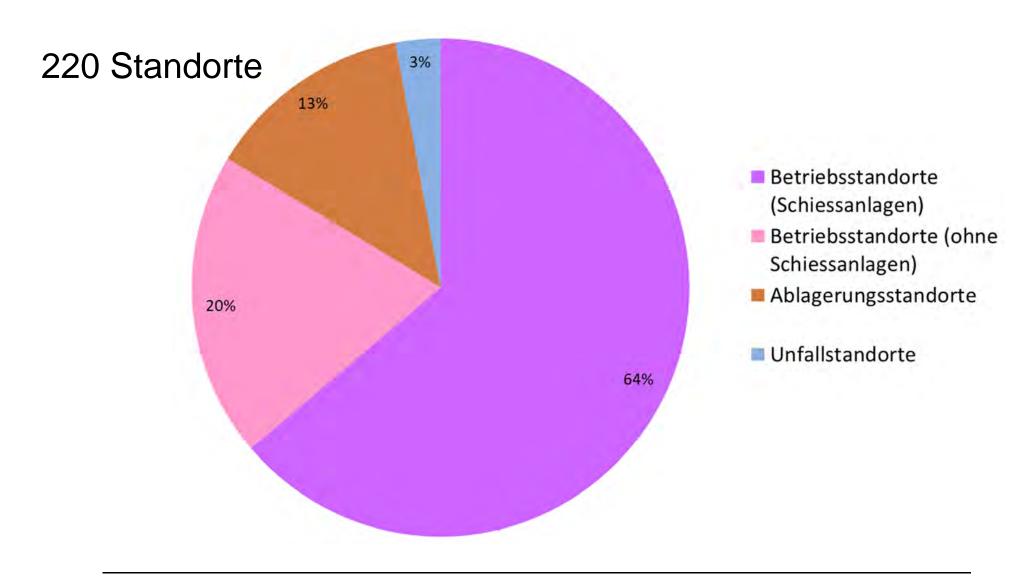
KVA's in der Schweiz



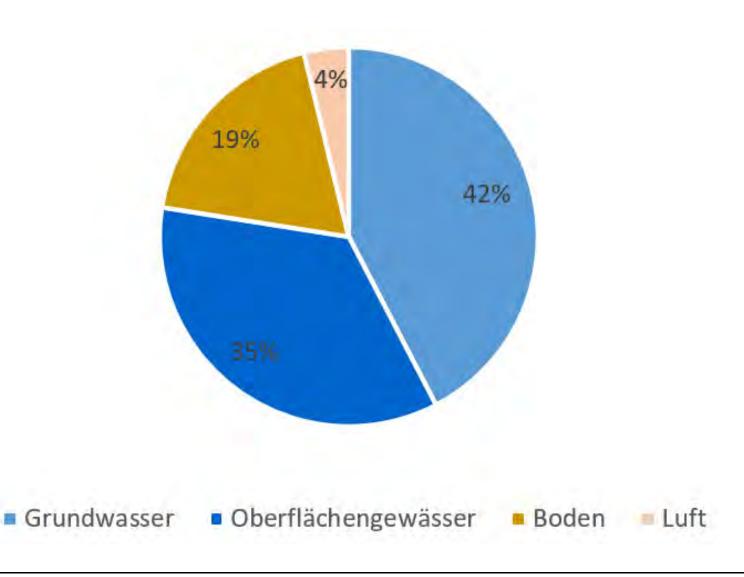
Entsorgung der Siedlungsabfälle in der Schweiz seit 1932



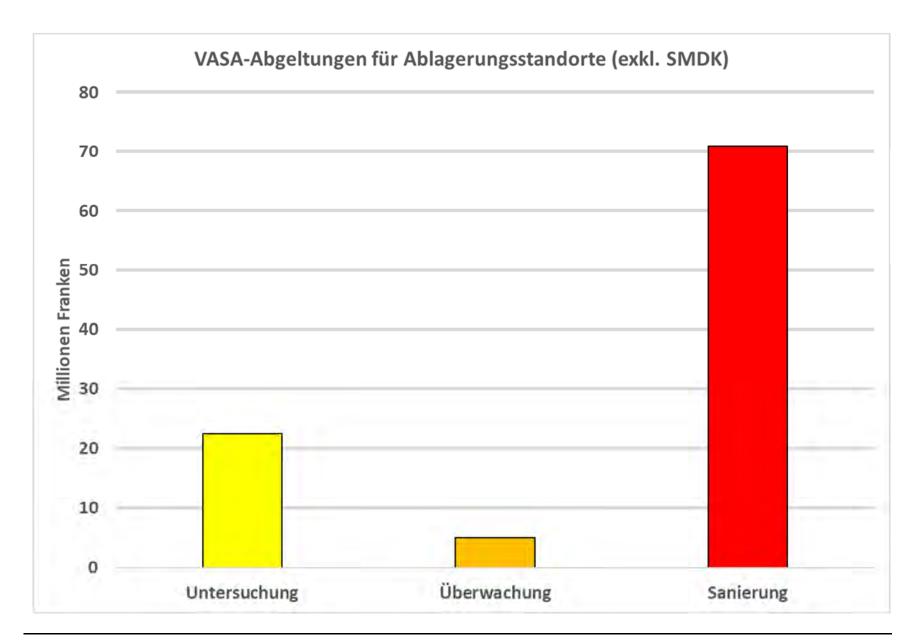
Belastete Ablagerungsstandorte der Schweiz



Status der Ablagerungsstandorte Ende 2022



Sanierte Standorte nach Standorttyp Ende 2022



Betroffene Schutzgüter der sanierten Deponien (Ende 2022)

U

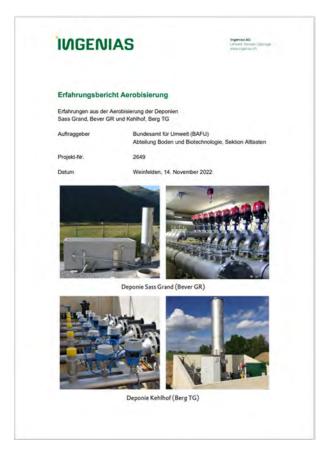
VASA-Abgeltungen

Häufigste Sanierungsauslöser und Sanierungsmassnahmen

Sanierungsauslöser	Angewandte Massnahmen	
Einsturzgefährdete oder undichte Eindolungen	Offenlegung des Gewässers um den Ablagerungsstandort	
	 Offenlegung des Gewässers über den Ablagerungsstandort 	
	Reparatur der Eindolung z.B. mittels Inliner	
Erosion des Deponiekörpers an	Sicherung der Ufer durch Verbauungen	
Uferböschungen und Freisetzung von Abfällen in die Gewässer	Dekontamination des Ablagerungsstandorts	
Freisetzung von Schadstoffen in die Gewässer (Oberflächengewässer und	Fassung und Ableitung der Sickerwässer in eine ARA oder Pflanzenkläranlage	
Grundwasser)	Aerobisierung des Ablagerungsstandorts	
	Dekontamination des Ablagerungsstandorts	

Häufigste Sanierungsauslöser und Sanierungsmassnahmen

Sanierungsauslöser	Angewandte Massnahmen
Freisetzung von Deponiegasen in Gebäude	 Fassung und Behandlung der Deponiegase (ggf. inkl. Aerobisierung) Abdichtung der Gebäude
Belastung des Bodens durch Schadstoffe oder Fremdstoffe	Abschälen des kontaminierten Bodens und Aufbau eines neuen Bodenhorizonts inklusive Rekultivierung.



Auslöser des Projekts und Publikationen

Umgang mit Sickerwasser- und Grundwasserbelastungen: Welchen Beitrag kann die Aerobisierung leisten?

Knacknüsse bei der Sanierung von Siedlungsabfalldeponien

- Beurteilung der Nachhaltigkeit und Verhältnismässigkeit der Massnahmen (1 bis 2 Generationen)
- Hochpumpen und Behandlung von Sickerwasser in einer Kläranlage
- Nachsorgemassnahmen nach TVA / VVEA vs Sanierungsmassnahmen nach AltIV
- Anrechenbarkeit von Unterhalts- und Betriebskosten

Bildquelle: Aargauer Zeitung

Aerobisierung Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 13.09.2023

Folie 1

Aerobisierung von Siedlungsabfalldeponien

Methoden, Erfahrungen, Kosten, Klimarelevanz, Ökobilanz

Symposium Altlasten Schweiz 2023 Solothurn, 13.09.2023

Kurzvorstellung beteiligte Personen

S C + P

Aerobisierung Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 13.09.2023

Folie 2

Auftraggeberschaft: Bundesamt für Umwelt BAFU

- Christiane Wermeille, Sektionschefin Altlasten
- Reto Tietz, Stv. Sektionschef Abteilung Boden und Biotechnologie

Projektleitung und Projektkoordination Sieber Cassina + Partner AG

- Projektleiter Rafael Schuler, dipl. Bauingenieur ETH
- Projektmitarbeit Enrico Cassina, dipl. Bauingenieur FH

Fachspezialisten Aerobisierung

- Kai Uwe Heyer, Dr.-Ing. Ingenieurbüro für Abfallwirtschaft IFAS
- Marco Ritzkowski, Dr.-Ing. Hamburg Institute for Innovation,
 Climate Protection, and Circular Economy

Fachspezialist Ökobilanz

Thomas Kägi, carbotech AG

Ziele unserer Expertise

S C + **P**

Aerobisierung
Siedlungsabfalldeponien
Expertise
Ziele

Solothurn, 13.09.2023

Folie 3

- Möglichkeiten und Grenzen der Aerobisierung zur Sanierung ehemaliger Hausmülldeponien darstellen
- Entscheidungsgrundlagen schaffen, um bei künftigen
 Variantenstudien für alte Siedlungsabfalldeponien
 einzelfallbezogen geeignete Verfahren wählen zu können
- Wirtschaftlichkeitsüberlegungen gemäss AltIV kann vom
 Sanierungsziel abgewichen werden, wenn mit der
 Sanierungsvariante unverhältnismässige Kosten resultieren

Inhalt

Aerobisierung

Folie 4

Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 413.09.2023

- 1. Methoden (R. Schuler, M. Ritzkowski)
 - Grundlagen Deponiegas
 - Angewandte Aerobisierungstechniken
 - Planungsablauf
 - Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)
- 2. Erfahrungen (M. Ritzkowski)
 - Einflussfaktoren auf die biologische Stabilisierung
 - Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien (R. Schuler)
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten (R. Schuler)
- 5. Klimarelevanz (R. Schuler)
- 6. Ökobilanz (T. Kägi)

Inhalt

Aerobisierung

Folie 5

Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 513.09.2023

1. Methoden

- Grundlagen Deponiegas
- Angewandte Aerobisierungstechniken
- Planungsablauf
- Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)

2. Erfahrungen

- Einflussfaktoren auf die biologische Stabilisierung
- Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten
- 5. Klimarelevanz
- 6. Ökobilanz

Bilder aus der Vergangenheit

Aerobisierung Siedlungsabfalldeponien

Grundlagen Deponiegas

Solothurn, 13.09.2023

Folie 6

Biologisch abbaubare Abfälle

Aerobisierung Siedlungsabfalldeponien

Grundlagen Deponiegas

Solothurn, 13.09.2023

Folie 7

All

Lebensmittelabfälle

Grünabfall

(Alt-)Papier

etc.

Gaspotenzial = $185 - 225 \text{ m}^3 \text{ pro Tonne TS}$

Grundlagen

Aerobisierung Siedlungsabfalldeponien

Grundlagen Deponiegas

Solothurn, 13.09.2023

Folie 8

Aerobisierung:

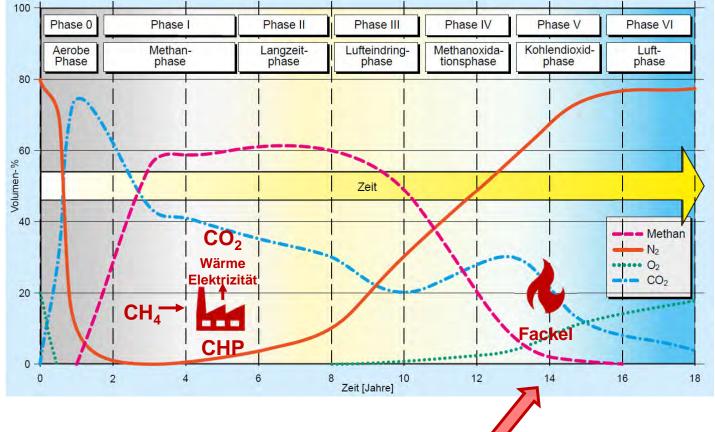
- Verfahren zur Belüftung von Deponiekörpern mit ansonsten mehrheitlich anaeroben Abbau von organischer Substanz. Die zugeführte Luft führt im Deponiekörper zu teilweise aeroben Bedingungen und aerobem Abbau. Durch den gezielten aeroben Abbau wird organischer Kohlenstoff in der Regel rascher abgebaut als durch anaeroben Abbau.
- C_{bio}: massgebender Kennwert zur Eruierung des Gesamtpotenzials an Kohlenstoff, welches noch hauptsachlich über den Gaspfad aus dem Deponiekörper emittieren kann.

Bedeutung der Deponiegase auf den Treibhauseffekt:

- (CO₂)
- Methan hat einen deutlich stärkeren Treibhauseffekt als Kohlendioxid: $GWP_{CH4} = 28$
- Wird 1 Tonne Methan verbrannt, entstehen dabei 2.75 Tonnen Kohlendioxid

Deponiegasproduktion

Aerobisierung Siedlungsabfalldeponien


Begrüssung

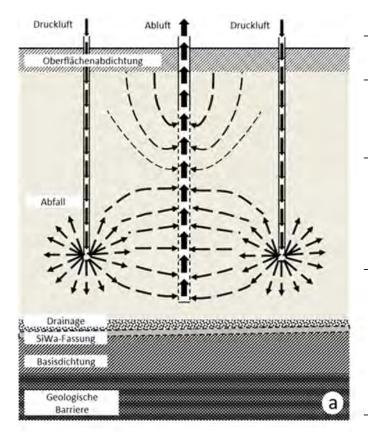
Solothurn, 13.09.2023

Folie 9

Verlauf der Deponiegasproduktion über die Zeit

10 – 15% des C_{bio} verbleibt in der Deponie

Aerobisierungstechniken – eine Vielzahl von Konzepten


Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

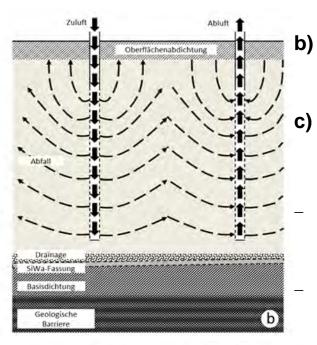
Folie 10

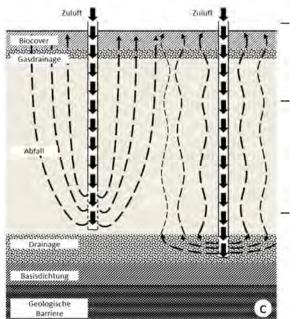
a) Hochdruckbelüftung

stossartige Druckabgabe bis zu 6 bar

- Die Lanzen sind mit einem Druckluftventil versehen
- Die Luft kann mit zusätzlichem
 Sauerstoff oder andere Nährstoffe
 angereichert werden
 - Meistens in Deponierückbauprojekte, wo Geruchsvermeidung und Arbeitsschutzaspekte im Vordergrund standen.

teuer


Aerobisierungstechniken


Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

Folie 11

Niederdruckbelüftung mit Ablufterfassung

Ziel: beschleunigte und weitreichende biologische Abfallstabilisierung

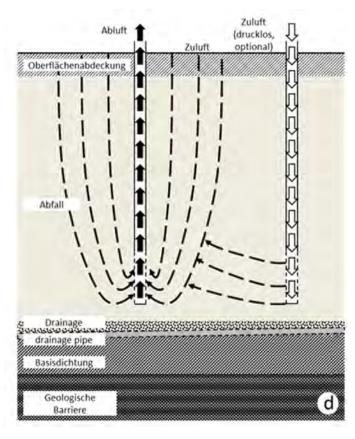
Drücke < 0.3 bar, meistens aber zwischen 20 und 80 mbar

Die Umgebungsluft wird in den Deponiekörper eingeleitet.

Eine parallel betrieben Ablufterfassung
(b) erlaubt mehr Flexibilität der
Betriebsführung

Ohne Ablufterfassungssystem (c) kann die Abluftqualität weder gefasst noch überwacht werden.

Aerobisierungstechniken – eine Vielzahl von Konzepten


Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

Folie 12

Übersauugung

- Passive Luftzufuhr: die **Umgebungsluft wird mittels** Unterdruck, allenfalls durch offene Gasbrunnen, in den Deponiekörper eingesaugt
- Die Gasbrunnen erst in tieferen Abfallschichten perforieren, um Kurzschlüsse nahe Deponieoberfläche zu vermeiden.
- Behandlung des Deponiegases mit Schwachgasfackel oder RTO

Aerobisierungstechniken eine Vielzahl von Konzepten

Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

Verfahren	Voraussetzungen	Vorteile	Nachteile
Hochdruck- belüftung	I.d.R. nur vor einem Deponierückbau	Einsatz sowohl in stark als auch in schwach verdichteten Abfällen Kontrollierte Fassung der Abluft	Kosten, hoher technischer Aufwand, kurzer Behandlungs- dauer wenig Einfluss auf Sickerwasserqualität
Niederdruck- belüftung mit Ablufterfassung (-> für Berechnung berücksichtigt)	Keine besonderen Voraussetzungen, sehr flexibel einsetzbar	Flexibilität der Betriebsführung (gezielte Lufteinleitung) Kontrollierte Fassung der Abluft	etwas höherer Aufwand in der Betriebsführung und Abluftreinigung (kürzere Behandlungs- dauer als bei Übersaugung)
Niederdruck- belüftung ohne Ablufterfassung	Nur einsetzbar, wenn unkontrollierte Gasmigration ausgeschlossen wird	Reduzierter technischer Aufwand, da keine aktive Ablufterfassung	Emissionsminderung i.d.R. geringer als Niederdruckbelüftung mit Ablufterfassung Emissionserfassung und -kontrolle schwierig
Übersaugung	Anwendung bevorzugt bei geringem Abbau- potential und geringer Mächtigkeit	Kontrollierte Fassung von Abluft	Massnahme dauert i.d.R. deutlich länger als bei aktiver Belüftung

Planungsablauf

HH

Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

- 1. Bestandsaufnahme
- Ermittlung des noch vorhandenen Emissionspotenzials mit ergänzenden Untersuchungen (Erkundungsbohrungen mit Abfallfeststoffuntersuchungen, Absaug- und Belüftungsversuche)
- 3. Planung geeigneter Massnahmen zur beschleunigten und kontrollierten Reduzierung des Restemissionspotenzials (Aerobe in situ Stabilisierung, ggf. ergänzend Befeuchtungsmaßnahmen), Angaben zu Technik und Betriebsführung
- 4. Überwachungsprogramm zur Optimierung und zum Nachweis der erfolgreichen Durchführung der Massnahme(n)

Entnahme von Abfallproben

8 drillings

2 drillings

Solothurn, 13.09.2023

Nachweiskriterien zur Erreichung der Sanierungsziele 1/2

Aerobisierung Siedlungsabfalldeponien

Methoden

Solothurn, 13.09.2023

Folie 16

Gashaushalt:

- Methan wird aufgrund von seinem hohen Treibhauseffekt als Indikator gewählt
- Methanvolumen $\leq 10~m^3~CH_4/h$ im gesamten Standort und $\leq 2~m^3~CH_4/(h \cdot ha)$

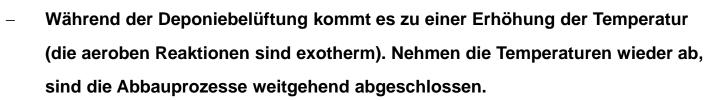
- Konzentration von CH_4 und CO_2 im Boden in der Porenluft nach AltIV, Anh. 2

Wasserhaushalt:

- Die Deponiebelüftung leistet einen Beitrag zur Verminderung der Sickerwasserbelastung (z.B. CSB, BSB₅ und Stickstoff). Trotz mittlerweile zahlreicher Projekten fehlen noch verallgemeinerbare Ergebnisse, in welchem Maße die Deponiebelüftung diese Entwicklung beschleunigt und welches Konzentrationsniveau sich zum Ende der Deponiebelüftung einstellen kann.
- Unterschreitung der 10-fachen Konzentrationswerte nach AltIV
- «Anforderungen an die Einleitung von Deponiesickerwasser» BAFU, 2012

Nachweiskriterien zur Erreichung der Sanierungsziele 2/2

Aerobisierung Siedlungsabfalldeponien


Methoden

Solothurn, 13.09.2023

Folie 17

Nachweiskriterien zur Erreichung der Sanierungsziele

Temperatur:

- Temperaturdifferenz im Vergleich zum Ausgangszustand $< 5-10\,^{\circ}C$

Setzungen:

- Der Deponiekörper erfährt aufgrund der Abbauprozesse Setzungen. Deren
 Ausmass ist jedoch schwierig zu prognostizieren.
- Qualitatives Kriterium, erlaubt eine indirekte Beurteilung des
 Stabilisierungsfortschrittes

Inhalt

Aerobisierung

Folie 18

Siedlungsabfalldeponien

Symposium Altlasten

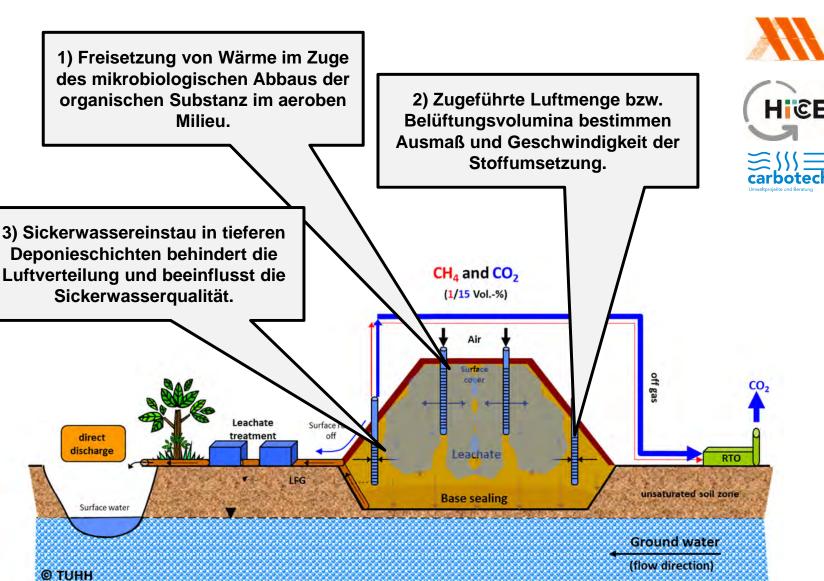
Solothurn, 1813.09.2023

Methoden ✓

- Grundlagen Deponiegas
- Angewandte Aerobisierungstechniken
- Planungsablauf
- Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)

2. Erfahrungen

- Einflussfaktoren auf die biologische Stabilisierung
- Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten
- 5. Klimarelevanz
- 6. Ökobilanz


Deponiebelüftung Einflussfaktoren

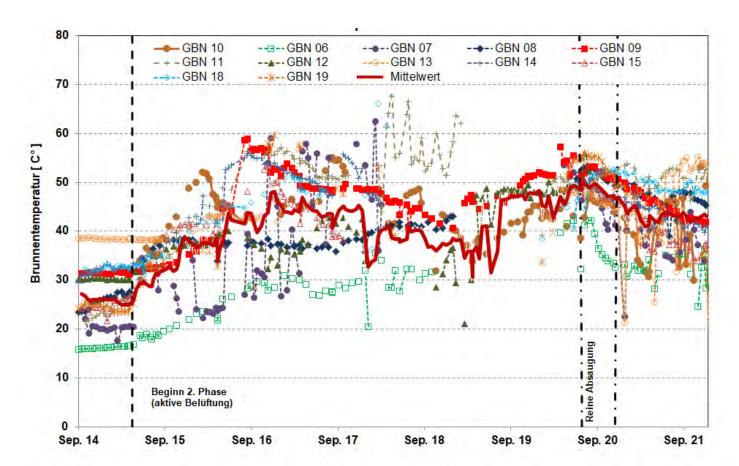
S C + **P**

Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

zu 1: Wärmefreisetzung


Aerobisierung Siedlungsabfalldeponien

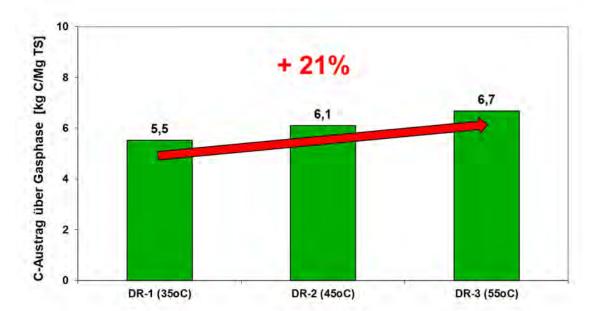
Erfahrungen

Solothurn, 13.09.2023

Folie 20

Temperaturentwicklung während der Belüftung

zu 1: Wärmefreisetzung


Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

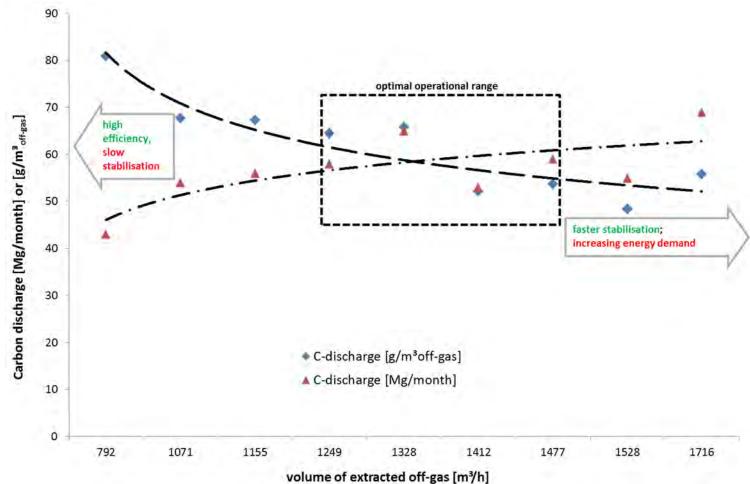
Folie 21

Steigende Temperaturen – steigender C-Austrag und steigende NH₄-N-Sickerwaserbelastung

COD / CI	35°C	50°C	65°C
Start	100 %	100 %	100 %
Ende (belüftet)	28 %	42 %	56 %
NH4-N / CI	35°C	50°C	65°C
Start	100 %	100 %	100 %
Ende (belüftet)	7 %	125 %	116 %

zu 2: Luftmenge

S C + **P**


Aerobisierung Siedlungsabfalldeponien

Erfahrungen

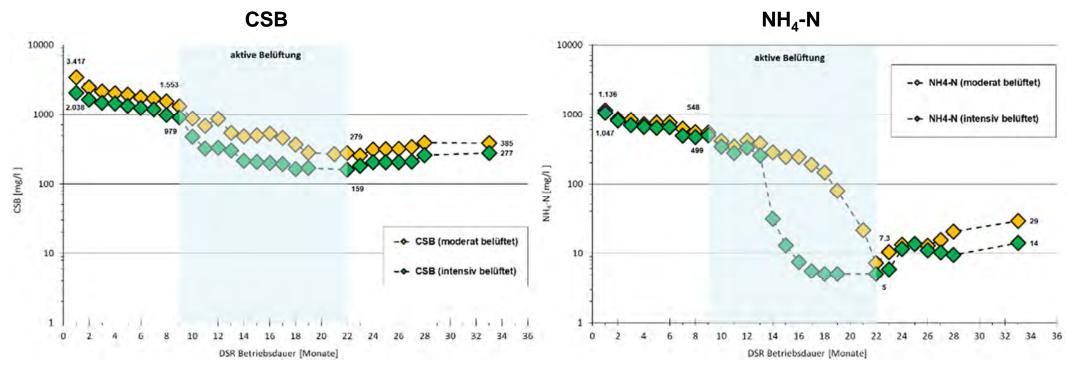
Solothurn, 13.09.2023

Folie 22

Einfluss auf den C-Austrag (Gasphase)

zu 2: Luftmenge

Einfluss auf die Sickerwasserqualität



Erfahrungen

Aerobisierung

Solothurn, 13.09.2023

Siedlungsabfalldeponien

zu 3: Sickerwassereinstau

Aerobisierung Siedlungsabfalldeponien

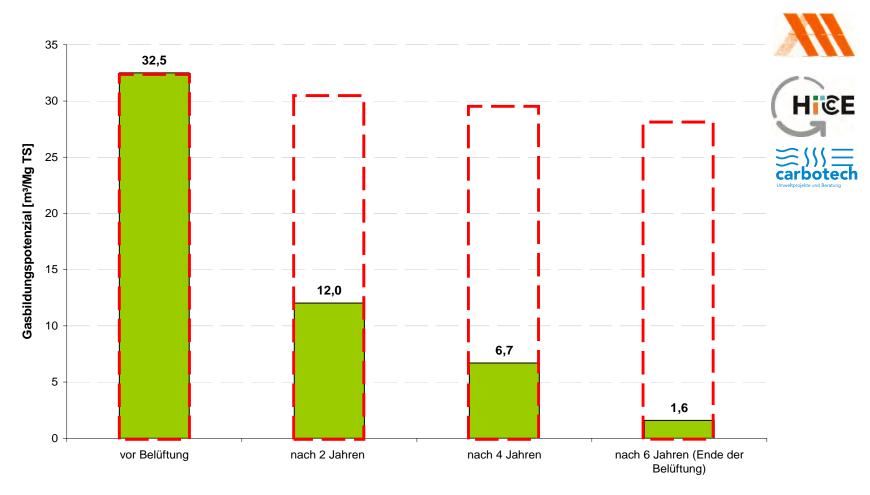
Erfahrungen

Solothurn, 13.09.2023

Folie 24

Einfluss auf die Sickerwasserqualität

- Geringere Permeabilität in tiefen Deponiebereichen reduziert die Sickerwasserfließgeschwindigkeit und führt zu Einstau;
- Diese vollständig gesättigten Bereiche werden ggf. nicht / nicht ausreichend durch die Belüftung erreicht und verbleiben in einem (teilweise) anaeroben Zustand;
- Bei der (langsamen) Durchsickerung durch solche Zonen kann es zu einer quasi nachgelagerten Verschlechterung der Sickerwasserqualität durch Vermischung kommen, wodurch die positive Wirkung der Belüftung nicht mehr eindeutig nachvollzogen werden kann;
- Es kommt zu einer (signifikanten) Verzögerung der Abnahme an organischen und stickstoffhaltigen Verbindungen im Sickerwasser.

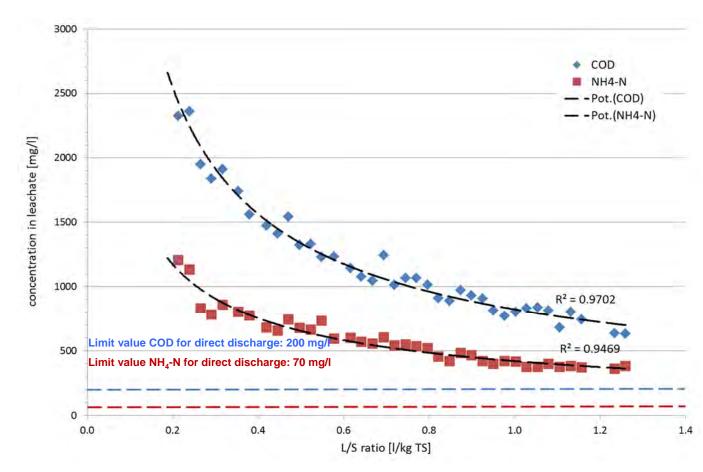

Reduktion des Gasbildungspotenzials

Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

Auswirkungen auf die Sickerwasserqualität


Aerobisierung Siedlungsabfalldeponien

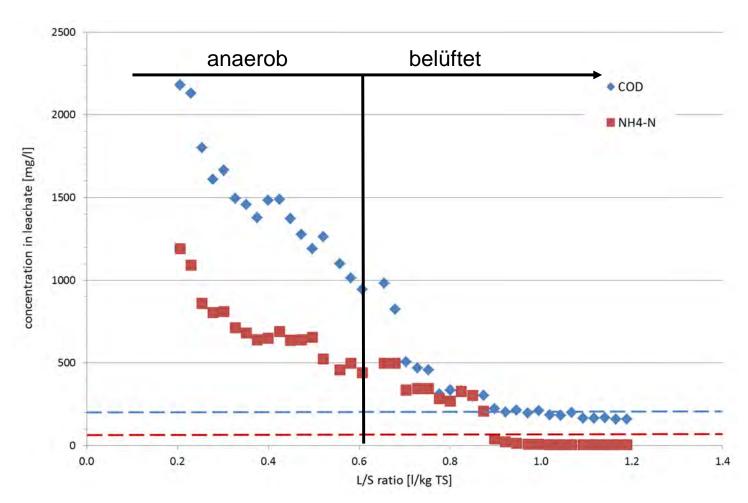
Erfahrungen

Solothurn, 13.09.2023

Folie 26

Anaerobe Bedingungen

Auswirkungen auf die Sickerwasserqualität


Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

Folie 27

belüftete Bedingungen

Fazit Erfahrungen (I)

Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

- Deponiesimulationsversuche liefern wichtige Hinweise auf die langfristig erreichbare Qualität des Deponiesickerwassers;
- Bezüglich der temporären Veränderungen während und unmittelbar nach der Belüftung sind die Ergebnisse aufgrund der deutlich unterschiedlichen Belüftungsraten jedoch nur bedingt aussagekräftig;
- Überwachungsdaten von realen, belüfteten Deponien deutet darauf hin, dass die Zeiträume bis zum Erreichen einer ausreichenden Sickerwasserqualität bei den gewählten Belüftungsraten voraussichtlich viele Jahre betragen können.

Fazit Erfahrungen (II)

AH

Aerobisierung Siedlungsabfalldeponien

Erfahrungen

Solothurn, 13.09.2023

- Zur Verbesserung der Sickerwasserbeschaffenheit belüfteter Altdeponien in überschaubaren Zeiträumen, wird empfohlen, eine angepasste Belüftungstechnik und –strategie hinsichtlich erhöhter Belüftungsvolumina zur intensiven Sauerstoffversorgung insbesondere auch der tieferen ggf. porenwassergessättigten Deponiehorizonte zu wählen.
- Hierzu könnten Pilotvorhaben mit einer qualifizierten wissenschaftlichen Begleitung durchgeführt werden.
- Eine Abschätzung der Wirksamkeit der Belüftung könnte auch indirekt über die Entnahme von Feststoffproben und deren Elution (Auslaugung) erfolgen.

Inhalt

Aerobisierung

Folie 30

Siedlungsabfalldeponien

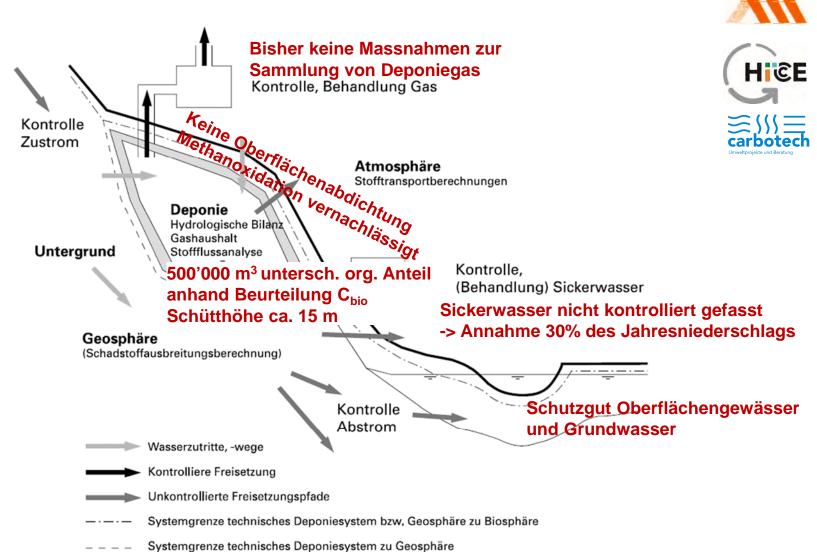
Symposium Altlasten

Solothurn, 3013.09.2023

- Methoden ✓
 - Grundlagen Deponiegas
 - Angewandte Aerobisierungstechniken
 - Planungsablauf
 - Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)
- 2. Erfahrungen ✓
 - Einflussfaktoren auf die biologische Stabilisierung
 - Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten
- 5. Klimarelevanz
- 6. Ökobilanz

Modellannahmen

S C + P


Expertise Aerobisierung Siedlungsabfalldeponien

Expertise Modellannahmen

Ittigen, 03.11.2021

Folie 31

Siedlungsabfalldeponie der 80er Jahre

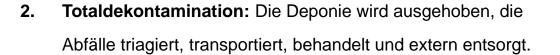
Übersicht der betrachteten Szenarien und Varianten

S C + **P**

Aerobisierung
Siedlungsabfalldeponien
Expertise

Modellannahmen

Solothurn, 13.09.2023


Folie 32

4 Sanierungsvarianten:

Status Quo: Die Deponie wird sich selbst überlassen und die Verrottungsprozesse klingen über die nächsten 50 Jahre allmählich ab.

Aerobisierung: Der Deponiekörper wird aktiv belüftet und die Deponiegase gefasst und behandelt.

4. Aktive Entgasung ohne Aerobisierung: Deponiekörper wird aktiv entgast und die Deponiegase gefasst und behandelt.

Ubersicht der betrachteten

Szenarien und Varianten

Aerobisierung Siedlungsabfalldeponien **Expertise**

3.

Szenario 3

Solothurn, 13.09.2023

Modellannahmen

Folie 33

Für die 4 Sanierungsvarianten wurden je 3 Szenarien definiert:

- Szenario 1 $C_{bio} > 12 \text{ kg/t}$ TM entspricht ungefähre einer Deponie/eines Kompartiments mit Ablagerungsphase von 1980 – 2000*
- 2. Szenario 2 12 kg/t TM > C_{bio} > 6 kg/t TM entspricht ungefähre einer Deponie/eines Kompartiments mit Ablagerungsphase von 1970 – 1990*
- entspricht ungefähre einer Deponie/eines Kompartiments mit Ablagerungsphase von 1950 - 1970*

6 kg/t TM > Cbio > 2.5 kg/t TM

*Berechnungen zu den Szenarien mit dem IPCC Modell mit unterschiedlichem Anteil an biologisch verfügbarem Kohlenstoff Chio lassen Rückschlusse auf das Alter der Ablagerung zu. Der Anteil an C_{hio} wird jedoch nicht allein anhand des Alters der Ablagerung bestimmt, sondern ist im Einzelfall festzulegen (Wasserhaushalt, Luftzirkulation, technische Einrichtungen)

Übersicht der betrachteten Szenarien und Varianten

Aerobisierung
Siedlungsabfalldeponien
Expertise
Modellannahmen

Solothurn, 13.09.2023

	Sanierungsvarianten	Szenario 1 C _{bio} > 12kg/t TM	Szenario 2 12kg/t TM > C _{bio} > 6kg/t TM	Szenario 3 6kg/t TM > C _{bio} > 2.5 kg/t TM
1	Status Quo	Die Deponie wird sich selbst überlassen. Die produzierten Deponiegase entweichen direkt in die Atmosphäre.	Die Deponie wird sich selbst überlassen. Die produzierten Deponiegase entweichen direkt in die Atmosphäre.	Die Deponie wird sich selbst überlassen. Die produzierten Deponiegase entweichen direkt in die Atmosphäre
2	Totaldekontamination	Die Deponie wird ausgehoben, allenfalls erhöhte Entsorgungskosten wegen hohen Belastungen	Die Deponie wird ausgehoben	Sanierungsvariante allenfalls nicht relevant
3	Aerobisierung	In einer ersten Phase erfolgt eine herkömmliche Erfassung der Deponiegase und Behandlung	Hier wird direkt eine Aerobisierung (Niederdruckbelüftung) installiert.	Prüfen wie weit hier eine Aerobisierung zu einer massgeblichen Reduktion der CH ₄ - Emissionen führt (ev. Klimaschutz)
4	Aktive Entgasung ohne Aerobisierung	Die Deponie wird aktiv entgast: Erfassung der Deponiegase und Behandlung	Die Deponie wird aktiv entgast: Erfassung der Deponiegase und Behandlung	Prüfen wie weit hier eine Aerobisierung zu einer massgeblichen Reduktion der CH ₄ - Emissionen führt (ev. Klimaschutz)

Materialzusammensetzung in der Modelldeponie

Aerobisierung
Siedlungsabfalldeponien
Expertise
Modellannahmen

Solothurn, 13.09.2023

Folie 35

Abfallarten Type de déchets Generi di rifiuti	Schweiz Suisse Svizzera	Thun Thome Thun	Holland Hollande Olanda	BRD RRA Germania federale	Wienne Vienne Vienne	Berlin, Busseldorf, Frankfurt Berlin, Berlino, Francfort Kantel, Mittel, moyenne, media)	1973/74
	72	%	78	%	%	7,	%
Papier Papier Carta	36	40	22	22-35	27	30	43
Kunststoffe Matières synthétiques Materiale sintetico	4	6,5	6	2-3	6	5	-
Textilien, Leder, Gummi, Holz Textiles, cuir, coutchouc, bois Tessili, cuoio, gomma, legno	8	11,5	3	2-4	10	6	7
Küchenabfälle Déchets de cuisine Rifiuti di cucina	20	9	1	10-20	1	1	12
Gartenabfälle Dēchets horticoles Rifiuti di giardino	8	13,5	48		22	24	14
Glas Verre Vetro	8	8	12	8-10	11	1.5	9
Steine, Sand, Ton Pierres, sable, argile Sassi, sabbia, argilla	4	1	-	2-6	-	-	-
Metalle Métaux Metalli	5-8	5	3	4-9	8	5	9
Diverse Arten Divers Vari generi	4-7	5-6	-	-	-	-	
Total / total / totale	100%						

Abfallerhebung des BAFU, 1987

Davon diverse Parameter abgeleitet für jeweilige Abfälle für die Grasprognose

- Trockenmasse
- DOC
- Etc.

Gasprognose nach IPCC Methode

Aerobisierung
Siedlungsabfalldeponien
Expertise
Modellannahmen

Solothurn, 13.09.2023

CH ₄ gene	erated _T = DDOCma _{T-1} * (1 - e ^{-k}) * F * 16/12
DDO	Cma _{T-1} = zum Ende des Jahres T-1 im Deponiekörper vorhandenes DDOCm [Gg] mit DDOCm = Kohlenstoff, der unter den in der Deponie herrschenden Bedingungen zersetzt wird [Gg]
k =	Abbaukonstante [1/a] = ln(2) / t _{1/2} mit t _{1/2} = Halbwertszeit [a]
F=	Methankonzentration im gebildeten Deponiegas [-] (0,5)
16/12	2 = Molekulargewichtsverhältnis CH ₄ /C [-]
T =	Jahr, für das die Kalkulation durchgeführt wird
DDOCm :	= W * DOC * DOC _f * MCF
W =	Masse des deponierten Abfalls [Gg Abfall]
DOC	= Anteil abbaubarer organischer Kohlenstoff im deponierten Abfall [Gg C / Gg Abfall]
DOC	Anteil DOC, der in der Deponie anaerob zersetzt wird [-]
MCF	Methan-Korrektur-Faktor [-]; 1 - MCF = Anteil DOC, der (im Ablagerungsjahr) aerob abgebaut wird

Gasprognose nach IPCC Methode

S C + **P**

Aerobisierung
Siedlungsabfalldeponien
Berechnungsmethode
IPCC

Solothurn, 13.09.2023

Abfallfraktion		Ansatz im d	eutschen NIR	Vorschlag modifizierter Ansatz					
	DOC	DOC _f	Halbwerts- zeit Jahre	k-Wert	DOC	DOC _f	Halbwerts -zeit Jahre	k-Wert	
	MgC/MgFM	-		1/a	MgC/MgFM	-		1/a	
Organik (Food waste)	0,18 (ab NIR 2019: 0,15)	0,5	4	0,173	0,15	0,5	4	0,173	
Garten- und Parkabfälle (Garden)	0,2	0,5	7	0,099	0,2	0,5	7	0,099	
Papier und Pappe (Paper)	0,4	0,5	12	0,058	0,4	0,5	7	0,099	
Holz (und Stroh) (Wood and	0,43	0,5	23	0,030	0,43	0,1	50	0,014	
straw)									
Textilien (Textiles)	0,24	0,5	12	0,058	0,24	0,5	12	0,058	
Windeln (Disposable nappies)	0,24	0,5	12	0,058	0,24	0,5	12	0,058	
Klärschlamm (Sewage sludge)	0,15	0,5	4	0,173	0,15	0,5	4	0,173	
Verbund- materialien	0,1	0,5	12	0,058	0,1	0,5	12	0,058	
MBA-Abfälle	0,023	0,5	12	0,058	0,023	0,5	12	0,058	

Inhalt

Aerobisierung

Folie 38

Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 3813.09.2023

Methoden ✓

- **Grundlagen Deponiegas**
- **Angewandte Aerobisierungstechniken**
- **Planungsablauf**
- Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)

2. Erfahrungen ✓

- Einflussfaktoren auf die biologische Stabilisierung
- Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- Expertise Aerobisierung von Siedlungsabfalldeponien 🗸 3.
 - **Ziele**
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien

Kosten 4.

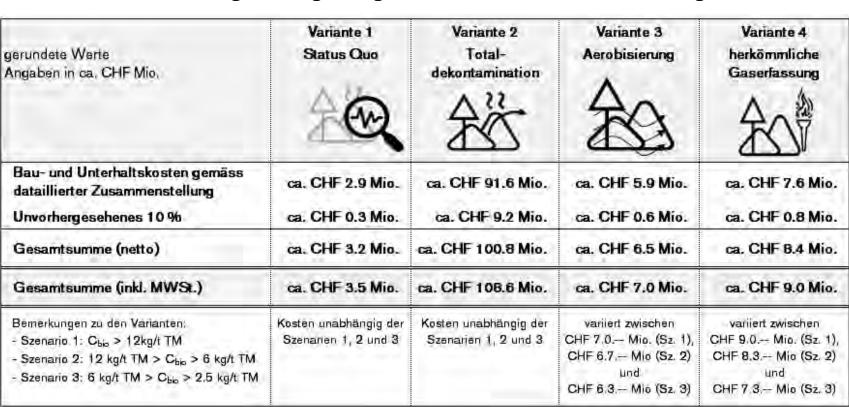
- 5. Klimarelevanz
- Ökobilanz

Kosten

Aerobisierung Siedlungsabfalldeponien

Ergebnisse:

Kosten


Solothurn, 13.09.2023

Folie 39

Totaldekontamination ist das teuerste Vorgehen mit über 100 Mio. CHF

Aerobisierung etwas günstiger als herkömmliche Gasfassung.

Kostengutschrift CO₂ Kompensation

Aerobisierung Siedlungsabfalldeponien

Kosten/Klimarelevanz

Solothurn, 13.09.2023

Folie 40

Stiftung Klimaschutz und CO2-Kompensation KliK

		Sanierun	gsvariante 1 (S	tatus Quo)	Sanierungsvariante 3 (Aerobisierung)			Sanierungsvariante 4 (konventionelle Entgasung)		
		Szenario 1	Szenario 2	Szenario 3	Szenario 1	Szenario 2	Szenario 3	Szenario 1	Szenario 2	Szenario 3
Summe Emissionen aus CH ₄ (IPCC) für OX% = 0	(t CO ₂₋ eq)	76'311	39'677	15'914	22'803	13'484	5'388	28'158	16'299	8'246
Abzüglich Methanoxidation (OX% = 50%)	(t CO ₂₋ eq)	38'156	19'838	7'957	11'402	6'742	2'694	14'079	8'149	4'123
Betriebsdauer der Massnahme	(Jahre)	50	50	50	15	12	10	50	40	30
Zuzüglich t CO ₂ -eq aus Stromverbrauch	2.42E-05	0	0	0	64	51	32	106	85	45
Für KLIK bereinigte totale CO ₂ -eq auf 50 Jahre	•	38'156	19'838	7'957	11'465	6'793	2'726	14'185	8'234	4'168
Verminderung gegenüber Szenario 1	(t CO ₂₋ eq)	0	0	0	26'690	13'046	5'231	23'971	11'604	3'789
Kostenbeiträge von KLIK (CHF/t CO ₂)	120	0	0	0	3'202'847	1'565'462	627'743	2'876'468	1'392'485	454'731
Bei Überschreitung Baukosten um 150%	70			1		1				
Total Baukosten Kostenschätzung_v2.1		3'500'000	3'500'000	3'500'000	7'000'000	6'700'000	6'300'000	9'000'000	8'300'000	7'300'000
Netto Baukosten nach Abzug der KLIK-Beiträge		3'500'000	3'500'000	3'500'000	3'797'153	5'134'538	5'672'257	6'123'532	6'907'515	6'845'269

Fazit Kosten bezüglich Aerobisierung

Aerobisierung Siedlungsabfalldeponien

Kosten

Solothurn, 13.09.2023

Folie 41

Wieso nicht gleich Aerobisieren, wenn sowieso eine Gaserfassung vorgesehen ist?

Die Investitionskosten für beide Gaserfassung resp. Aerobisierungs-Varianten unterscheiden sich nicht wesentlich, da der technische Mehraufwand zur Deponiebelüftung (u.a. Belüftungsverdichter in Gasverdichterstation, Temperaturüberwachung, Zweikreissystem bei Gasleitungen) relativ gering ist.

- Die Betriebs- und Unterhaltungskosten sowie der Energiebedarf pro Betriebsjahr sind bei der Deponiebelüftung zwar hoher, dafür ist der Betriebszeitraum deutlich kurzer.
- Im Hinblick auf den Klimaschutz k\u00f6nnen durch die Deponiebel\u00fcftung noch nennenswerte Emissionsvermeidungspotenziale realisiert werden, was sich durch die Kostenbeitr\u00e4ge auch finanziell lohnt -> (Einsparpotential von mehreren Mio. CHF je nach Fall)

Inhalt

Aerobisierung

Folie 42

Siedlungsabfalldeponien

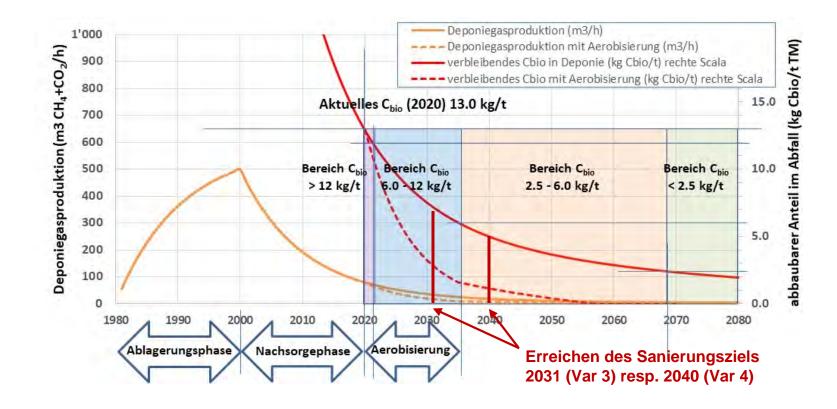
Symposium Altlasten

Solothurn, 4213.09.2023

- Methoden ✓
 - Grundlagen Deponiegas
 - Angewandte Aerobisierungstechniken
 - Planungsablauf
 - Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)
- 2. Erfahrungen ✓
 - Einflussfaktoren auf die biologische Stabilisierung
 - Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien ✓
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten ✓
- 5. Klimarelevanz
- 6. Ökobilanz

Klimarelevanz

Aerobisierung Siedlungsabfalldeponien


Klimarelevanz

Solothurn, 13.09.2023

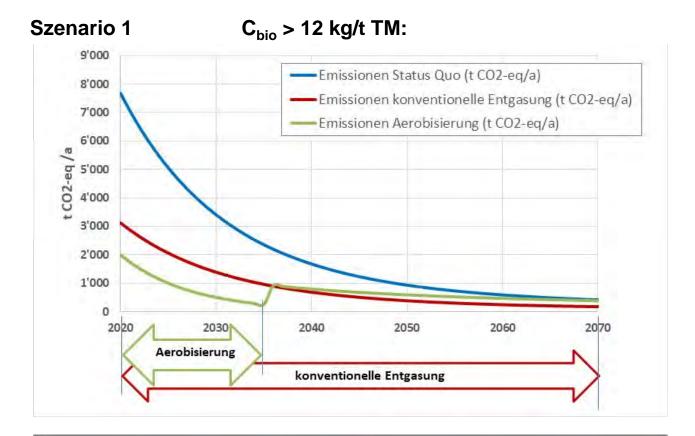
Folie 43

Szenario 1 $C_{bio} > 12 \text{ kg/t TM}$:

- Ablagerung 1980 2000
- $C_{bio} = 57.7 \, kg/t \, TM$ im Jahre 2000 bzw. $13 \, kg/t \, TM$ im Jahre 2020

Klimarelevanz

S C + P



Aerobisierung Siedlungsabfalldeponien

Langfristige Wirksamkeit

Solothurn, 13.09.2023

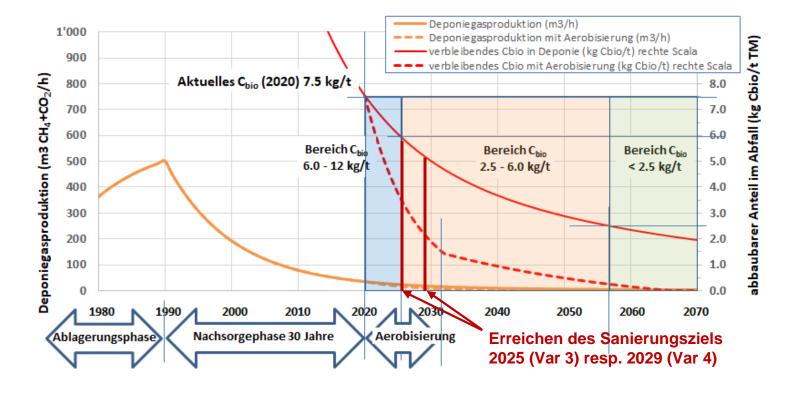
Folie 44

Summe 2020 - 2070 Status Quo: 105'464 t CO2-eq Summe 2020 - 2070 konv. Entgasung: 43'111 t CO2-eq Summe 2020 - 2070 Aerobisierung: 34'138 t CO2-eq

Langfristige Wirksamkeit der Massnahmen

Aerobisierung Siedlungsabfalldeponien

Klimarelevanz

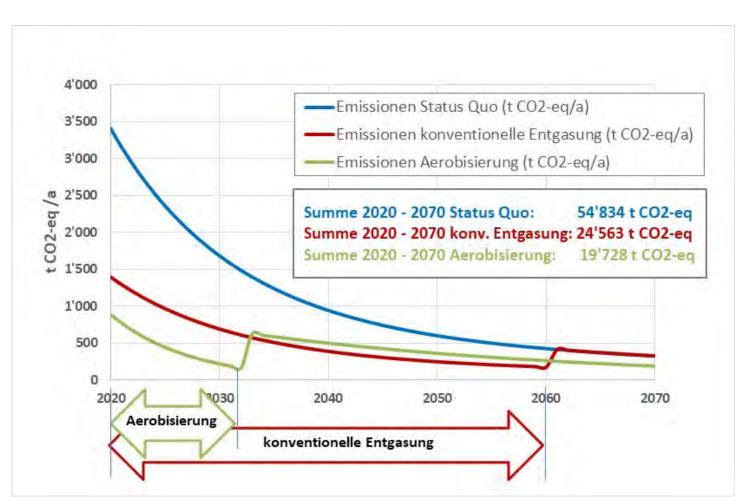

Solothurn, 13.09.2023

Folie 45

Szenario 2 12 kg/t TM > C_{bio} > 6 kg/t TM :

- Ablagerung 1970 1990
- $C_{bio} = 57.7 \, kg/t \, TM$ im Jahre 1990 bzw. $7.5 \, kg/t \, TM$ im Jahre 2020

Langfristige Wirksamkeit der Massnahmen


Aerobisierung Siedlungsabfalldeponien

Klimarelevanz

Solothurn, 13.09.2023

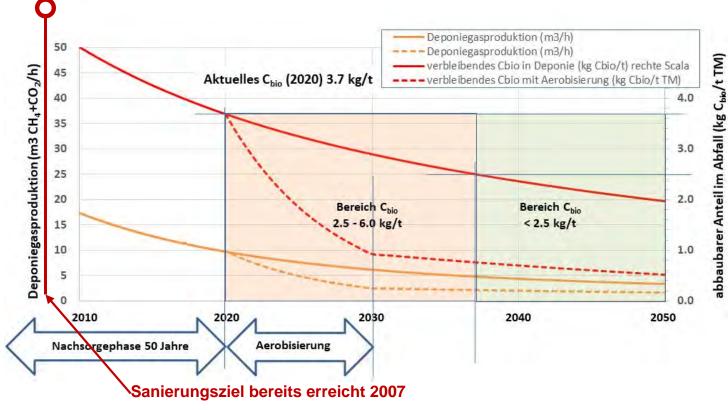
Folie 46

Szenario 2 12 kg/t TM > C_{bio} > 6 kg/t TM :

Langfristige Wirksamkeit der Massnahmen

S C + **P**

Aerobisierung Siedlungsabfalldeponien


Langfristige Wirksamkeit

Solothurn, 13.09.2023

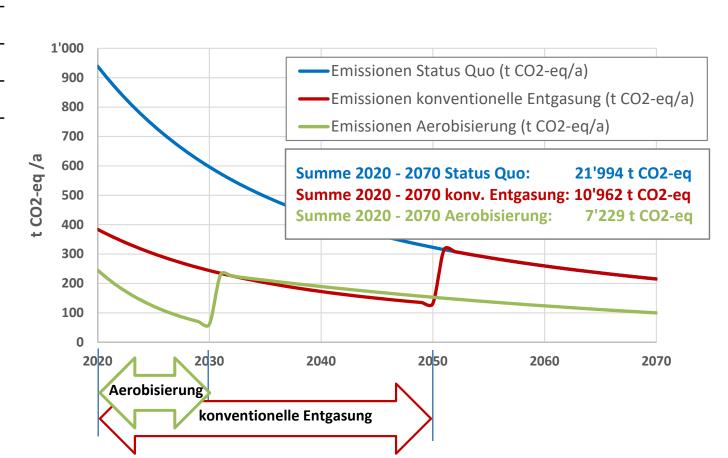
Folie 47

Szenario 3: 6 kg/t TM > Cbio > 2.5 kg/t TM

- Ablagerung 1950 1970
- $C_{bio} = 57.7 \, kg/t \, TM$ im Jahre 1970 bzw. $3.7 \, kg/t \, TM$ im Jahre 2020

Langfristige Wirksamkeit der Massnahmen

6 kg/t TM > Cbio > 2.5 kg/t TM



Aerobisierung Siedlungsabfalldeponien

Szenario 3:

Langfristige Wirksamkeit

Solothurn, 13.09.2023

Inhalt

Aerobisierung

Folie 49

Siedlungsabfalldeponien

Symposium Altlasten

Solothurn, 4913.09.2023

- Methoden ✓
 - Grundlagen Deponiegas
 - Angewandte Aerobisierungstechniken
 - Planungsablauf
 - Nachweiskriterien zum Sanierungsziel (Diskussion Gasemissionen, Deponiesickerwasser)
- 2. Erfahrungen ✓
 - Einflussfaktoren auf die biologische Stabilisierung
 - Erfahrungen Auswirkungen Gaspfad und Deponiesickerwasser
- 3. Expertise Aerobisierung von Siedlungsabfalldeponien
 - Ziele
 - Modellannahmen
 - Betrachtete Sanierungsvarianten und Szenarien
- 4. Kosten ✓
- Klimarelevanz ✓
- 6. Ökobilanz

Ökobilanz: Ziel und Rahmenbedingungen

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

Solothurn, 13.09.2023

Folie 50

Ziel:

Die Ökobilanz wurde für vier Behandlungsvarianten durchgeführt:

- Variante 1: Status quo
- Variante 2: Totaldekontamination
- Variante 3: Aerobisierung
- Variante 4: aktive Entgasung ohne Aerobisierung

Wobei jeweils drei Deponieszenarien hinsichtlich Cbio Gehalt betrachtet wurden.

Funktionelle Einheit:

Die Vergleichsbasis (Funktionelle Einheit) der Ökobilanz ist eine exemplarische Siedlungsabfalldeponie über einen Zeitraum von 50 Jahren ab Sanierungsbeginn.

Systemgrenzen:

Die Systemgrenzen umfassen alle relevanten direkten und indirekten Prozesse, welche für die Sanierung notwendig sind sowie deren vor- und nachgelagerten Prozesse: ua. Emissionen der Baumaschinen, Transporte, Bereitstellung der Treibstoffe, Herstellung Maschinen und Infrastruktur, Bereitstellung und Entsorgung der benötigten Materialien.

Ökobilanz: Sachinventar

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

Solothurn, 13.09.2023

Folie 51

Vordergrunddaten:

 Die Systemgrössen werden als Vordergrunddaten bezeichnet. Diese wurden vom Auftraggeber und vom Projektpartner Sieber Cassina + Partner AG bereitgestellt.

Hintergrunddaten:

 Die Daten aus den Ökobilanzdatenbanken werden mit Hintergrunddaten bezeichnet. Dabei wurde die Hintergrunddatenbank UVEK:2018 verwendet, da diese vom BAFU unterstützt und empfohlen wird.

Wichtige Annahmen:

- Da die Deponie in Variante 2 (Totaldekontamination) aufgehoben wird, fallen für dieses Variante keine weiteren deponiespezifischen Umweltbelastungen für die verbleibenden 50 Jahre an.
- Für die Entsorgung des Deponats in die KVA wurde die Energierückgewinnung berücksichtigt. D.h. es wurde berücksichtigt, dass durch die Verbrennung des Deponiematerials Energie (Strom und Wärme) produziert werden kann, welche dadurch anderweitig produzierte Energie ersetzt.

Ökobilanz: Wirkbilanz und Bewertung

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

Solothurn, 13.09.2023

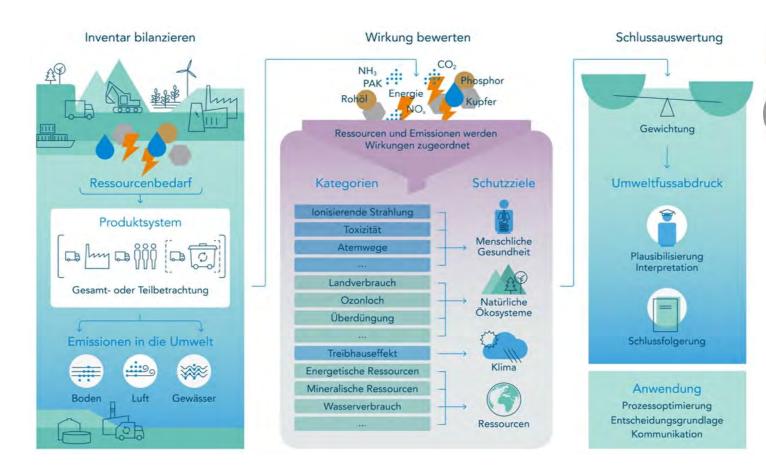
Folie 52

Klimabilanz nach IPCC – CO₂-Fussabdruck

Die Klimabilanz nach IPCC (2021) bewertet nur die klimarelevanten
 Emissionen. Diese werden anhand ihres Treibhausgaspotentials in CO₂ Äquivalente umgerechnet.

Methode der ökologischen Knappheit - Umweltfussabdruck

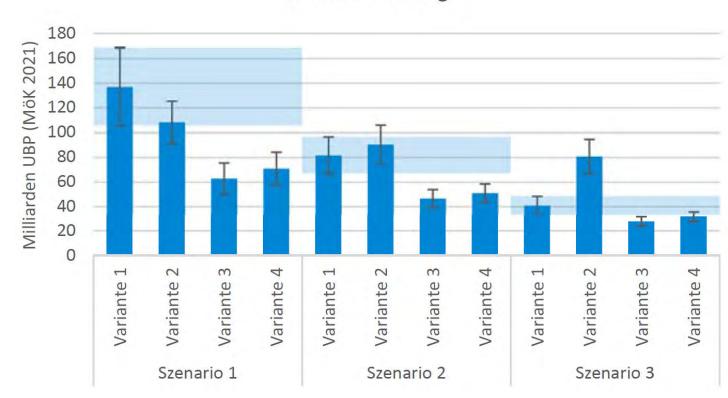
Die Methode der ökologischen Knappheit (2021) wurde mit dem Ziel entwickelt, die verschiedenen Umweltauswirkungen (u.a. CO2-Emissionen, weitere Luftemissionen, Versauerungs-Emissionen, Verbrauch nicht erneuerbarer Ressourcen, Emissionen ins Wasser und Boden etc.) zu einer einzigen Kenn-grösse (Umweltbelastungspunkte [UBP]) zusammenzufassen. Je grösser die Umweltbelastung des untersuchten Systems ist, desto mehr Umweltbelastungspunkte erzeugt seine Bewertung. Diese Methode wurde im Auftrag und unter Mitarbeit des Bundesamts für Umwelt entwickelt und ist in der Schweiz etabliert.


Funktionsweise LCA

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

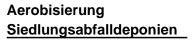
Solothurn, 13.09.2023

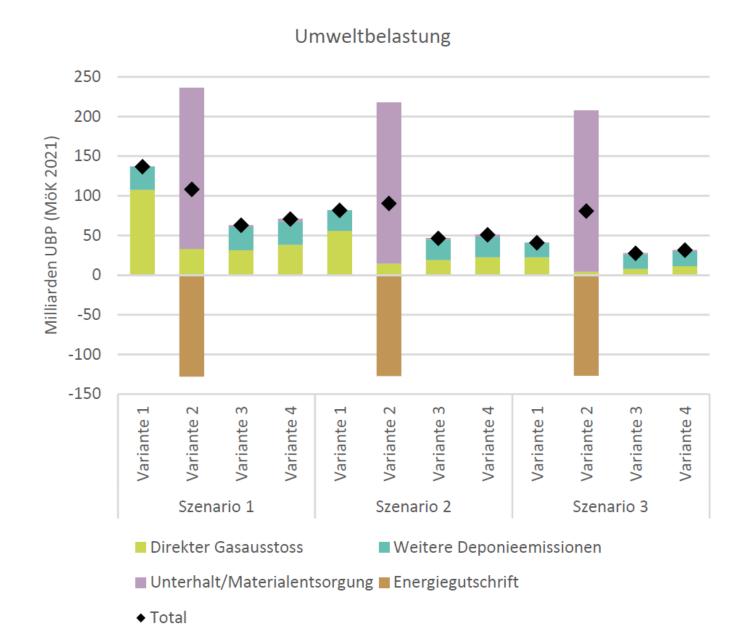

HICE

Umweltbelastung

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

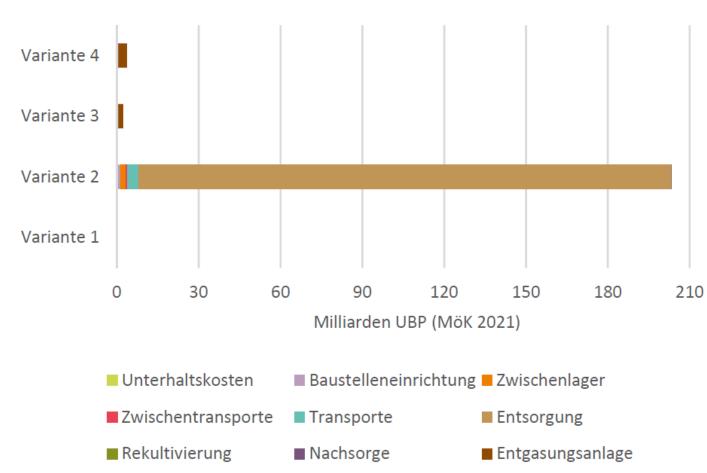

Solothurn, 13.09.2023



Ökobilanz

Solothurn, 13.09.2023

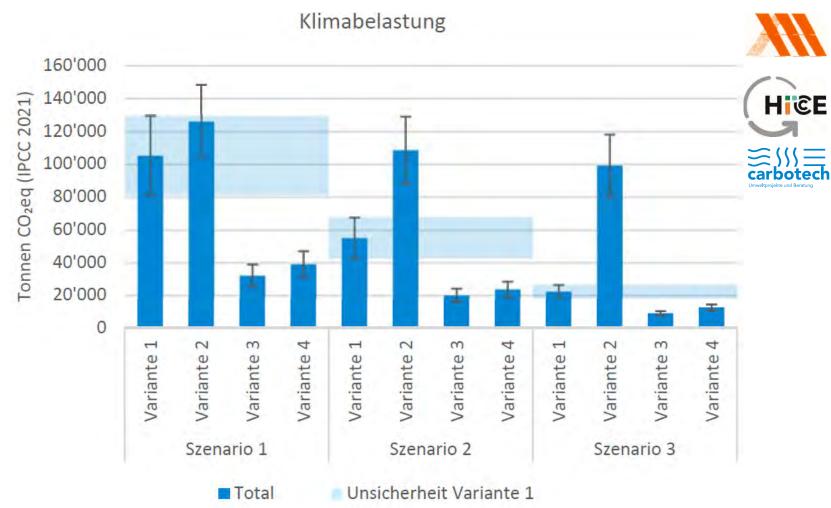
S C + **P**



Aerobisierung Siedlungsabfalldeponien

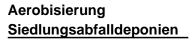
Ökobilanz

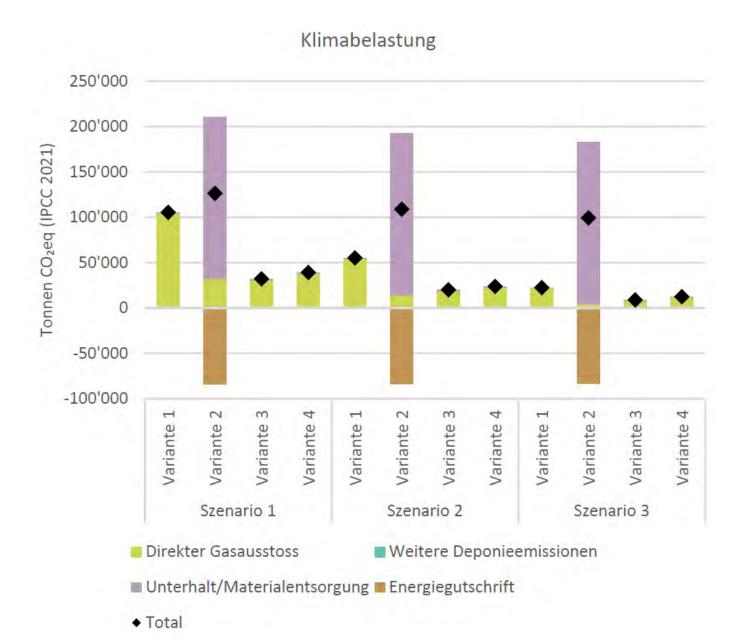
Solothurn, 13.09.2023



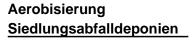
Aerobisierung Siedlungsabfalldeponien

Ökobilanz

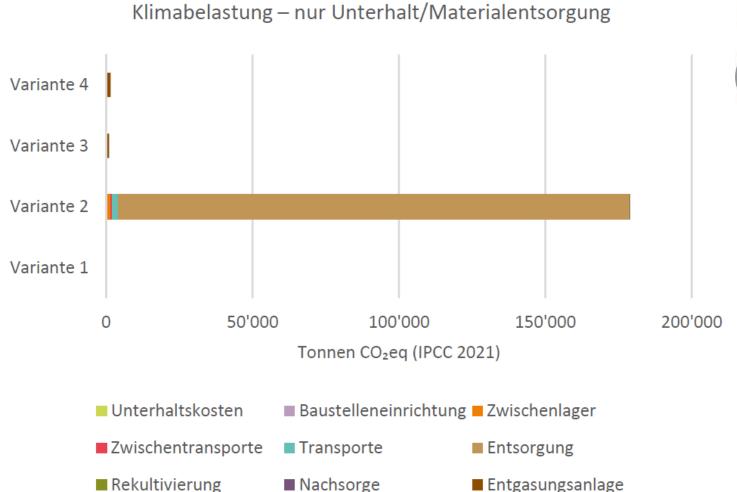

Solothurn, 13.09.2023



Ökobilanz


Solothurn, 13.09.2023

S C + **P**



Ökobilanz

Solothurn, 13.09.2023

Fazit Ökobilanz

Aerobisierung Siedlungsabfalldeponien

Schluss

Solothurn, 13.09.2023

Folie 60

 Die Umweltanalysen zeigen, dass in allen Fällen mit einer Aerobisierung der Deponie die Umweltbelastung gesenkt werden kann im Vergleich zum Status quo. Auch mit einer aktiven Entgasung kann die Situation verbessert werden.
 Dabei ist die Reduktion um so grösser, je jünger die Deponie ist. -> Möglichst bald Aerobisieren!

- Keine sinnvolle Alternative ist die Totaldekontamination, da hierbei die
 Umweltbelastung mindestens gleich hoch oder h\u00f6her ist im Vergleich zum
 Status quo.
- Im aus Klimasicht besten Fall (Aerobisierung einer 20 Jahre alten Deponie,
 Variante 1, Szenario 3) können pro Sanierung 69'400 Tonnen CO₂eq eingespart
 werden. Dies entspricht:
 - Autofahrt von mehr als 212 Millionen Kilometer
 - Erdumrundung von mehr als 5'300 Benzinautos.
 - Umweltbelastung von 12'800 Menschen in der Schweiz im Jahr 2019

Planungsablauf und Entscheidungsbaum

S C + **P**

Aerobisierung Siedlungsabfalldeponien

Ökobilanz

Solothurn, 13.09.2023

S C + **P**

Aerobisierung Siedlungsabfalldeponien

Inhalt

Solothurn, 13.09.2023

Folie 62

Ende

S C + **P**

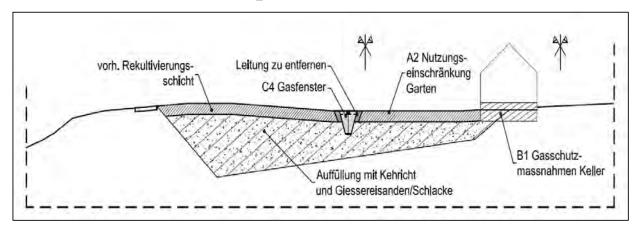
Aerobisierung Siedlungsabfalldeponien

Inhalt

Solothurn, 13.09.2023

Folie 63

Fragen?



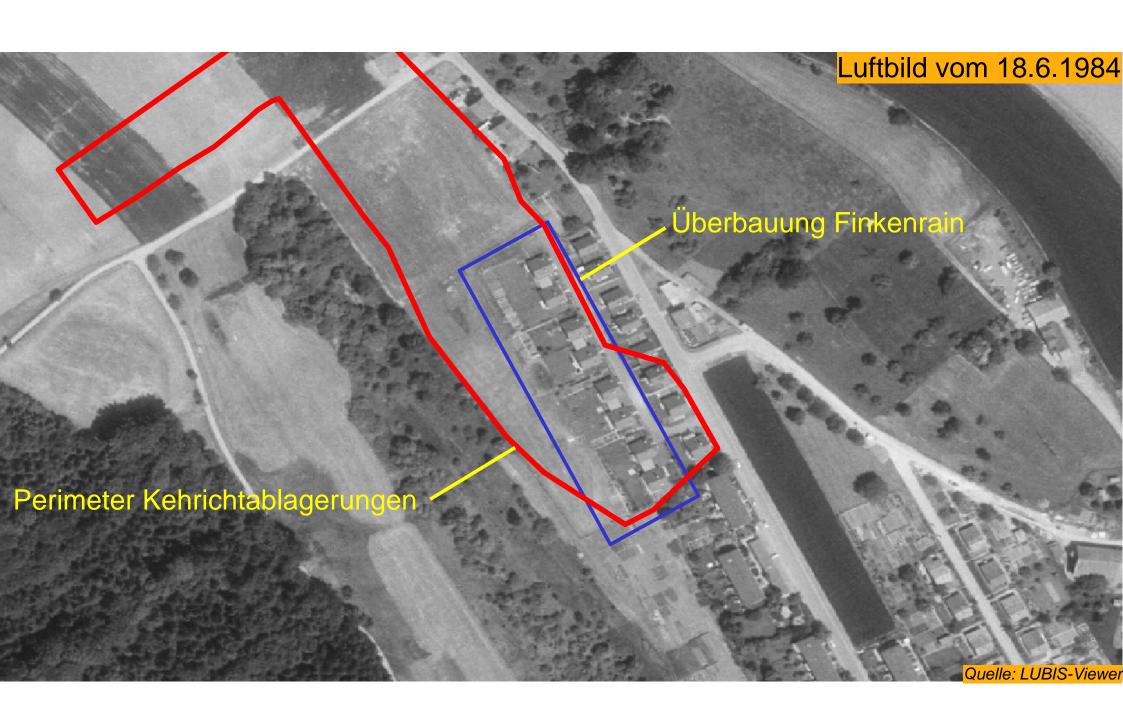
Passive Entlüftungsgräben: Optimale Variante bei sanierungsbedürftigen Kehrichtdeponien?

 Symposium Altlasten Schweiz I BAFU
 Dr. Martin Hoffmann und Dr. Bruno Schmid, FRIEDLIPARTNER AG Solothurn, 13. September 2023

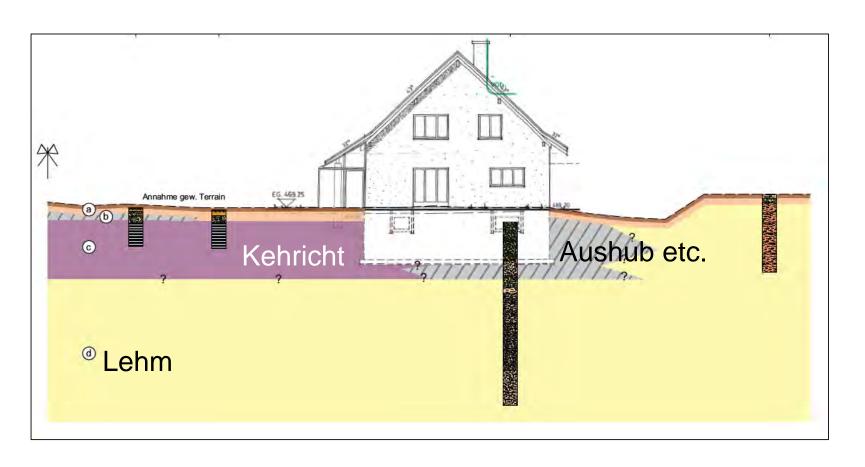
Inhalt

- Einleitung
- Beschreibung Pilotversuch
- Ergebnisse Pilotversuch
- Schlussfolgerungen

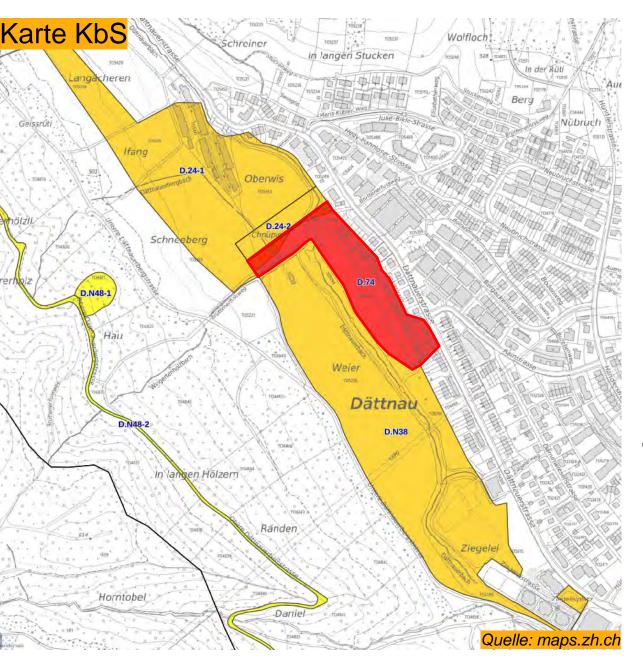
Ausgangslage


- Tongrube im Dättnau (Winterthur)
- 1935-1960 Ablagerung von:
 - -500'000 m³ bis 750'000 m³ Aushub, Bauschutt, Giessereisand
 - -200'000 m³ Kehricht
- Rekultivierung

Ausgangslage


- Tongrube im Dättnau (Winterthur)
- 1935-1960: Ablagerung von 500'000 m³ bis 750'000 m³ Aushub, Bauschutt, Giessereisand und rund 200'000 m³ Kehricht
- Rekultivierung
- 1981: Bau Doppeleinfamilienhäuser am Deponierand

Modell des belasteten Standorts


Altlastenuntersuchungen

- Schadstoffkonzentrationen in Porenluft (2007):
 - Methan: bis 57 Vol.-%
 Konzentrationswert Anhang 2 AltIV: 1 Vol.-% (10'000 ppm)
 - CO₂: bis 11 Vol.-%
 Konzentrationswert Anhang 2 AltIV: 0.5 Vol.-% (5'000 ppm)

Altlastenuntersuchungen

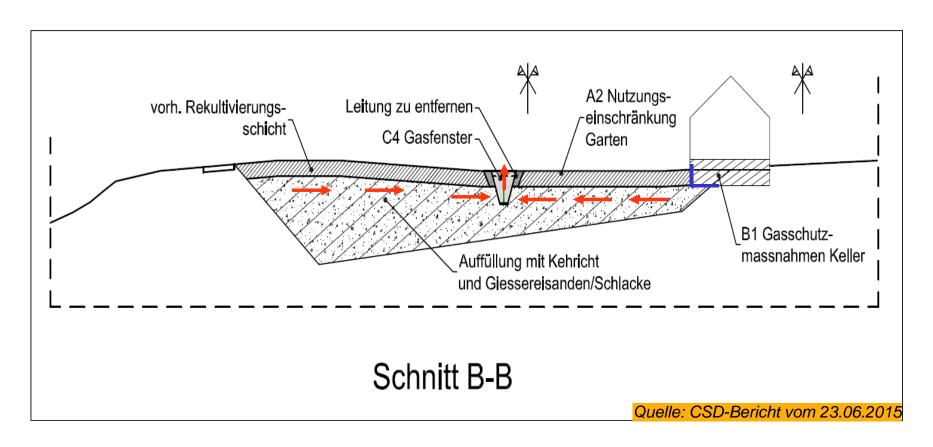
- Schadstoffkonzentrationen in UG Wohnhäuser (2011):
 - Methan: bis 80 ppm
 Damaliger Hintergrundwert Umgebungsluft: 1.9 ppm
 - CO₂: max. 700 ppm
 Damaliger Hintergrundwert Umgebungsluft: 390 ppm
- → AWEL beurteilt Bereich mit Kehrichtablagerungen nach Art. 11 AltIV hinsichtlich des Schutzes von Personen vor Luftverunreinigungen (CH₄) als sanierungsbedürftig

Inhaberinnen Stao D.74 (Deponie am Finkenrain):

- Stadt Winterthur
- Private

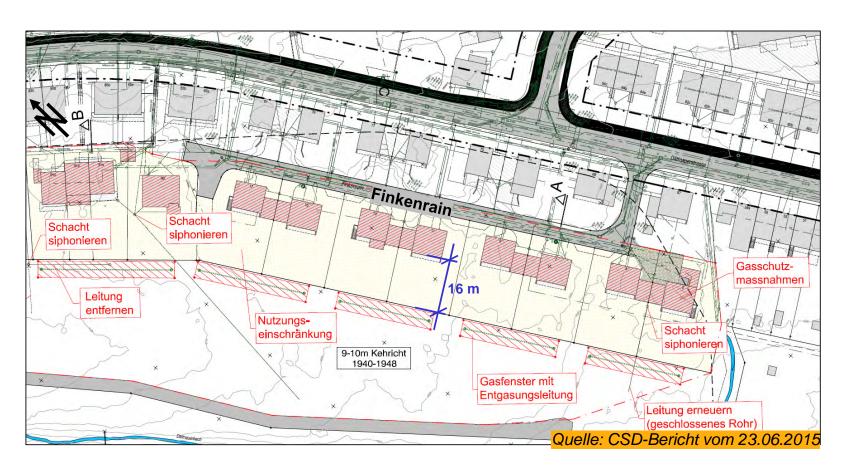
Realleistungspflichtige:

- Stadt Winterthur



Optimale Sanierungsvariante

- 2012 (Vogler Consulting): Aerobisierung
- 2015 (CSD): Nutzungseinschränkungen in Gärten + Entlüftungsgräben + Abdichtung UG
- → Tiefbauamt Stadt Winterthur beauftragt FRIEDLIPARTNER mit Rahmen-Sanierungsprojekt + Pilotversuch Entlüftungsgraben (BAFU-Auflage)



Prinzipschnitt Entlüftungsgräben

Geplante Lage Entlüftungsgräben

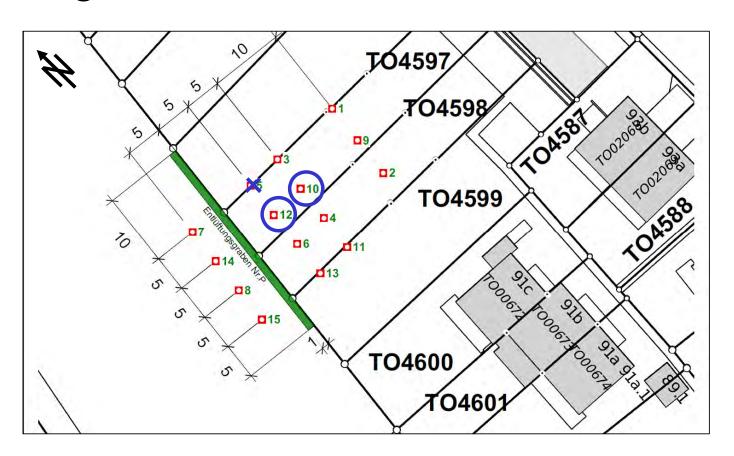
Geplante Lage Pilot-Entlüftungsgraben

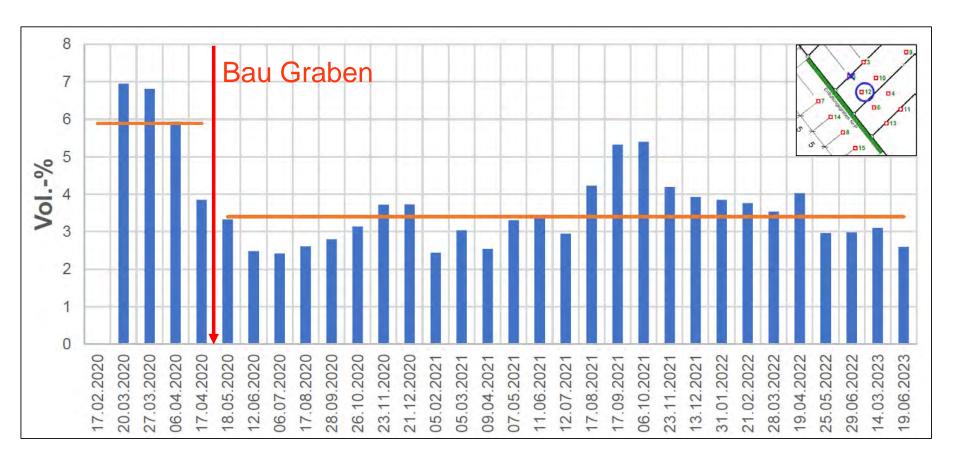
Lage Pilot-Entlüftungsgraben

Bau Entlüftungsgraben (April 2020)

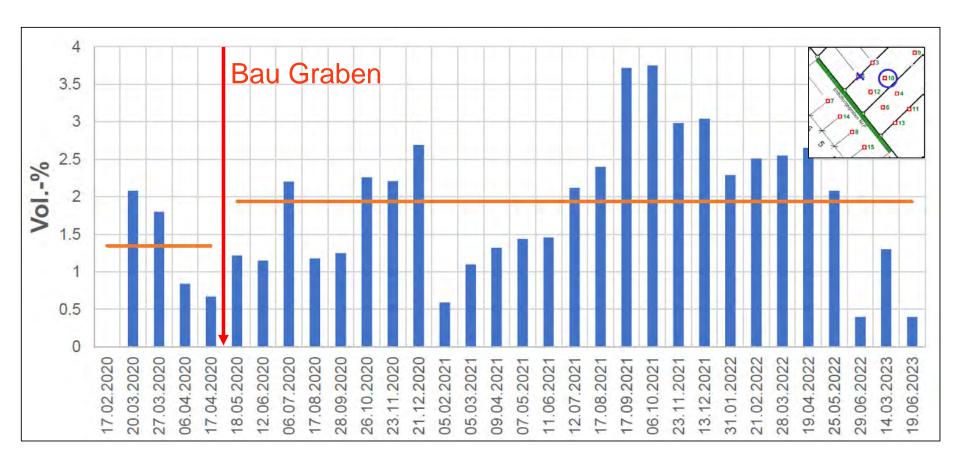
Bau Entlüftungsgraben (April 2020)

Bau Entlüftungsgraben (April 2020)

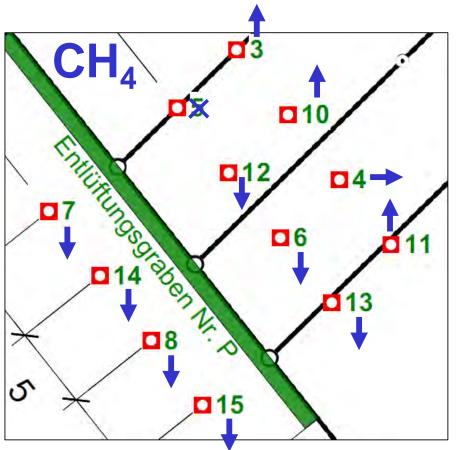


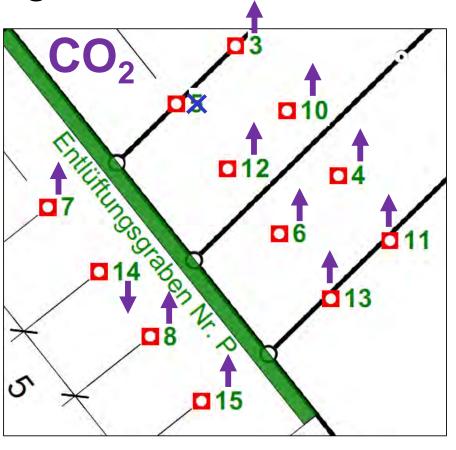


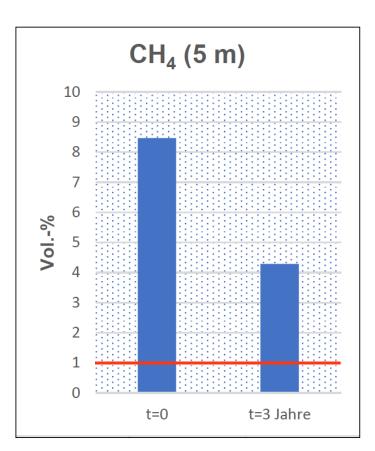
Lage Porenluft-Messstellen

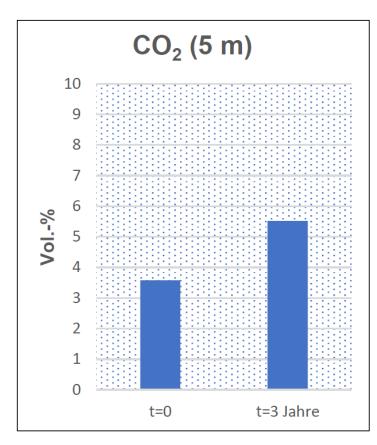


Methan Messstelle Nr. 12 (Distanz: 5 m)

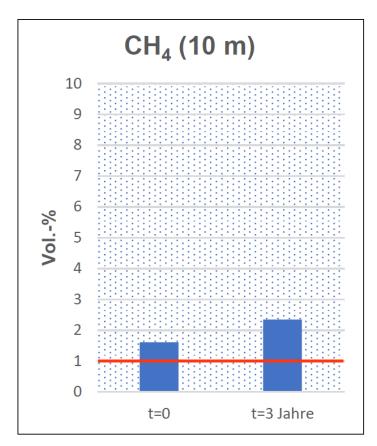


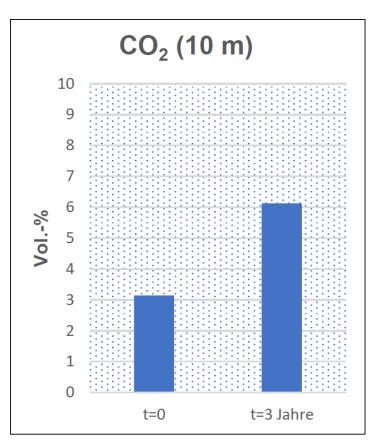

Methan Messstelle Nr. 10 (Distanz: 10 m)


Konzentrationsänderungen 2020-2023



Konzentrationen Nahbereich Graben





— Sanierungszielwert Porenluft (Konzentrationswert nach Anhang 2 AltIV)

Konzentrationen Fernbereich Graben



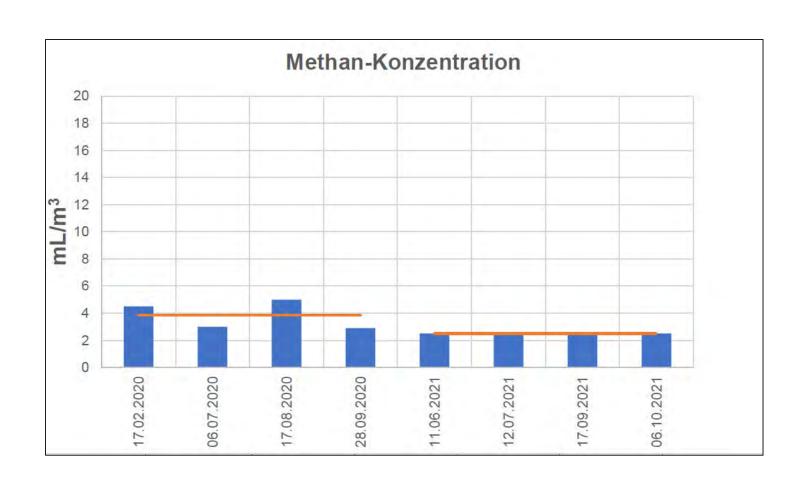
— Sanierungszielwert Porenluft (Konzentrationswert nach Anhang 2 AltIV)

Wirksamkeit Entlüftungsgraben

- Gewünschte Wirkung bis 5 m Distanz
- Unerwünschte Wirkung in 10 m Distanz
- → Passive Entlüftungsgräben für Kehrichtdeponie am Finkenrain: optimale Sanierungsvariante?
- → Aktive Entlüftungsgräben?

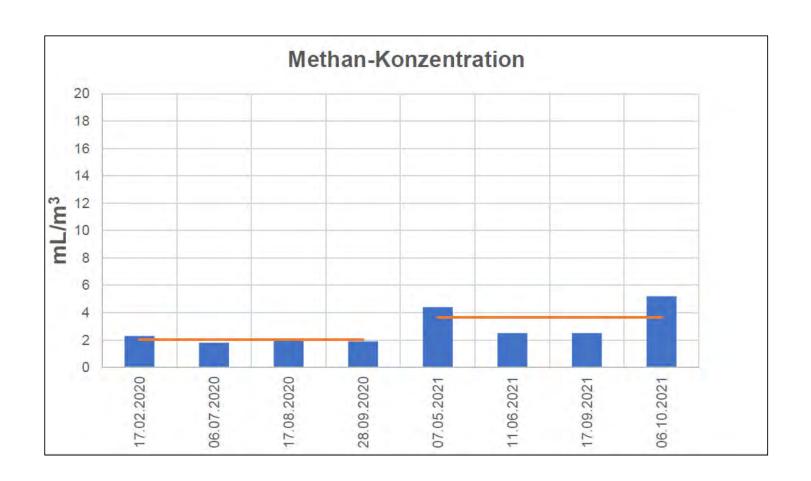
FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

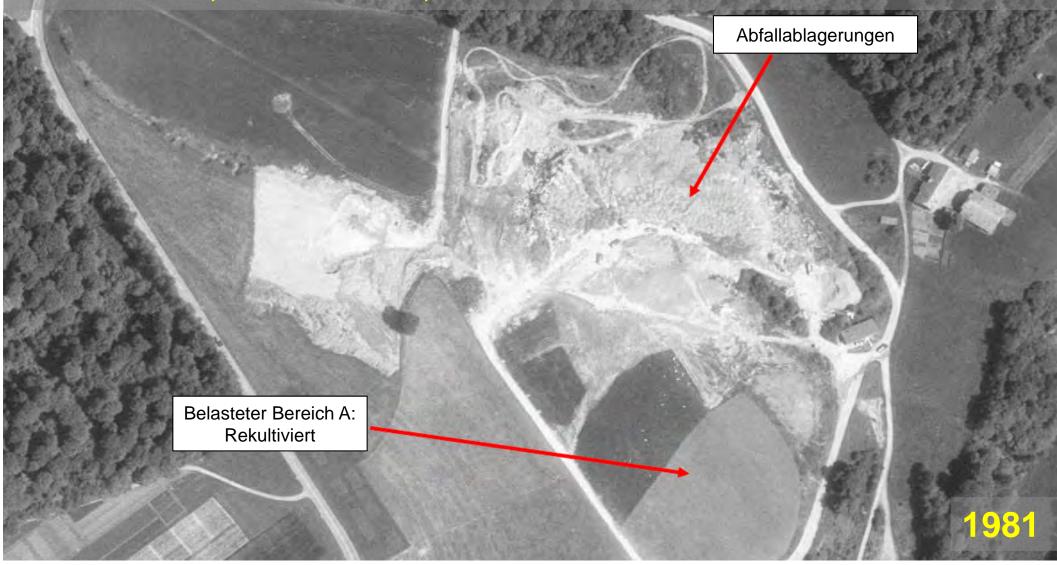


Abdichtungsmassnahmen UG

- Verschluss (Kitt) von Dilatationsfugen
- Ersatz undichter Fenster
- Abdichtung Leitungseinführungen
- Bodenabläufe spülen
- Kosten: rund 30'000 Franken

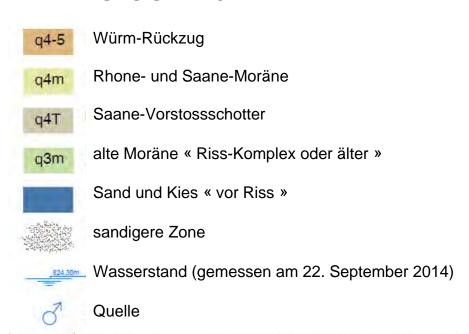


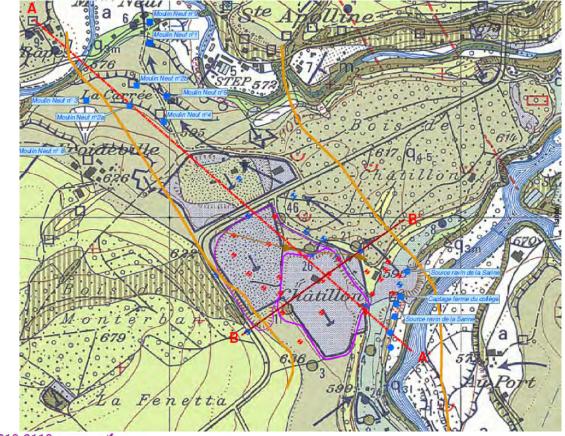
Dättnauerstrasse 91a (Abstellraum)

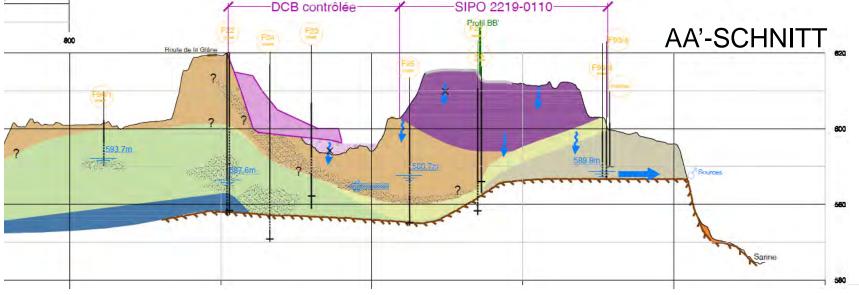


Finkenrain 7 (Waschküche)

Studienkontext


Kiesgrube, zwischen 1974 und 1990 mit 1.2 Mio m³ Inertstoffen, Sperrgut, Kehrichtabfall, KVA-Schlacke, Klärschlamm und Aushubmaterial verfüllt.





Studienkontext

— HU CSD 2014

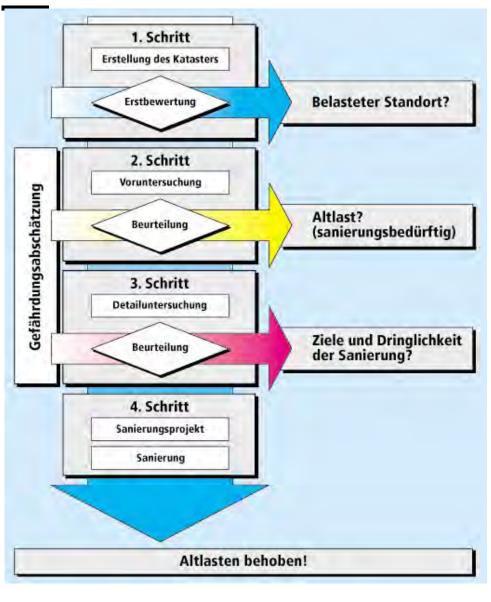
HU CSD 2014

Les Rapes

La Carrée

ehem. APEC-Kieswerk

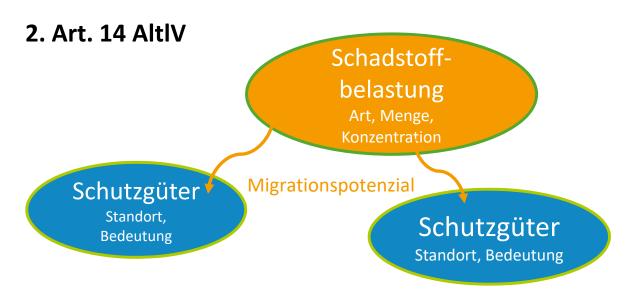
Sources de Moulin Neuf


La Pila 2219-0116, La Pila

ptage ferme du collè

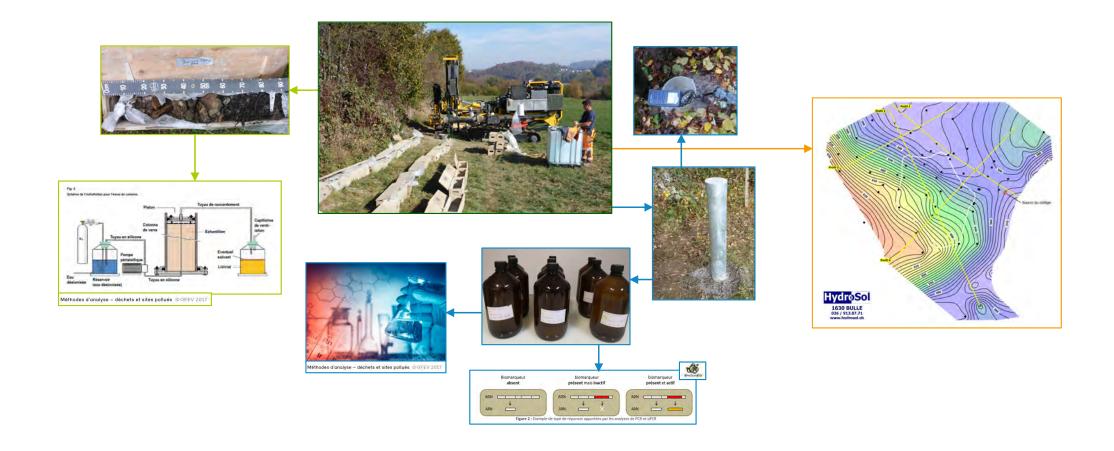
VAu Por

Studienkontext


- 2008: Katastereintrag
- 2013: Stadt Freiburg, Art. 20 Abs. 2 AltIV
- 2014: Historische Untersuchung
- 2015: Hydrogeologisches Gutachten
- 2015: Antrag technische Untersuchung
- 2017: Bericht: Sanierungsbedarf
- 2018: Antrag Detailuntersuchung Einhaltung Art. 3 AltIV!
- 2018: Erster Voranschlag DU, 353'300.- inkl. MwSt.
- Ausschreibung: Einladungsverfahren
- 4 Büros eingeladen, 3 Angebote
- Vergabe an: Prona Romandie SA

Vorgehen Definierte Ziele

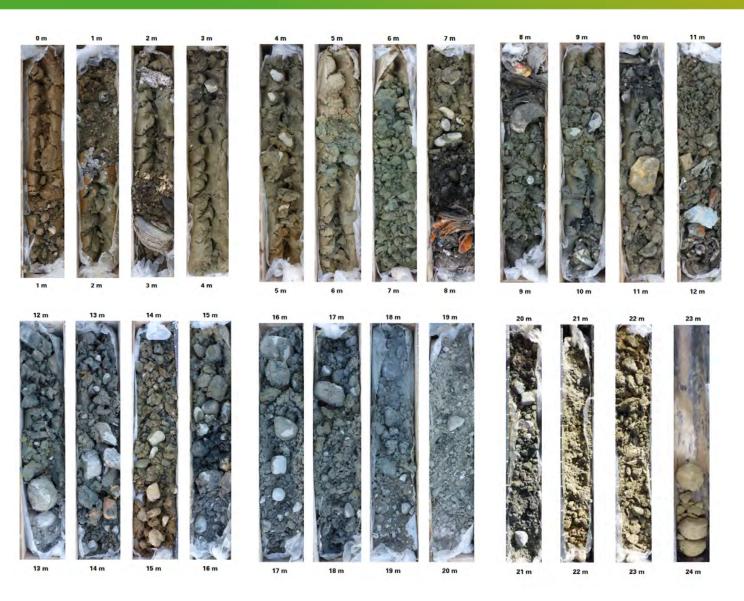
1. Bestätigung Sanierungsbedarf


- Schadstoffverteilung in der Deponie (räumlich und nach Phasen)
- Konzeptionelles hydrogeologisches Modell
- Beeinträchtigung von Schutzgütern im unmittelbaren und weiter entfernten Abstrombereich

3. Kurzevaluation der Sanierungsvarianten

Vorgehen Multiples Verfahren

Ergebnisse Lithologien und Abfälle



	PR1	PR2	PR3	PR4			
Auffüllungen: Schlicksand mit Silt und Kies. Oberflächen-naher Boden nach Standorten							
	2 m	1 m	1 m	2 m			
Deponie: Siltiger Sand mit Kies oder sandiger Silt. Vorkommen von Holz, Ziegelsteinen, Eisenschrott, Kunststoff, Schlacken, Linoleum, Textilien, Asche							
	11 m	15 m	6 m	13 m			
Würm-Rückzug: Sand und Kies, je nach Standort mehr oder weniger lehmhaltig. Vorkommen von Kieselsteinen							
	3 m	3 m	21 m	5 m			
Verwitterte Molasse: Sand							
	11 m	15 m	6 m	13 m			
Gesunde Molasse: Sandstein							
	11 m	15 m	6 m	13 m			

Ergebnisse Lithologien und Abfälle

PR2

Auffüllung

0 bis 1m

Deponie

1 bis 16m

Würm-Rückzug

16 bis 21m

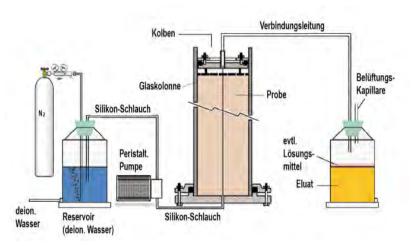
Verwitterte Molasse

21 bis 23m

Gesunde Molasse

23 bis 24m

Ergebnisse Feststoffe und Elution - in Situ



CKW

- Vorkommen von CKW in den Abfällen
- Erhöhtes Freisetzungspotenzial

Schwermetalle

- As-> lediglich Spuren vorhanden
- Cr tot und Cr VI -> in den Eluattests nicht nachgewiesen

Analysemethoden im Abfall- und Altlastenbereich, BAFU 2017



Ergebnisse Mikrobiologische Analysen - in Situ

- Die für die reduktive Dechlorierung der langkettigen CKW notwendige Bakteriengruppe ist vorhanden
- Bakterielle Marker f

 ür VC-Abbau nicht vorhanden
- Mikrobiologischer Abbau von CKW im Deponiekörper. VC-Erzeugung

Ergebnisse Chemische Analysen - Abstrombereich

Sanierungsauslösende Schadstoffe

- VC und Cr VI: Punktuelle Überschreitungen Sanierungsgrenzewert im unmittelbaren Abstrombereich, keine Spuren im entfernteren Abstrombereich
- As: Häufige Überschreitungen Sanierungsgrenzewert im unmittelbaren Abstrombereich, keine Spuren im entfernteren Abstrombereich

 Hg: nur einmal in den 12 monatlichen Probenahmen nachgewiesen, bei Werten < Überwachungsgrenzwert

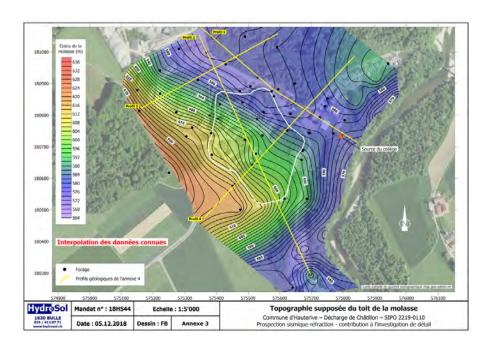
Analysemethoden im Abfall- und Altlastenbereich, BAFU 2017

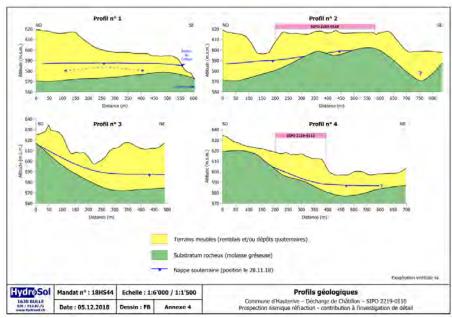
Ergebnisse Chemische Analysen - Abstrombereich

Andere Substanzen

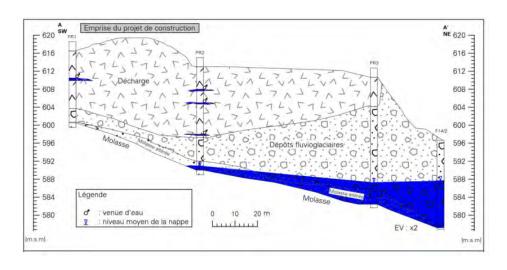
- Cis-DCE und freies Zyanid: Punktuelle Überschreitungen Überwachungsgrenzwert im unmittelbaren Abstrombereich, keine Spuren im entfernteren Abstrombereich
- TCEP: Konstante Überschreitungen Überwachungsgrenzwert im unmittelbaren Abstrombereich, geringe Spuren im entfernteren Abstrombereich
- PER, TRI, MTBE: niedrige, jedoch konstante Konzentrationen im unmittelbaren und entfernteren Abstrombereich

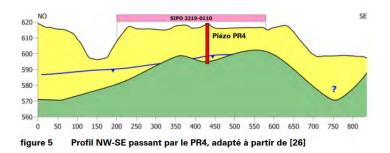
 BTEX: selten Spuren im unmittelbaren Abstrombereich, keine Spuren im entfernteren Abstrombereich




Analysemethoden im Abfall- und Altlastenbereich, BAFU 2017

Ergebnisse Geophysische Messungen

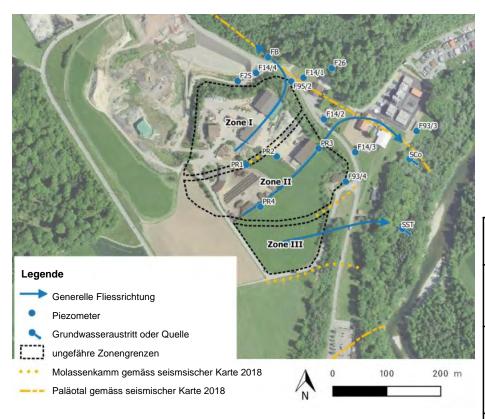



- Dach der Molasse = Aquifersohle
- Ausbauchung in der Deponiemitte
- Unterschiedliche Strömungsrichtungen im Paläokanal

Zusammenfassung Hydrogeologisches Modell

PR1: Kein Grundwasserleiter, lediglich Wasserlinsen

PR2: Linsen, Grundwasserleiter von geringer Stärke (~ 1m), Abfallschicht (~ 15m). Kein direkter Kontakt mit dem Grundwasser


PR3: Grundwasserleiter von mittlerer Stärke (~ 3m), weit unter den Abfällen liegend (~16m), weniger dicke Abfallschicht (~ 7m)

PR4: Schwebendes Grundwasser, das bei Niedrigwasser vom Hauptgrundwasserleiter abgetrennt ist. A priori kein Kontakt mit Abfall (~ 12m)

Zusammenfassung Hydrogeologisches Modell

	Zone I	Zone II	Zone III
Verschm.grad	++	++	-
Oberflächenab- dichtung	vollständig	teilweise	nicht vorhanden
Hauptexfiltra- tion	NW pal. Moulin Neuf ?	SW pal. Sco	SST
Verschm. Pot.	++	++	-
Freisetzungspot	±	++	-
Zuverlässigkeit	++	++	-

Zusammenfassung Freisetzungspotential: CKW

In der Deponie

- Hohes Freisetzungspotenzial des Abfalls
- Redoxbedingungen und Vorhandensein einer Bakteriengemeinschaft, die für die reduktive Dechlorierung von langkettigen CKW günstig sind
- Abbau von CKW bis zu VC, jedoch unvollständig

Unmittelbarer Abstrombereich

• VC-Konzentration > Sanierungsgrenzwert

Zusammenfassung Freisetzungspotential: SM

In der Deponie

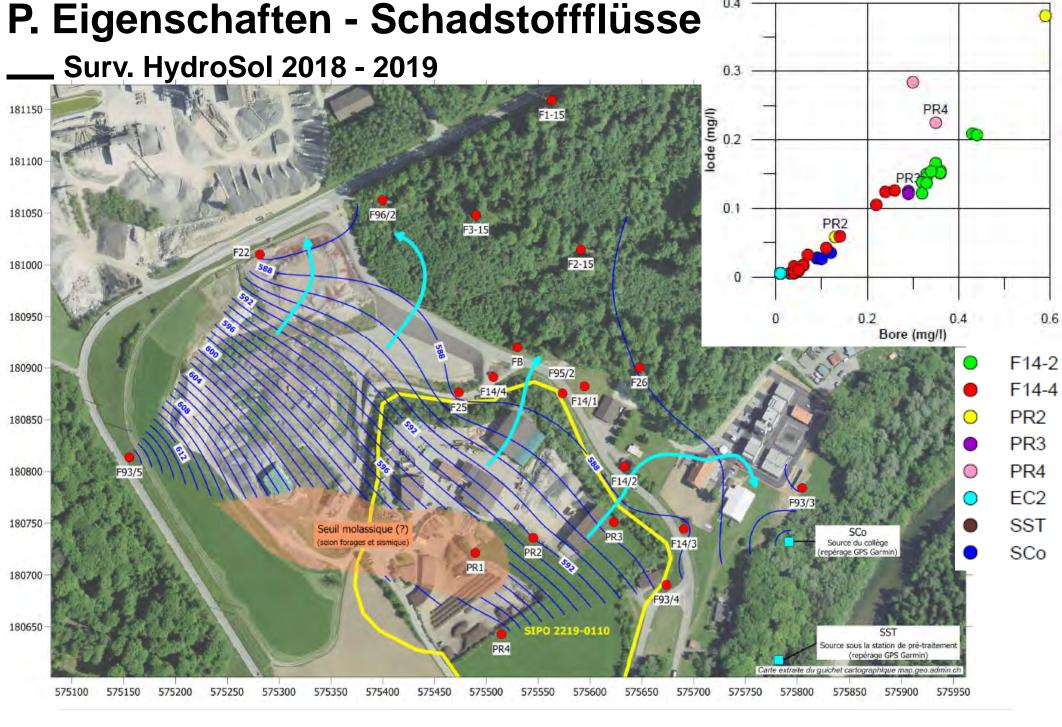
- As und Cr VI nicht oder kaum im Abfall nachweisbar
- Günstige Bedingungen für die Freisetzung von As und Cr VI
- Ursprung der As-Verschmutzung -> geogen (Moräne)
- Ursprung der CR VI-Verschmutzung in -> Beton und Umwandlung von Cr III

Unmittelbarer Abstrombereich

- As-Konzentration > Sanierungsgrenzwert
- Cr VI-Konzentration > Sanierungsgrenzwert

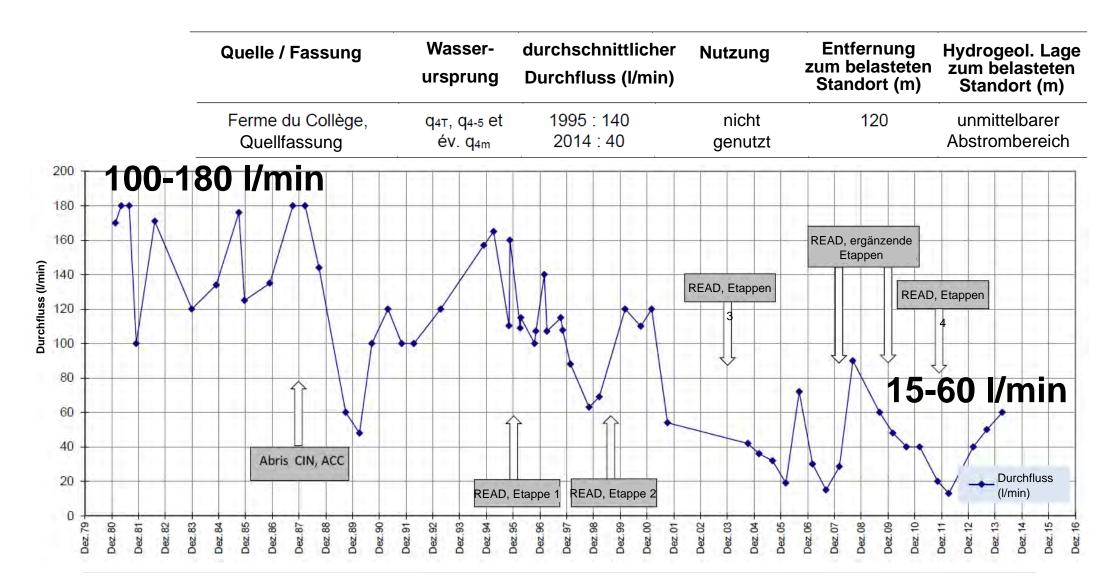
Schlussfolgerung

Schlussfolgerung der Studie

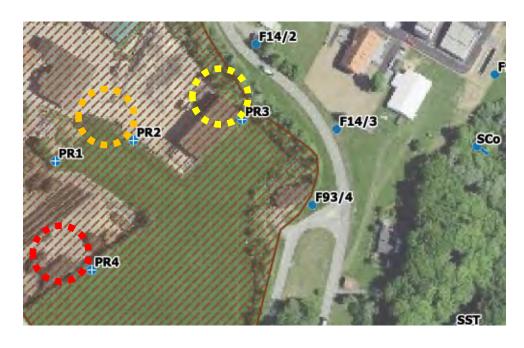

- Bestätigung des Sanierungsbedarfs (CV, As, CrIV)
- Problematische Stoffe über die gesamte Deponie verteilt
- Abbau dieser Stoffe zwischen dem unmittelbaren und dem entfernten Abstrombereich

Vorteile des multiplen Verfahrens

- Verständnis der lokalen Besonderheiten der Deponie
- Beurteilung der Verschmutzungsverteilung und -dynamik
- Beurteilung der möglichen Massnahmen


Prägende Eigenschaften Morphologie **DU 2019** 180700 Profil nº 1 SE 620 180600 610 Höhe (m.ü.M) Source 180500 Collège 590 180400 Interpolation der vorhandenen Daten 570 180300 560 200 250 300 350 400 450 500 575200 15 m Distance (m) Ähnlich wie in PR2 steht Nassabfall mit Wassereinbrüchen in direktem Kontakt mit Profil nº 2 durchlässigen Ablagerungen SE SIPO 2219-0110 620 610 600 Höhe (m.ü.M) 590 580 570 15.7 - 19.0 m: Kies, Kieselsteine und 560 abgerundete Blöcke (1-12 cm) in sandiger 250 300 350 500 550 700 750 600 650 150 450 Matrix, leicht siltig, grau Distance (m) Amt für Umwelt AfU STAAT FREIBURG **Symposium Altlasten Schweiz** 19 16 m

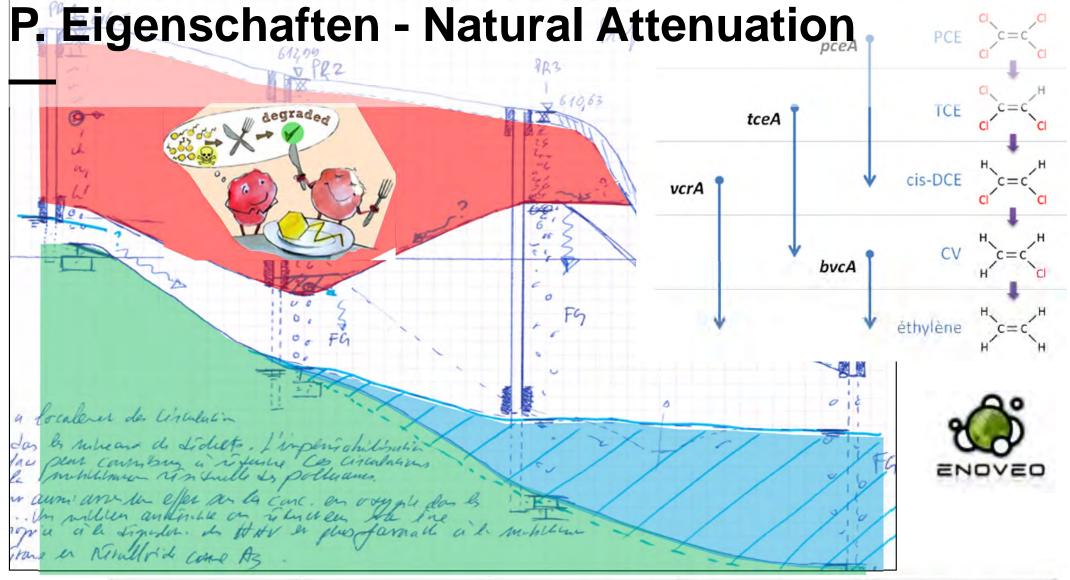
P. Eigenschaften - Auswirkungen der Bauten


— HU CSD 2014

P. Eigenschaften - Natural Attenuation (MNA)

DU Prona Romandie 2019

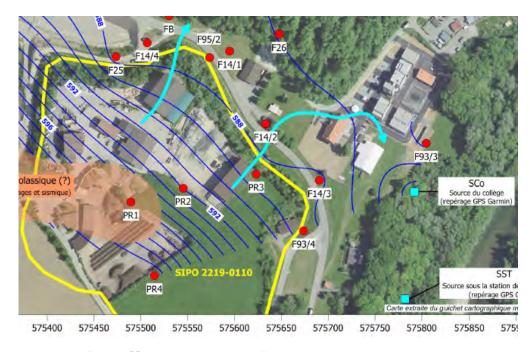
PR4 = am stärksten reduzierend


PR2 = leicht reduzierend

PR3 = kaum reduzierend

Einbringen von Methan in das Grundwasser -> methanogene Phase

Paramètre	Unité	PR-2	64-3	PR-A
На		6,67	6,72	6,79
Oxygène	mg/l	4,01	3,73	1,78
Saturation en Oxygène	%	37	35	17
Carbone Organique Dissous COD	mg/l	16	5,7	12
Carbone Organique Total COT	mg/l	18	5,8	12
Inorganiques				
Ammonium	mg/l	35	26	40
Nitrates	mg/l	<0.1	<0.1	2,4
Nitrites	mg/l	0,049	<0.005	0,311
Sulfates	mg/l	7,6	13,9	193
Sulfides	mg/l	<0.01	0,01	<0.01
Fer dissous	mg/l	0,216	0,069	1,38
Fer total	mg/l	62,5	152	17,5
Composés Organiques Halogénés Vo	olatiles			
Perchloroéthylène	μg/l	0,06	<0.05	<0.05
Trichloroéthylène	μg/l	0,1	0,16	<0.05
Cis-1,2-Dichloroéthylène	μg/l	0,31	0,24	0,44
Trans-1,2-Dichloroéthylène	μg/l	0,12	0,06	0,07
Chlorure de vinyl	μg/l	0,15	0,28	0,39
Alcanes				
Ethène	μg/l	<1,2	<1,2	<1,2
Méthane	µg/l	906,6	642,5	178,5
Ethane	μg/l	16,1	1,3	1,3



	pceA		tceA		vcrA		bvcA		165 Dhc	
	ADN	ARN	ADN	ARN	ADN	ARN	ADN	ARN	≠DN	ARN
PR-2	<lq< td=""><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td></lq<>	nd	nd	nd	nd	nd	nd	nd	nd	nd
PR-3	nd	nd	<lq< td=""><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td></lq<>	nd	nd	nd	nd	nd	nd	nd
PR-4	nd	nd	<lq< td=""><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td></lq<>	nd	nd	nd	nd	nd	nd	nd

< LQ : inférieur à la limite de quantification (5000 copies/l)

nd : non détecté

Schlussfolgerungen

- Verteilung von FHKW im gesamten Deponiekörper keine Dekontamination oder In-situ-Behandlung möglich
- MNA und Vinylchlorid (Aerober Abbau, Verdünnung, Verflüchtigung)
- Neubauten Begrenzung des Wasser- und O₂-Eintrags
- Nutzbares Grundwasser Passives oder aktives Behandlungsverfahren an der Deponiefront denkbar

Das AfU genehmigt die Fortsetzung der Bautätigkeit

Wissensstand + Stellungnahme des Büros PRONA:

→ Neubauten ≠ Erhebliche Behinderung

Agenda

Stiftung KliK

1

Aktivitäten

Kompensationsmechanismus Deponigasprogramm

Fragen und Kontakt

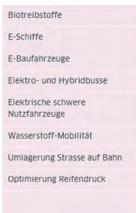
5

Stiftung KliK

Wer ist die Stiftung KliK?

- ► Kompensationsgemeinschaft zur Erfüllung der gesetzlichen Pflicht, Treibhausgasemissionen aus dem Verkehr zu kompensieren
- ► Finanzierung von Klimaschutzprojekten in allen Sektoren bis 2030
- ► Grundlage: CO2-Verordnung: Kompensationspflicht von min. 15% im Inland, ca. 20 Mio Tonnen CO2e bis 2030
- ► CO2-Gesetz ab 2025 in Beratung beim Parlament

Aktivitäten


Förderprogramme

Unternehmen

- ► Intern und extern betriebene Programme
- ► Zusätzlich > 100 Einzelprojekte
- ▶ Bislang 13.7 Mio. tCO₂ reduziert
- Weiterhin Bedarf an Bescheinigungen

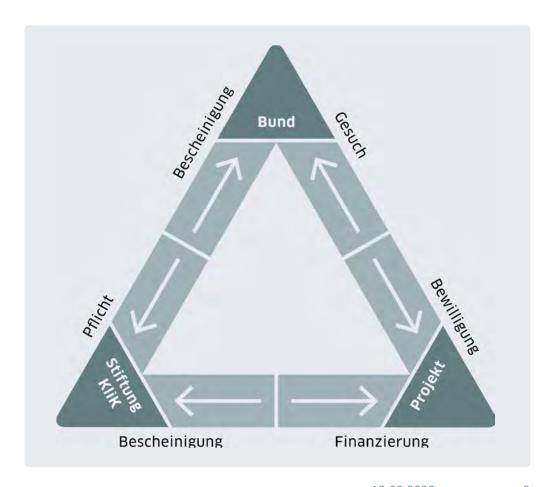
www.klik.ch/aktivitaeten

Altlasten Schweiz – Symposium 2023

Kompensationsmechanismus

13.09.2023

Der Kompensationsmechanismus im Video erklärt...



Altlasten Schweiz – Symposium 2023

Kompensationsmechanismus

Funktionsweise des Mechanismus

- ► Erfüllung der Kompensationspflicht durch Bescheinigungen
- ► Projektfinanzierung durch KliK über Kauf von Bescheinigungen
- ► Jährliche Abgeltungen, result-based
- ► Förderverträge bis 2030

Altlasten Schweiz – Symposium 2023

Förderprogramm Zur Methanvermeidung im Deponiegas

Welche Technologien werden gefördert?

Zerstörung oder Vermeidung von Methan:

- ► Hochtemperaturfackeln bei >15% Methankonzentration
- ► Schwachgasfackeln (FLOX Technologie und andere) bei >5% Methankonzentration
- ► Regenerative thermische Oxidation (VocsiBox) bei <5% Methankonzentration
- Schwachgasfackel mit nachgeschalteter Abgasturbine zur Stromproduktion
- Methanvermeidung durch saugende Aerobisierung

Bei welcher Ausgangslage ist eine Förderung möglich?

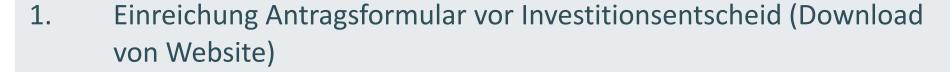
- ▶ Bisher keine Entgasung
- ► Entgasung, aber keine Gasbehandlung, welche Methan eliminiert
- Entgasung mit intermittierend betriebener Fackel
- ► Keine existierenden Auflagen, die das Projekt vorschreiben

Wer kann am Programm teilnehmen?

► Besitzer von Deponiegasanlagen in der Schweiz

Was sind die weiteren Teilnahmebedingungen?

- ▶ Deponie emittiert aktuell Methan
- ► Einreichung Antrag VOR Investitionsentscheid
- ► Einhaltung LRV, GschV und VVEA
- ► Keine staatdliche Finanzhilfen (Ausnahme KEV oder finanzielle Garantien)



Wie hoch ist die Förderung?

- ► 120 Franken pro reduzierte Tonne CO2-Äquivalent zur Deckung der Investitionskosten (ca. 5 Jahre)
- ► 60 Franken für jede weitere reduzierte Tonne CO2-Äquivalent zur Deckung der Betriebskosten
- ► Kürzung der anrechenbaren Emissionsreduktion bei Verpflichtungen zur Methanzerstörung durch kantonale Auflagen
- ► Jährliche Auszahlung Ende Folgejahr

Wie läuft die Teilnahme ab?

- 2. Antragsprüfung und Ermittlung erwarteter Emissionsreduktionen
- 3. Aufnahme und Vertragsabschluss
- 4. Inbetriebnahme und Kalibrierung Messgeräte
- 5. Jährliches Monitroing
- 6. Jährliche Auszahlung

Welche Daten werden für das Monitoring benötigt?

- ► Methan- und CO2-Konzentration im Deponiegas
- ► Druck, Temperatur und Durchfluss des Deponiegas
- ► Betriebsparameter des Entgasungssystems (Fackeltemperatur, Laufzeit Gebläse,...)

Zur Gewährleistung der Monitroingdaten werden Kalibrierungen der Messgeräte und Störungsbehandlungen durch den Deponiebetreiber durchgeführt

→ Detaillierte Anforderungen im Monitoring-Handbuch



Weiteres Infos und Kontakt

www.deponiegas.klik.ch

deponiegas@klik.ch

Fragen?

Vielen Dank für Ihre Aufmerksamkeit!

INGENIAS

Erfahrungen aus der Aerobisierung der Deponien Sass Grand, Bever GR und Kehlhof, Berg TG

Werner Meier, Ingenias AG Weinfelden / St. Gallen

Referat am 3. Symposium Altlasten Schweiz des BAFU vom 13. September 2023

Inhalt

Überblick

- Deponien Sass Grand und Kehlhof
- Dplus-Sanierungsverfahren
- Klima-Kompensation mit Stiftung KLIK

Deponie Sass Grand, Bever GR

- Ausgangslage
- Sanierungsvarianten und -entscheid
- Sanierungsbetrieb

Entwicklung Schadstoffbelastung

Erkenntnisse

- Sanierungserfolg
- Finanzen
- Erfolgsfaktoren und Stolpersteine

Überblick (1/2)

Deponie	Sass Grand, Bever GR	Kehlhof, Berg TG
Inhaber gem. VVEA	Region Maloja	Verband Kehrichtverwertung Thurgau
Lage	Spinas Bever 1706: Mu Acia Acia	tion Bachtobel Dattenhub 671 Berg TG S42 And Weerswilen S48 Weerswilen S48 Weerswilen S48 Gunter Oberopfershofen Oberopfershofen Opfershofen TG Wauren TG Wau
Deponietyp gem. VVEA	E	E
Abfallmenge bis 2021	900'000 t	900'000 t
Betriebsjahre	1967 –	1970 – (2031)

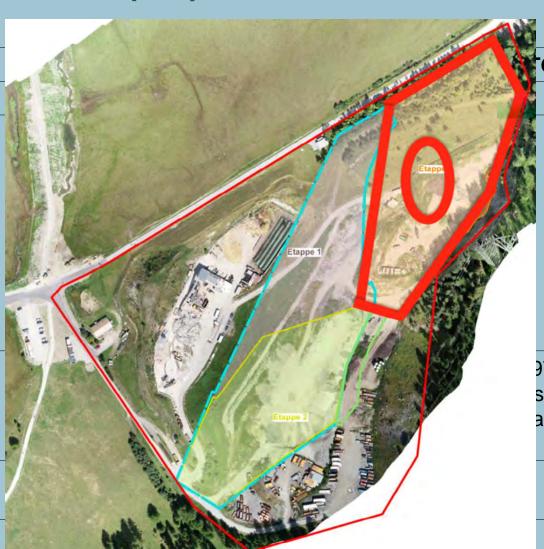
Überblick (2/2)

Deponie	Sass Grand, Bever GR	Kehlhof, Berg TG
Aerobisierter Bereich	«Etappe 0»	Reaktormaterial
Geometrie	Situation	Schnitt Nordauffüllung Mitte Südböschung Bahn 1996-2002 Aushub 1970-1988 "Reaktormaterial" Greek on
Charakterisierung aerobisierter Bereich	Schüttperiode 1967 – 1979; Hang- Anschüttung; Siedlungsabfall, Sperrgut, Muldengut, Klärschlamm	Schüttperiode 1970 – 1988; Verfüllung eines Bachtobels, schlecht verdichtet; Hauskehricht, Bauschutt, Sperrgut, Industrieabfälle
Sanierungsbedarf gem. AltIV	ja (Grundwasser, Oberflächen- gewässer, Luft)	nein

Überblick (2/2)

Deponie

Aerobisierter Bereich


Geometrie

Charakterisierung

Sanierungsbedarf gem. AltIV

aerobisierter

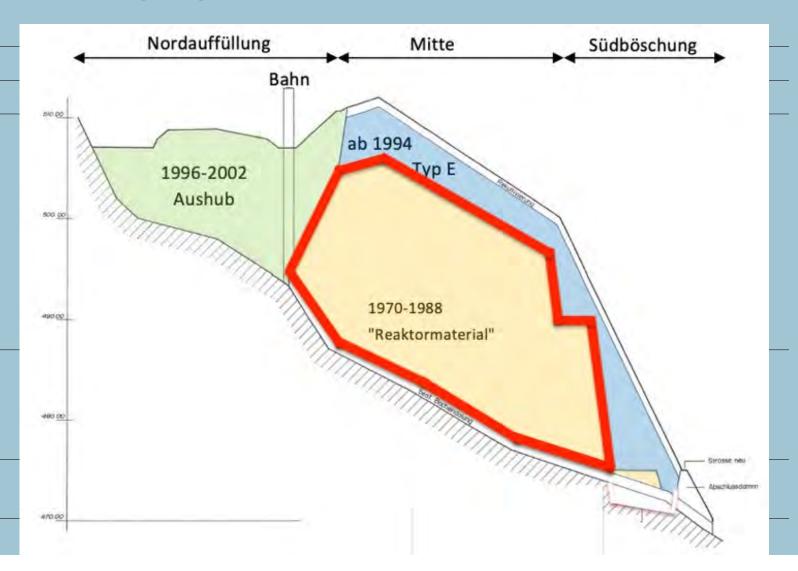
Bereich

970 – 1988; Verfüllung s, schlecht verdichtet; auschutt, Sperrgut,

Überblick (2/2)

Deponie	Sass Grand, Bever GR	Kehlhof, Berg TG		
Aerobisierter Bereich	«Etappe 0»	Reaktormaterial		
Geometrie	Situation	Schnitt Nordauffüllung Mitte Südböschung Bahn 1996-2002 Aushub 1970-1988 "Reaktormaterial" Friest Aus		
Charakterisierung aerobisierter Bereich	Schüttperiode 1967 – 1979; Hang- Anschüttung; Siedlungsabfall, Sperrgut, Muldengut, Klärschlamm	Schüttperiode 1970 – 1988; Verfüllung eines Bachtobels, schlecht verdichtet; Hauskehricht, Bauschutt, Sperrgut, Industrieabfälle		
Sanierungsbedarf gem. AltIV	ja (Grundwasser, Oberflächen- gewässer, Luft)	nein		

Überblick (2/2)

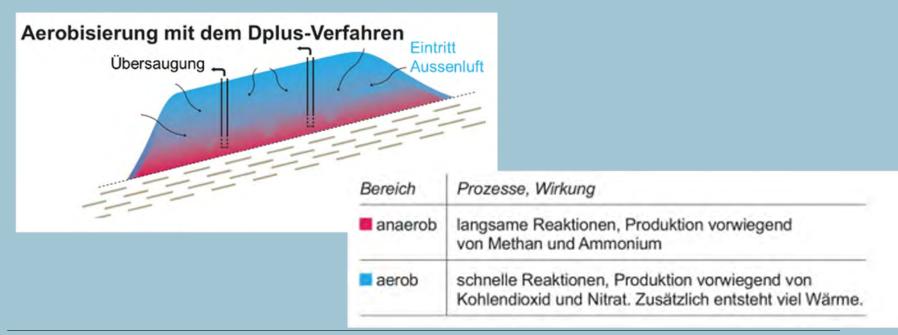


Aerobisierter Bereich

Geometrie

Charakterisierung aerobisierter Bereich

Sanierungsbedarf gem. AltIV



Überblick (2/2)

Deponie	Sass Grand, Bever GR	Kehlhof, Berg TG
Aerobisierter Bereich	«Etappe 0»	Reaktormaterial
Geometrie	Situation	Schnitt Nordauffüllung Mitte Südböschung Bahn 1996-2002 Aushub 1970-1988 "Reaktormaterial" Aushub Aushub Reaktormaterial"
Charakterisierung aerobisierter Bereich	Schüttperiode 1967 – 1979; Hang- Anschüttung; Siedlungsabfall, Sperrgut, Muldengut, Klärschlamm	Schüttperiode 1970 – 1988; Verfüllung eines Bachtobels, schlecht verdichtet; Hauskehricht, Bauschutt, Sperrgut, Industrieabfälle
Sanierungsbedarf gem. AltIV	ja (Grundwasser, Oberflächen- gewässer, Luft)	nein

Dplus-Sanierungsverfahren

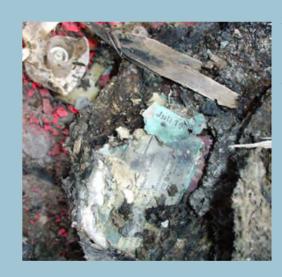
aktuelle Daten 2022		Sass Grand	Kehlhof
		Etappe 0	
angelegter Unterdruck	mbar	130	125
abgesaugte Gasmenge	m3/h	105	380

Klima-Kompensation mit Stiftung KLIK

Deponie	Sass Grand, Bever GR	Kehlhof, Berg TG
Förderung der Aerobisierung (Vermeidung der Entstehung von Methan)	nein (behördlich verordnet)	ja (2016 – 2023)
Förderung Verbrennung / Oxidation von Methan zu Kohlendioxid	ja	ja (geplant ab 2024)
Erzielte Reduktionen bis 2022	16'286 t CO _{2eq}	11'949 t CO _{2eq}
Ablauf zur Aufnahme ins Deponiegasprogramm (Beispiel RTO-Anlage Kehlhof)	 Aufnahmeantrag auf Form Prüfung durch externe Ste Vertrag an Betreiber (Mai Investitionsentscheid 	elle, Rückfrägen

Deponie Sass Grand (Etappe 0)

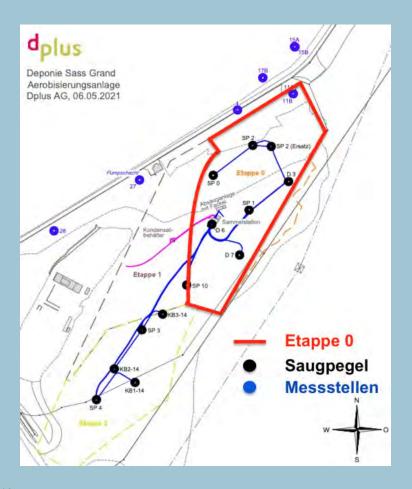
Ausgangslage


- Keine Basisabdichtung; Deponiekörper steht direkt im Grundwasser
- Sickerwasser wird nicht gefasst
- Deponieoberfläche ist nicht rekultiviert / abgeschlossen
- Sanierungsbedarf im Grundwasser/Bachwasser gemäss AltIV/GSchV (Ammonium, DOC)

geprüfte Alternativen	Beurteilung
Dichtwände	fehlende Nachhaltigkeit, Kosten
Umlagerung deponieintern Erstellung Basisabdichtung	Platzprobleme, Immissionen, Kosten
Totalsanierung	Sicherheit, Immissionen, Kosten

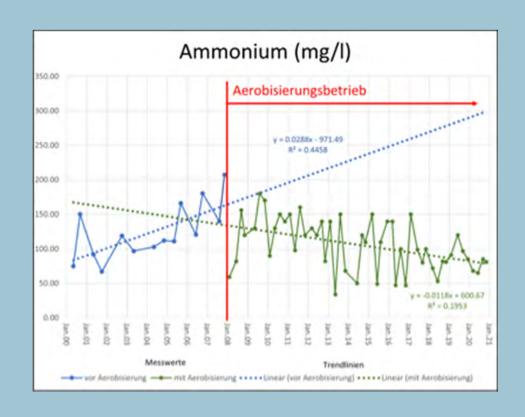
Sass Grand Etappe 0: Sanierungsbetrieb (1/2)

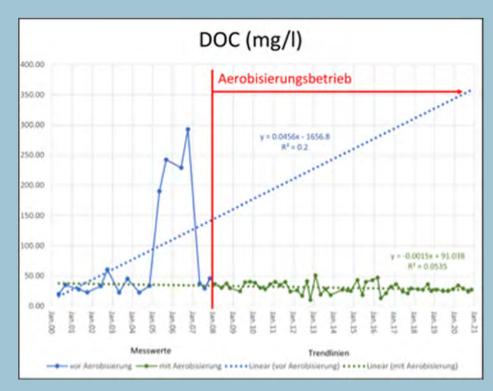
Jahr	Schritte
2005	Variantenentscheid, Vorversuche, Sanierungsprojekt
2006	Sanierungsverfügung ANU *)
2008	Beginn Sanierungsbetrieb

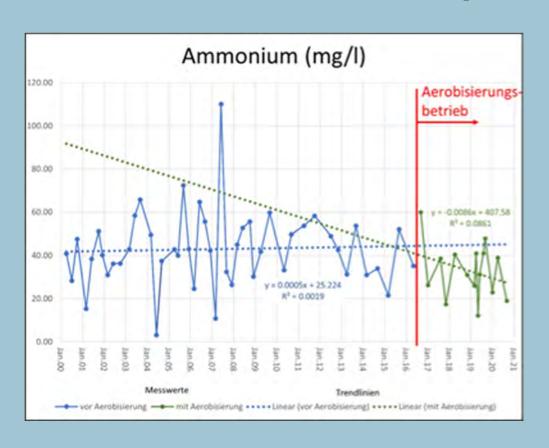


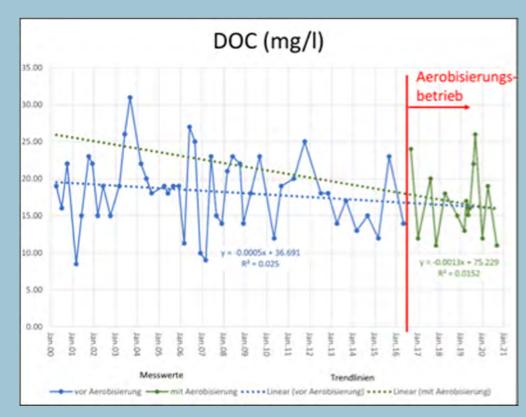
Bohrgut aus 30 m Tiefe.

*) Sanierungsziele		
Grundwasser	•	Einhaltung von ausgewählten Konzentrationswerten nach Anhang 1 AltIV am Deponiefuss Einhaltung der Anforderung an Trinkwasserqualität nach Anhang 2 GSchV bei einer Messstelle im Abstand von 250 m vom Deponiefuss
Oberflächengewässer (Isellasbach)	•	Einhaltung der Qualitätsziele gemäss Anhang 1 Zf. 1 AltIV.


Sass Grand Etappe 0: Sanierungsbetrieb (2/2)




Entwicklung Schadstoffbelastung Grundwasser Deponie Sass Grand



Entwicklung Schadstoffbelastung Sickerwasser Deponie Kehlhof

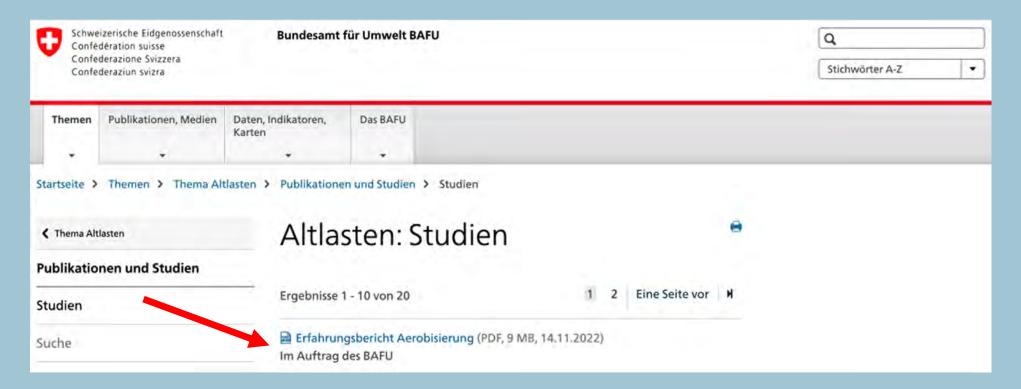
Erkenntnisse (1/2)

Grundsätzliches	Die Aerobisierung ist grundsätzlich – unter gewissen Voraussetzungen – geeignet als Verfahren zur Sanierung von belasteten Standorten, insbesondere auch zur Reduktion von Schadstoffen in Grund- und Oberflächenwasser.
Sanierungsdauer	Abschätzung im Sanierungsprojekt: 6 – 15 Jahre
(Deponie Sass Grand)	Aktuelle Prognose aufgrund der Trendlinien: 20 – 40 Jahre

Finanzielles

		Sass Grand	Kehlhof
Sanierung	Investitionen	700'000	
	Betriebskosten pro Jahr	85'000	
Klimaprojekt	Investitionen	473'000	859'000
	Betriebskosten pro Jahr	26'800	61'000
	Erträge bis 2021	658'000	1'299'000

Erkenntnisse (2/2)


Erfolgsfaktoren und Stolpersteine

Deponiegut	Das Porenvolumen im Deponiegut hat einen wesentlichen Einfluss auf den Luftdurchsatz und die Wirkung der Aerobisierung.
Schadstoffe	Die Aerobisierung kommt als Sanierungsmethode nur in Betracht, wenn die relevanten Schadstoffe organisch abbaubar sind.
Wasser	Wasser im Deponiekörper verhindert den Luftdurchsatz und die vollständige Aerobisierung. Wenn sich in der Voruntersuchung zeigt, dass Wasser vorhanden ist, muss eine Entwässerung sichergestellt werden, z.B. durch Bohrlochpumpen.
Pneumatische Kurzschlüsse	In der Vorunteruchung muss das Risiko von pneumatischen Kurzschlüssen geklärt werden (z.B. undichte Bachdurchlässe).
Verrohrungen	Verrohrungen aus Kunststoff mit mehr als 10 m Länge sind wegen seitlicher Verschiebungen in aerobisierten Deponiekörpern zu wenig stabil.
Setzungen	Die Aerobisierung kann auf der Deponieoberfläche differenzielle Setzungen erzeugen. Die Auswirkung auf die Nutzung der Oberfläche ist zu prüfen.

Detailinformationen ...

.... finden Sie auf der BAFU-Webseite:

Sanierung Stadtmist Solothurn

Martin Brehmer/Roger Dürrenmatt, Amt für Umwelt Kanton Solothurn

3. Symposium Altlasten Schweiz, 13. September 2023

STADTSOLOTHU**₹**N

STADTSOLOTHU?N

STADTSOLOTHU**₹**N

Einige Fakten

Ablagerungszeitraum

1925 bis 1976

Fläche

160'000 m² (entspricht 22 Standard-Fussballfeldern)

Mächtigkeit der Abfälle

ca. 1 - 3.5 Meter

Kubatur/Tonnage

410'000 m³ / 500'000 t

Grundeigentümer

Einwohnergemeinde Solothurn 81% Kanton Solothurn 19%

Altlastenrechtliche Schritte

Voruntersuchungen

1982 - 2010

Detailuntersuchungen

2011 - 2014

Variantenstudien

2014 - 2015

Sanierungsprojekt

2016

VASA-Zusicherungen durch BAFU

Juni 2019 (UH) und August 2020 (SF und OE)

Schutzgüter und relevante Schadstoffe

Boden

Vor allem Schwermetalle (Cu, Cd). 2008 wurden Nutzungsverbote und – einschränkungen gemäss VBBo verfügt.

Grundwasser

CKW, PAK, Schwermetalle, (Ammonium)

Oberflächengewässer

Ammonium, Schwermetalle, CKW, PCB, PAK
Der Sanierungsbedarf ergibt sich teils aus Belastungen in den
Oberflächengewässern selbst, teils durch erhöhte Belastungen im
Sickerwasser der Deponien, welches ohne Rückhalt in die
Oberflächengewässer gelangen kann (Art. 10 Abs. 2 Bst. b AltIV).

Ergebnisse Variantenstudien

Geprüfte und vorgeschlagene Varianten pro Deponie

UH: Abdichtungen, Sickerwasserdrainage, Wasserglasverfestigung,

Totaldekontamination

SF: Aerobisierung/Abdeckung, Totaldekontamination

OE: Oberflächenabdichtung/Aerobisierung, Bachumlegung,

Totaldekontamination

Geschätzte Kosten Totaldekontamination pro Deponie

UH: 32 Mio. Fr.

SF: 190 Mio. Fr.

OE: 53 Mio. Fr.

Geschätzte Gesamtkosten Totaldekontamination

275 Mio. Fr. (exkl. MWST.)

Unternehmersubmission

Vorgehen zweistufig

Offene Ausschreibung mit Präqualifikation. Vier ARGEs wurden präqualifiziert.

Testsanierung

Die Offertsteller hatten die Möglichkeit, an bis zu 500m³ Deponiematerial Versuche durchzuführen.

Vier Offerten namhafter Schweizer Unternehmungen

ARGE Vision Solothurn, ARGE MT, ARGE Mistkratzerli, ARGE Speicher

Projekt ARGE Vision

Totaldekontamination mit Aufbereitungsanlage vor Ort. Globale Gesamtkosten **92 Mio. Fr.** (exkl. MWST.)

Vorteile der Totaldekontamination

Definitive Lösung

Das Schadstoffpotential wird definitiv entfernt, auch neue, bisher nicht erkannte Problemstoffe (z.B. PFAS, Radioaktivität).

Kontrollierbarkeit

Im Gegensatz zu einer Sicherung hat man jederzeit die Kontrolle über den Sanierungserfolg.

Verfahren

Es kommen einfache, etablierte und kontrollierbare Verfahren zum Einsatz.

Nachnutzung

Die sanierten Flächen stehen einer uneingeschränkten Nachnutzung offen.

Weitere Vorteile der Totaldekontamination

Energie

Durch die teilweise Verbrennung der Abfälle wird Energie gewonnen. Eine langjährige Sicherung verbraucht Energie.

Kostensicherheit

Die Kosten der Massnahme und der Zeitbedarf sind im Gegensatz zu einer Sicherung sehr genau prognostizierbar.

Akzeptanz

Im Fall des Stadtmists Solothurn geniesst die Totaldekontamination durch alle Bevölkerungsgruppen eine sehr grosse Befürwortung.

Die Bewilligung für die Sanierung konnte ohne eine einzige Einsprache erteilt werden.

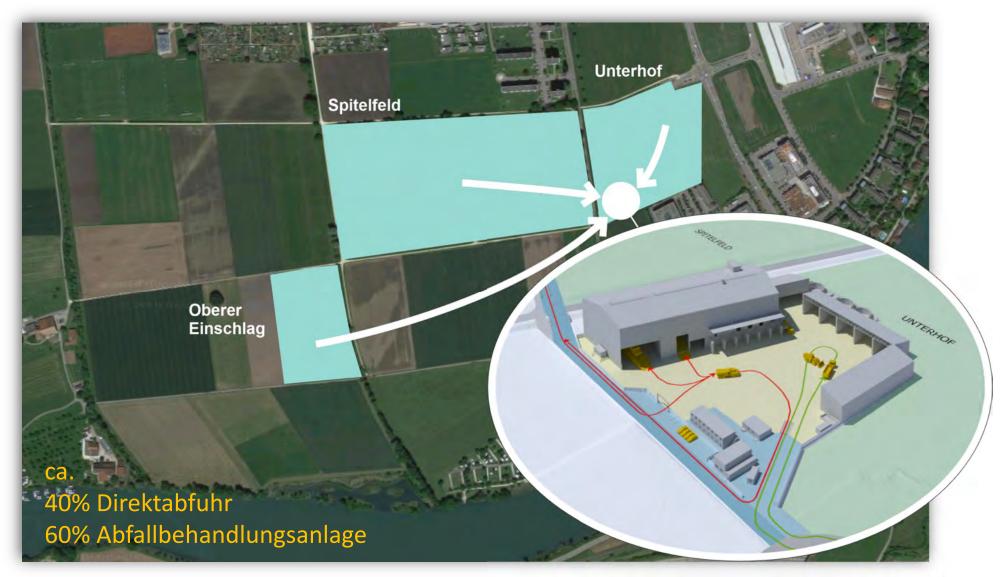
Spatenstich am 4. Juli 2022

Auftraggeber

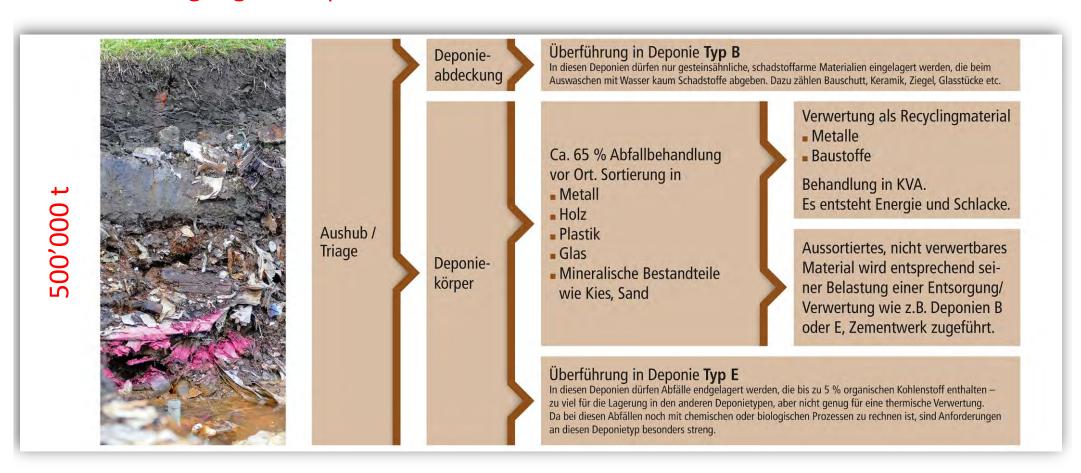
Bauherrengemeinschaft Stadt/Kanton Solothurn (als einfache Gesellschaft, Geschäftsführung bei Kanton)

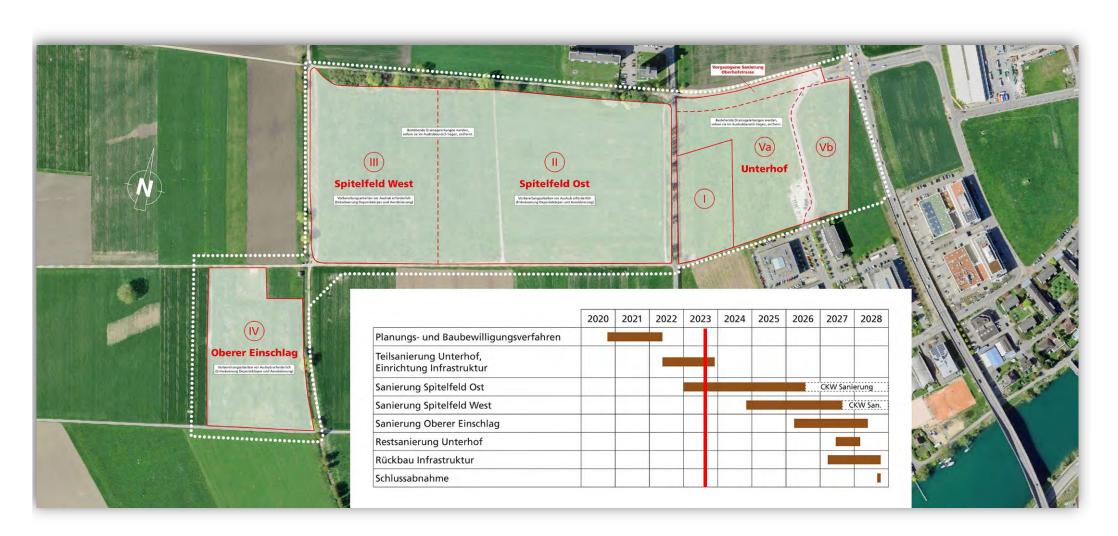
Planung/Bauleitung **Fachbauleitungen** Umweltbaubegleitung Bauleistungen Betrieb Abfallbehandlungsanlage Laboranalytik

Auftragnehmer als Totalunternehmer


Eckwerte Totalunternehmervertrag

Werkpreis	Höhe in CHF (inkl. MWST.)	Leistung
Globale	98'084'384.60	 Aushub Deponieabdeckung und -körper in vorgegebenem Sanierungsperimeter
		Mengenrisiko beim TU
		 Risiko für «Güte» der Produkte aus der Abfallbehandlungsanlage beim TU
		 Risiko für Verwertung/Endentsorgung beim TU (VVEA konform)
		 Jederzeitige Rückverfolgbarkeit Verwertung/Endentsorgung gefordert
		Abrechnung nach Zahlungsplan
Ausmass	1'942'111.00	 Aushub Deponiesohle (Deponiesaum) bis zum Erreichen des Sanierungsziels
		 Abrechnung im Ausmass nach m3 fest

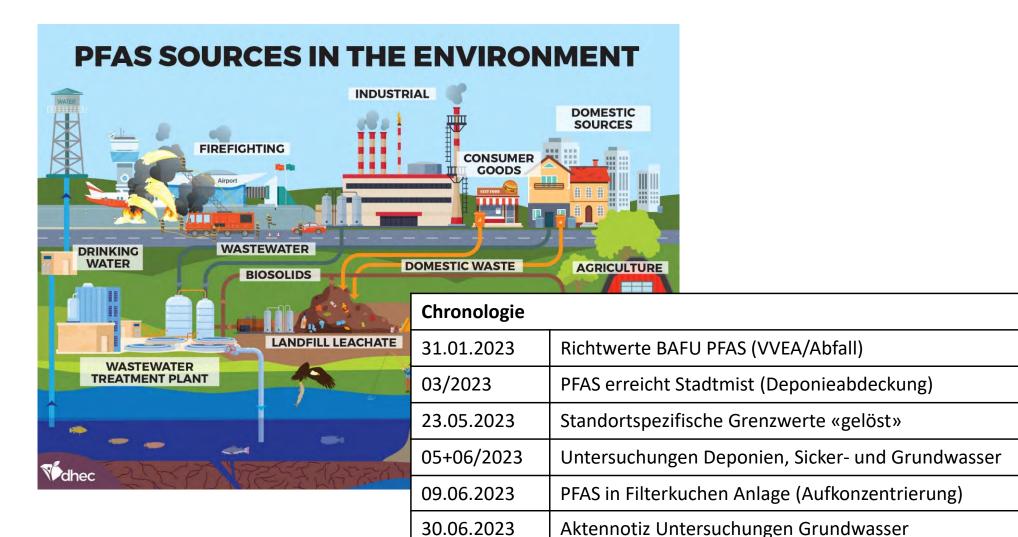

Übersicht Deponien und Bauinstallation


Entsorgungskonzept im Überblick

Übersicht Sanierungsetappen

Stand: August 2022

Stand: Februar 2023



Stand: Juni 2023

Neue Herausforderung - PFAS

06.07.2023

Bericht Untersuchungen Deponien/Sickerwasser

Neue Herausforderung - PFAS

Gezeigte Folie anlässlich Sitzung Steuergremium vom 29. Juni 2023

- Fazit 1: PFAS auf Ablagerungsstandort vorhanden; von Ost nach West zunehmend
- Fazit 2: PFAS werden in Anlage aufkonzentriert
- Fazit 3: Datenlage auf Inputseite (Abfall) und Outputseite (nach Anlage) noch sehr dünn
- Fazit 4: Es besteht Klärungsbedarf (Verbesserung Datenlage) und Handlungsbedarf
- Fazit 5: Es weiss niemand, wo die Reise finanziell hingeht

Herausforderungen:

- Gesetzliche Praxis auf «wackeligen» Beinen (projektspez. Grenzwerte, aber nicht in VVEA)
- Deponiebetreiber sperren sich gegen PFAS-Material (auch innerhalb der Grenzwerte)
- Technologien für Aufbereitung mit vielen Fragenzeichen
- Damit viele Unsicherheiten im laufenden Sanierungsprozess bei laufenden Kosten
- Aufwand Unternehmer für PFAS kaum vom «Ohnehinaufwand» zu trennen

Gezeigte Folie anlässlich Sitzung Steuergremium vom 29. Juni 2023

Es drängen sich diverse Szenarien auf (ohne Bewertung):

- Szenario 1: Baustellenunterbruch Grenzwerte VVEA und Technologieentwicklung in der Aufbereitung abwarten, Zeitdauer unbekannt
- Szenario 2: Testphase PFAS und je nach Resultaten «Zusatzpauschale PFAS» oder Baustellenunterbruch
- Szenario 3: «Koste es was es wolle» unbekannt Mehrkosten in Aufbereitung und Ablagerung; wohl auf allen Ebenen iteratives Vorgehen
- (Szenario 4: Baustellenabbruch Installationen übernehmen, Schadloshaltung ARGE und neu ausschreiben inkl. PFAS-Thema)

Ökologische Aufwertungen

Ökologische Aufwertungsmassnahmen

Legende

Niederhecke mit Krautsaum

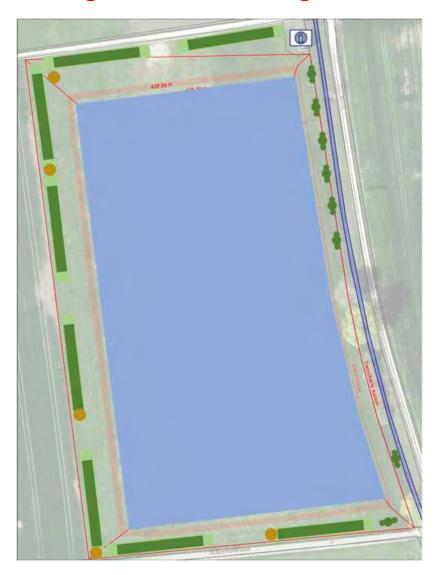
Kleinstruktur

Gehölze

Flutmulde

Beobachtungs- und Informationsstation

Füllstand 33%


Max. Wasserspiegel:

H = 428.35 m.ü.M.

Ökologische Aufwertungsmassnahmen

Legende

Beobachtungs- und Informationsstation

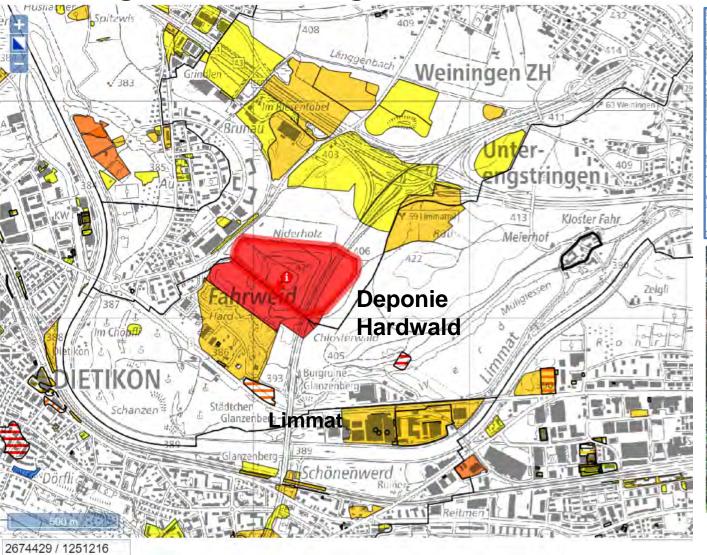
Füllstand 100%

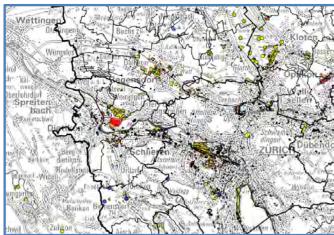
Max. Wasserspiegel:

H = 428.68 m.ü.M.

Notüberlauf:

H = 428.78 m.ü.M.


Besten Dank für Ihre Aufmerksamkeit


Weitere Infos: https://stadtmist.so.ch

Fragen?

Lage mit Auszug aus dem KbS

13. September 2023

Kenndaten (I)

Oberflächenabdeckung: Rekultivierungsschicht mit Wald bewachsen

Basisabdichtung: nicht vorhanden

Deponiefläche: 205 000 m² (20 ha)

Mächtigkeit: max. 39 m, durchschnittlich 25 m

Ablagerungsvolumen: ca. 3.3 Mio. m³

Ablagerungszeitraum: 1949 – 1975

Abfallarten: Siedlungsabfälle, KVA-Schlacke, Bauschutt,

(Brandschutt), Aushub (1.4 Mio. m³), Klärschlamm,

Industrieabfälle

Deponieform: aufgefüllte Kiesgrube

Kenndaten (II)

Sickerwasser: wird nicht gefasst und nicht gereinigt

Deponiegasfassung: seit 1989 in Betrieb. 1994 kleinere Fackel installiert. 2000

vollständig revidiert (Gasanalyse-Einheit und Fackel

ersetzt)

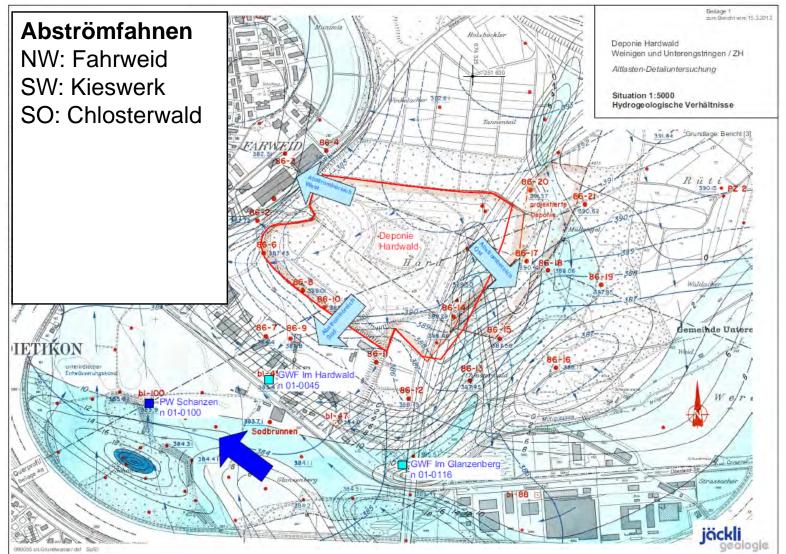
Nationalstrasse: A3 von 1978 bis 1980 realisiert

quert östliche Deponie

165 000 m³ wurden ausgehoben und an anderer Stelle

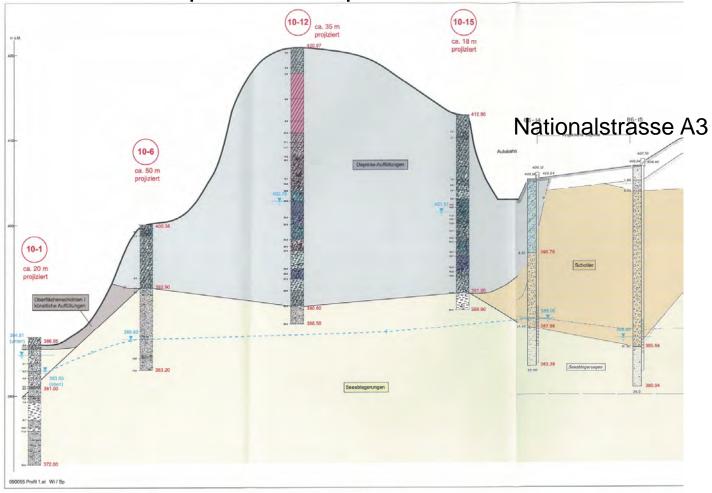
abgelagert (Deponie Nassmatt)

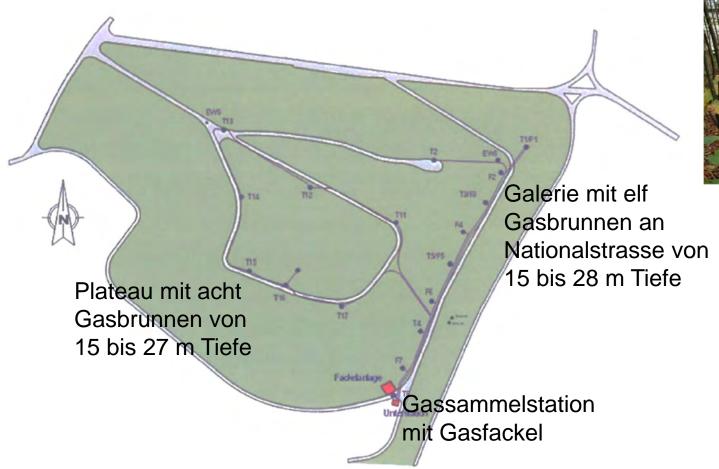
Untergrund wurde dynamisch intensiv mit Fallgewichten


verdichtet (5 bis 7 m Abfall unterhalb Strasse belassen).

Gewässerschutzbereich: A_U

Sanierungsbedarf GW: Arsen, Vinylchlorid und PFAS


Grundwasserverhältnisse


Schnitt Deponiekörper NW - SO

- Sickerwasserspiegel im Deponiekörper schwanken (trocken bis nass)
- Grundwasserspiegel unterhalb Deponiebasis

Entgasungssystem

2005, Blick Richtung A3

Entgasungssystem

Gassammelstation

Gasbrunnen

Gassammelbalken

Gas-Verdichterstation

Kenndaten Entgasung

Gasbildungsphase Methanoxidations- resp. Kohlendioxidphase

Kontrollen / Messungen: Jährliche Überprüfung und Einregulierung

Zustand: Revision aufgrund von Setzungen notwendig

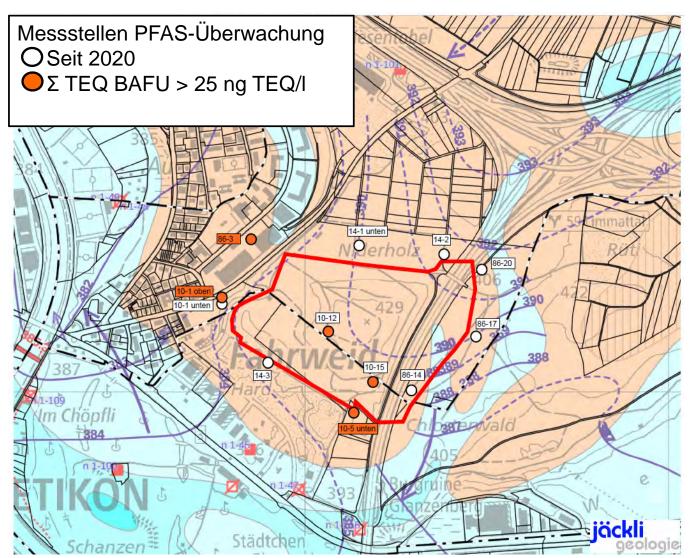
Absaugmenge: ca. 33 m³/h,

1/3 Gasbrunnen T2, 1/3 Ringleitung und 1/3 Galerie

Methangehalt: 29 Vol.-% Hauptgasleitung

Brunnen von 0.1 bis 52 Vol.-%

Kohlendioxid: 22 Vol.-% Hauptgasleitung


Methanfracht: 60 Tonnen pro Jahr oder 1'500 CO₂-Equivalente

(Schätzung)

Spurenstoffe: 120 g Vinylchlorid und 290 g Benzol pro Jahr

PFAS im Grundwasser

Überwachung Grundwasser

			Abströmbereich West		Abströmbereich Süd		Deponiekörper	
			KB 10-		KB 10-5			
Stoffname	Abk.	RPF	oben	KB 86-3	unten	KB 10-3	10-12	10-15
<u>Sulfonsäuren</u>	PFSA							
Perfluorbutansulfonsäure	PFBS	0.001	3	< 1	2	< 1	4	2
Perfluorhexansulfonsäure	PFHxS	0.6	2	2	2	< 1	4	1
Perfluorheptansulfonsäure	PFHpS	2	< 1	< 1	< 1	< 1	< 1	< 1
Perfluoroctansulfonsäure	PFOS	2	3	13	2	< 1	18	2
Perfluordecansulfonsäure	PFDS	2						
<u>Carbonsäuren</u>	PFCA							
Perfluorbutansäure	PFBA	0.05	150	38	69	4	200	49
Perfluorpentansäure	PFPeA	0.05	< 1	< 1	3	< 1	3	2
Perfluorhexansäure	PFHxA	0.01	8	1	7	< 1	13	6
Perfluorheptansäure	PFHpA	1	5	< 1	3	< 1	11	2
Perfluoroctansäure	PFOA	1	45	6	18	< 1	170	17
Perfluornonansäure	PFNA	10	< 1	< 1	< 1	< 1	< 1	< 1
Weitere PFAS								
1H, 1H, 2H, 2H-Perfluoroctan-			< 1	< 1	< 1	< 1	< 1	< 1
Sulfonsäure 6:2 FTS								
Summe PFAS gesamt			216	60	106	4	423	81
Summe PFAS 9 Einzelsub.			65	35	30	0	230	26
Summe TEQ (9 Messwerte mit RPF)		ng TEQ/I	65	35	30	0	230	26
Sanierungsbedarf 25 ng TEQ/l			S	S	S			

Aktueller Stand altlastenrechtlicher Vollzug

- Evaluation Sanierungsvarianten abgeschlossen und Aerobisierung als Sanierungsmassnahme gemäss Art. 18 Abs. 2 Bst. b AltIV festgelegt.
- Pilotkonzept Aerobisierung und Beurteilung PFAS-Situation vom Realleistungspflichtigen beim AWEL eingereicht

Second Opinion zu Pilotkonzept durch externe Experten

- Welchen Einfluss hat PFAS auf die Massnahmen?
- Gibt es Vorschläge / Einwände / Ergänzungen / Korrekturen?
- Welche Schritte (iterativ) und Massnahmen sind aus ihrer Sicht notwendig?
- Welchen Zeitraum sollte ein Pilotversuch umfassen?

Bundesamt für Umwelt BAFU Abteilung Boden und Biotechnologie Monbíjoustrasse 40 3011 Bern

Beratungsmandat Aerobisierung SCP mit IFAS / HIICCE

Fragen zur Realisierbarkeit und Umsetzung der Sanierungsmethode «Aerobisierung» im Fall der Deponie Hardwald, Weiningen und Unterengstringen / ZH - Evaluation von Sanierungsvarianten bezüglich PFAS

Bearbeitungsstand: 06.03.2023

Bearbeitung durch:

IFAS - Ingenieurbüro für Abfallwirtschaft Prof. R. Stegmann und Partner Hamburg

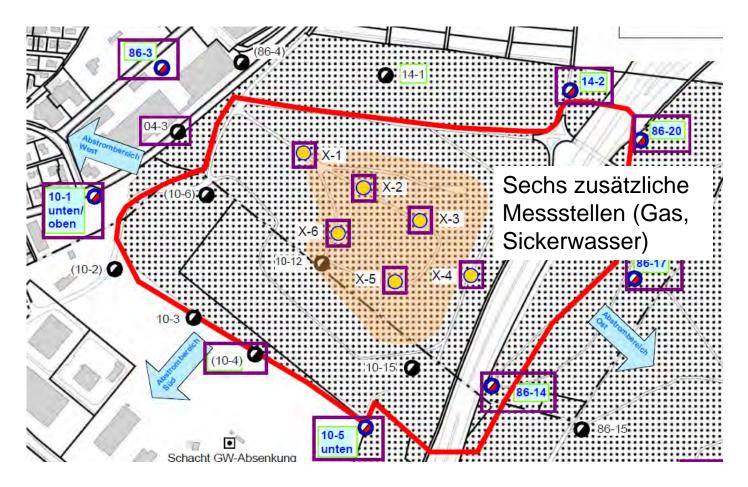
HiiCCE - Hamburg Institute for Innovation, Climate Protection and Circular Economy GmbH Hamburg

Erkenntnisse aus Expertenrunde Einfluss PFAS auf Sanierung

PFAS werden für die Sanierung vorerst nicht berücksichtigt, sondern mittels Grundwasserüberwachung beobachtet, weil

- PFAS-Messwerte nur geringfügig über 25 ng TEQ/I liegen und niedrige Dringlichkeit der Sanierung besteht
- PFAS-Fracht pro Jahr im Grammbereich
- keine zufriedenstellende Sanierungsvariante ausser Aushub existiert
- die Motion Meret in Bern abgewartet werden sollte (Festlegung PFAS-Konzentrationswerte in AltIV)

Erkenntnisse aus Expertenrunde Perimeter Pilotversuch



Deponieperimeter

- Perimeter Pilotversuch Aerobisierung
 - Typ 4a (Hauskehricht mit Aushub vermischt)
 - Typ 1 (Aushub mit > 10% Fremdstoffen (ohne Schlacke)

Erkenntnisse aus Expertenrunde Vorgesehene Massnahmen

- Laufzeit über 2 bis 3 Jahre
- Iteratives Vorgehen (Evaluation und Festlegung bei jedem Schritt)
- Im Bereich Nationalstrasse kein Pilotversuch
- Kenntnisse zum Deponiekörper erweitern (Lücken füllen)
- Sechs neue Messstellen im Deponiekörper
- Abfalluntersuchungen zum Abbaugrad und Schadstoffverteilung etc., ggf. Laborversuche
- Monitoring Deponiegas, Sickerwasser, Temperatur, Setzungen
- Überprüfung Porenwassersättigung im unteren Deponiekörper
- Pumpversuche an Deponiesickerwasser zur Bestimmung Schadstofffracht

- Absaugversuche an bestehenden Gasbrunnen im Plateau
- Erstellung von neuen Gasbrunnen bis zur Sohle wird geprüft
- Überprüfung von Übersaugung und aktiver Luftzuführung
- Überprüfung Abpumpen von Sickerwasser an der Deponiebasis (Quelle)

Rückfallebenen

Falls sich die Messwerte im Grundwasser verschlechtern (Mobilisierung) und die Sanierungsbedürftigkeit der Deponie bestehen bleibt:

- Dichtwand (entweder ¾ oder geschlossen). Prüfung, ob auch Spundwand möglich wäre.
- Oberflächenabdichtung (Durchlässigkeit für Deponiegase und Niederschlagswasser wird geprüft: von undurchlässig bis gering durchlässig)

Ausblick

- Bringt der Pilotversuch genügend Erkenntnisse und Informationen für die geplante Aerobisierung?
- Wird mit der Aerobisierung die Deponie langfristig saniert (Abnahme der Konzentrationen von Arsen und Vinylchlorid im Grundwasser)?
- Wie sieht die Wirksamkeit der Massnahmen aus?
- Sind zusätzliche Massnahmen für PFAS notwendig?
- Sind die Rückfallebenen wirklich notwendig, welche Massnahme wäre am zielführendsten und ist dies verhältnismässig?
- Können die Erkenntnisse bei weiteren Deponien angewendet werden?

Der forensische Ansatz für gesunde Flüsse

- Symposium Altlasten Schweiz BAFU
- Mit der Unterstützung des Kantons Wallis Dienststelle Hochwasserschutz Rhone (DHWSR) und der Dienststelle für Umwelt (DUW)

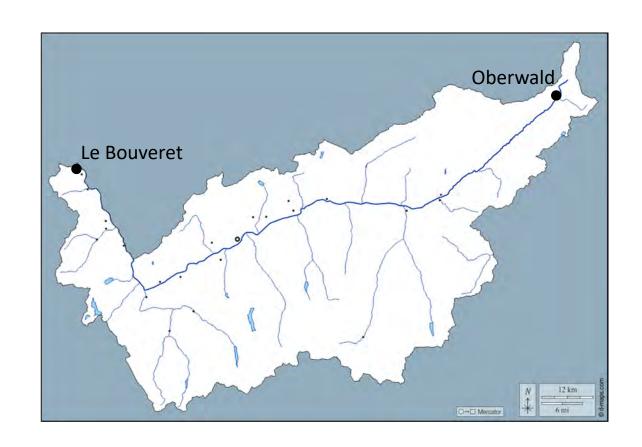
Anne-Laure Zufferey (PhD) - Riverexpertise

Der forensische Ansatz - Vorgehen

Sammeln der **Daten**, die zwecks Erzeugung von **Informationen** verarbeitet werden.

Diese Informationen werden kontextualisiert, wodurch **Erkenntnisse** gewonnen werden.

Das Nutzen dieser Erkenntnisse erlaubt es Behörden oder Organisationen, Massnahmen zu ergreifen.


Fall 1: die Rhone - Wallis

Geografie:

Oberwald – Le Bouveret

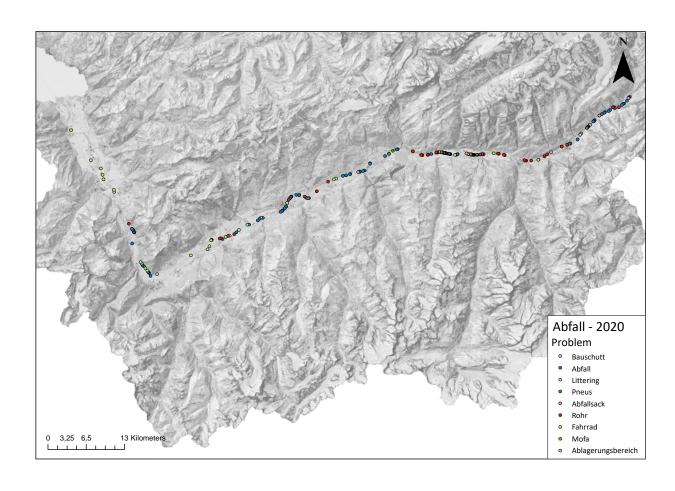
Daten:

- Feldaufnahme:
 - Anschwemmorte von Abfall, Littering (Plastik in Bäumen) und Anschwemmbereiche
 - Art des Abfalls
 - Zersetzungsgrad
 - Art der Ablagerung/des Auftauchens der Abfälle

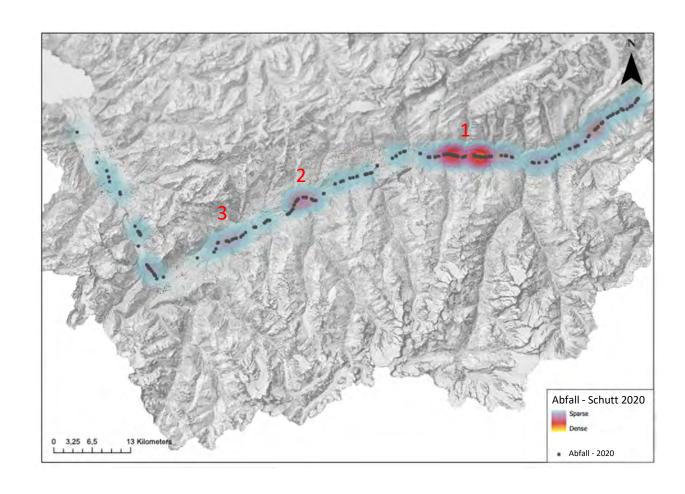
Ziel der Untersuchung

- Ermitteln, warum und wie der Abfall abgelagert wird/auftaucht (angeschwemmt wird)
- Ermitteln, welche Sanierungsmassnahmen sinnvoll wären
- Ermitteln, welche Präventionsmassnahmen angezeigt sind

- Geografische Koordinaten
- Bilder
- Abfallart
- Zersetzungsgrad
- Art der Ablagerung
 - Weggeworfen
 - Vom Fluss mitgeführt und anschliessend abgelagert
 - Aus Sedimenten wieder aufgetaucht
 - An Bäumen/einem Metallstück hängengeblieben



Datenverarbeitung: Kartierung


Thematische Darstellung

Analyse mithilfe «Heatmap»

Thematische
Darstellung der
abgelagerten
Abfälle –
Jahr 2020

Konzentrationsbereiche von Abfällen (Heatmap) – Hervorhebung von **3 Hotspots**

Hotspot 1

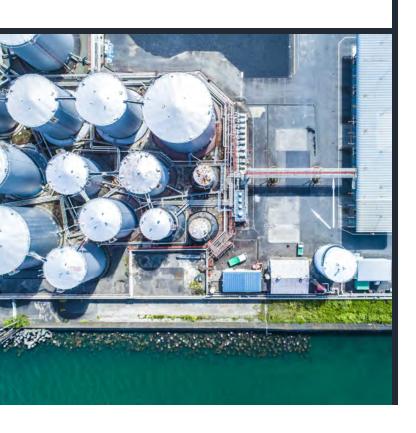
Alte bis sehr alte und zersetzte Abfälle

Ursprünglich von Sedimenten bedeckte Abfälle, die bei Wasserbewegungen wieder freigelegt werden

Littering in Bäumen

Lokalisierung hinter Steinschüttungsbuhnen

Hotspot 2

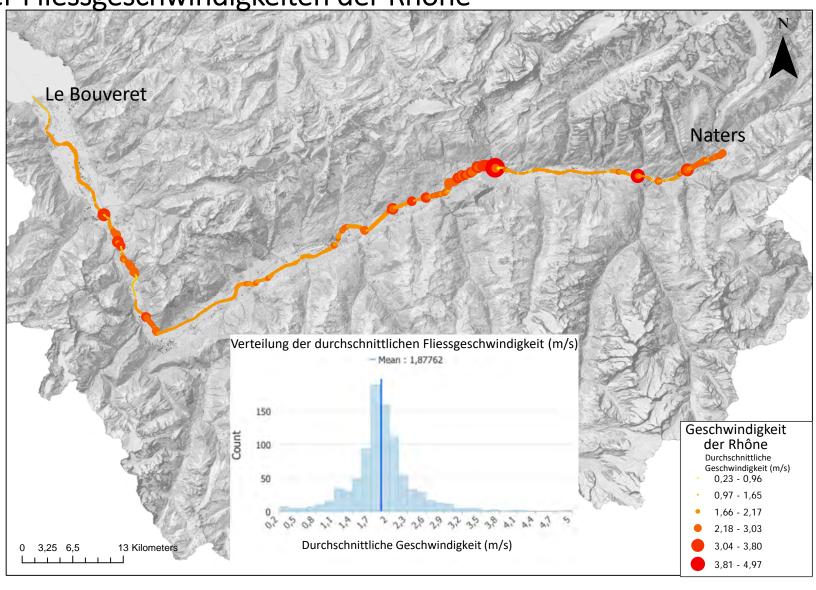

- Littering in Sträuchern
- Abfallablagerung an den Ufern

Hotspot 3

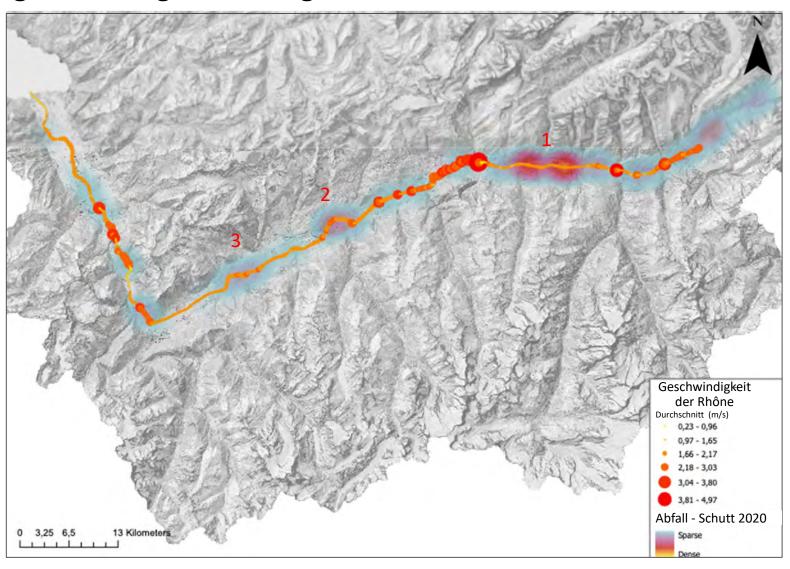
- Littering in Sträuchern und Wurzelwerk
- Abfallablagerung an den Ufern

Kontextualisierung von Informationen zur Gewinnung von Erkenntnissen

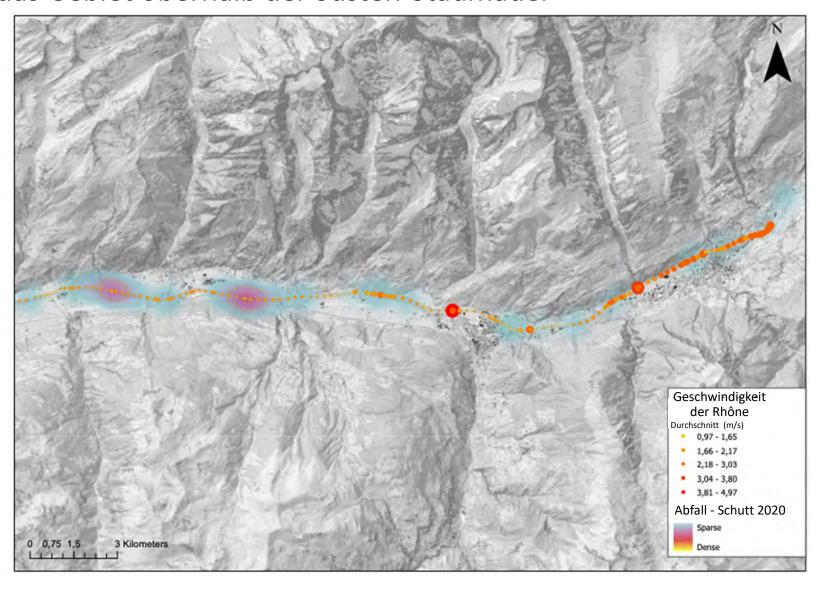
- Untersuchung der Fliessgeschwindigkeiten der Rhone
- Untersuchung der Flussbettstruktur


Untersuchung der Geschwindigkeitsänderungen der Rhone

Zur Verfügung stehende Daten:


- Geografische Kartenebene des Rhoneverlaufs
- Eine Excel-Datei der Durchschnittsgeschwindigkeiten nach Entfernung in km von Punkt 0 an der Rhone-Mündung in Le Bouveret bis km 121 in Naters (Brig).

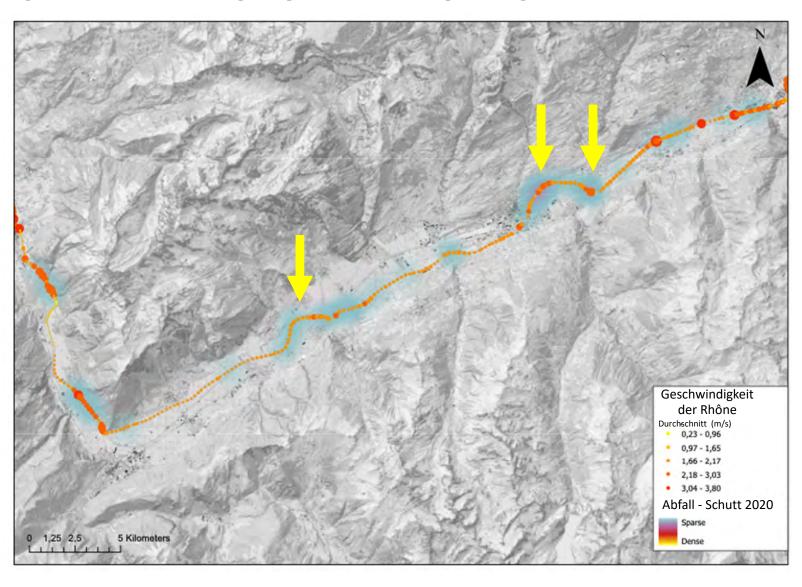
Formatierung der Daten durch Zusammenfügen von Tabellen

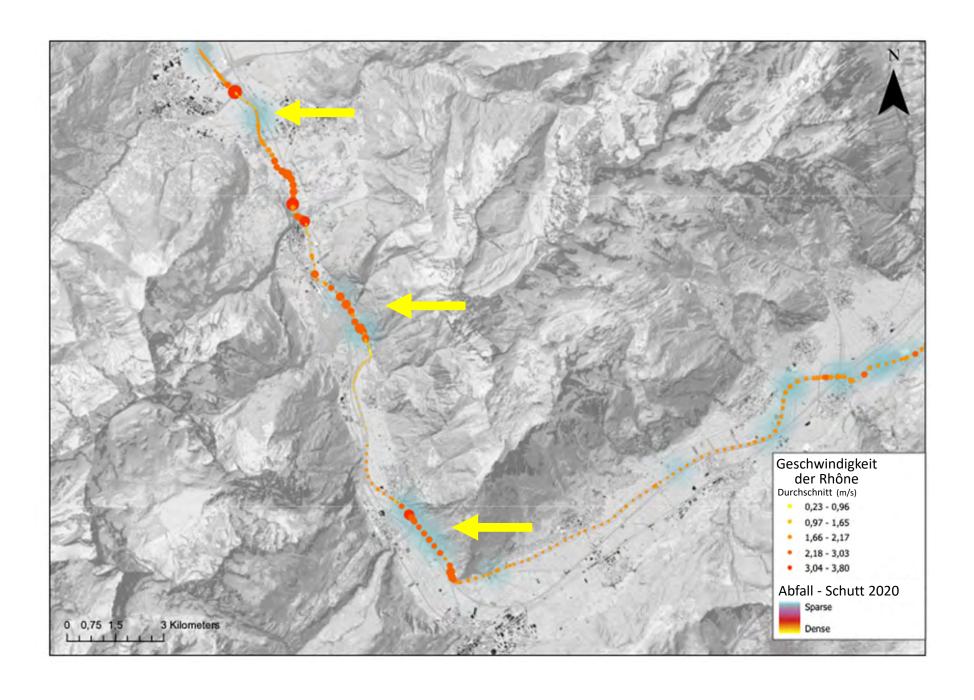

Kartierung de<u>r Fliessgeschwindigkeiten der Rhone</u>

Überlagerung der Fliessgeschwindigkeiten mit den Abfallzonen im Heatmap-Format

Zoom auf das Gebiet oberhalb der Susten-Staumauer

Beobachtungen

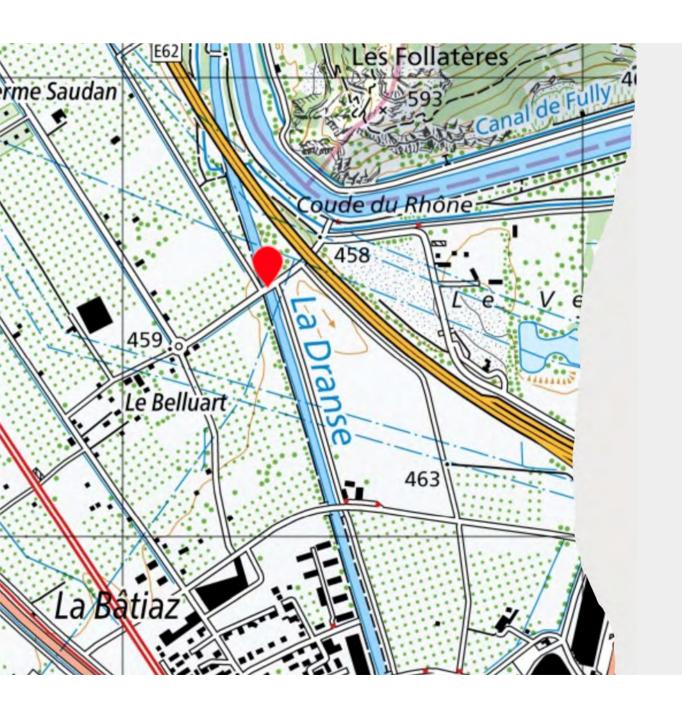

Hotspot 1 entspricht einem langgezogenen Bereich mit verlangsamter Fliessgeschwindigkeit aufgrund der Staumauer.


Die Hotspots 2 und 3 befinden sich nach einer Zone, in der das Wasser sich erst beschleunigt und dann verlangsamt.

Das Wasser beschleunigt und verlangsamt sich, wenn sich die Morphologie des Flussbetts ändert:

- das Flussbett wird schmaler
- es liegt ein Gefällebruch vor

Visualisierung der Beschleunigungs- und Ablagerungszonen

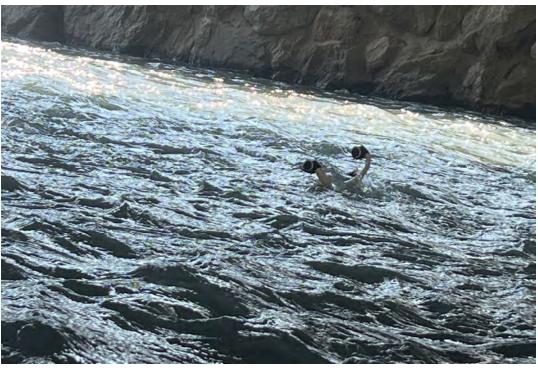


Welche Erkenntnisse können daraus gewonnen werden:

- Eine Beschleunigung und anschliessende Verlangsamung des Wassers begünstigt die Ablagerung von Abfällen.
- Das Vorhandensein des Staudamms und die Dynamik des Wassers begünstigen die langfristige Ablagerung von Abfällen, die in den Sedimenten eingeschlossen sind.

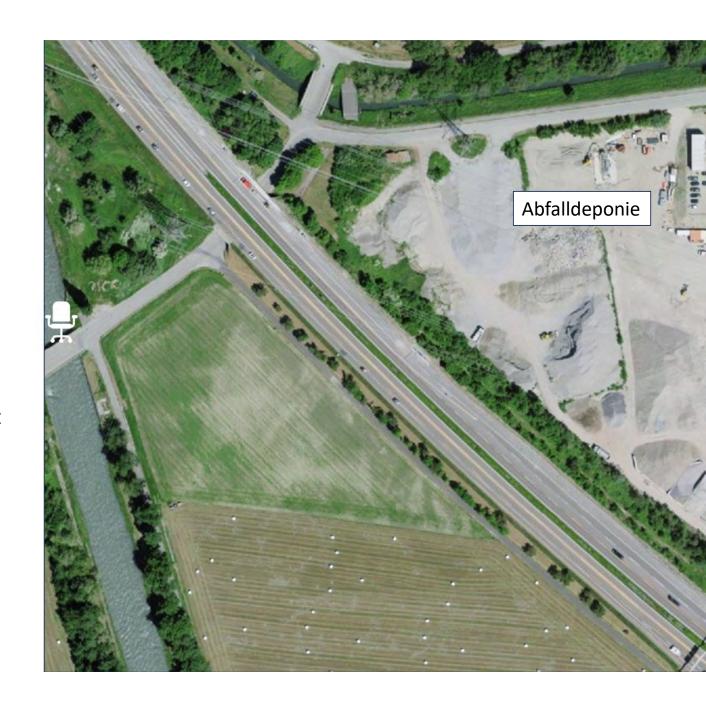
Vorgeschlagene Massnahmen:

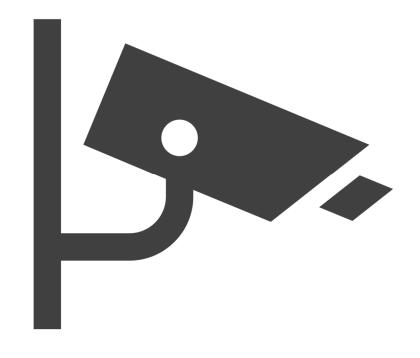
- Sanierung der Ufer oberhalb eines Staudammes
- Überwachung und Säuberung von Bereichen mit veränderter Fliessgeschwindigkeit, die die Ablagerung von Abfällen begünstigen.
- Bei der Umgestaltung eines Flussbetts sollten Bereiche mit beschleunigtem und verlangsamtem Wasserfluss und ein Zugang zur Beseitigung von Abfallablagerungen vorgesehen werden.



Fall 2: Dranse, Gemeinde Martigny

- Geografie: Punkt unterhalb der Stadt Martigny
- Daten:
 - Feldaufnahme des Abfalls im Fliessgewässer

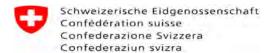

Erhobene Daten: 2 Bürostühle im Gewässerlauf


Datenverarbeitung:
Untersuchung der
umliegenden
Siedlungsgebiete und
Infrastruktur

- Die beiden Stühle wurden im Gewässerlauf unterhalb einer Brücke gefunden
- Die Strasse über die Brücke führt zur Abfalldeponie von Martigny

Kontextualisierung und Prävention

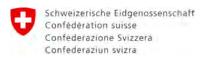
- Die Stühle wurden von der Brücke geworfen
- Empfehlung: auf der Brücke eine Überwachungskamera anbringen


Weiteres Vorgehen - Studienprojekte

- Erhebung und Untersuchung des Abfalls in der Aare
- Anwendung des forensischen Ansatzes auf chemische und biologische Wasserverschmutzungen:
 - Suche nach der Schadstoffquelle
 - Chemische Wasseranalysen
 - Räumliche Analyse
 - Korrelation mit der Urbanisierung
- Kartierung der langfristigen Ablagerungsgebiete und chemische Analyse der Sedimente

Danke für Ihre Aufmerksamkeit

Ich stehe Ihnen für Fragen zur Verfügung



Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK **Bundesamt für Umwelt BAFU** Abteilung Boden und Biotechnologie

Infoblock BAFU

Sektion Altlasten, BAFU

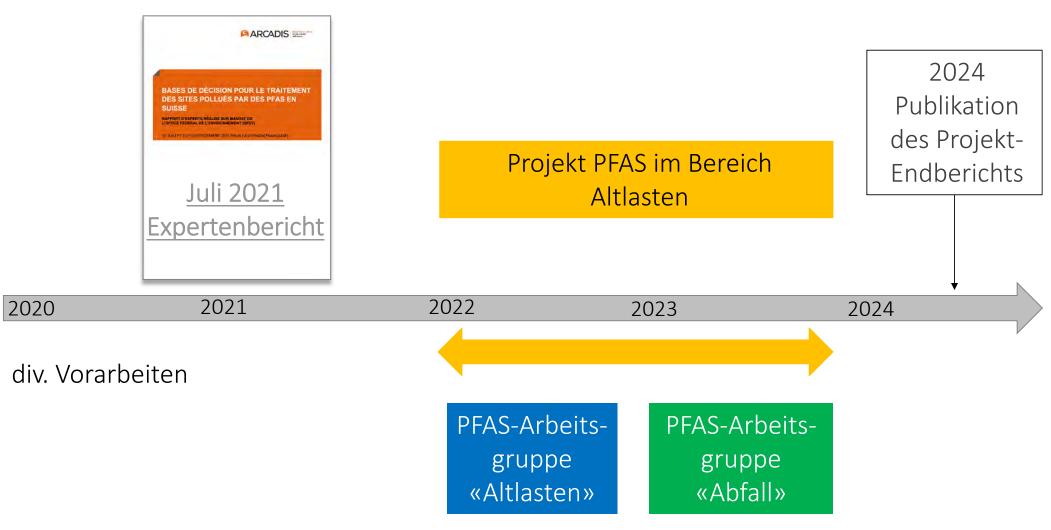
ALTLASTEN SCHWEIZ

——Symposium 2023—

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU Sektion Altlasten

PFAS: Stand der Arbeiten


Monika Schwab & Rolf Kettler, Sektion Altlasten BAFU

O

PFAS: Stand der Arbeiten: Themen der Präsentation

- 1) Projekt «PFAS im Bereich Altlasten»
- 2) PFAS-Werte (AltIV und VVEA)
- 3) Ergebnisse / Empfehlungen der Arbeitsgruppen (AG) (Auswahl)
 - a) Welche Branchen sind betroffen?
 - b) Welche PFAS analysieren?
 - c) Welche PFAS-Untersuchungen sind prioritär?
- 4) Politische Vorstösse, insb. Mo Maret
- 5) Diverses & Ausblick

1) Projekt «PFAS im Bereich Altlasten»

2) PFAS-Werte: AltIV-Werte

Anhang 1: K-Wert: Grundwasser und Oberflächengewässer

Anhang 3, Ziffer 1: Standorte bei landwirtschaftlicher oder gartenbaulicher Nutzung. Wie bei allen anderen Schadstoffen wird der PFAS-Wert für landwirtschaftliche Böden in der VBBo geregelt und in der AltIV werden die Werte übernommen.

Anhang 3, Ziffer 2: Standorte bei Haus- und Familiengärten, Kinderspielplätzen und Anlagen, auf denen Kinder regelmässig spielen.

Anhang 1: K-Wert

Zur altlastenrechtlichen Klassierung für die Schutzgüter Grundwasser und Oberflächengewässer wird derzeit der toxizitätsgewichtete Summenwert (TEQ-Summenwert) von definierten 9 Einzel-PFAS herangezogen:

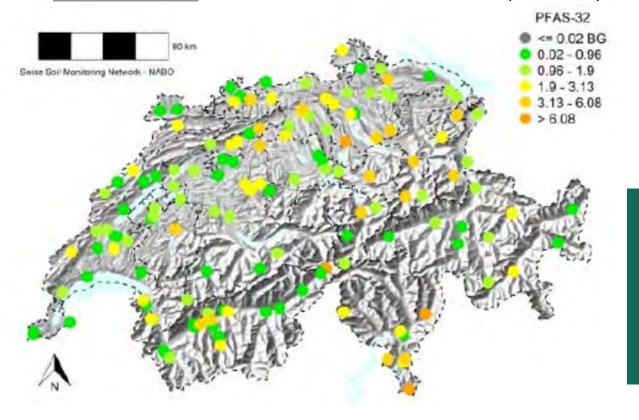
K-Wert: 50 ng TEQ / I

(PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS)

Anhang 3, Ziffer 2: Konz.wert direkte Bodenaufnahme

Für die altlastenrechtliche Klassierung für das Schutzgut Boden (Flächen, wo Kinder regelmässig spielen) wird derzeit ein toxizitätsgewichteten Summenwert von definierten 9 Einzelsubstanzen herangezogen:

Sanierungswert: 30 μg TEQ / kg


(PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS)

BAFU-Zustimmung zu Werten im Einzelfall erforderlich.

2) PFAS-Werte: AltIV- und VVEA-Werte PFAS-Grundbelastung im Boden

Hintergrundbelastung in Schweizer Oberboden: <u>Publikation</u> von Basilius Thalmann (ZHAW) et al.

146 Bodenproben (0-20cm):

Median = $1.4 \mu g/kg$

8

 $95\% < 5 \mu g/kg$

2) PFAS-Werte: VVEA-Werte

VVEA-Werte

Als Grundlage für die **Evaluation von Entsorgungswegen** bei Sanierungen werden derzeit Feststoff- Summenwerte von definierten 9 Einzel-PFAS herangezogen:

U-Wert	0.1 μg/kg*
T-Wert	2.5 μg/kg
B-Wert	5 μg/kg
E-Wert	5 μg/kg

^{*}Bestimmungsgrenze pro Einzelstoff
PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS

BAFU-Zustimmung zu Werten im Einzelfall erforderlich.

U

3a) Ergebnisse / Empfehlungen der AG: welche Branchen?

Betriebsstandorte		
Feuerwehr, Zivilschutz, Betriebs-/ Werkfeuerwehren	Brandübungsplätze, Zivilschutz-Ausbildungszentren, Betriebsfeuerwehren von Raffinerien Petrochemie grosse Tanklager chemische Industrie Kunststoffverarbeitung Reifenherstellung Flughafen Militärflugplätze.	

O

3a) Ergebnisse / Empfehlungen der AG: welche Branchen?

Betriebsstandorte		
Gewerbliche / industrielle Produktion mit <u>häufigem</u> Einsatz von PFAS	Herstellung/Wartung von Feuerlöschern und Feuerlöschanlagen; Metallverarbeitung/Galvanik; wasserabweisende Textilen; chem. Industrie (Herstellung von Feuerlöschschäumen, Imprägnierungsmitteln, Skiwachsen)	
Gewerbliche / industrielle Produktion mit untergeordnetem Einsatz von PFAS oder Einsatz in geringen Mengen	Chem. Industrie (Pflanzenschutzmittel, Fluorpolymere, Reinigungsund Kosmetikprodukten, Lacke/Farben mit PFAS-Additiven, u.v.m.); chem. Reinigung (imprägnieren); Papier/Karton (Beschichtung); Halbleiterindustrie/Leiterplattenherstellung; Herstellung von Druckerzeugnissen, Vervielfältigen von Ton-, Bild- und Datenträgern (Fotoindustrie); Einsatz von Hochleistungs-Hydraulikflüssigkeiten (inkl. Luftfahrt); Automatische Löschschaumeinrichtungen (Lager/Umschlag von brand- und/oder explosionsgefährdenden Gütern oder Flüssigkeiten)	

3a) Ergebnisse / Empfehlungen der AG: welche Branchen?

Abfallstandorte	
Entsorgung von PFAS-haltigen Abfällen, Feuerlöschübungen auf Deponien,	 Deponien zur Entsorgung von PFAS- haltigen Produkten oder Produktionsabfällen Brandübungsplätze auf Deponien
Unfallstandorte	
Unfallstandorte	Brandbekämpfung (Brandereignisse mit Einsatz von Löschschäumen)

O

3b) Ergebnisse / Empfehlungen der AG: welche PFAS?

1 2 3

Minimalprogramm

Minimalprogramm erweitert

Vollprogramm

PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS

Mindestens das Minimalprogramm mit den vom BAFU empfohlenen 9 PFAS-Einzelsubstanzen (mit bekannten Tox. faktoren).

K-Wert = 50 ng TEQ / I

PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS, +?, +?, 1?,...

Bei Hinweisen aus der Historischen Untersuchung auf zusätzliche relevante PFAS kann das Minimalprogramm erweitert werden.

Für eine altlastenrechtliche
Beurteilung müssen die
entsprechenden
Toxizitätsäquivalenzfaktoren (TEF)
herzuleiten.

Σ ca. 30 PFAS = von den
Analytiklabors angebotenes
PFAS-Untersuchungsprogramm & nach bisheriger
Erfahrungen: Capstone A/B,
ADONA, 6:2-FTS, 8:2-FTS
sowie GEN-X.

Für eine umfassende Abklärung der Situation bzw. bei Unsicherheiten über den PFAS-Einsatz wird das Vollprogramm empfohlen.

3c) Ergebnisse / Empfehlungen der AG: welche Priorisierung?

Die Arbeitsgruppe empfiehlt bei PFAS-Untersuchungen folgende Priorisierung:

- 1) Brandübungsplätze Betriebe (Werksfeuerwehren) sowie Feuerwehr-Ausbildungsstätten
- 2) Untersuchungsbedürftige Betriebe, Unfallstandorte (inkl. Brände) und Deponien = Bearbeitung im Rahmen des aktuellen Vollzugs *
- 3) Brandübungsplätze Gemeinden (darunter vermutlich einige neue Standorte) *
- **4) Bisher nicht untersuchungsbedürftige** Standorte (Klassierung gemäss Art. 5 AltlV) sowie **bereits untersuchte oder sanierte** Standorte (Klassierung gemäss Art. 8 AltlV) */**

Entscheid über das Vorgehen liegt bei den kantonalen Behörden.

^{*}zusätzliche Priorisierung unter Berücksichtigung der Schutzgüter (Gefährdungsabschätzung, Nutzung von Flächen, Gewässern etc.)

^{**} vorzugsweise Nutzung der bereits vorhandenen Beprobungsstellen

3) Ergebnisse / Empfehlungen der AG

Themen:

- > Branchen: KbS-Entscheidungsbäume
- ➤ Löschung aus dem KbS
- ➤ Untersuchungsstrategie
- Umfang Analyseprogramm
- > TOP-Assay
- > Priorisierung
- > Standortabgrenzung
- ➤ Literaturrecherche Sanierungen
- > Sanierungen (inkl. Sicherung als Sanierung)
- ➤ Dringlichkeit
- ➤ Bauen auf belasteten Standorten (Art. 3 AltIV)

2024 Publikation

4) Politische Vorstösse: Motion Maret 22.3929

(22.3929 | Festlegung von PFAS-spezifischen Werten in Verordnungen | Geschäft | Das Schweizer Parlament)

EINGEREICHTER TEXT

Der Bundesrat wird beauftragt, in den entsprechenden Verordnungen die folgenden PFAS spezifischen Werte festzulegen:

- Grenzwerte und Bedingungen für die Entsorgung von Materialien (Abfallverordnung)
- Konzentrationswerte zur Evaluierung der Belastungen des Bodens und der Untergründe (Altlasten-Verordnung und Verordnung über Belastungen des Bodens)
- Grenzwerte für die Einleitung in Gewässer

BEREICH NACHSORGE!

4) Politische Vorstösse: Motion Maret 22.3929: Werte in der AltIV!

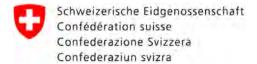
- Mo Maret ist in SR und NR angenommen → Projekt im BAFU gestartet (Projektleitung: Bettina Hitzfeld, Abteilung Boden und Biotechnologie)
- Auftrag: Wir müssen die momentanen PFAS-Werte auf Ihre Vollzugstauglichkeit überprüfen.
- Um diese Prüfung machen zu können, müssen wir genügend Wissen über belastete Standorte mit PFAS zusammentragen, um dem BR Werte mit ausreichender Sicherheit und gutem Gewissen vorschlagen zu
- → MESSEN, MESSEN!
- Umfrage bei Kantonen (Sommer 2024)
- Evaluation und Diskussion mit Kantonen (2024/2025)
- Gegenüberstellung mit Daten zur Grundbelastung (Boden & naqua)

4) Politische Vorstösse

		22
20.3593	Mo. Munz	Verb Aktion Aktion
20.4699	Ip. Pfister Gerhard	Sch Aktionsplan - durch PFAS-Export?
21.3873	Ip. Schneider Schüttel	Sch Aktionsplan Zur Reduktion der Belastung von Mensch und Umwelt durch langlebige Bekämpfer/in: Sch Aktionsplan Zur Reduktion der Belastung von Mensch und Umwelt durch langlebige Moser Tiana Angelina Grünliberale Fraktion
21.4117	Mo. Wettstein	Von: Lindungen.
22.3790	Po. Schneider Schüttel	Bekämpfer/in:
22.4228	Ip. Gugger	Bekämpfer/in: Sinreichungsdatum: BÜHLER MANFRED MOSER TIANA ANGELINA Grünliberale Fraktion BÜHLER MANFRED
22.4233	Ip. Trede	od der Beratungen: Notice Notice The MANFRED Zer
22.4515	Ip. Schneider Schüttel	A - Louis - A - Lo
22.4585	Po. Moser	Aktionsplan zur Reduktion den Bundesrat Chemikalien.
23.3499	Mo Ko UVEK	Produkte mit PFAS bereites am Ursprungsort begrenz
23.7227	Fra. Moser	Ewige Chemikalien: Wann handelt der Bundesrat?
23.7256	Fra. Fivaz Fabien	Verbot von PFAS: Welcher Zeitplan?

V

5) Diverses & Ausblick

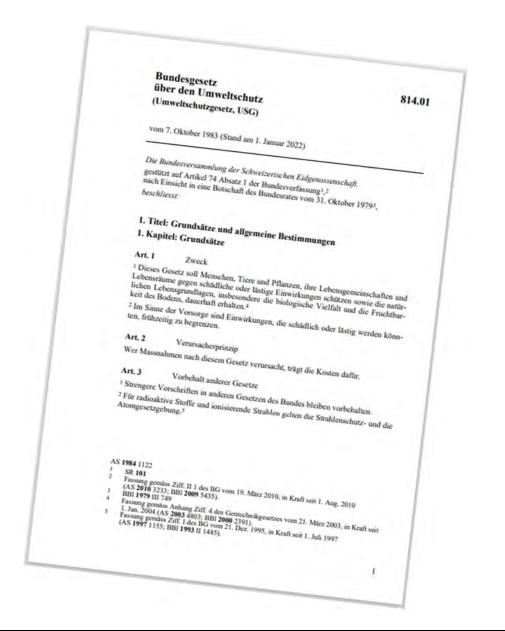

- Dissertation am CHYN (Scattolini Francesco bei Daniel Hunkeler)
- Restriction Proposal, EU: The proposal was prepared by authorities in Denmark, Germany, the Netherlands, Norway and Sweden and submitted to ECHA on 13 January 2023. <u>All news ECHA (europa.eu)</u>
- BAFU: Naqua: Publikation BAFU-Website September/Oktober 2023
- Andere Bundesämter:
 - BLV:
 - PFAS Untersuchungen in Fliessgewässern, Fischen und Abwasser. Jürg Wüthrich, Kanton St.
 Gallen. → Vgl. mit EFSA*: z.T. dürften wöchentlich nur wenige Gramm verzehrt werden
 - Kontaminantenverordnung: Neue Höchstwerte für PFAS in Lebensmitteln ab 1.1.2024 für Fisch, Fleisch, Eier (Wert gemäss EFSA). Übernahme EU-Werte.
 - Total Organic Fluorine (TOF) in Lebensmittelkontaktmaterialien (Karton, Papier, Bagasse)
 - BAG: <u>Pilotphase der Schweizer Gesundheitsstudie: Ergebnisse des Humanbiomonitorings PFAS</u> in CH-Serum: Median: PFOA: 1.3ng/mL und PFOS: 6.1 ng/mL → PFAS in CH-Bevölkerung liegen in der gleichen Grössenordnung wie in EU-Ländern

5) Diverses & Ausblick

- Motion Maret:
 - o September 2023: Arbeiten starten
 - o 2024/2025: Evaluation / Diskussion PFAS-Werte
- Entsorgung
 - Versuche im Zementwerk
 - o PFAS-Emissionen von in Betrieb stehenden Deponien
- Kommunikation / Information:
 - o Frühjahr 2024: Publikation Projekt-Schlussbericht «PFAS im Bereich Altlasten»
 - o 2024: PFAS-Workshop oder PFAS-Symposium

Vielen Dank für Ihre Aufmerksamkeit!

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK **Bundesamt für Umwelt BAFU** Abteilung Boden und Biotechnologie


ALTLASTEN SCHWEIZ

—Symposium 2023—

Infoblock BAFU

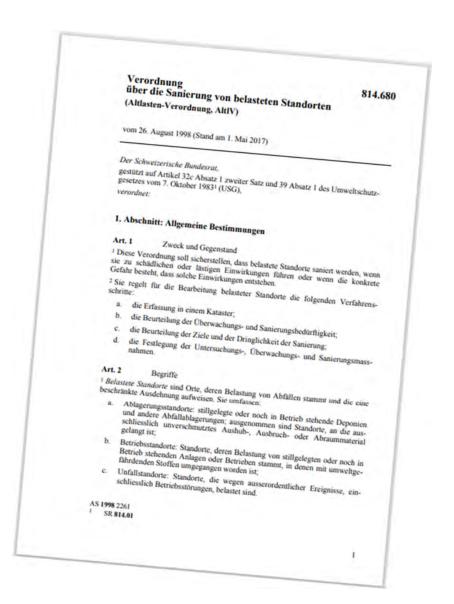
Sektion Altlasten, BAFU

Revision USG

O

Themen des Revisionspakets USG

- Lärm,
- Altlasten,
- Lenkungsabgaben,
- Finanzierung von Aus- und Weiterbildungskursen,
- Informations- und Dokumentationssysteme,
- Strafrecht
- Eröffnung der Vernehmlassung: 8. September 2021
- Ende der Vernehmlassung: 30. Dezember 2021
- Beratung im Parlament (Kommissionen und Plenum): läuft seit 16.12.2022



Gegenstand der USG-Revision im Bereich Altlasten

- Umsetzung der Mo. Salzmann: Rückkehr zu 40% Abgeltungen an die Sanierung von 300m-Schiessanlagen.
- Umsetzung der Ip. Baume-Schneider: Erhöhung der Abgeltungen an die Ausfallkosten der Sanierung von Betriebsstandorten von 40% auf 60%.
- Einführung von Fristen für Abgeltungen aus dem Altlastenfonds: 2028 2032 für die Untersuchungen und 2040 2045 für die Sanierungen.
- Einführung von zusätzlichen und rückwirkenden pauschalen Abgeltungen an die Untersuchung und Sanierung von belasteten Standorten: Fr. 3'000.- für die Voruntersuchung, Fr. 5'000.- für die Sanierung von Schiessanlagen und Fr. 10'000.- für die übrigen Sanierungen.
- Unterstellung der Kinderspielplätze und vergleichbarer Flächen mit belasteten Böden der Altlasten-Verordnung: Verpflichtung zur Untersuchung und Sanierung bei öffentlichen Flächen; Freiwilligkeit bei Flächen im Privatbesitz. Mitfinanzierung über den Altlastenfonds bis 2060.

Revision AltIV - Art. 18. Abs. 3

Ausgangslage / Art. 18 Absatz 3 AltIV Art. 19 Abs. 3 VVEA

Art. 19 Aushub- und Ausbruchmaterial

...

³ Aushub- und Ausbruchmaterial, das die Anforderungen nach Anhang 3 Ziffer 2 nicht erfüllt, darf nicht verwertet werden. Ausgenommen sind die Verwertung im Zementwerk gemäss Anhang 4 Ziffer 1 und die Verwertung von Aushub- und Ausbruchmaterial, das die Anforderungen nach Anhang 5 Ziffer 2.3 erfüllt:²³

- a. als Baustoff auf Deponien der Typen C–E; oder
- b.²⁴ im Rahmen der Sanierung der Altlast, auf der das Material anfällt; eine dafür allenfalls notwendige Behandlung des Materials muss auf oder direkt neben der Altlast erfolgen.

V

Art. 18 Absatz 3 AltIV Vorschlag Verordnungstext

Art. 18 Festlegung der erforderlichen Massnahmen

• • •

3 Die Behörde kann ausnahmsweise und mit Zustimmung des BAFU den Wiedereinbau von belastetem Aushubmaterial, das die Anforderungen an die Verwertung von Aushubmaterial nach Artikel 19 der Abfallverordnung vom 4. Dezember 2015 nicht erfüllt, für den Standort, an dem das Material anfällt, genehmigen, wenn:

- a. dadurch die Umwelt gesamthaft weniger belastet wird; und
- nachgewiesen ist, dass das wiedereingebaute Aushubmaterial nicht zu schädlichen oder lästigen Einwirkungen führt oder nicht die konkrete Gefahr besteht, dass solche Einwirkungen entstehen.

Art. 18 Absatz 3 AltIV Terminplan Verordnungspaket Frühjahr 2024 (BAFU)

Vernehmlassung: 15.06.2023 - 6.10.2023

Inkraftsetzung: 01.05.2024

Thema Altlasten (admin.ch)