Im Auftrag des Bundesamt für Umwelt BAFU

Stand der Technik in der Span- und Faserplattenherstellung

Evaluation Stand der Technik mittels Literaturstudien

Zürich, 30.11.2016

Impressum

Empfohlene Zitierweise

Autor TBF + Partner AG

Titel Stand der Technik in der Span- und Faserplattenherstellung

Untertitel Evaluation Stand der Technik mittels Literaturstudien

Auftraggeber Bundesamt für Umwelt

 Ort
 Zürich

 Datum
 30.11.2016

 Version
 V1.4

Begleitung durch Bundesamt für Umwelt BAFU Abteilung Luftreinhaltung und Chemikalien

Beat Müller Rainer Kegel Simon Liechti

Projektteam TBF + Partner AG

Sandra Laubis (Projektleitung)

Heinz-Ulrich Singer

Markus Wieduwilt

Natalie Zurbriggen

Tessa Fricke

Dieser Bericht wurde im Auftrag des Bundesamtes für Umwelt (BAFU) verfasst. Für den Inhalt ist allein der Auftragnehmer verantwortlich.

TBF + Partner AG

Planer und Ingenieure Beckenhofstrasse 35, Postfach 8042 Zürich, Schweiz T +41 43 255 23 00 www.tbf.ch

Quelle Titelbild:

Clipdealer GmbH, Schwanthalerstraße 86, 80336 München; USt-IdNr.: DE256911566

http://www.spanplatten.info/hintergrund.jpg

https://www.lap-laser.com/fileadmin/_migrated/pics/mdf.jpg

Inhaltsverzeichnis

1.	Einleitung						
2.	Grur	ıdlagen		3			
	2.1	Luftre	inhalte-Verordnung (LRV)	3			
	2.2	Stand	der Technik	4			
	2.3		äische Richtlinien und Emissionsvorschriften in Deutschland, Österreich uxemburg (D, AU, L, EU)	5			
		2.3.1	EU BVT -Sevilla Dokument	5			
	2.4	Fallbe	ispiel	6			
		2.4.1	Spanplattenwerk	7			
		2.4.2	MDF Werk	8			
3.	Holz	werksto	offherstellung	9			
	3.1	Produktunterscheidung der Holzwerkstoffe					
	3.2	Prozessschritte in der Holzwerkstoffherstellung					
	3.3	Emissionen in die Luft bei der Holzwerkstoffherstellung					
	3.4	Emissionsminderungs-Überblick anhand der Prozessschritte 11					
4.	Emis	Emissionsminderungsmassnahmen 1:					
	4.1	Einführung in Prozessschitt 2					
		4.1.1	Trocknung	12			
		4.1.2	Beheizung	12			
		4.1.3	Eingesetzte Technik im Prozessschritt 2	13			
	4.2	Primä	re Emissionsminderungsmassnahmen bei der Trocknung	13			
		4.2.1	Trocknungsgut	13			
		4.2.2	Trocknungstemperatur	14			
		4.2.3	Art der Beheizung	14			
		4.2.4	Umluft-Teilluftstromverbrennung-Wärmerückgewinnung- Staubabscheidung (UTWS und ecoDry)	15			
	4.3	Sekur	ndäre Emissionsminderungsmassnahmen bei der Trocknung	16			
	4.4	Primäre-Emissionsminderungsmassnahmen bei der Heissgaserzeugung					
	4.5	Sekundäre Emissionsminderungsmassnahmen bei der Heissgaserzeugung					
	4.6	Ablufttechnologien der Werke in Österreich und Luxemburg 21					
5.	Scha	adstoffr	eduktionspotentiale	23			
	5.1	5.1 Rauchgasentstickung 2					
	5.2	Staubminderungsmassnahmen Entfernung partikelförmiger Verunreinigungen 25					
	5.3	Formaldehyd (CHCO)-Minderungsmassnahmen 29					

	5.4 VOC-Minderungsmassnahmen					
6.	Auswertung und Empfehlung					
	6.1 LRV Grenzwerte im Vergleich					
	6.2	Empfe	hlungen im Hinblick auf die Revision der LRV	36		
		6.2.1	Soll LRV Anhang 2, Ziffer 84, nur die Spanplattenherstellung beinhalten?	36		
		6.2.2	Ist der Grenzwert, bezogen auf Tonnen Holzeinsatz, zeitgemäss?	37		
		6.2.3	Bildet der Grenzwert von organischen Stoffen gemäss Ziffer 843 den Stand der Technik ab?	37		
		6.2.4	NOx-Grenzwert für direkt beheizte Spantrockner	39		
		6.2.5	Staub-Grenzwert nach Trocknern	39		
7.	Litera	aturverz	zeichnis	I		
8.	Tabellenverzeichnis					
9.	Abbildungsverzeichnis					
Abł	kürzur	ngsverz	eichnis	VI		

Verzeichnis der Anhänge

- 1 Übersicht Grenzwerte und Richtwerte für Luftschadstoffemissionen bei der Herstellung von Platten auf Holzbasis Deutschland und EU
- 2 Ablufttechnologien der Werke in Österreich, Luxemburg und der Schweiz
 - a) Tabelle Luftschadstoffemissionen
 - b) Flussdiagramme der Abluftreinigung aus Trocknung und Heissgaserzeugung
- 3 BVT Umrechnungstabelle auf Normzustand des Sevilla Berichts, Kapitel 3.2 des BAT Referenz Dokuments 2016, EUR 27732 EN
- 4 SWISS KRONO AG / Müller-BBM Spänetrockner Emissionsmessungen im Reingas nach Abgasreinigungsanlage SEKA vom 21. Mai 2014, Auszug aus Bericht Nr. M115618 / 01, Kapitel 2 und 6, Beschreibung der Umweltaspekte
- 5 Beschreibung der Umweltaspekte Auszug aus UV-Bericht Kronospan, vom 5. Januar 2009, Kapitel 6.3.1 Abluft Anlagenschema Trockner
- 6 SWISS KRONO AG
 - c) Flussdiagramm Spanplattenwerk inkl. Abluftquellen
 - d) Ablaufschema MDF-Werk inkl. Rohgas / Reingas-Prozesse
- 7 ecoDry by Swiss Combi
- 8 Ausgewählte Kapitel der Luftreinhalte-Verordnung (LRV)
 - a) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985
 - b) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985 (Stand am 1. Januar 1995)
 - c) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985 (Stand am 1. Januar 2016)

1. Einleitung

Zielsetzung und Aufgabenstellung

Das Bundesamt für Umwelt (BAFU) hat TBF + Partner AG beauftragt, den Stand der Technik bei der Emissionsverminderung in der Span- und Faserplattenherstellung im europäischen Raum aufzuzeigen. Dabei sollen insbesondere die Verfahren zur Emissionsminderung von flüchtigen organischen Verbindungen (VOC), Feinstaub (PM) und Stickoxiden (NOx) betrachtet werden.

Vorgehen und Projektverlauf

Folgende europäische, deutsche und österreichische Richtlinien, Merkblätter zu den Schlussfolgerungen zu der besten verfügbaren Technik (BVT) und Grundlagenberichte sowie Verwaltungsvorschriften und Durchführungsbeschlüsse wurden als Grundlage verwendet:

- Durchführungsbeschluss (EU) 2015 / 2119 vom 20. November 2015 über Schlussfolgerung zu der besten verfügbaren Technik (BVT) gemäss Richtlinie 2010 / 75 / EU des Europäischen Parlaments und des Rates in Bezug auf Holzwerkstofferzeugung (Sevilla Papier) [3]
- Best Available Techniques (BAT) Reference Document for the Production of woodbased Panels, European Commission, Final Draft July 2016, [5]
- Ermitteln des Standes der Technik in Deutschland bei der Herstellung von Platten auf Holzbasis: Spanplatten, Faserplatten und OSB, Texte 70 / 2014 Umweltbundesamt (D), August 2014 [17]
- Vorschläge zur Anpassung der ersten Verwaltungsvorschriften zum Bundes Immissionsschutzgesetz (TA-Luft, Dokument Nr. 1.1 / 2015-05-29) [9]
- Verein Deutscher Ingenieure (VDI)-Richtlinie 3462 Blatt 1 bis 6, [10] bis [15]
- Stand der Technik von Anlagen der Span- und Faserplattenindustrie, Umweltbundesamt (AU), 2013 und 2006, [16]
- Energiebilanz und Kosten VOC-Minderung in der Plattenindustrie, Umweltbundesamt (AU), 2014, [3]

Die Europäische Kommission verabschiedete im November 2015 ein Beschluss zur besten verfügbaren Technik in der Holzplattenherstellung (auch bezeichnet als Sevilla Papier)[3]. Diesem Beschuss liegt das Referenzdokument mit Luftschadstoffemissionswerten von ca. 50 Holzplattenherstellern mit einer Produktionskapazität von über 600 m³ Platten pro Tag bei. Diese bereits erfolgten europaweiten Abklärungen sind sehr umfassend, jedoch ist die Konkretisierung der gesetzlichen Grenzwerte nicht auf den ersten Blick erkennbar. Die verfügbaren konkreten Richtwerte und Grenzwerte wurden in Anhang 1 zusammengefasst. Die Grenzwerte sind dabei abhängig von der eingesetzten Technologie der Abgasreinigung und Heissgaserzeugung. Basierend auf den verfügbaren Grundlagen und einzelnen in Österreich und

Luxemburg untersuchten Werken, wurden vereinfachte Fliessbilder der Abluftreinigung für die verschiedenen Technologien erstellt (Anhang 2).

Da die im Sevilla-Referenzdokument aufgeführten Emissionsmesswerte nicht auf den gleichen Sauerstoffbezug umgerechnet waren, war ein direkter Vergleich der Emissionswerte der einzelnen Produktionslinien nicht möglich. Deshalb wurden die im Kapitel 3.2 aufgeführten Luftschadstoffkonzentrationen auf trockenes Gas und den einheitlichen Bezugssauerstoffgehalt (Anhang 3) umgerechnet. Anhand dieser Tabelle wurde eine Zusammenstellung des Schadstoff-Reduktionspotentials der Massnahmen beim Trockner oder Heissgaserzeugung erstellt.

2. Grundlagen

2.1 Luftreinhalte-Verordnung (LRV)

Für Anlagen zur Herstellung von Spanplatten legt die LRV in Anhang 2, Ziffer 84 [1] vorsorgliche Emissionsgrenzwerte für Staub (PM) und organische Stoffe (VOC) fest. Diese Grenzwerte bestehen seit 1. Januar 1995.

Anhang 1, Ziffer 7, legt den Grenzwert für organische gas-, dampf oder partikelförmige Stoffe der Klasse 1 wie Formaldehyd fest. Aufgrund seiner krebsauslösenden Eigenschaft wird bei Formaldehyd eine vorsorgliche Begrenzung verlangt. Diese Emissionsbegrenzungen gelten gemäss Ziffer 843, Anhang 2, nicht für Spanplatten. Damit ein Vergleich zu anderen Formaldehyd-Emissionen machbar ist, wird er trotzdem in der Tabelle aufgeführt. Für Stickoxide (NO_x) gelten bei direkt beheizten Tocknern die Anforderungen nach Anhang 1, Ziffer 61. Dabei wird angenommen, dass die Holzfeuerung eine Feuerungswärmeleistung von über 10 MW hat. In Anhang 2 Ziffer 843 der LRV wird unter der Rubrik "organische Stoffe" vermerkt, dass die Emissionsbegrenzung, gemäss Anhang 1, Ziffer 7 für Spanplatten nicht gilt.

Tabelle 1: Übersicht der gesetzlichen Anforderungen der Schweiz [1]

Industrie und Technologie		LRV	Luftschad- stoff	Grenzwert
Spanplattenher- stellung	Spänetrockner	Anhang 2 Ziffer 84	Staub	50 mg/m³ kein O ₂ Bezug
	nachbearbeiten schleifen	Anhang 2 Ziffer 84	Staub	10 mg/m ³
	Spänetrockner	Anhang 2 Ziffer 84	Organische Stoffe	Diese Emissionen sind so weit zu begrenzen, als dies technisch und betrieblich möglich sowie wirtschaftlich tragbar ist, mindestens aber auf 350 g pro Tonne Holzein- satz (absolut trocken)
	Spänetrockner	Anhang 1 Ziffer 61	NOx	250 mg/m ³
Holzfeuerungen (für indirekt be-	Brennstoff Definition gemäss LRV	Anhang 3 Ziffer 522	Feststoff	10 mg/m ³ 11% O ₂ Bezug
heizte Trockner)	Anhang 5 Ziff. 3 Abs. 1 Bst. c	Feue- rungswär- meleis- tung: >10MW	CO	150 mg/m ³ 11% O ₂ Bezug
			NOx	150 mg/m ³ 11% O ₂ Bezug
			Gesamt Koh- lenstoffe C	50 mg/m ³ 11% O ₂ Bezug
			Ammoniak	30 mg/m ³ 11% O ₂ Bezug
Vorsorgliche Emissionsbe- grenzung nach LRV		Anhang 1 Ziffer 7	Formaldehyd	20 mg/m ³ kein O ₂ Bezug

Industrie und Technologie		LRV	Luftschad- stoff	Grenzwert
Minimierungs- gebot von kan- zerogenen Stof- fen		Anhang 1 Ziffer 8	Buchholz- und Eichen- holzstaub	In Summe 5 mg/m³ bei 25 g/h

2.2 Stand der Technik

Mit dem Stand der Technik wird generell ein Entwicklungsstadium fortschrittlicher Verfahren, Einrichtungen oder Betriebsweisen beschrieben, das in der Praxis anwendbar ist. Um eine Bewertung zu generieren, werden vergleichbare Verfahren, Einrichtungen oder Betriebsweisen herangezogen. Diese müssen sich in der Vergangenheit mit Erfolg in der Praxis bewährt haben.

In der Luftreinhaltung ist der Stand der Technik als technisch und betrieblich mögliche Massnahmen definiert. Gemäss Luftreinhalte-Verordnung (LRV) Art. 4, werden Massnahmen als "technisch und betrieblich möglich" beschrieben, wenn sie:

- a. bei vergleichbaren Anlagen im In- oder Ausland erfolgreich erprobt sind oder
- b. bei Versuchen erfolgreich eingesetzt wurden und nach den Regeln der Technik auf andere Anlagen übertragen werden können.

In der VVEA, Art. 3m wird der Stand der Technik als Entwicklungsstand beschrieben, der:

- a. bei vergleichbaren Anlagen oder T\u00e4tigkeiten im In- oder Ausland erfolgreich erprobt ist oder bei Versuchen erfolgreich eingesetzt wurde und nach den Regeln der Technik auf andere Anlagen oder T\u00e4tigkeiten \u00fcbertragen werden kann.
- b. für einen mittleren und wirtschaftlich gesunden Betrieb der betreffenden Branche wirtschaftlich tragbar ist.

Die Beurteilung der wirtschaftlichen Tragbarkeit ist nach LRV ein vom Stand der Technik unabhängiges Kriterium.

Zusätzlich wird in allgemein anerkannten Normen (DIN, VDI) der Begriff "anerkannte Regeln der Technik" verwendet. Anerkannte Regeln der Technik sind sich ständig weiterentwickelnde Regelungen, welche in der Wissenschaft als technisch geeignet anerkannt werden und sich in der Praxis bewährt haben. Eine schriftliche Bekanntgabe ist hierzu nicht zwingend notwendig. Ein großer Teil dieser Regelungen ist aber in den DIN- und VDI-Normen sowie in Arbeitsblättern oder Montageanleitungen von Herstellern innerhalb des DVGW (Deutscher Verein der Gas- und Wasserwirtschaft) zu finden.

In der EU werden zusätzliche Richtlinien zu den "besten verfügbaren Techniken (BVT)" herausgegeben. Im Gegensatz zum "Stand der Technik" ist BVT als Rechtsbegriff zu verstehen.

Sie werden in der Industrieemissionsrichtlinie [4], (Richtlinie 2010 / 75 / EU) definiert als Techniken, die:

- a. dem effizientesten und fortschrittlichsten Entwicklungsstand der Tätigkeiten entsprechen,
- b. in einem Massstab entwickelt sind, der unter Berücksichtigung des Kosten / Nutzen-Verhältnisses eine wirtschaftlich vertretbare Anwendung erlaubt,
- c. für den Betreiber zu vertretbaren Bedingungen zugänglich sind, auch wenn sie im betreffenden Land nicht verwendet werden,
- d. den wirksamsten Techniken zur Erreichung eines allgemein hohen Schutzniveaus für die Umwelt entsprechen.

2.3 Europäische Richtlinien und Emissionsvorschriften in Deutschland, Österreich und Luxemburg (D, AU, L, EU)

Das Amtsblatt der Europäischen Union "Schlussfolgerungen zu den besten verfügbaren Techniken (BVT) gemäß der Richtlinie", [6] fasst seit November 2015 die Emissionswerte der Herstellung von Platten aus Holzbasis zusammen. Es gibt die Grenzwerte wieder, welche durch den Einsatz geeigneter Minderungsmassnahmen bei der Span- und Faserplattenproduktion erreicht werden können.

In Österreich bestehen lediglich Gesetze für die Kesselanlagen (EG-K), die Luftreinhalteverordnung für Kesselanlagen (LRV-K), die Feuerungsanlagengenverordnung (FAV).

In Deutschland [7–15] werden die VDI Richtlinien, einschlägige Normen und der deutsche Genehmigungsbescheid herangezogen. Die Heissgaserzeugung wird gesondert ausgewiesen. Hier werden, in Abhängigkeit der eingesetzten Brennstoffe, andere Luftschadstoffe frei [13] [14]. Die Anlagen der Nummer 6.3 (bzw. Ziffer 5.4.6.3) der technischen Anleitung zur Reinhaltung der Luft (TA-Luft, [9]), sind zurzeit in Revision.

Eine Zusammenstellung europäischer Produktionslinien und ihrer spezifischen Emissionswerte befindet sich im Anhang 3.

2.3.1 EU BVT -Sevilla Dokument

Die besten verfügbaren Techniken und assoziierten Grenzwerte werden im Rahmen von BVT-Merkblättern für bestimmte Tätigkeiten festgelegt und beschrieben. Das für diese Untersuchung relevante Merkblatt ist das BVT-Merkblatt zur Holzplattenherstellung [6].

Tabelle 2: BVT-assoziierte Emissionswerte von Staub, VOC und Formaldehyd für Emissionen aus dem Trockner bzw. für gemeinsam behandelte Emissionen aus dem Trockner und der Presse [3] Sauerstoffbezug bei Spanplatte und OSB Trockner 18%, kein Sauerstoffbezug bei Faserplatten

Luftschadstoff	Produkt	Trocknertyp	BVT-assoziierte Emissionswerte [mg/Nm³]
	Spanplatte oder	Direkt beheizter Trockner	3–30
Staub	OSB	Indirekt beheizter Trock- ner	3–10
	Faserplatte	Alle Typen	3–20
	Spanplatte		< 20–200 (1) (2)
voc	OSB	Alle Typen	10–400 (2)
	Faserplatte		< 20–120
	Spanplatte		< 5–10 ⁽³⁾
Formaldehyd	OSB	Alle Typen	< 5–20
	Faserplatte		< 5–15

¹⁾ Dieser BVT-assoziierte Emissionswert gilt nicht, wenn als Hauptrohstoff Kiefer verwendet wird.

Tabelle 3: BVT-assoziierte Emissionswerte für NO_x Emissionen in die Luft aus direkt beheizten Trocknern [5]

Luftschadstoff	BVT-assoziierte Emissionswerte
	[mg/Nm ³]
NO _x	30–250

2.4 Fallbeispiel

Die SWISS KRONO AG betreibt am Standort Menznau je ein Werk zur Herstellung von Spanund Faserplatten (MDF).

Folgende Grundlagen wurden vom Auftraggeber BAFU zur Verfügung gestellt:

- UV-Bericht, Anlagen der SWISS KRONO AG mit Energiezentrale vom 5. Januar 2009, vgl. Anhang 5.
- Emissionsmessung im Reingas nach Abgasreinigungsanlage SEKA, Messbericht Müller BBM GmbH vom 21.5.2014 (Auszug des Kapitels 2 und 6, vgl. Anhang 4).

²⁾ Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm³ erzielen.

Wenn fast ausschliesslich Altholz verwendet wird, kann der h\u00f6here Wert bis zu 15 mg/Nm³ betragen.

2.4.1 Spanplattenwerk

Das Spanplattenwerk Kronospan Schweiz besitzt einen direkt beheizten Drehtrommeltrockner. Das zur Trocknung eingesetzte Heissgas wird von einem Brenner erzeugt, in dem die Brennstoffe Holzstaub und Erdgas eingesetzt werden. Zusätzlich werden die Abgase von der Wiesloch-Rostfeuerung für die Papierimprägnierung in die Brennkammer eingeleitet. Das aus dem Trockner austretende Rohgas wird über einen Multizyklon entstaubt und mit einer SEKA Anlage der Firma Scheuch gereinigt. Die SEKA Anlage setzt sich zusammen aus einem Quench, Wäscher mit Nasselektrofilter (vgl. Abbildung k, Anhang 2b). Zur Vermeidung einer Wasserdampffahne an der Kaminmündung wird das im Elektrofilter abgekühlte Abgas mit erwärmter Kühlluft vermischt.

Im UV-Bericht von 2009 wurden folgende Werte angegeben:

Tabelle 4: UVB Kronospan, Emissionswerte Reingas SEKA im Spanplattenwerk mit Grenzwerten und Frachten, Auszug des UVB in Anhang 5 [19]

Reingas- Komponente	Messwerte Mittelwert	Grenzwert LRV	Fracht/h	Fracht/a bei 8'000h/a
Stickoxid als NO ₂	209 mg/m ³	250 mg/m ³ *	49.0 kg/h	392'000 kg/a
VOC als Gesamt-C	130 mg/m ³	48 mg/m³ **	36.6 kg/h	292'800 kg/a
	950 g/toatro	350 g/t _{oatro}		
Staub	5.3 mg/m ³	50 mg/m ³	1.5 kg/h	12'000 kg/a
Formaldehyd	6.9 mg/m ³		1.5 kg/h	12'000 kg/a

^{*} LRV Grenzwert Anhang 1 Ziffer 61

2014 wurden folgende Emissionen im Reingas des Spänetrockners gemessen:

Tabelle 5: Messbericht Spänetrockner
Auszug des Messberichts im Anhang 4 [21]

Reingaskomponente	Mittelwert	Grenzwert LRV und Kanton Luzern	Fracht/h
Stickoxid als NO ₂	215 mg/m ³	250 mg/m ³ 125mg/m ³	44.1 kg/h
VOC als Gesamt-C	91 mg/m ³ 620 g/toatro	50 mg/m ³ * 350 g/t _{oatro}	20.3kg/h
Staub	2.8 mg/m ³	50 mg/m ³	0.44 kg/h

^{* 50} mg/m3 ist kein LRV-Grenzwert → umgerechnet von 350 g/toatro

^{**} weicht ab zum UVB: VOC; berechnet analog Spalte Messwerte

Die Firma SWISS KRONO AG hält bei der Spanplattenproduktion den LRV-Grenzwerte gemäss Anhang 2, Ziffer 84, organische Stoffe nicht ein.

2.4.2 MDF Werk

Da in der LRV keine Grenzwerte für die MDF-Platten Herstellung zu finden sind, legte die kantonale Vollzugsbehörde (UWE) die Grenzwerte fest. Diese werden vom MDF Werk Menznau eingehalten.

Tabelle 6: Emissionswerte Reingas SABA im MDF-Werk mit Grenzwerten und Frachten [19]

Schadstoff	Mittelwert Schadstoffkon- zentration UVB	Grenzwert UWE	Fracht/Stunde	Fracht/a bei 8'000h/a
Stickoxid als NO ₂	32 mg/m ³	40 mg/m ^{3*} 125 mg/m ^{3**}	14.5 kg/h	116'000 kg/a
VOC als Gesamt-C	74 mg/m ³	100 mg/m ^{3*} 150 mg/m ^{3**}	33.5 kg/h	268'000 kg/a
Staub	8 mg/m ³	20 mg/m ^{3*} 10 mg/m ^{3**}	3.7 kg/h	29'600 kg/a
Formaldehyd	4.1 mg/m ³	20 mg/m ^{3*}	1.8 kg/h	14'400 kg/a

^{*} Grenzwerte gemäss MDF-Baubewilligung 1997, Gasbeheizt, UVB 2009, S.61

^{**} Grenzwerte gemäss MDF-Bewilligung 2009, Biomassebeheizt, UVB 2015, S.81

3. Holzwerkstoffherstellung

3.1 Produktunterscheidung der Holzwerkstoffe

Verschiedene Herstellungsprozesse in der Produktion von plattenförmigen Werkstoffen aus Holzteilen führen zu einer Produktunterscheidung in Span- und Faserplatten.

Eine **Spanplatte** (PB / EN 312) ist eine Holzplatte, welche durch das Verpressen von kleinen Holzspänen von ca. 5 mm Länge unter Zufuhr von Bindemitteln und Hitzeweinwirkung gefertigt wird. Verwendet werden sowohl Nadel- wie auch Laubhölzer. Durch die Wahl der Holzart lassen sich die Emissionen bei der Herstellung und bei späterem Gebrauch beeinflussen.

Ein höherer Festigkeitsgrad (Biegebruch) kann durch die Verwendung von langen, flachen, ausgerichteten Holzspänen, sogenannten Strands, erreicht werden. Die Späne sind mit einer Länge von mehr als 100 mm deutlich grösser als bei der Spanplatte. Diese Form der Holzwerkstoffplatte wird als **OSB-Platte** (Oriented Strand Board / EN 300) oder auch Grobspanplatte bezeichnet. In der Regel wird Kiefern- und Fichtenholz verarbeitet.

Die **Faserplatte** ist ein der Spanplatte verwandter, plattenförmiger Werkstoff. Sie wird unter Druck und / oder Hitze aus Lignozellulosefasern hergestellt. Gemäss der Norm EN 622 wird zwischen harten, mittelharten, porösen und mitteldichten Faserplatten unterschieden. Letztere werden als MDF oder Platten nach Trockenverfahren bezeichnet.

Nachfolgendes Kapitel 3.2 zeigt die ausschlaggebenden Prozessschritte in der Herstellung von Span- und MDF-Platten auf.

3.2 Prozessschritte in der Holzwerkstoffherstellung

Vgl. mit VDI-Richtlinie Blatt 2 [11].

In der folgenden Abbildung werden die Prozessschritte in der Holzwerkstoffherstellung im Trockenverfahren dargestellt. Der Vorteil des Trockenverfahrens ist, dass deutlich weniger Abwasser entsteht als im Nassverfahren. Grob kann der Herstellungsprozess in vier Schritte unterteilt werden: Im ersten Schritt wird die Rohstoffvorbereitung durchgeführt, als zweiter Schritt findet die Trocknung mit der anschliessenden Pressung in Schritt drei statt. Abschliessender Schritt vier bildet die Endbearbeitung sowie die Lagerung der entstanden Materialen. Dieser Prozessablauf ist mit Differenzierungen in der Anwendung der Trocknung, Beleimung und Pressung auf die Herstellung von OSB, MDF- und Spanplatten, Weichfaserplatten sowie Hartfaserplatten und Starr-/flexible Platten zu übertragen. Diejenigen Prozessschritte, welche eine Heissgaserzeugung zur Trocknung oder Veredelung benötigen, sind mit roter Stern-Markierung versehen. Als Untersuchungsbereich der vorliegenden Studie ist der Fokus grundsätzlich auf die entstehenden Emissionen in die Luft im Trocknungsprozess der Holzwerkstoffherstellung gelegt. Dieser Bereich ist in der Abbildung rot gestrichelt hervorgehoben.

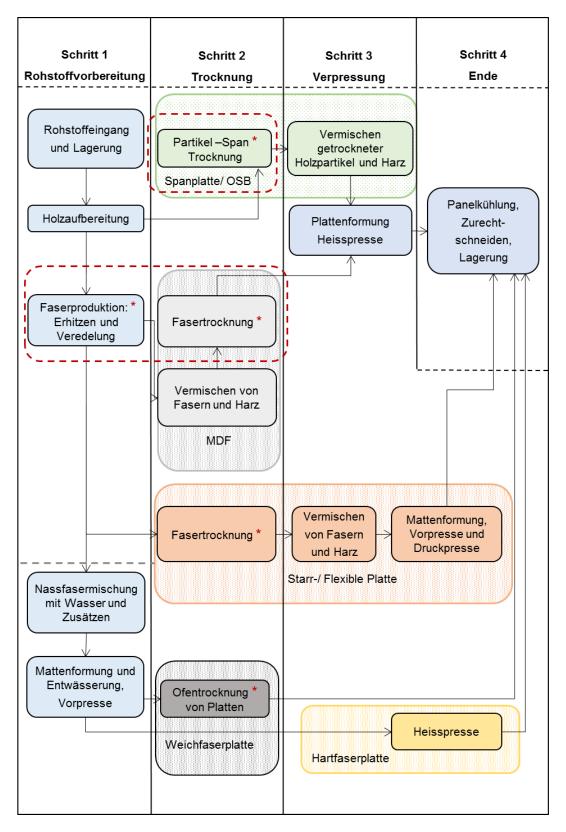


Abbildung 1: Darstellung Herstellungsprozess der Span-und Faserplattenproduktion [5]; *Prozessschritte mit Heissgas; --- Untersuchungsperimeter

3.3 Emissionen in die Luft bei der Holzwerkstoffherstellung

Im Zusammenhang mit der Herstellung von Span-, OSB- und Faserplatten werden diverse Schadstoffe frei. Im Verlauf der Produktion fallen bei Lagerung, Transport, Span- und Fasererzeugung, im Trockner, in der Presse und durch Verbrennungsprozesse in den Feuerungsanlagen folgende Stoffe in der Luft an:

- Staub: unvollständig verbrannte feste Brennstoffe, Asche, teerartige Aerosole und Russ.
- Feinstaub: Partikel mit einem aerodynamischen Durchmesser von ≤ 10 μm (PM10)
- Gasförmige Emissionen: Organische Kohlenwasserstoffe, Kohlenmonoxid, Stickstoffoxide, bei Einsatz von belasteten Altholz- oder Ersatzbrennstoffen auch Schwefeloxide, Chlor- und Fluorverbindungen.
- Gesundheitsgefährdende Stoffe wie Formaldehyd

Die Prozessschritte weisen dabei unterschiedliche Umwelt- und Toxizitätsrelevanz auf. So entsteht durch die hohen Temperaturen ein Grossteil an Formaldehyd und VOC-Emissionen bei der Trocknung der Holzpartikel.

Die übrigen gasförmigen Emissionen entstehen durch die Verbrennung der jeweiligen Brennstoffe in den Feuerungsanlagen.

3.4 Emissionsminderungs-Überblick anhand der Prozessschritte

Die Minderung der Luftschadstoff-Emissionen in den verschiedenen Prozessschritten der Span-, OSB- und Faserplattenproduktion erfordern ein abgestimmtes Konzept der primären (Prozesssteuerung und Rohstoffvorbereitung) und sekundären Massnahmen. Nur so kann eine Verbesserung der Luftemissionen erzielt werden.

Bezogen auf den absoluten Volumenstrom sind die bedeutsamsten Emissionsquellen die Abgasströme der Feuerungsanlagen und die Abluftströme der Trockner.

Die Abluftströme der Trockner betragen gewöhnlich 100'000 bis 800'000 Nm³/h, wobei kleinere Anlagen auch weniger als 100'000 Nm³/h freisetzen. Deshalb legt die vorliegende Studie das Schwergewicht auf die Evaluation des Standes der Technik der Trocknung und der Heissgaserzeugung (vgl. Kapitel 4.2. Die Rohstoffvorbereitung, Presse und Nachbearbeitung werden nachfolgend nur kurz betrachtet, da es sich um kleinere Abluftströme handelt, die gezielt mit sekundären Massnahmen erfasst oder wieder in den Prozesskreislauf zurückgeführt werden können.

Nachfolgend werden Varianten zur Minderung von Luftemissionen für die einzelnen Prozessschritte aufgezeigt. Die Prozessschritte werden analog zu Abbildung 1 in vier Hauptschritte eingeteilt.

Schritt 1: Rohstoffvorbereitung

Die offene **Lagerung von staubenden Materialen** sollte vermieden werden. Dies kann durch das Abdecken der Materialen oder bestmöglich durch die Lagerung in geschlossenen Räumlichkeiten geschehen. Das zusätzliche Anbringen von Absaugungs- und Entstaubungsanlagen dient der erhöhten Emissionsminderung.

Bei der **Holzaufbereitung** sollte analog zur Lagerung von staubenden Materialen vorgegangen werden.

Schritt 2: Die Trocknung inkl. Heissgaserzeugung

Detaillierte Angaben zu den Emissionsminderungsmassnahmen, vgl. Kapitel 4.

Schritt 3: Presse

Hauptsächlich werden Formaldehydharze als Bindemittel in der Plattenherstellung verwendet. Es ist zu empfehlen, schadstoffärmere Bindemittel zu verwenden, um die verdampfenden Emissionen in der Presse zu mindern. Gezieltes Absaugen beim Pressvorgang und die Nachbehandlung mit sekundären Massnahmen reduzieren die Emissionen.

Schritt 4: Nachbearbeitung

Die bei der Nacharbeitung anfallenden Holzspäne und der Schleifstaub werden abgesaugt und das Abgas in entsprechenden Filteranlagen gereinigt.

4. Emissionsminderungsmassnahmen

4.1 Einführung in Prozessschitt 2

4.1.1 Trocknung

Die Feuchtigkeit der Späne muss vor der Verarbeitung zu Holzwerkstoffen in Trocknern reduziert werden. Dabei verdampfen nicht nur das im Holz befindliche Wasser, sondern auch die flüchtigen organischen Holzbestandteile (VOC) und Zersetzungsprodukte (z.B. Formaldehyd).

4.1.2 Beheizung

Bei der Beheizung der Späne und Fasern werden verschiedene Verfahren genutzt. Vereinfacht lassen sich diese Trocknungsverfahren in direkt beheizte und indirekt beheizte Partikeltrocknungen einteilen.

Bei den direkt beheizten Trocknern kommt das Trocknungsgut direkt mit den heissen Feuerungsgasen in Berührung, wobei diese die Späne / Fasern erwärmen und transportieren sowie u.a. die Feuchte aufnehmen. Als Varianten können Anteile der entstehenden Brüden (Trocknerabgas) über die Brennkammer oder eine Mischkammer rückgeführt werden.

Bei den indirekt beheizten Trocknern erfolgt die Beheizung des Trocknungsgutes über den Kontakt zu heissen (Rohr)-Oberflächen, die wiederum mit Thermoöl oder Dampf erwärmt werden. Der Transport der Späne / Fasern durch den Trockner erfolgt mit erhitzter Luft. Indirekt beheizte Trockner benötigen daher separate Thermoöl- oder Dampfkessel.

Indirekt beheizte Trockner besitzen im Vergleich zu den direkt beheizten Systemen eine deutlich kleine Leistung und haben daher für moderne Anlagen nur noch eine untergeordnete Bedeutung (s. Seite 16, Tabelle 7).

4.1.3 Eingesetzte Technik im Prozessschritt 2

Um einen Überblick über die eingesetzten Technologien zu erhalten, wurde beispielhaft eine Zusammenstellung der Produktionslinien von Österreich und Luxemburg erstellt. In dieser sind die eingesetzten Technologien zur Abluftreinigung ersichtlich (vgl. Anhang 2). Die Zusammenstellung der Messresultate der im Sevilla Referenzdokument behandelten Werke und Technologien sind in Anhang 3 zu finden.

4.2 Primäre Emissionsminderungsmassnahmen bei der Trocknung

Die Feuchtigkeit der Späne muss vor der Verarbeitung zu Holzwerkstoffen in Trocknern reduziert werden. Dabei verdampfen nicht nur das im Holz befindliche Wasser, sondern auch flüchtige organische Inhaltstoffe wie VOC. Bei Trocknungstemperaturen von 150–450 °C entweichen flüchtige, organische Holzbestandteile (Terpene) und mit steigender Trocknungstemperatur vermehrt Zersetzungsprodukte (z.B. org. Säuren, Formaldehyd, Methanol und Phenol). Diese sind in vergleichsweise hohen Massenkonzentrationen im Rohgas der Trockner enthalten [11]. Bei den Trocknern werden Prozesse einerseits anhand des Trocknungsgutes, Trocknungstemperatur und andererseits anhand der Art der Beheizung unterschieden.

4.2.1 Trocknungsgut

Sowohl durch die Auswahl der Rohstoffe für die Produktion der Holzwerkstoffe im Allgemeinen wie auch durch die Art der Beleimung bei der MDF-Produktion im Speziellen lassen sich die Emissionen beim Trocknungsprozess beeinflussen

- Harthölzer (Laubhölzer) haben einen kleineren Harzgehalt als Weichhölzer (Nadelhölzer).
 Deshalb entstehen beim Trocknen von Harthölzern weniger VOC. Daneben kann auch durch die Verwendung von unbehandelten Althölzern neben dem Frischholz Einfluss auf die Emissionen genommen werden. Allerdings ist diese Massnahme eher auf die Spanplattenproduktion beschränkt.
- Die Fasern für MDF-Platten werden üblicherweise vor dem Trocknen beleimt. Der Leim enthält unterschiedliche Gehalte an Formaldehyd, so dass bei Einsatz von Leimen mit möglichst geringem Anteil von Formaldehyd die Emissionen günstig beeinflusst werden können.
 - Alternativ dazu kann ein Trockenbeleimungssystem eingesetzt werden, bei dem die Beleimung nach dem Trocknen der Fasern erfolgt.

4.2.2 Trocknungstemperatur

Span-oder OSB-Trockner:

Die Späne werden bei Temperaturen von 300–450°C getrocknet. Die für die Spanplattenproduktion kennzeichnende Temperatur am Trockneraustritt beträgt ca. 115°C. Die Trockner haben eine Trocknungskapazität von bis zu 40 Tonnen Wasser pro Stunde und trocknen 10–50 Tonnen Holzschnitzel pro Stunde.

Wird der Abluftstrom, welcher viel Wasserdampf, Aerosole von kondensierten VOC und Holzstaub enthält, in die Atmosphäre abgegeben, entsteht ein blauer Aerosol-Nebel, der sog. "blue haze". Durch Absenkung der Trocknungstemperatur kann die Entstehung von Zersetzungsprodukten vermindert werden. Um die gleiche Produktfeuchte zu erreichen, muss aber die Verweilzeit der Späne im Trockner entsprechend erhöht werden. Dies führt bei einem gegebenen Trockner zu einer Verminderung der Trocknungskapazität.

Das Trocknen von bereits beleimten Fasern für die MDF-Plattenfertigung erfolgt bei moderateren Temperaturen von ca. 150°C. Die Temperatur am Trockneraustritt beträgt ca. 60°C. Gleichwohl entstehen vergleichsweise hohe Konzentrationen von VOC im Abluftstrom. Auch hier sollte, wie bereits oben beschrieben, eine Temperaturabsenkung einen positiven Einfluss auf die Emissionen des Trocknungsprozesses zeigen. Einige wenige Anlagen beleimen die Fasern nach der Trocknung, was die Temperaturabhängigkeit und damit die Freisetzung von Formaldehyd nach dem Trockner signifikant senken sollte. Leider konnten diese Anlagen mit ihren spezifischen Emissionen in der vorliegenden Literatur nicht identifiziert werden.

4.2.3 Art der Beheizung

Der Trocknungsprozess bietet verschiedenste Eingriffsstellen (Primäre Massnahmen), um eine Minderung der Emissionen zu erzielen. Zunächst einmal ist der direkte Eingriff in den Trocknungsprozess möglich. Dies kann, wie oben beschrieben, über die Optimierung der Betriebsweise oder eine Brüdenrückführung durch Umluftbetrieb geschehen.

Bei direkt beheizten Trocknern werden, wie oben bereits erwähnt, die Späne oder Fasern direkt mit den heissen Feuerungsabgasen getrocknet und gefördert. Primär werden dabei die Feuerungsabgase von separaten Feuerungen zur Energieerzeugung genutzt. Falls die Energie in den Feuerungsabgasen für die Trocknung nicht ausreicht, wird mit zusätzlichen Brennern zugefeuert und damit der Trocknergasstrom weiter aufgeheizt

Bei direkt beheizten Trocknern entstehen zusätzlich zur indirekten Trocknung folgende Luftschadstoffe: Flugasche, Abgase der Feuerung (Stickstoffoxid NOx, Kohlenmonoxid CO, Kohlenwasserstoffe Corg.) und bei höheren Temperaturen Zersetzungsprodukte des Holzes. Der Hauptbestandteil dieser organischen Verbindungen sind die Terpene (z.B. Alpha und Beta Pinen sowie 3-Caren). Diese können bei langanhaltender Exposition allergen und irritativ wirken.

Durch die Auswahl der Brennstoffe werden insbesondere die Emissionen von NOx, Staub oder auch SO₂ (bei Einsatz von Öl) direkt beeinflusst. So sind die Abgase von Gasbrennern u.a.

NOx-arm und von Staubbrennern, betrieben mit leimbehafteten Schleifstäuben, reich an NOxund Staub.

Abgasrückführung bedeutet die kontrollierte Einleitung eines Teilstroms der Trocknungsabgase, entweder zurück in die Brennkammer oder Mischkammer. Durch die Rückführung der Abgase in die Brennkammer (bis zu 50% des Abgasvolumenstroms) werden die VOC und der Holzstaub verbrannt und gleichzeitig die Bildung von Stickoxiden verringert. Durch die Abgasrückführung in die Brennkammer werden erheblich tiefere Emissionen bei Staub, NOx und VOC erreicht. Die VOC-Emissionswerte können kleiner als 50 mg/m³ VOC sein [24]. Bei der Holzwerkstoffherstellung liegen diesbezüglich keine Vergleichsmessungen vor, hingegen bei der Holzpellettrocknung. Hier können mit der Abgasrückführung die VOC Emissionen zwischen 5 bis 80 mg/m³ eingestellt werden¹.

Bei der **indirekten Trocknung** wird die Wärme, wie oben beschrieben, von einem Wärmeträgermedium (Thermoöl, Heisswasser oder Dampf) auf das feuchte Gut mittels Wärmeleitung übertragen. Ein typischer, indirekt beheizter Trockner ist der Rohrbündeltrockner.

Die indirekte Trocknung ergibt, im Gegensatz zu der direkten Trocknung, auf Grund der fehlenden Rauchgasentwicklung meist geringere Emissionswerte. Bei indirekt beheizten Trocknern setzt sich das Abgas überwiegend aus Luft, Wasserdampf, Partikeln und flüchtigen Holzinhaltsstoffen zusammen.

Es ist zu beachten, dass bei indirekter Trocknung zusätzliche Emissionen in einer Anlage zur Energieerzeugung entstehen. Es können Abgasreinigungsmassnahmen wie Filter, Wäscher oder eine Nachverbrennung eingesetzt werden.

4.2.4 Umluft-Teilluftstromverbrennung-Wärmerückgewinnung-Staubabscheidung (UTWS und ecoDry)

Eine neuere Variante ist das Trocknungsverfahren mit einem indirekten, d.h. über einen Wärmetauscher beheizten Trockner mit einem geschlossenen Dampfkreislauf. Die Trocknung erfolgt nicht im direkten Kontakt mit den Feuerungsabgasen, sondern mit den überhitztem Brüden aus dem Trocknungsprozess. Ein kleinerer Teilstrom, bestehend aus dem verdampften Wasser, den flüchtigen Organika und Falschluft, wird abgezogen und in die Brennkammer rückgeführt und verbrannt. Als Hauptbrennstoffe kommen bevorzugt Gas oder Holzbrennstoffe (Schleifstäube) zum Einsatz. Die Wärme der Feuerungsabgase wird mittels des Wärmetauschers auf den zirkulierenden Dampfstrom übertragen. Die nachfolgende Gasreinigung ist entsprechend der Brennstoffe der Feuerungsanlage auszuführen. Gemäss Literatur gibt es 3–4 Anlagen in Europa in der Holzwerkstoffindustrie, welche entweder unter der Bezeichnung UTWS oder ecoDry aufgeführt sind.

Gemäss Swiss Krono erreicht das Werk in Tschechien mit UTWS VOC-Emissionswerte von 80 mg/m³ bei 17% O₂-Bezug ([23][22]). Swiss Krono gibt an, dass die UTWS-Technologie zwischen 1999 und 2010 von der Peter Kaindl-Gruppe selbst installiert wurde ([23] Seite 23).

¹ Messungen im Rahmen der geplanten VDI-Norm 3465

Das Kronospan Werk in Sanem, Luxemburg, setzt bei der Herstellung von OSB-Platten die ecoDry Technologie seit 2004 erfolgreich ein. Die Firma Heggenstaller in Unterbach trocknet ihre Späne der Pressspanklötze für die Palletindustrie seit dem Jahr 2000 mit ecoDry. Die Anlagenbauer Dieffenbacher und SwissCombi garantieren bei der Trocknung von Holzspänen und -partikel mit ecoDry Emissionswerte für Gesamtkohlenstoff von kleiner als 50 mg/m³ und Formaldehyd kleiner als 20 mg/m³. (vgl. Anhang 7 SWISS COMBI ecoDry und Anhang 2).

Tabelle 7 Vergleich der Verschiedenen Trocknungssysteme der Spanplattenherstellung [11]

	Direkte Beheizte Trockner	Indirekte beheizte Trockner	Umlufttrockner nach dem UTWS- Prinzip
Kapazität [t/h]*	<75	<40	<75
Abgasvolumenstrom [m³/h]	<300'000	<40'000	<220'000
Trocknereintritts- temperatur [°C]	250-400 Spitzen 600	150–250	250–280
Trockneraustritts- temperatur [°C]	110–120	110–120	120–135
Verweildauer [min]	5–25	20–60	5–20

^{*}Bezogen auf die Holzmasse im luftgetrockneten Zustand

Kombinierte Systeme von Wärmeerzeuger, Trockner und Abluftreinigung (UTWS / ecoDry) können bei der OSB- und Spanplattenproduktion hinsichtlich Emissionen und Energieeffizienz zukunftsweisend sein (vgl. VDI 3462, Blatt 2, Seite 15 [11] und "Sevilla Dokument", Kap. 4.2.2.3 [5] und Energetischer Vergleich von RNV und Nassabscheidern [18]). Aus der verwendeten Literatur (vgl. Kapitel 1) ist nicht ersichtlich, welchen Stellenwert das Verfahren momentan einnimmt.

4.3 Sekundäre Emissionsminderungsmassnahmen bei der Trocknung

Die Mischung der verschiedenen Komponenten im Abgas, bestehend aus VOC und den Zersetzungsprodukten von Holz (Harze und Teere), macht zusammen mit dem Wasserdampf den Staub klebrig. Daher, und aufgrund der Brennbarkeit von Holzstaub, haben sich mehrheitlich nasse Verfahren als Sekundärmassnahmen in der Holzwerkstoffplatten-Herstellung bewährt.

Die Wäscher bestehen im Allgemeinen aus einem Quench zur Gaskühlung, bis nahe zur Wassertaupunkttemperatur und zur Staubabscheidung sowie einer Waschkolonne mit Einbauten für den Stoffaustausch aus der Gasphase in die Waschflüssigkeit. Der Quench und die Waschstufen werden über eigene Wasserkreisläufe versorgt. Abgezogen wird ein Teilstrom mit den Feststoffen und den absorbierten oder gelösten Schadstoffen. Der Abscheidungsgrad

der Kohlenwasserstoffe ist wesentlich durch die Wasserlöslichkeit der einzelnen Spezies bestimmt. Zum Beispiel sind Formaldehyde gut, hingegen langkettige phenolische Verbindungen schlecht wasserlöslich.

Häufig werden Wäscher mit ein- oder mehrstufigen Nass-Elektrofiltern kombiniert (vgl. WESP).

Die Eigenschaft des **Biofilters**, organische Materialien durch biologische Oxidation abzubauen, wird bei der Minderung von $C_{\text{org.}}$ -Emissionen genutzt. Das Waschwasser wird im Kreislauf gefahren und oben auf den Filter verteilt. Spezifische Mikroben im Biofilm des Filters bauen die absorbierten organischen Schadstoffe ab.

Bei hoher Holzstaubkonzentration werden biologische Verfahren durch den erhöhten Sauerstoffbedarf in ihrer Funktion eingeschränkt bis deaktiviert, so dass die Holzpartikel im Rauchgas, z.B. in einem Venturiwäscher, vorab abgeschieden werden müssen.

Der **Biowäscher** mindert hauptsächlich organische Verbindungen, aber auch Reststaubgehalte. Das Waschwasser wird in einem Belebtschlammbecken gereinigt, wobei spezifische Mikroben die organischen Schadstoffe abbauen. Die Feststoffe werden separat ausgeschleust. So ist der wesentliche Unterschied zum Biofilter, dass beide Teilschritte (Absorption und biologischer Abbau) örtlich voneinander getrennt stattfinden.

Biologische Verfahren sind beschränkt auf die löslichen und hinreichend gut abbaubaren Organika. Zusätzlich darf die Temperatur der Bakterienkulturen einen Wert von ca. 57°C nicht überschreiten. Daher sind bis anhin Biowäscher auf die MDF-Produktion beschränkt, bei der die Trocknerabgase vornehmlich mit wasserlöslichen und biologisch gut abbaubaren organischen Stoffen wie Formaldehyd, Methanol oder Essigsäure beladen sind. Bei Spanplattenund OSB-Trocknern dominieren hingegen die Terpenemissionen. Die meisten Terpene sind aber nicht wasserlöslich und werden nur begrenzt durch Abkühlungseffekte abgeschieden. Sie sind zudem nicht oder nur langsam biologisch abbaubar.

Das Funktionsprinzip der Trägheitsabscheidung wird mit Anwendung des **Zyklons** ausgenutzt. Die aufgebaute Zentrifugalkraft löst den Staub aus den Abgasen heraus und lässt ihn an der Kegelwand abscheiden. Das gereinigte Gas verlässt den Zyklon durch ein konzentrisches Tauchrohr nach oben.

Als ein **Zyklonfilter** wird ein filtender Abscheider (Rundfilter) mit einem vorgeschalteten Zyklon bezeichnet.

Mit Hilfe eines elektrischen Feldes scheidet der **Elektroabscheider** (**Elektrofilter**) den Staub aus den Abgasen aus. Mit einem **Nasselektrofilter** (**WESP**) reduzieren sich die Emissionen von Staub- sowie von kondensierten oder wasserlöslichen organischen Verbindungen. Ablaufende Wasserfilme an den Niederschlagselektroden, gebildet aus Waschwasser oder durch Kondensation, spülen die abgeschiedenen Feststoffe ab. Durch die Kombination eines Nasswäschers mit einem (nass betriebenenen) Elektroabscheider wird der Abscheidegrad deutlich erhöht.

Der **Gewebefilter** wird zur Staubminderung eingesetzt, jedoch fast ausschliesslich nach indirekt beheizten Trocknern der Spanplatten und OSB-Produktion. Mit Hilfe des Gewebefilters werden die Rauchgase durch Web- bzw. Filzstoffe geleitet, an denen sich die Partikel abscheiden.

Katalytische Nachverbrennung (KNV) — catalytic thermal oxidizer (CTO).

Eine Methode, bei der die Schadstoffe mittels eines katalytischen Systems und unter Einsatz einer thermischen Verbrennungskammer bei herabgesetzter Temperatur zerstört werden.

Regenerative Nachverbrennung (RNV) — renerative thermal oxdizer (RTO).

Regenerative Nachverbrennungen bestehen aus einer Brennkammer mit einer (Gas-) Feuerung und nachgeschalteten Wärmespeichern, die die Wärme der heissen Reingase aufnehmen und im wechselnden Betrieb wieder an die kalten Rohgase zur Aufwärmung abgeben. Dadurch lässt sich die zuzuführende Energie aus der Zusatzfeuerung auf das Mass der Grädigkeit des Regenerators und der übrigen Wärmeverluste begrenzen. Der Wirkungsgrad dieses Wärmetauschers beträgt ca. 95%. Ein wichtiger Einfluss hat dabei die Gesamtbetrachtung von Energiebedarf, Luftschadstoffen und Wirtschaftlichkeit.

Vornehmlich kommen regenerative Nachverbrennungen (RNV) in den USA zum Einsatz. In Europa wird diese Technologie in der Holzwerkstoffherstellung, mit Ausnahme einer Spanplattenwerk Salzburg in Österreich, meist für Pressenabluftströme angewendet.

Ein Bestandteil des UTWS- respektive ecoDry-Verfahrens ist, analog zur RNV, eine Nachverbrennung des Trocknerabluftstroms. Der Unterschied zur RNV besteht in der Wärmenutzung, die indirekt über einen Wärmeaustausch zum Trocknerumluftstrom erfolgt.

Bei Einsatz von Nachverbrennungen wird eine Abscheide- respektive Umsatzgrad der VOC zwischen 95 und98% erreicht, wobei die organischen Verbindungen in der Brennkammer zu CO₂ und H₂O oxidiert werden.

Kombinierte Systeme von Wärmeerzeuger, Trockner und Abluftreinigung sind in den folgenden Dokumenten beschrieben (vgl. VDI 3462, Blatt 2, Seite 15 [11] und Sevilla Dokument, Kap. 4.2.2.3 [5] und Energetischer Vergleich von RNV und Nassabscheidern [18]).

Selektive, nichtkatalytische Reduktion (SNCR)

Höhere Stickstoffkonzentrationen in den Brennstoffen zur Befeuerung der direkten Trockner verursachen NOx-Frachten in den Abluftströmen, die eine Entstickung notwendig machen können.

Falls die Voraussetzungen für Abluftemperatur und Verweilzeit gegeben sind, kann mit hoher Effizienz das Verfahren der selektiven, nichtkatalytischen Reduktion (SNCR) eingesetzt werden. Temperaturungleichverteilungen und Strömungsschieflagen im Abluftstrom führen zu einer markanten Begrenzung des NOx-Umsatzes bzw. zu einer erhöhten Ammoniakemission.

4.4 Primäre-Emissionsminderungsmassnahmen bei der Heissgaserzeugung

Neben den Brennern der Trockner werden verschiedene Feuerungen in Kesselanlagen betrieben. Diese Kessel dienen der zentralen Energieversorgung über Thermoölkreisläufe oder zur Dampferzeugung und Stromproduktion. Die Abgase beheizen zumeist dann noch Späne- oder Fasertrockner.

Die Spezies der Schadstoffe aus der Heissgaserzeugung werden von den eingesetzten Brennstoffen, aber auch von der Art der Feuerung bestimmt.

Während Gasfeuerungen nur sehr wenige Schadstoffe emittieren, werden bei Feststoffverbrennungen in nennenswertem Masse Staub, CO, Corg, NO_x und, falls entsprechend belastete Brennstoffe verbrannt werden, u.a. auch SO₂, HCl, sowie Schwermetalle und Dioxine freigesetzt. So werden Holzabfälle aus der Produktion, Altholz, aber auch vereinzelt Ersatzbrennstoffe aus der Kunststoffverwertung in Rost- und Wirbelschichtfeuerungen verwendet. In den Zünd- und Stützbrennern kommen Erdgas oder Holzstäube zum Einsatz.

NO_x-Emissionen entstehen hauptsächlich aus dem Stickstoffanteil des Brennstoffs (Brennstoff-NOx) und weniger aus Reaktionen in der Flammenfront (Prompt-NO_x). Reines Holz und Rinden enthalten bis zu 0,6% (bez. Trockenmasse) an organisch gebundenem Stickstoff. Die meisten Holzwerkstoffe haben aufgrund der eingesetzten Bindemittel mit bis zu 4% deutlich höhere Stickstoffgehalte als naturbelassenes Holz.

Die NO_x-Emissionen lassen sich primärseitig durch eine gestufte Verbrennung und durch eine Rauchgasrezirkulation vermindern. Falls diese Massnahmen nicht ausreichen, wird bevorzugt als sekundäre NO_x-Minderung das sogenannte SNCR-Verfahren eingesetzt (siehe folgenden Abschnitt).

4.5 Sekundäre Emissionsminderungsmassnahmen bei der Heissgaserzeugung

Als Emissionsminderungsmassnahme müssen Kombinationen von technischen Mitteln verwendet werden. Zur NO_x-Minderung wird in der Regel das **nicht katalytische SNCR-Verfahren** eingesetzt. Hierbei wird Ammoniak oder Harnstoff bei geeigneter Temperatur in das Rauchgas eingedüst. Ammoniak und Harnstoff reagieren mit den Stickoxiden hauptsächlich zu Stickstoff und Wasser. Aufgrund einer stets vorhandenen Ungleichverteilung von Ammoniak, Stickoxiden und Temperatur verbleiben Rest-NO_x und Ammoniak als Schlupf im Rauchgas. Zusammenfassend lassen sich folgende NO_x-Emissionen [mg/m³ i.N., 11% O₂] erreichen:

Tabelle 8: NOx-Emissionen [mg/m³ i.N., 11% O2]

Brennstoffe	Konventionelle Verbrennung [mg/m³]	Low-NO _x - Verbrennung [mg/m³]	SNCR ¹⁾ [mg/m ³]
Naturbelassenes Holz	150–400	100–200	80–100
Altholz	200–700	125–250	80–125
Harnstoff-Formaldehyd- Spanplatte	400–900	150–300	100–150

¹⁾ Emissionswerte bei einem NH₃-Schlupf von 5–10 mg/Nm³

Wenn die Rauchgase zur Trocknung in einem direkt beheizten Trockner eingesetzt werden, genügen **Zyklone** zur Vorentstaubung. Werden die Rauchgase direkt in einer Abgasreinigungsanlage behandelt, braucht es eine weitergehende Entstaubung. Als Systeme stehen elektrostatische oder filternde Abscheider zur Verfügung. Die Reingaswerte betragen nach **Elektrofiltern** 10–20 mg/Nm³ und nach Gewebeentstaubern 5–10 mg/Nm³ (Werte bez. auf 11% O₂ tr.).

Moderne Feuerungen mit hohen feuerungstechnischen Wirkungsgraden emittieren nur geringe Mengen an unverbrannten organischen Substanzen. Die gemessenen Emissionen [17] betragen < 10 mg/Nm³ (bez. auf 11% O_2 tr.) als Gesamtkohlenstoff.

Beim Einsatz von Altholz als Brennstoff, auch mit halogenhaltigen Beschichtungen ausgerüstet oder mit Imprägniersalzen behandelt, enthalten Rauchgase entsprechend der Inhaltsstoffe, saure Schadgase wie HCl, HF oder SO_2 , Dioxine oder Furane sowie Schwermetalle. Aus der industriellen Gasreinigung stehen vielfältige nasse oder trockene Verfahren zur Verfügung, mit denen die Emissionen wirksam gesenkt werden können. So können Emissionswerte z.B. für $SO_2 < 50$ mg/Nm³, HCl < 10 mg/Nm³, Dioxine/Furane < 0.1 ng/Nm³ (Werte bez. auf 11% O_2 tr.) erreicht werden.

Ein vergleichsweise einfaches, **trockenes Verfahren** besteht aus einem filternden Abscheider (Gewebeentstauber) mit Aufgabe von alkalischen (z.B. Ca (OH)₂ oder NaHCO₃) und ggf. adsorptiven Stoffen (Aktivkohle oder HOK). Mittels der alkalischen Reagenzien werden die sauren Schadgase und mit den Adsorbentien die flüchtigen Kohlenwasserstoffe und, soweit gegeben, Dioxine / Furane sowie Schwermetalle wirksam abgeschieden.

Ein **nasses Verfahren** setzt sich aus einer Vorentstaubung und einem Quench zur Rauchgaskühlung sowie einer nachfolgenden Waschstufe zusammen. Für die Neutralisierung der sauren Schadgase wird ein alkalisches Reagenz (CaO oder NaOH) in Wasser gelöst und mit dem Rauchgas in Kontakt gebracht. Falls die Rauchgase trocken abgeführt werden sollen, kann die notwendige Wärmemenge mittels Gas / Gas-Wärmetauscher von der Roh- auf die Reingasseite übertragen werden.

Für eine notwendige Abscheidung von Dioxinen / Furanen und Schwermetallen können, analog zum eben genannten trockenen Verfahren, vor dem Vorentstauber Adsorbentien in den Rauchgasstrom dosiert werden.

Nachteilig dem nassen gegenüber dem trockenen Verfahren sind die höheren Investitionskosten, zumal auch ein entstehender Abwasserstrom behandelt werden muss. Die hier beschriebenen Nasswäschen werden daher bevorzugt nur bei sehr hohen Schadgaskonzentrationen eingesetzt.

4.6 Ablufttechnologien der Werke in Österreich und Luxemburg

Anhang 2 zeigt beispielhaft die bestehenden Ablufttechnologien der Werke in Österreich und Luxemburg auf. In Anhang 2a ist eine tabellarische Zusammenstellung der aufkommenden Emissionswerte bei der Trocknung bzw. bei der Heissgaserzeugung zu finden. Die vereinfachten Fliessbilder der Ablufttechnologien in Anhang 2b dienen dem Nachvollzug der ermittelten Werte. Als Grundlage der Datenerfassung dient der aktuelle Bericht zum Stand der Technik von Anlagen der Span- und Faserplattenindustrie [17]. Die Zusammenstellung der gefassten Emissionswerte zeigt, dass mit einer thermischen Nachverbrennung sehr tiefe VOC-Werte erreicht werden können.

Folgende Auswahl an Produktionswerken sind in Anhang 2a sowie 2b abgebildet.

Tabelle 9: Zusammenstellung der in Anhang 2a / 2b dargestellten Ablufttechnologien der Werke in Österreich, Luxemburg und der Schweiz

Unternehmen	Standort	Holzwerkstoff / Werk	Technologie	Emissionsminderungs- massnahmen
Fritz Egger GmbH & Co	St. Johann, Österreich	Spanplatten	Direkt beheiz- ter Trockner	Zentrale Abluftreinigung ALRA (Quench, Wäscher, KondNEF)
Fritz Egger GmbH & Co	Wörgl, Österreich	Dünnspanplat- ten	Direkt beheiz- ter Trockner	EG- und Staubfeuerung; Multi-Zyklon
Fritz Egger GmbH & Co	Unterradiberg, Österreich	Rohspanplatten	Indirekt be- heizter Trock- ner, 2 Kessel- anlagen	
Funder Max GmbH	Neudörfl, Öster- reich	Spanplatten	Indirekt und di- rekt beheizter Trockner	Multi-Zyklon, SEKA (Quench, Wäscher, KondNEF)
M. Kaindl Holzindustrie	Wals-Siezen- heim, Österreich	Spanplatten, MDF	Indirekt be- heizter Trock- ner	Zyklone, Venturi- u. Bio- Wäscher
M. Kaindl Holzindustrie	Wals-Siezen- heim, Österreich	OSB	Direkt beheiz- ter Trockner	Zyklon, Kiesbett-EF, RNV
MDF-Hallein	Hallein-Salz- burg, Österreich	MDF	Direkt beheiz- ter Trockner	Zyklon, GARA (Quench, Bio-Wäscher, Nass-EF)
Kronospan Luxemburg	Sanem Luxemburg	MDF, OSB	OSB Trock- nung im ge- schlossenen System	NG-Feuerung; Zyklon, Nass-EF / EF, (OSB-Trockner mit eco- Dry)
Swiss Krono / Menznau	Menznau, Schweiz	Spanplatten, MDF	Direkt beheiz- ter Trockner	SEKA (Quench, Wäscher, Nass-EF)
Funder Max GmbH	St. Veit, Österreich	Biofaser- und Hartfaserplatten	Heissgaser- zeugung	SNCR, Zyklon, GF + Tro- ckensorp. mit Kalkhydrat
Funder Max GmbH	Wiener Nd. Ös- terreich		Heissgaser- zeugung	Gasfeuerung mit Co-Flüssigabfallverbrennung

5. Schadstoffreduktionspotentiale

Dieses Kapitel hat zum Ziel, die Schadstoffreduktionspotentiale der einzelnen in der Praxis erprobten Technologien zu zeigen. Hierzu diente das "Sevilla Referenzdokument" [5], Kapitel 3.2, als Grundlage. Im Sevilla Dokument sind, neben den konventionellen Anlagen mit direkt beheizten Trocknern, drei Anlagen mit Umlufttrocknung (UTWS-/ecoDry-Prinzip) sowie fünf indirekt beheizte Spänetrockner aufgeführt.

Anhand der jeweiligen Emissionswerte und den zugeordneten Komponenten der Abluftreinigung wurde das in der Praxis gemessene Reduktionspotential der einzelnen Technologien zusammengestellt sowie die beste verfügbare Technik (BVT) [6] ausgeschieden.

Wie bereits erwähnt, wurden bei den dokumentierten Werten des "Sevilla Dokuments", Referenzdokument [5], der Sauerstoffbezug und Abgasfeuchten anscheinend nicht berücksichtigt. Dies führt dazu, dass die aufgeführten Messwerte nicht unmittelbar vergleichbar sind. In Anhang 3 sind alle Emissionswerte zu finden. Sie sind sowohl mit ihren ursprünglichen Sauerstoffwerten (Bezugswert oder Betriebswert) angegeben, wie auch auf einen neuen einheitlichen Bezugssauerstoffwert berechnet. Wo keine Daten vorhanden sind, werden Annahmen getroffen.

Bezugsgrössen

- Die Schadstoffkonzentrationen wurden aus den Diagrammen des Kapitels 3 [5] herausgelesen.
- Die nachfolgenden Emissionswerte sind definiert für eine Temperatur von 273,15 K, einen Druck von 101,3 kPa und nach Abzug des Wasserdampfgehalts des Abgases.
- Die Emissionswerte von Feuerungsanlagen mit festen Brennstoffen beziehen sich auf einen Volumengehalt an Sauerstoff von 6 Prozent. Die Emissionswerte von Trocknern beziehen sich auf einen Volumengehalt an Sauerstoff von 18 Prozent. Diese Werte entsprechen sowohl im Mittel der betrieblichen Praxis wie auch den Bezugsgrössen in neueren europäischen Richtlinien für mittelgrosse Feuerungsanlagen sowie direkt beheizten Spanplattenund OSB-Trocknern (EU 2015 / 2193, EU 2015 / 2119, TA-Luft Entwurf).

Bei sehr hohen Betriebssauerstoffkonzentrationen in der Abluft führt die Umrechnung auf Bezugssauerstoff (z.B. 18 Vol-%) zu einer starken rechnerischen Aufkonzentrierung der Schadstoffe. Um eine verzerrte und wirklichkeitsfremde Darstellung der Emissionssituation zu vermeiden, wird daher bei Sauerstoffkonzentrationen von > 20 Vol-% auf eine Umrechnung verzichtet.

Entsprechend müsste bei Anlagen, die hohe Betriebssauerstoffwerte fahren, bei der Festlegung der Grenzwerte entsprechende Bezugssauerstoffwerte bestimmt oder auf einen Sauerstoffbezug verzichtet werden.

5.1 Rauchgasentstickung

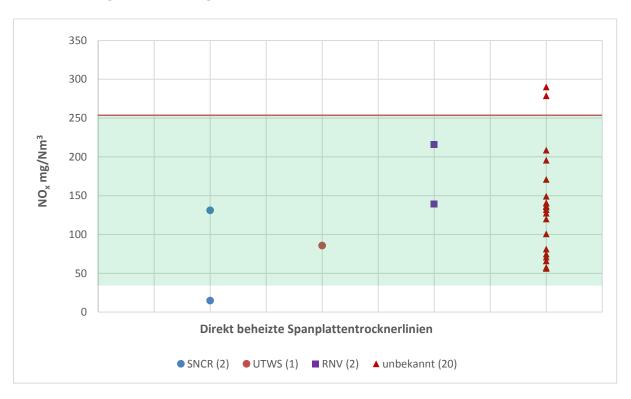


Abbildung 2: NOx – Messwerte von verschiedenen Linien direkt beheizter Spanplattentrockner, vgl. Anhang 3 Grenzbereiche, der verschiedenen Sekundärmassnahmen SNCR, UTWS, RNV und unbekannte gemäss Tabelle 3 dargestellt als grüne Schraffierung, LRV Anhang 1, Ziffer 61 als rote Linie (kein O₂-Bezug)

Tabelle 10: Reduktionspotential NO_x

Massnahmen	Reduktionspotential	BVT
	NO _x	[mg/Nm³]
Heissgaserzeugung <20 MW		
Selektive nicht katalytische Reduktion (SNCR)	bis etwa 70%	< 300
Heissgaserzeugung >20 MW		
Selektive nicht katalytische Reduktion (SNCR)	bis etwa 80%	< 200
Direkt beheizte Trockner		
Primärmassnahmen oder Selektive nicht katalytische Reduktion (SNCR)		< 200

5.2 Staubminderungsmassnahmen Entfernung partikelförmiger Verunreinigungen

Vor oder nach den nassen und trockenen Abluftbehandlungsanlagen sind generell hoch effiziente Staubabscheider erforderlich. Somit sind die Emissionen bezüglich Staub, staubgebundener Schadstoffe und Aerosole bei beiden, nassen und trockenen Abluftbehandlungsanlagen, gleich.

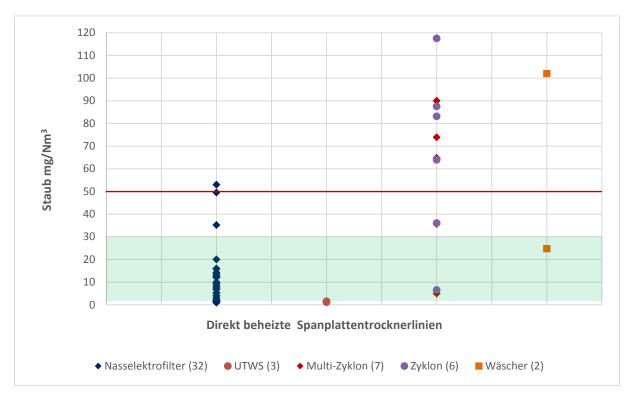


Abbildung 3: Direkt beheizte Spanplattentrocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3, LRV Grenzwert Anhang 2 Ziffer 84 in rot dargestellt

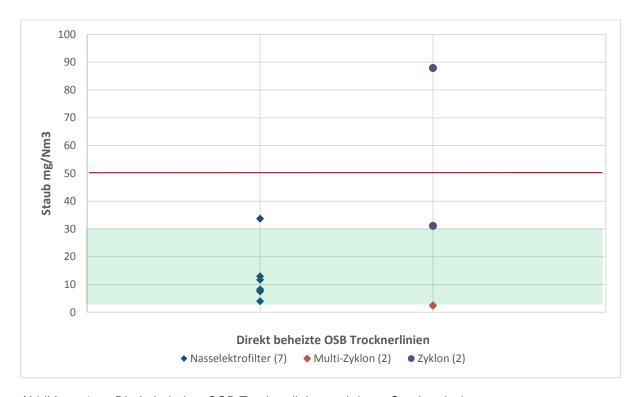


Abbildung 4: Direkt beheizte OSB Trocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3; LRV Grenzwert Anhang 2 Ziffer 84 in rot dargestellt

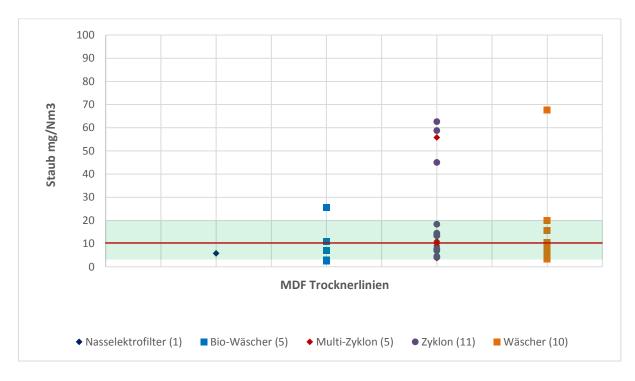


Abbildung 5: MDF Trocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3; LRV Anhang 3 Grenzwert für Holzfeuerungen >10MW in rot dargestellt

Tabelle 11: Reduktionspotential Staub

Massnahmen	Reduktionspotential Staub	BVT [mg/Nm³]		
Heissgaserzeugung <15 MW				
Elektrofilter		< 20		
Heissgaserzeugung >15 MW				
Gewebefilter	bis etwa 99%	< 10		
Elektrofilter	bis etwa 99%	< 10		
Trockner (direkt) Spanplatten und OSB				
Fliehkraftabscheider (Zyklon)	bis etwa 90%	< 100		
Nass-Elektrofilter	bis etwa 99%	< 20		
Trockner (indirekt) Spanplatten und OSB				
Fliehkraftabscheider (Zyklon)		< 100		
Gewebefilter	bis etwa 99%	< 10		
Nass-Elektrofilter	bis etwa 99%	< 10		
Trockner (direkt und indirekt) MDF				
Fliehkraftabscheider (Zyklon)		< 60		
Nass-Elektrofilter	bis etwa 99%	< 10		
Nass- oder Biowäscher (ggf. in Kombination mit NEF)		< 30		

5.3 Formaldehyd (CHCO)-Minderungsmassnahmen

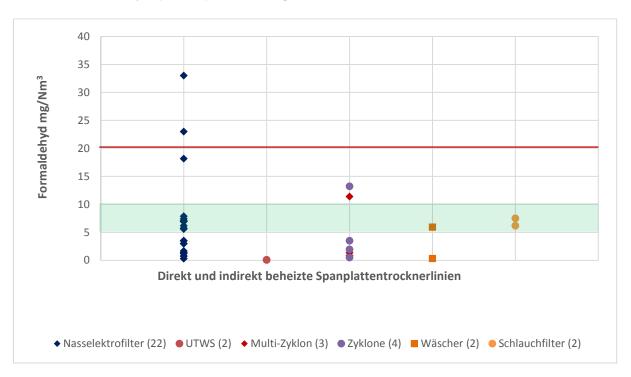


Abbildung 6: Direkt und indirekt beheizte Spanplattentrocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen; ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert rot dargestellt

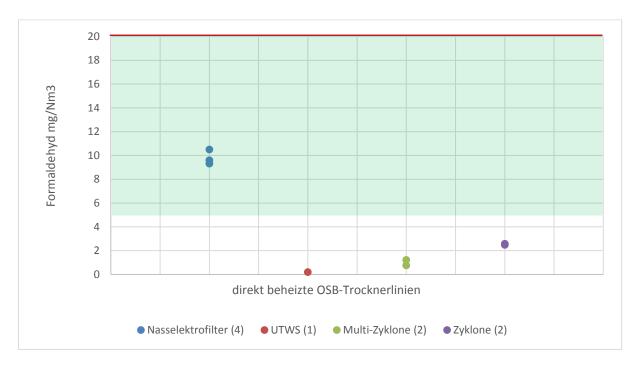


Abbildung 7: Direkt beheizte OSB-Trocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3 LRV Grenzwert rot dargestellt

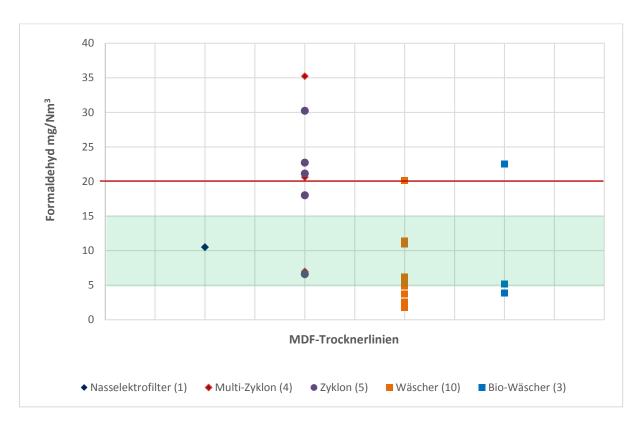


Abbildung 8: MDF-Trocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert rot dargestellt

Tabelle 12: Reduktionspotential Formaldehyd CHCO

Massnahmen	Reduktionspotential Formaldehyd	BVT [mg/Nm³]	
Trockner (direkt und indirekt) Spanplatten			
Wäscher ggf. mit Nasselektrofilter		< 10	
Regenerative Nachverbrennung (RNV)		< 1	
Trockner (direkt und indirekt) OSB			
Nasselektrofilter		< 20	
Regenerative Nachverbrennung (RNV)		< 1	
Trockner (direkt und indirekt) MDF			
Wäscher, Bio-Wäscher		< 20	
Regenerative Nachverbrennung (RNV)		< 1	

5.4 VOC-Minderungsmassnahmen

Regenerative Nachverbrennungen besitzen, unter der Voraussetzung ausreichender Temperatur und Verweilzeit, erreichbare Umsatzgrade der VOC von bis zu 99%. Für alle anderen unbrennbaren Schadstoffe sind zusätzliche Abscheidestufen erforderlich.

Wäscher mit Wasser als Waschflüssigkeit können Stäube und saure anorganische Schadstoffen abscheiden. Von den flüchtigen Kohlenwasserstoffen (VOC) können Wäscher nur die polaren Spezies wie Formaldehyd abscheiden. Der erreichbare Abscheidegrad der VOC beträgt weniger als 30%.

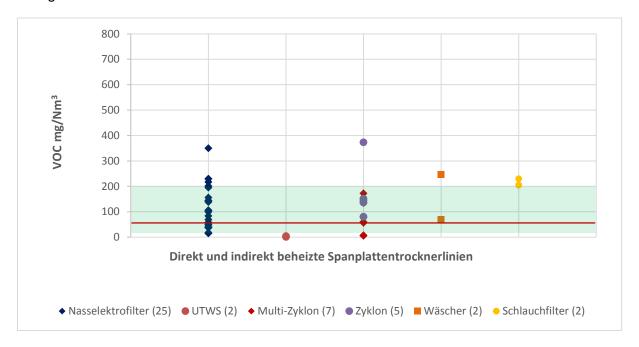


Abbildung 9: Direkt und indirekt beheizte Spanplattentrocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen, ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert umgerechnet vom Fallbeispiel rot dargestellt

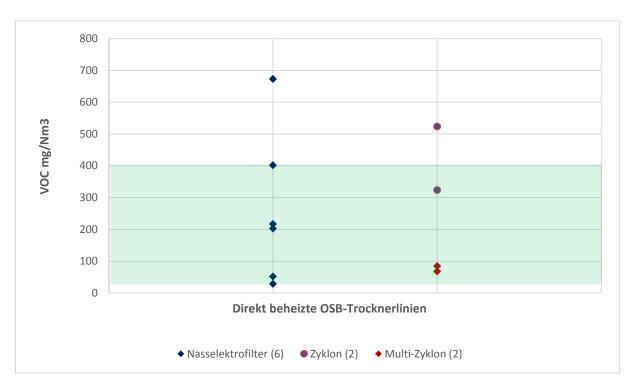


Abbildung 10: Direkt beheizte OSB Trocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen; ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3

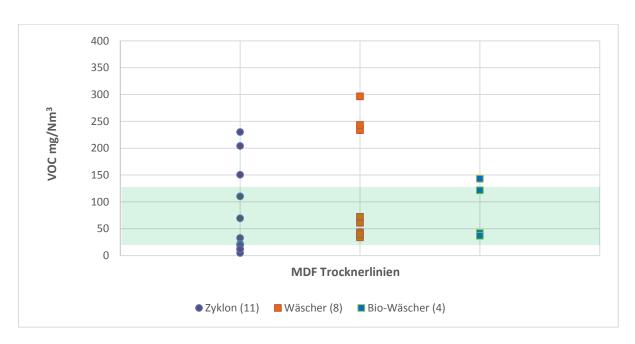


Abbildung 11: MDF Trocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3

Tabelle 13: Reduktionspotential VOC

Massnahmen	Reduktionspotential VOC .	BVT [mg/Nm³] *
Trockner (direkt und indirekt) Spanplatten		
Nasselektrofilter ggf. mit Wäscher	30%	< 200
Regenerative Nachverbrennung (RNV**)	98%	< 10
Trockner (direkt und indirekt) OSB		
Nasselektrofilter ggf. mit Wäscher	30%	< 400
Regenerative Nachverbrennung (RNV**)	98%	< 10
Trockner (direkt und indirekt) MDF		
Wäscher, Bio-Wäscher	30%	< 200
Regenerative Nachverbrennung (RNV**)	98%	< 10

^{*)}Sauerstoffbezug: 18% tr.

In der österreichischen Studie "Energiebilanz und Kosten VOC-Minderung" [18] sind beispielhaft Modellanlagen mittlerer Anlagengrösse mit nassen und trockenen (RNV) Abgasbehandlungsanlagen berechnet worden. Für die Trockner in der Span- und MDF-Plattenproduktion ergeben sich nach einer Nassreinigung spezifische VOC-Emissionen von 150 mg/Nm³ bzw. 65 mg/Nm³. Nach einer RNV sind die Emissionswerte für die Span- und MDF-Plattenproduktion mit 2–3 mg/Nm³ gleich.

Damit ergeben sich für das RNV-Verfahren, im Vergleich zu nassen und trockenen Verfahren, geringere VOC-Emissionen von ca. 240 Tonnen VOC pro Jahr. Dem stehen die zusätzlichen CO₂-Emissionen aus der (Gas-) Zusatzfeuerung der RNV gegenüber, soweit die Wärme nicht genutzt wird.

^{**)}RNV auch in Verbindung mit UTWS

6. Auswertung und Empfehlung

6.1 LRV Grenzwerte im Vergleich

Die folgende Tabelle gibt einen Überblick über die gesetzlichen Vorgaben und die diskutierten Grenzwerte in der EU und Deutschland. Für das Fallbeispiel wurden die gemessenen Emissionsmesswerte der Span- und Faserplatten-Werke eingetragen. Die im Kapitel 5 erarbeiteten BVT Grenzwerte sind in der letzten Spalte aufgeführt.

Tabelle 14 Zusammenstellung der gesetzlichen Vorgaben und Grenzwerte in der Schweiz, EU und Deutschland

Spanplatten (PB)												
Sauerstoffb	pezug			18%	17%	18%						
Schadstoff		LRV [mg/m³]	BVT EU [mg/m³] Kap. 2.3.1	TA-Luft Entwurf. [mg/m³]	Fallbeispiel [mg/m³] Messbericht und UVB	BVT Kap. 5 [mg/m³]						
Staub	Direkt beheizter Trockner	50	3–30	15	3–5	<20						
	Indirekt beheizter Trockner		3–10	10		<10						
VOC	Alle Trockner	50-55 *	20–200		91 / 131 580 / 950	<200						
	g/Tonne Holzeinsatz atro	350 g/t _{atro}			g/t atro							
	Direkt beheizter Trockner			200	91–131							
	Indirekt beheizter Trockner			400								
	UTWS / ecoDry		<30			<10						
Formalde- hyd	Alle Massnahmen RNV auch in Verbindung mit UTWS / ecoDry	20	5–10	10		<10 <1						
NOx	Direkt beheizter Trockner	250	30–250	250	209–215	<150						
INOX	Holzfeuerungen	150 **	30-230	230	203-213	~130						

^{*}Umgerechnet auf Basis Fallbeispiel (vgl. Kapitel 2.4)

^{**}bezogen auf 11% O_{2tr.}

OSB						
Sauerstoffbe	ezug			18%		18%
Schadstoff		LRV [mg/m³]	BVT EU [mg/m³] Kap. 2.3.1	TA-Luft Entwurf [mg/m ³]		BVT Kap 5 [mg/m³]
Staub	Direkt beheizter Trockner		3–30	15		20
	Indirekt beheizter Trockner		3–10	10		10
VOC	Alle Trockner		10–400	400		<400
	Direkt beheizter Trockner					
	Indirekt beheizter Trockner RNV auch in Verbindung mit UTWS / ecoDry		<30			<10
Formalde- hyd	Alle Massnahmen RNV auch in Verbindung mit UTWS / ecoDry	20	5–20	20		<20 <1
NOx	Direkt beheizter Trockner	250	30–250	250		<150
	Holzfeuerungen	150				
Faserplatte						
Sauerstoffbe	ezug			18%	17%	18%
Schadstoff		UWE [mg/m ³]	BVT EU [mg/m³] Kap 2.3.1	TA-Luft Entwurf [mg/m³]	Fallbeispiel [mg/m³]	BVT Kap 5 [mg/m³]
Staub	Direkt beheizter Trockner	10		15	8	<20
	Indirekt beheizter Trockner		3–20	15		<10
VOC	Alle Trockner	150	20-120	120	74	<200
	g/atro					
	Direkt beheizter Trockner					
	Indirekt beheizter Trockner RNV auch in Verbindung mit UTWS / ecoDry		<30	120		<10
Formalde- hyd	Alle Massnahmen	20	5–15	15		
	Bio-Wäscher RNV auch in Verbindung mit UTWS / ecoDry				4	<20 <1
NOx	Direkt beheizter Trockner	125	30–250	250	32	<150

6.2 Empfehlungen im Hinblick auf die Revision der LRV

6.2.1 Soll LRV Anhang 2, Ziffer 84, nur die Spanplattenherstellung beinhalten?

Ziffer 84 bezieht sich ausschliesslich auf die Spanplattenherstellung und deckt nicht die Herstellung der Faser- und OSB Platten ab. In einer Revision der LRV sollten daher, in Anlehnung an die europäischen Dokumente, die Faserplatten- und OSB-Werke mitberücksichtigt werden.

Da die Prozessschritte und Trocknungstemperaturen der Weichfaserplattenherstellung nicht vergleichbar sind mit denen der Span- und Faserplatten, empfehlen wir eine gesonderte Betrachtung.

6.2.2 Ist der Grenzwert, bezogen auf Tonnen Holzeinsatz, zeitgemäss?

Die "Art des Grenzwertes" gemäss Ziffer 843, Absatz 3 "Diese Emissionen sind so weit zu begrenzen…, mindestens aber auf 350 g pro Tonnen Holzeinsatz (absolut trocken)", wird nur in der Schweiz gebraucht. In allen untersuchten Regelwerken und Richtlinien wird eine zu erreichende Konzentration im Abluftstrom vorgegeben. Wir empfehlen deshalb, eine Schadstoffkonzentration inkl. Sauerstoffbezug als Grenzwert des Abluftstroms zu definieren. Damit ist die Vergleichbarkeit im europäischen Raum mit zukünftigen Entwicklungen der Technologien trotzdem noch möglich.

6.2.3 Bildet der Grenzwert von organischen Stoffen gemäss Ziffer 843 den Stand der Technik ab?

Durch Primärmassnahmen und Abgasrückführung in den Brenner können sehr niedrige Emissionswerte erreicht werden. Dabei sind Werte kleiner als 50 mg/m³ erreichbar [24].

Mit einer Nachverbrennungsanlage (RNV) oder dem ecoDry Verfahren können die bestehenden Grenzwerte von 350 g organische Stoffe pro Tonne atro Holzeinsatz sicher eingehalten werden.

Spanplattenwerke mit regenerativen Nachverbrennungsanlagen sind im Ausland erprobt und erfüllen somit den Stand der Technik gemäss LRV (vgl. Kapitel 4.2.4.). Mit diesen Verfahren können Konzentrationen kleiner 50 mg/Nm³ tr. (bez. 18% O₂ tr.) erreicht werden. Wie bereits im Kapitel 4.3 aufgeführt spielt bei der Gesamtbetrachtung neben den zusätzlichen Luftschadstofffrachten auch der zusätzliche Energiebedarf und die Wirtschaftlichkeit eine wesentliche Rolle.

Das ecoDry-Verfahren ist bei dem OSB-Werk Kronospan Luxemburg und beim Pressspanklotzwerk Unterbernbach mehr als 10 Jahre erprobt und erfüllt somit den Stand der Technik nach LRV. Die Lieferanten Dieffenbacher und Swisscombi garantieren für Trockner in der Span- und Faserplattenherstellung Emissionswerte von kleiner als 50 mg/m³ für den Gesamt-Kohlenstoff und kleiner als 20 mg/m³ für Formaldehyd (Bezug auf Betriebssauerstoffgehalt) (vgl. Anhang 7).

Dem gegenüber steht die europäische Umsetzungsbestimmung [3] und die anstehende TA-Luft Revision [9], welche den VOC-Grenzwert so angesetzt haben, dass weiterhin auch die anderen sekundären Massnahmen akzeptiert sind, wie Wäscher, Nasselektrofilter, Zyklone usw.

Abhängig von der Abluftfeuchte und –temperatur können Wäscher mit oder ohne biologische Reinigungsstufe verwendet werden.

Bei Spänetrocknern können zur Zeit aufgrund der hohen Abgasfeuchte und –temperatur nur Wäscher, wie in Kapitel 4.3 erwähnt, eingesetzt werden. Diese haben einen maximalen Abscheidungsgrad der VOC von 20–30%. Bei optimaler Prozesssteuerung der Trocknung (Senkung der Trocknungstemperatur, Optimierung der Betriebsweise und Brüdenrückführung) können sehr tiefe VOC-Werte erreicht werden. Diese tiefen VOC-Werte sind nicht auf die Wäscher allein zurückzuführen, sondern auf die geringere Schadstoffbeladung des Rohgases.

In der MDF-Plattenproduktion sind Feuchte und Temperatur der Abluft tiefer, wodurch sich eine tiefere Wäscherbetriebstemperatur einstellt, die eine biologische Reinigung erlaubt. Die Abscheidegrade für Formaldehyd betragen mehr als 95% und für VOC, je nach Rohgaskonzentration, 30–70%.

Es ist grundsätzlich nicht auszuschliessen, dass mit gezielten Optimierungen der Betriebsweise und geeigneten sekundären Massnahmen der geforderte C_{org}-LRV-Grenzwert auch ohne RNV erreichbar ist. Im Sevilla Dokument [5] sind Primärmassnahmen nicht ersichtlich. Obwohl einige Werke aufgeführt sind, die die Vorgaben der LRV bezüglich VOC auch ohne RNV oder UTWS erfüllen, können keine Rückschlüsse auf die einzelnen Ursachen, die die angegebenen Sekundärmassnahmen ergänzen, gezogen werden. Dies bliebe einer Einzelfalluntersuchung vorbehalten.

Neue Werke

Die Betriebskosten sind bei einer RNV der kostenbestimmende Faktor. Gemäss der österreichischen Studie zu Energie- und Kosten der VOC Minderungsmassnahmen [18] beträgt der Kostenanteil für ein Nassverfahren (Investitions- und Betriebskosten über 10 Jahre bei einer Musteranlage) 1.5% und bei einer RNV mit Wärmerückgewinnung 3.7% des Produktpreises (150 Euro/m³ Spanplatten).

Bestehende Werke²

Platzverhältnisse der Werke sind massgeblich verantwortlich für die einsetzbaren Technologien und den daraus folgenden Investitions- und Betriebskosten. Ein schrittweiser Wechsel der Technologie auf eine RNV ist nicht möglich. Somit fallen hohe Investitionen für Umrüstungen und Erweiterungen an. Eine Nachrüstung von bestehenden Werken mit einer RNV muss fallweise entschieden werden.

Deshalb empfehlen wir ein mehrstufiges verbindliches Vorgehen:

- Schritt 1: Aufnahme aller an einem Abluft- / Abgasstrang angeschlossene Emissionsquellen.
- Schritt 2: Ermittlung der jeweiligen Schadstoffkonzentrationen und –massenströme.
- Schritt 3: Validierung möglicher zusätzlicher Primärmassnahmen

² Gemäss LRV gelten als neue Anlagen auch Anlagen, die umgebaut, erweitert oder instand gestellt werden, wenn dadurch höhere oder andere Emissionen zu erwarten sind oder mehr als die Hälfte der Kosten aufgewendet wird, die eine neue Anlage verursachen würde.

- Schritt 4: Validierung von Sekundärmassnahmen (Biowäscher, UTWS, RNV etc.) inkl. Wirtschaftlichkeitsbetrachtungen
- Schritt 5: VOC-Jahresfracht resp. Emissionsgrenzwerte und deren Überwachung definieren (kontinuierlich bzw. regelmässige Kontrollmessungen)

6.2.4 NOx-Grenzwert für direkt beheizte Spantrockner

Bei Einsatz stickstoffarmer Brennstoffe oder ggf. eines SNCR-Systems lassen sich NOx-Konzentrationen von <150 mg/Nm 3 tr. (bez. 18% O_2) einhalten.

6.2.5 Staub-Grenzwert nach Trocknern

Bei Einsatz von elektrostatischen Abscheidern oder Gewebefiltern lassen sich Staub-Konzentrationen von <20 mg/Nm³ tr. (bez. 18% O₂) einhalten.

Schweiz

- [1] Luftreinhalte-Verordnung (LRV), SR 814.318.142. vom 16. Dezember 1985.
- [2] Verordnung über die Vermeidung und die Entsorgung von Abfällen (VVEA) / SR 814.600. vom 4. Dezember 2015.

Europa

- [3] Commission Implementing Decision (EU) 2015 / 2119 of 20 November 2015 establishment best available techniques (BAT) conclusions, under directive 2010 / 75 / EU of European Parliament and of the Council, for Production of wood based panels; Document C (2015) 8062; 20 November 2015
- [4] Industrieemissionsrichtlinie (IED) // RICHTLINIE 2010 / 75 / EU. [s.l.]: Amtsblatt der Europäischen Union.
- [5] Best available Techniques (BAT) Reference Document for the Production of wood–based panels [Bericht]; Industrial Emission Directive 2010 / 75 / EU Integrated Pollution Prevention and control / Verf. JRC Institute for Prospective Technological Studies European IPPC Bureau, Seville, Spain; EUR 27732 EN; 2016.
- [6] Schlussfolgerungen zu den besten verfügbaren Techniken (BVT) gemäß der Richtlinie [Bericht] / Verf. Union Amtsblatt der Europäischen Brüssel: [s.n.], 2015.

Deutschland

- [7] Ermittlung des Standes der Technik in Deutschland bei der Herstellung von Platten auf Holzbasis: Spanplatten, Faserplatten und OSB [Bericht] / Verf. Umweltbundesamt. Dessau-Roßlau: ÖKOPOL GmbH Institut für Ökologie und Politik, Texte 70 / 2014; UBA-FB 001990; August 2014.
- [8] Strategien zur Einhaltung des verschärften Formaldehyd-Grenzwerts / Verf. Hagen Matthias. [s.l.] : TK Verlag Karl Thome-Kozmiensky, 2015.
- [9] Vorschläge zur Anpassung der ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz [Konferenz] Dokument Nr. 1.1 / 2015-05-29–29. Mai 2015.
- [10] **VDI 3462 Blatt 1 [Bericht]** / Verf. Ingenieure Verein Deutscher-Düsseldorf: Bundesamt für Umwelt, Dezember 2014.

- [11] **VDI 3462 Blatt 2** / Verf. Ingenieure Verein Deutscher // VDI-Richtlinie, Emissionsminderung Holzbearbeitung und –verarbeitung, Düsseldorf: Bundesamt für Umwelt, März 2013.
- [12] **VDI 3462 Blatt 3** / Verf. Ingenieure Verein Deutscher // VDI-Richtlinie, Emissionsminderung Holzbearbeitung und –verarbeitung, Düsseldorf: Bundesamt für Umwelt, Oktober 1996.
- [13] **VDI 3462 Blatt 4** / Verf. Ingenieure Verein Deutscher // VDI-Richtlinie, Emissionsminderung Holzbearbeitung und –verarbeitung, Düsseldorf: Bundesamt für Umwelt, März 2009.
- [14] **VDI 3462 Blatt 5** / Verf. Ingenieure Verein Deutscher // VDI-Richtlinie, Emissionsminderung Holzbearbeitung- und verarbeitung, Düsseldorf: Bundesamt für Umwelt, März 2009.
- [15] **VDI 3462 Blatt 6** / Verf. Ingenieure Verein Deutscher // VDI-Richtlinie, Emissionsminderung Holzbearbeitung und -verarbeitung, Düsseldorf: Bundesamt für Umwelt, März 2009.

Österreich / Luxemburg

- [16] Stand der Technik in der Span-und Faserplattenherstellung Beschreibung von Anlagen in Österreich und Luxemburg [Bericht]; Report REP-0070; Verf. Kutschera Ute und Winter Brigitte; Wien Umweltbundesamt GmbH; 2006.
- [17] Stand der Technik von Anlagen der Span- und Faserplattenindustrie [Bericht]; Report REP-0438; Verf. Svehla Jakob und Winter Brigitte; Wien Umweltbundesamt GmbH; 2013.
- [18] Energetischer Vergleich von Nassabscheidern und regenerativen Nachverbrennungen zur Emissionsminderung nach Trocknungsanlagen in der Spanund Faserplattenindustrie [Bericht]; Report REP-0455; Verf. Umweltbundesamt GmbH, Wien / Österreich; Wien Umweltbundesamt GmbH; 2014.

Fallbeispiel

- [19] Umweltverträglichkeits-Bericht (UVB); Anlagen der SWISS KRONO AG mit geplanter Energiezentrale, Menznau; Verf. B. Isenegger im puls GmbH Bern; 5. Januar 2009.
- [20] Stand der Technik, Abgasreinigung für Spänetrockner in der Holzwerkstoffindustrie [Brief]; Verf. Scheuch Technology for clean air Gerhard Ströher, 4971 Aurolmünster (AU), 27. Oktober 2015

- [21] Emissionsmessungen im Reingas nach Abgasreinigungsanlage SEKA; Messbericht Nr. M115618 / 0;1 / Verf. MÜLLER-BBM GmbH München; 21. Mai 2014.
- [22] Evaluation BAT in der Abluftreinigung zur Spanplattenherstellung im Auftrag von Swiss Krono AG, Verf. B. Isenegger im puls GmbH, Luzern, 23. Mai 2016
- [23] Evaluation best verfügbarer Technik in der Abluftreinigung bei der Spanplattenherstellung Swiss Krono AG, Präsentation vom 25. August 2016, Bern
- [24] Emissionsuntersuchung an einem Holzspänetrockner, Diplomarbeit Fachhochschule Eberswalde, Fachbereich Holztechnik, Verf. Matthias Richter Boss, 22. April 2002

8. Tabellenverzeichnis

Tabelle 1:	Übersicht der gesetzlichen Anforderungen der Schweiz[1]	3
Tabelle 2:	BVT-assoziierte Emissionswerte von Staub, VOC und Formaldehyd für Emissionen aus dem Trockner bzw. für gemeinsam behandelte Emissio aus dem Trockner und der Presse [3] Sauerstoffbezug bei Spanplatte und OSB Trockner 18%, kein Sauerstoffbezug bei Faserplatten	
Tabelle 3:	BVT-assoziierte Emissionswerte für NO _x Emissionen in die Luft aus dire beheizten Trocknern [5]	
Tabelle 4:	UVB Kronospan, Emissionswerte Reingas SEKA im Spanplattenwerk m Grenzwerten und Frachten, Auszug des UVB in Anhang 5[19]	
Tabelle 5:	Messbericht Spänetrockner Auszug des Messberichts im Anhang 4 [21] * 50 mg/m³ ist kein LRV-Grenzwert → umgerechnet von 350 g/t₀atro.	7
Tabelle 6:	Emissionswerte Reingas SABA im MDF-Werk mit Grenzwerten und Frachten [19]	8
Tabelle 7:	Vergleich der Verschiedenen Trocknungssysteme der Spanplattenherstellung [11]	. 16
Tabelle 8:	NOx-Emissionen [mg/m³ i.N., 11% O2]	. 20
Tabelle 9:	Zusammenstellung der in Anhang 2a / 2b dargestellten Ablufttechnologien der Werke in Österreich und Luxemburg	. 22
Tabelle 10:	Reduktionspotential NO _x	. 24
Tabelle 11:	Reduktionspotential Staub	. 28
Tabelle 12:	Reduktionspotential Formaldehyd CHCO	. 31
Tabelle 13:	Reduktionspotential VOC	. 34
Tabelle 14	Zusammenstellung der gesetzlichen Vorgaben und Grenzwerte in der Schweiz, EU und Deutschland	. 35

9. Abbildungsverzeichnis

Abbildung 1:	Darstellung Herstellungsprozess der Span-und Faserplattenproduktion [5]*Prozessschritte mit Heissgas; – Untersuchungsperimeter
Abbildung 2:	NOx – Messwerte von verschiedenen Linien direkt beheizter Spanplattentrockner, vgl. Anhang 3 Grenzbereiche, der verschiedenen Sekundärmassnahmen SNCR, UTWS, RNV und unbekannte, gemäss Tabelle 3 dargestellt als grüne Schraffierung, LRV Anhang 1, Ziffer 61 als rote Linie (kein O ₂ -Bezug)
Abbildung 3:	Direkt beheizte Spanplattentrocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3, LRV Grenzwert Anhang 2 Ziffer 84 in rot dargestellt
Abbildung 4:	Direkt beheizte OSB Trocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3; LRV Grenzwert Anhang 2 Ziffer 84 in rot dargestellt
Abbildung 5:	MDF Trocknerlinien und deren Staubemissionswerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3; LRV Anhang 3 Grenzwert für Holzfeuerungen >10MW in rot dargestellt
Abbildung 6:	Direkt und indirekt beheizte Spanplattentrocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen; ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert rot dargestellt 29
Abbildung 7:	Direkt beheizte OSB-Trocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3 LRV Grenzwert rot dargestellt
Abbildung 8:	MDF-Trocknerlinien und deren Formaldehydwerte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert rot dargestellt 31
Abbildung 9:	Direkt und indirekt beheizte Spanplattentrocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen, ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3, LRV Grenzwert umgerechnet vom Fallbeispiel rot dargestellt
Abbildung 10:	Direkt beheizte OSB Trocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen; ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt, vgl. Anhang 3
Abbildung 11:	MDF Trocknerlinien und deren VOC-Werte; in Abhängigkeit der Emissionsminderungsmassnahmen ist der Bereich nach BVT gemäss Tabelle 2 grün hinterlegt; vgl. Anhang 3

Abkürzungsverzeichnis

ALRA	Abluftreinigungsanlage	HDF	Hochdichte Faserplatte
BAFU	Bundesamt für Umwelt	HEL	Heizöl extra leicht, eine spezielle Qualität von Heizöl
BAT	Best Available Techniques	HF	Fluorwasserstoffsäure
BVT	Beste verfügbare Technik	HG	Quecksilber
С	Kohlenstoff	HKW	Heizkraftwerk
СН	Schweiz	HMW	Halbstundenmittelwert
СНСО	Formaldehyd	KNV	Katalytische Nachverbrennung
СО	Kohlenstoffmonoxid	kPa	Kilopascal
CO ₂	Kohlenstoffdioxid	LDF	·
cvoc	chlorinated volatile organic com- pounds (chlorierte, flüchtige or- gan. Verbindungen)	LRV	Niedrigdichte Faserplatte Luftreinhalte-Verordnung (SR 814.01)
DIN	Deutsche Norm	LRV-K.	Luftreinhalteverordnung für Kesselanlagen
DVGW	Deutscher Verein der Gas- und Wasserwirtschaft	MDF	Mitteldichte Faserplatte
EG-K	Gesetze für die Kesselanlagen (AU)	mg	Milligramm
EF	Elektrofilter	MW	Megawatt
EN	Europäische Norm	NH ₃	Ammoniak
EU	Europäische Union	Nm³	Normkubikmeter (0 °C, 1.013 mbar, trocken)
FAV	Feuerungsanlagengenverordnung	NOx	Stickstoffoxide
нсно	Formaldehyd	NO ₂	Stickstoffdioxid
HCI	Salzsäure	O 2	Sauerstoff

org. C	organischer Kohlenstoff	VOC	flüchtige, organische Kohlenwasserstoffe
OSB	Oriented Strand Boards oder auch Grobspanplatte	WESP	Nasselektrofilter
PCDDI	Polychlorierte Dibenzo-p-dioxine und Dibenzofurane (Dioxine)	VVEA	Verordnung über die Vermeidung und Vermindern von Abfällen (SR 814.600)
PM	Feinstaub		
RNV	Regenerative Nachverbrennung	Zyklon	Zentrifugalabscheider
SABA	Biowäscher von Scheuch		
SEKA	Elektro-Kondensations-Abgasrei- nigungsanlage		
SNCR	selective non catalytic reduction (selektive, nicht katalytische Reduktion)		
SO ₂	Schwefeldioxid		
TA Luf	t Technische Anleitung zur Rein- haltung der Luft		
TMW	Tagesmittelwert		
тос	total organic carbon		
TVOC	total volatile organic compounds (flüchtige organische Verbindungen)		
UF	Harnstoff-Formaldehyd		
UTWS	Umluft-Teilluftstromverbrennung- Wärmerückgewinnung-Stau- babscheidung		
UV	Umweltverträglichkeit		
UWE	Umwelt und Energie Luzern		
VDI	Verein Deutscher Ingenieure		

ANHANG 1

Übersicht der Grenzwerte und Richtwerte für Luftschadstoffemissionen bei der Herstellung von Platten auf Holzbasis Österreich, Luxemburg, Deutschland und EU

Luftemissionswerte bei der Herstellung von Spanplatten

				Fusionionomento		
Prozesschritt	Luftschadstoff	Technologie	TA-Luft Enturf Mai 2015 [9]	Emissionswerte nach TA-Luft oder deutscher Geneh- migungsbescheid [17]	Erreichbare Emissionswerte (nach VDI 2012) [17]	EU Comission [6] BVT
Direkt beheizter Trockner	Gesamtstaub		15 mg/m³	15 mg/m³(f) Mindestanforderungen	5–10 mg/m³	
Direkt beheizter Trockner	NOX	Mittelwert über Probenahmedauer)	250 mg/m³			30-250 mg/Nm³
Direkt beheizter Trockner	TVOC	 (1) Dieser BVT-assoziierte Emissionswert gilt nicht, wenn als Hauptrohstoff Kiefer verwendet wird. (2) Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm3 erzielen. 				< 20-200 mg/Nm³
Direkt beheizter Trockner	Formaldehyd	Wenn fast ausschließlich Altholz verwendet wird, kann der höhere Wert bis zu 15 mg/Nm3 betragen.	10 mg/m³			< 5-10 mg/Nm³
Direkt beheizter Trockner	Organische Stoffe als Gesamtkohlenstoff		200 mg/m³	300 mg/m³	100–150 mg/m³	
Direkt beheizter Trockner	geruchsintensive Stoffe	Bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Geruchsminderungsgrad 50–70 %)		Geruchsminderungs- grad oder Geruchs- stoffkonzentration im Einzelfall festzulegen	2.000–10.000 GE/m³	
Direkt beheizter Trockner und Presse	Gesamtstaub					3 - 30 mg/Nm³
Indirekt beheizter Trockner	Gesamtstaub	bei Einsatz filternder Abscheide		10 mg/m³ Mindestanforderungen	< 5 mg/m³	
Indirekt beheizter Trockner	Gesamtstaub		10 mg/m³			
Indirekt beheizter Trockner	Organische Stoffe als Gesamtkohlenstoff	bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Emissionsminderungsgrad 10–30 %)	400 mg/m³	300 mg/m³	50–100 mg/m³	
Indirekt beheizter Trockner	geruchsintensive Stoffe	Bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Geruchsminderungsgrad 50–70 %)		Geruchsminderungs- grad oder Geruchs- stoffkonzentration im Einzelfall festzulegen	2.000–10.000 GE/m³	
Indirekt beheizter Trockner und Presse	Staub					3 - 10 mg/Nm³
Indirekt beheizter Trockner und Presse	TVOC	 (1) Dieser BVT-assoziierte Emissionswert gilt nicht, wenn als Hauptrohstoff Kiefer verwendet wird. (2) Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm3 erzielen. 				< 20-200 mg/Nm³
Indirekt beheizter Trockner und Presse	Formaldehyd	Wenn fast ausschließlich Altholz verwendet wird, kann der höhere Wert bis zu 15 mg/Nm3 betragen.	10 mg/m³			< 5-10 mg/Nm³

Luftemissionswerte bei der Herstellung von Spanplatten- ,OSB und MDF-Platten durch Heisgaserzeugung

Prozesschritt	Luftschadstoff	Brennstoff	O2-Bezugswert	Emissionswerte nach TA-Luft oder deutscher Geneh- migungsbescheid [9]	Erreichbare Emissionswerte (nach VDI 2012 Blatt 2) [17]	Erreichbare Emissionswerte (nach VDI 2012 Blatt 4) [17]	EU Comission [6]
direkter Trockner	Gasformige anorganische Uniorverbindungen,	nur in besonderen Einzelfällen relevant, z. B. beim Einsatz von Altholz, das anorganische Chlorverbin- dungen enthält.	11%	30 mg/m³	< 30 mg/m³	≤ 25 mg/m³	
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO2		17%	Einzelfallfestlegung	< 0,35 g/m³		
direkter Trockner	Kohlenmonoxid		17%	Einzelfallfestlegung	stlegung < 0,25 g/m³		
direkter Trockner	Gasförmige anorganische Chlorverbindungen,	nur in besonderen Einzelfällen relevant, z. B. beim Einsatz von Altholz, das anorganische Chlorverbin- dungen enthält.	11%	30 mg/m³	< 30 mg/m³		
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO2	Naturbelassenes Holz	11%	25 g/m³	< 20 g/m³	≤ 250 mg/m³	
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO3	sonstige feste Brennstoffe	11%	40 g/m³		≤ 400 mg/m³	
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO4	HEL nach DIN 51603 Teil1 oder ähnliche Brennstof- fe	3%	25 g/m³			
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO5	sonstige flüssige Brennstoffe	3%	25 g/m³			
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO6	Gase der öffentlichen Gasversorgung als Brennstoff (wird jedoch in der Holzwerkstoffindustrie nicht eingesetzt)	3%	15 mg/m³			
direkter Trockner	Stickstoffoxide (NO & NO2), anagegeben als NO7	Sonstige gasförmige Brennstoffe	3%	20 mg/m³			
direkter Trockner	Schwefeldioxid	nur bei Verwendung flüssiger Brennstoffe bei festen schwefelhaltigen Brennstoffen sind Sonder- regelungen zu treffen.		≤ 1,0 % Schwefel			
direkter Trockner	Kohlenmonoxid	bei festen Brennstoffen	11%	0,15 g/m³	< 0,05 g/m³	50 bis 100 mg/m³	
direkter Trockner	Kohlenmonoxid	bei flüssigen Brennstoffe	3%	80 mg/m³			
direkter Trockner	Kohlenmonoxid	bei Gasen der öffentlichen Gasversorgung als Brenn- stoff	3%	50 mg/m³			
direkter Trockner	Kohlenmonoxid	bei sonstigen gasförmigen Brennstoffen	3%	80 g/m³			
indirekter Trockner nach dem UTWS-Prinzip	Gastofflige anorganische Chlorverbindungen,	nur in besonderen Einzelfällen relevant, z.B. beim Einsatz von Altholz, das anorganische Chlorverbin- dungen enthält.		30 mg/m³	< 30 mg/m³		
indirekter Trockner nach dem UTWS-Prinzip	Stickstoffoxide (NO & NO2), anagegeben als NO2		14%	Einzelfallfestlegung	< 35 g/m³		
indirekter Trockner nach dem UTWS-Prinzip	Kohlenmonoxid		14%	Einzelfallfestlegung	< 25 g/m³		
indirekter Trockner nach dem UTWS-Prinzip	Gesamtstaub		14%	Einzelfallfestlegung	< 20 mg/m³		
	Staub bei FWL 1,0 MW bis < 2,5 MW		11%	50 mg/m³		≤ 5 mg/m³	
	Staub bei FWL 1,0 MW bis < 2,5 MW		11%	50 mg/m³		10 bis 20 mg/m³	
	Staub bei FWL 2,5 MW bis < 5,0 MW		11%	50 mg/m³		≤5 mg/m³	
	Staub bei FWL 2,5 MW bis < 5,0 MW		11%	50 mg/m³		10 bis 20 mg/m³	
	Staub bei FWL 5,0 MW bis < 50,0 MW		11%	20 mg/m³		≤ 5 mg/m³	
	Staub bei FWL 5,0 MW bis < 50,0 MW	nei FWL 5,0 MW bis < 50,0 MW		20 mg/m³		10 bis 20 mg/m³	
	Organische Stoffe, angegeben als Gesamt-C		11%	10 mg/m³		≤5 mg/m³	
	Dioxine/Furane		11%	0,1 ng/m3			

Luftemissionswerte bei der Herstellung von MDF-Platten

Luftemissionswerte bei der Herstellung von MDF-Platten										
Prozesschritt	Luftschadstoff	Technologie	TA-Luft Enturf Mai 2015 [9]	Emissionswerte nach TA-Luft oder deutscher Geneh- migungsbescheid [17]	Erreichbare Emissionswerte (nach VDI 2012) [17]	EU Comission [6]				
Trocknen direkt und indirekt	Gesamtstaub	bei alleinigem Einsatz von Massenkraftabscheidern	15 mg/m³	15 mg/m³(f) Mindestanforderungen	< 15 mg/m³					
Trocknen direkt und indirekt	Gesamtstaub	Bei Gasfeuerung und Einsatz von Massenkraftabscheidern in Kombination mit Nassabscheidern	15 mg/m³	10 mg/m³(f) Mindestanforderungen	< 3 mg/m³					
Trocknen direkt und indirekt	Organische Stoffe als Gesamtkohlenstoff	bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Emissionsminderungsgrad 10–30 %)	15 mg/m³	300 mg/m³	250–500 mg/m³					
Trocknen direkt und indirekt	Organische Stoffe als Gesamtkohlenstoff	bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Emissionsminderungsgrad 10–30 %) - Bescheid	120 mg/m	150 mg/m³	250–500 mg/m³					
Trocknen direkt und indirekt	davon organische Stoffe der Klasse I TA Luft (z. B. Formaldehyd	bei Fasertrockner im Umluftbetrieb		20 mg/m³	< 10 mg/m³					
Trocknen direkt und indirekt	davon organische Stoffe der Klasse I TA Luft (z. B. Formaldehyd	stündlicher Massenstrom ohne Umluftbtrieb		50 mg/m³	< 10 mg/m³					
Trocknen direkt und indirekt	geruchsintensive Stoffe	Bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Geruchsminderungsgrad 50–70 %)		Geruchsminderungs- grad oder Geruchs- stoffkonzentration im Einzelfall festzulegen	2.000–10.000 GE/m³					
Alle Trocknertypen und Presse	Gesamtstaub					3 - 20 mg/Nm³				
Alle Trocknertypen und Presse	TVOC	(1) Dieser BVT-assoziierte Emissionswert gilt nicht, wenn als Hauptrohstoff Kiefer verwendet wird.(2) Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm3 erzielen.				< 20-120 mg/Nm³				
Alle Trocknertypen und Presse	Formaldehyd	Wenn fast ausschließlich Altholz verwendet wird, kann der höhere Wert bis zu 15 mg/Nm3 betragen.	15 mg/m³			< 5-15 mg/Nm³				

Luftemissionswerte bei der Herstellung von OSB-Platten

Prozesschritt	Luftschadstoff	Technologie	TA-Luft Enturf Mai 2015 [9]	Emissionswerte nach TA-Luft oder deutscher Geneh- migungsbescheid [17]	Erreichbare Emissionswerte (nach VDI 2012) [17]	EU Comission [6]
Direkt beheizter Trockner	Gesamtstaub		15 mg/m³	15 mg/m³(f) Mindestanforderungen	3 – 6 mg/m³	
Direkt beheizter Trockner und Presse	Gesamtstaub		250 mg/m³			3 - 30 mg/Nm³
Direkt beheizter Trockner	NOX	Mittelwert über Probenahmedauer				30-250 mg/Nm³
Direkt beheizter Trockner	TVOC	Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm3 erzielen.				10-400 mg/Nm³
Direkt beheizter Trockner	Formaldehyd		20 mg/m³			< 5-15 mg/Nm³
Direkt beheizter Trockner	Organische Stoffe als Gesamtkohlenstoff		400 mg/m³	500 mg/m³	250–500 mg/m³	
Direkt beheizter Trockner	geruchsintensive Stoffe	Bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Geruchsminderungsgrad 50–70 %)		Geruchsminderungs- grad oder Geruchs- stoffkonzentration im Einzelfall festzulegen	2.000–10.000 GE/m³	
Indirekt beheizter Trockner	Gesamtstaub	bei Einsatz filternder Abscheide	10 mg/m³	10 mg/m³ Mindestanforderungen	< 5 mg/m³	
Indirekt beheizter Trockner	Formaldehyd		20 mg/m³			
Indirekt beheizter Trockner	Organische Stoffe als Gesamtkohlenstoff	bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Emissionsminderungsgrad 10–30 %)	400 mg/m³	300 mg/m³	50–100 mg/m³	
Indirekt beheizter Trockner	geruchsintensive Stoffe	Bei Einsatz von Nassabscheidern und Abscheiderkombinationen (Geruchsminderungsgrad 50–70 %)		Geruchsminderungs- grad oder Geruchs- stoffkonzentration im Einzelfall festzulegen	2.000–10.000 GE/m³	
Indirekt beheizter Trockner und Presse	Staub					3 - 10 mg/Nm³
Indirekt beheizter Trockner und Presse	TVOC	Mithilfe eines UTWS-Trockners lässt sich ein Emissionswert von unter 30 mg/Nm3 erzielen.				10-400 mg/Nm³
ndirekt beheizter Trockner und Presse	Formaldehyd		20 mg/m³			< 5-20 mg/Nm³

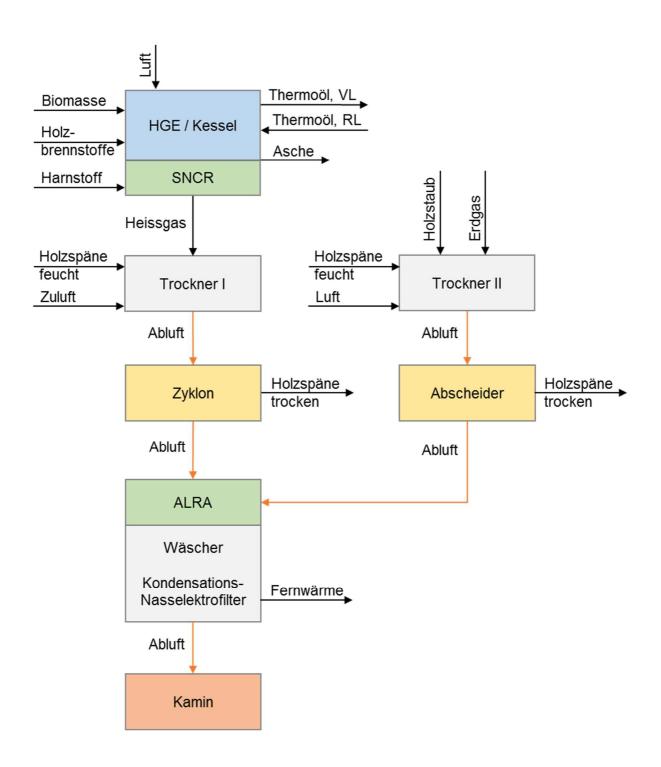
ANHANG 2

Ablufttechnologien der Werke in Österreich, Luxemburg und der Schweiz

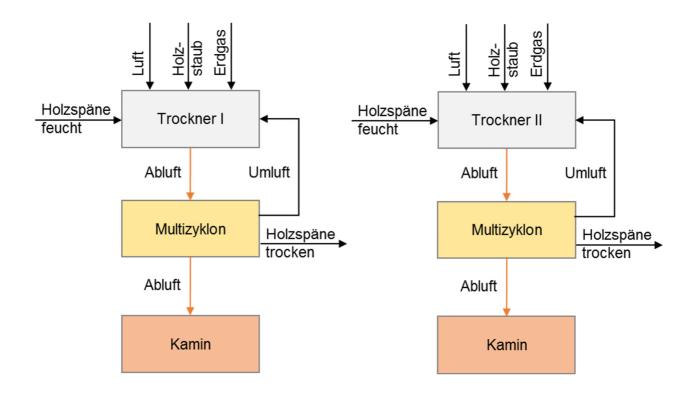
- a) Tabelle Luftschadstoffemissionen
- b) Flussdiagramme der Abluftreinigung aus Trocknung und Heissgaserzeugung

HOLZWERKSTOFFINDUSTRIE

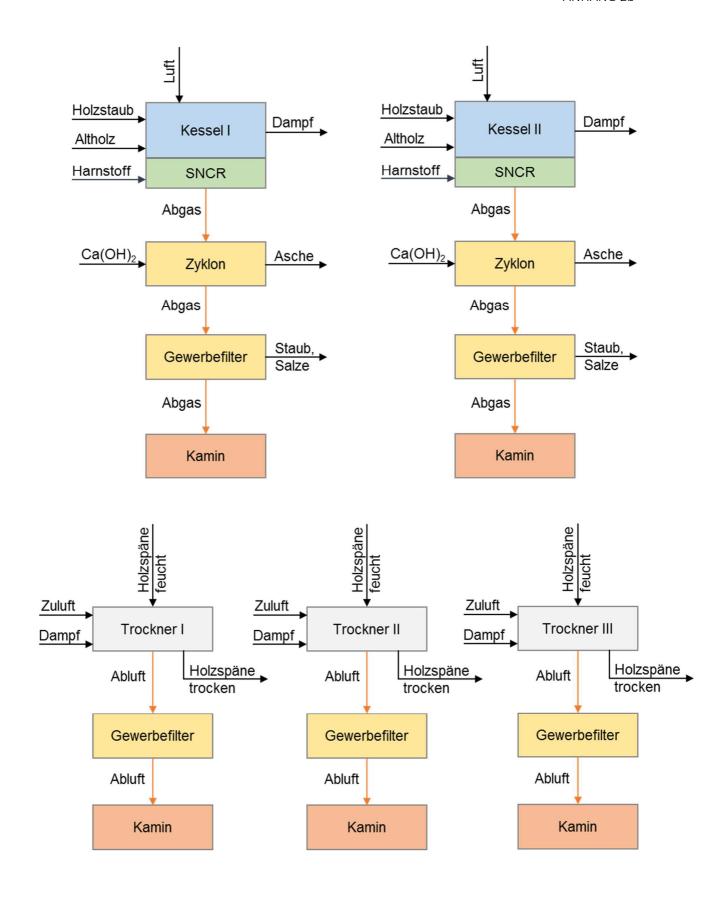
Emissionsmesswerte


Trockner

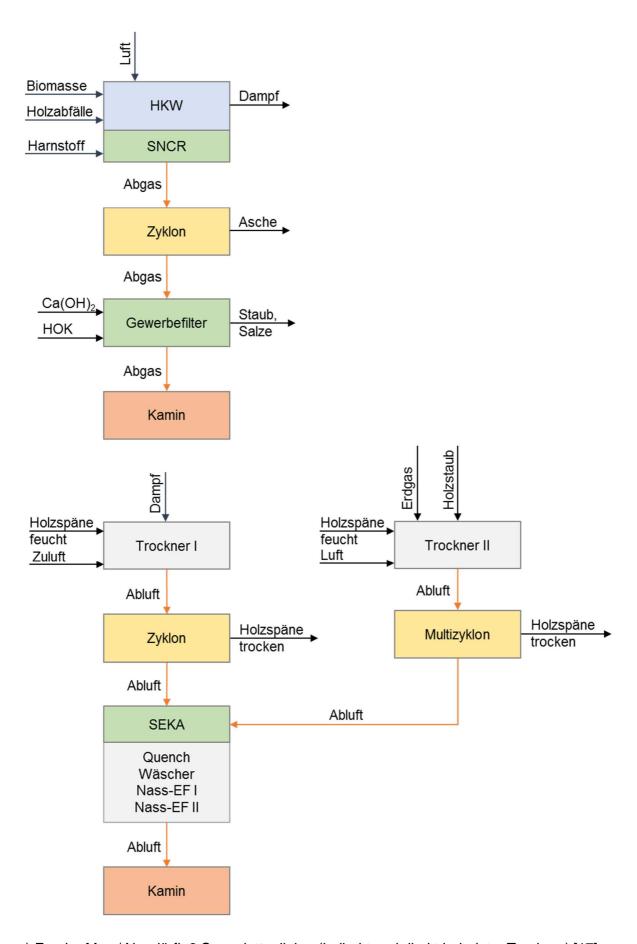
		Trockner	HMW/TMW	O ₂ -Bezug	Staub	NOx	NH ₃	SO ₂	со	org. C	PCDD/F	нсно	org. Säuren	Phenol	Abluft- volumen- strom
	Anlage			vol-%	mg/Nm ³	ng/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³	Nm³/h					
а	Fritz Egger, St. Johann	direkt		17	0.80 - 4.1	- 100	- 8.0	- 1.0	- 70	106 - 139	- 0.05	4.4 - 14	-	-	130'000
b	Fritz Egger, Wörgl	direkt		17	20 - 28	19 - 25	-	-	26 - 41	98 - 116	-	2.9 - 7.0	-	-	44'000
С	Fritz Egger, Wörgl	direkt		17	14 - 22	19 - 30	-	-	66 - 85	126 - 132	-	4.4 - 7.2	-	-	
d	Fritz Egger, St. Pölten	indirekt	HMW	17	2.5 - 5.2	-	-	-	-	253 - 292	-	5.1 - 5.3	5.3 - 13	- 1.3	212'000
е	FunderMax, Neudörfl	direkt + indirekt	HMW	17	- 0.50	- 175	-	-	- 160	92 - 135	-	- 1.5	-	-	130'000
f	M. Kaindl, Wals-Siezh.	direkt	HMW	17	12 / 4.8	0.64 / 0.22	/	/	0.42 / 0.44	178 / 138	0 /	25 / 9.2	21 / 3.4	0.048 / 0.096	< 800'000
g	M. Kaindl, Wals-Siezh.	direkt	HMW	17	2.2 / 2.8	186 / 288	/	/	11 / 13	1.4 / 1.9	/	0.11 / 0.13	/	/	190'000
h	MDF Hallein, Salzburg	direkt	HMW	17	/ 7	/	/	/	/	/ 63	/	/ 13	/	/	320'000
i	Kronospan, Luxemburg	direkt	HMW	17	0.60 / 0.40	1.0 / 0.10	/	/	6.6 / 1.00	18 / 7.6	/ 0.001	4.9 / 0.10	/	0.36 /	
j	Kronospan, Luxemburg	indirekt	HMW	17	4.8 / 5.1	155 / 17.5	/	/	24 / 13	9.3 / 1.2	/ 0.002	3.3 / 0.40	/	0.40 /	
k	Kronospan, Menznau	direkt	Kontrollmess.	17	2.1 / 2.8	198 / 215	/	/	156 / 167	87.0 / 91	/	/	/	/	318'000


Heissgaserzeugung

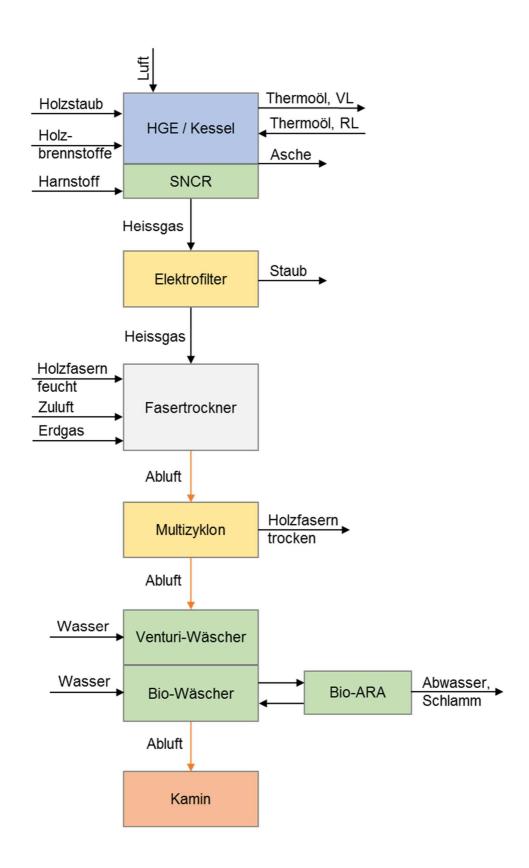
		FL [MW]	HMW / TMW	O ₂ -Bezug	Staub	NOx	NH ₃	SO ₂	со	org. C	PCDD/F	нсно	HF	нсі	Hg	НМ
	Anlage			vol-%	mg/Nm ³	ng/Nm ³	mg/Nm ³									
	Fritz Egger, St. Johann	>40	HMW	11	2.0 - 10	- 250	- 20	- 2.5	- 175	265 - 348	- 0.125	11 - 35	-	1.0 - 7.8	0.003 - 0.005	0.045 - 0.08
d	Fritz Egger, St. Pölten	2x >40	TMW	11	0.50 - 2.13	229 - 303	-	15 - 55	7.5 - 88	1.3 - 3.8	0.001 - 0.003	- 0.125	0.125 - 0.125	7.5 - 20	-	-
е	FunderMax, Neudörfl	40-50	TMW	11	1.8 / 1.43	127 / 160	0.66 / 6.4	0.31 / 0.44	43 / 57	0.50 / 1.3	0.037 / 0.002	/	0.04 / 0.03	0.24 / 0.12	6E-05 / 4E-04	/ 0.125
g	M. Kaindl, Wals-Siezh.	20-30	HMW	11	0.79 / 0.49	298 / 280	0.29 / 0.70	1.5 / 17	13 / 8.8	0.22 / 0.49	0.014 / 0.007	/	0.06 / 0.08	2.13 / 7.56	7E-04 / 3E-04	0.011 / 0.005
h	MDF Hallein, Salzburg	40-50	HMW	11	- 260	- 201	- 12	-	- 39	- 6.3	-	-	-	-	-	-
h	MDF Hallein, Salzburg	10-20	HMW	11	- 331	85 - 121	- 1.9	-	96 - 23	1.9 - 5.0	-	-	-	-	-	-
k	Kronospan, Menznau			11	-	-	-	-	-	-	-	-	-	-	-	-
I I	FunderMax, St. Veit	40-50 10-20	TMW	11	1.7 / 6.5	199 / 235	3.5 / 0.97	9.2 / 3.3	2.3 / 2.4	3.9 / 2.8	0.039 / 0.012	/	0.12 / 0.05	9.6 / 8.1	7E-04 / 0.003	0.015 / 0.007
m	FunderMax, Wiener Nd.	2x 10-20	TMW	11	- 0.29	- 36	-	-	- 3.4	53 - 1.7	-	-	- 0.03	0.24 - 0.24	-	-


TBF + Partner AG Datum: 21.06.2016

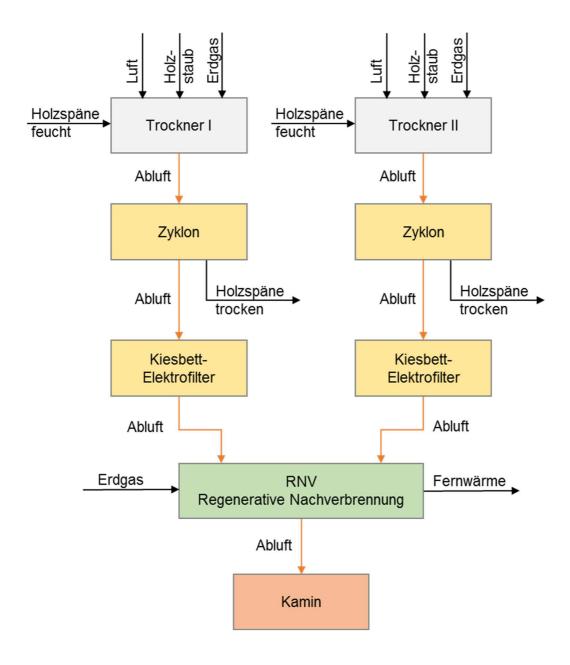
a) Fritz Egger / St. Johann, 2 Spanplattenlinien (direkt beheizte Trockner) [17]

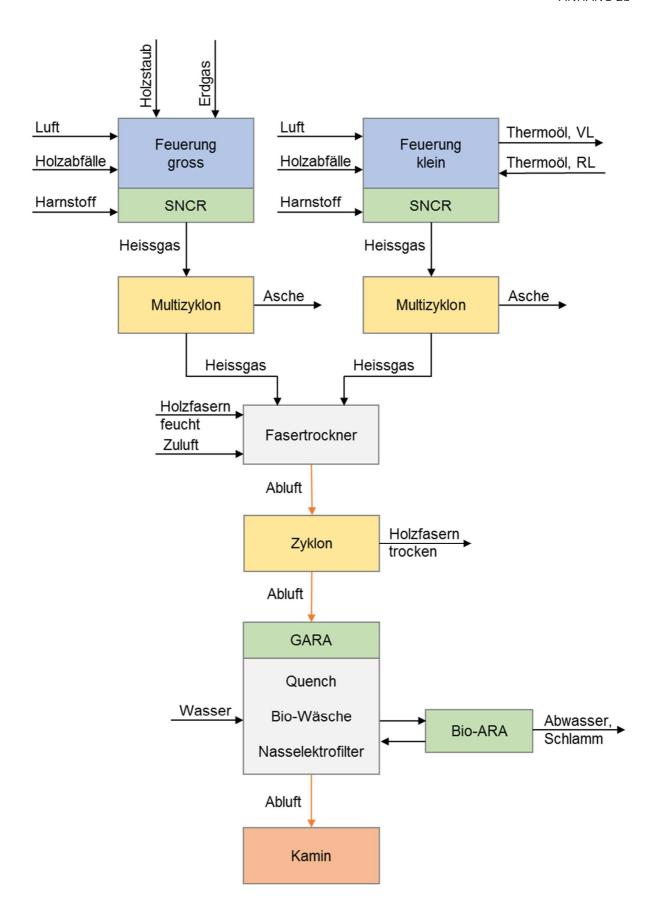


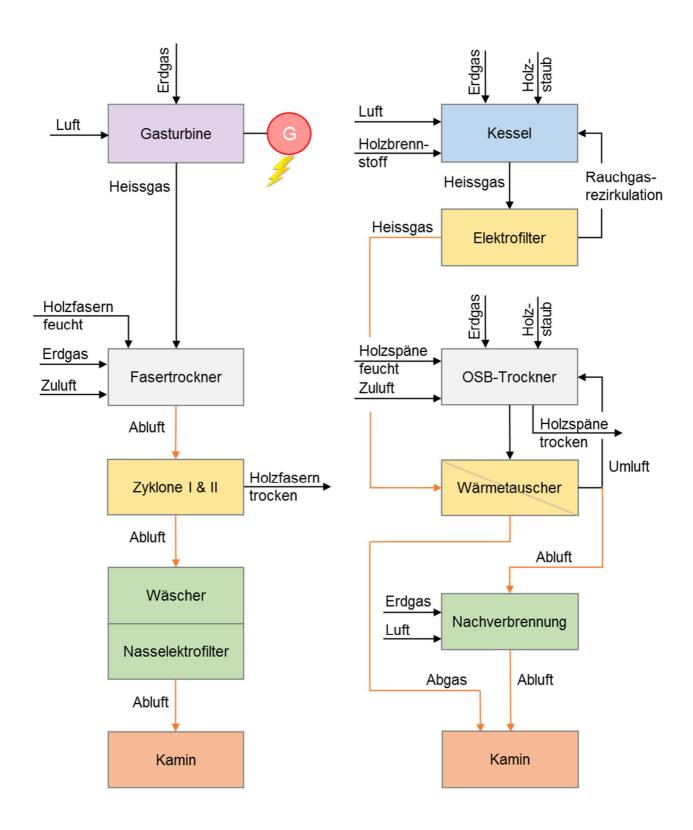
b/c) Fritz Egger / Wörgl, 2 Linien Dünnspanplatten (direkt beheizte Trockner) [17]

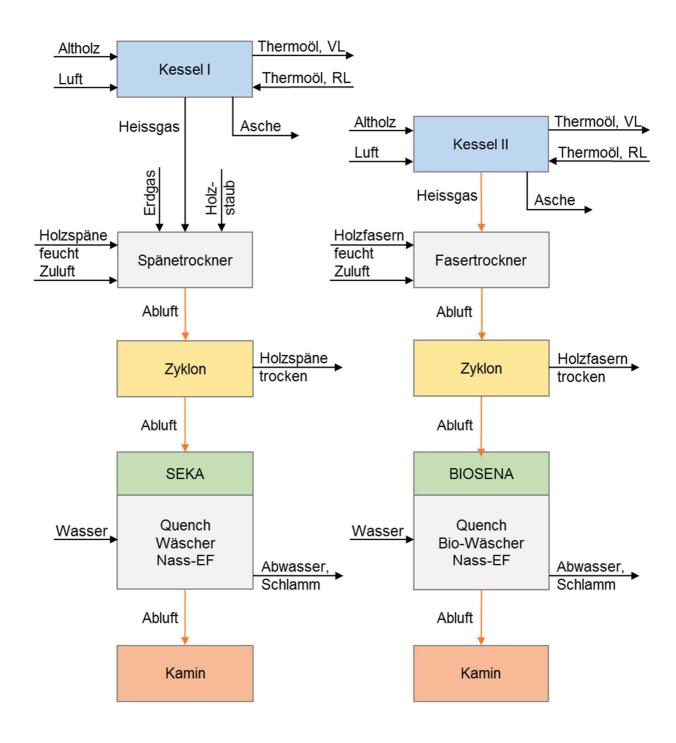


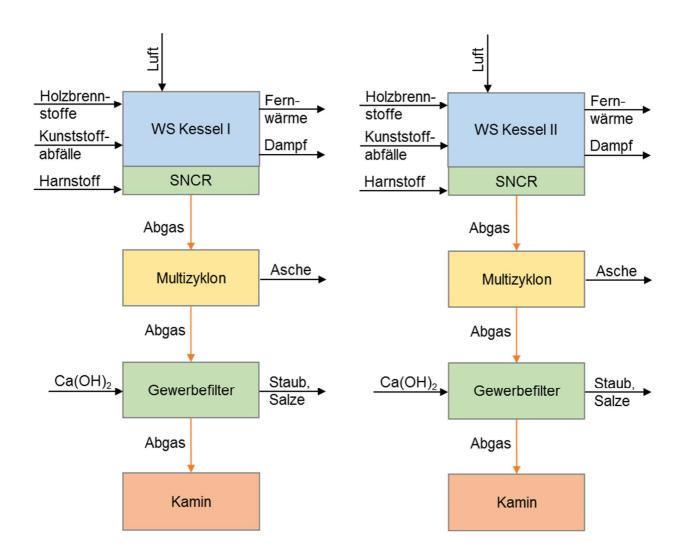
d) Fritz Egger / Unterradlberg-St. Pölten,


3 Linien Rohspanplatten (indirekt beheizte Trockner) und 2 Kesselanlagen [17]


e) Funder Max / Neudörfl, 2 Spanplattenlinien (indirekt und direkt beheizter Trockner) [17]


f) M. Kaindl / Wals - Siezenheim, MDF-Linie (direkt beheizter Trockner) [17]


g) M. Kaindl / Wals-Siezenheim, 2 Spanplattenlinien (direkt beheizter Trockner) [17]


h) MDF-Hallein / Salzburg, MDF-Plattenlinie (direkt beheizter Trockner) [17]

i) Kronospan Luxembourg, MDF- und OSB- Plattenlinien (OSB Trocknung mit geschlossenem Kreislauf, Swiss ecoDry) [17]

k) Swiss Krono / Menznau, Span- und MDF-Plattenlinien (direkt beheizte Trockner) [17]

I) Funder Max / St. Veit-Glan, Energieanlagen für Bio- und Hartfaserplattenproduktion [17]

ANHANG 3

Umrechnungstabelle auf Normzustand des Sevilla Berichts Kapitels 3.2 des BAT Referenz Documents 2016 EUR 27732 EN

irectly heated PB dry	ers								Γ			Analysis		
Plant ID no	O2 reference (vol%)	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks	_	WESP	UTWS	Multi-Cyclone	Cyclone	Wet Scrubbe
		ui y 20010												
89 12	- 11	- Wet	20	1 3	18 18	1 1	WESP UTWS			1 -	1	-	-	-
12-a	11	Wet	20	3	18	1	UTWS			-	1	-	-	-
22 38	17 17	Wet	20	1	18	1	WESP WESP			1	-	-	-	-
38 76	17 17	- Wet	20	1.5 1.5	18 18	1	WESP			1	-	- -	- -	-
05	17	Dry		2	18	2	UTWS			-	2	-	-	-
)77 143	17	- Dm/		3	18	2	WESP			2	-	-	-	-
)42)44-a	18 18	Dry Dry		4	18 18	4	WESP WESP			4	-	- -	- -	-
03	17	Dry		4	18	3	WESP			3	-	-	-	-
)37-a)64	13.7	Dry		5	18 18	2	WESP	(1)		2	-	- E	-	-
)37	- 17	- Dry		5 7	18	5	MCyc WESP			- 5	-	- -	-	-
)36	17	Dry		7	18	5	WESP			5	-	-	-	-
063	17	-		7	18	5	WESP			5	-	-	-	-
063-b 043	17 18	- Dry		8	18 18	8	WESP WESP			8	-	- -	-	-
051	20.2	Dry		8	18	30	WESP	(1)		30	-	-	-	-
097-a	-	- Dm/		9	18	9	WESP			9	-	-	-	-
008 070	17 6	Dry Dry		9	18 18	2	WESP WESP			2	-	- -	-	-
080	18	Dry		9	18	9	WESP	(1)		9	-	-	-	-
081-a	-	-		10	18	10	WESP	(4)		10	-	-	-	-
)78-a)95	18.25 15.47	- Dry		11 12	18 18	12 7	WESP Cyc	(1)		12 -	-	-	- 7	-
029	17	-		13	18	10	WESP			10	-	-	-	-
069	-	-		16	18	16	WESP			16	-	-	-	-
006 056	17 16.64	Dry		17 18	18 18	13 12	WESP WESP	(4)		13 12	-	-	-	-
056 062	16.64 17	Dry Dry		18 18	18 18	12 14	WESP WESP	(1)		12 14	-	-	-	-
055	13.2	Dry		19	18	7	WESP	(1)		7	-	-	-	-
006-b	17	Dry		19 10	18	14	WESP			14	-	-	-	-
068-a 091	19.4	Dry -		19 20	18 18	36 20	MCyc WESP	(1); (2)		- 20	-	36 -	- -	- -
007	17	Dry		21	18	16	WESP			16	-	-	-	-
053	18.7	Dry		27	18	35	WESP	(1)		35	-	-	-	-
061-b 047	20.85 17	Dry Dry		31 33	18 18	620 25	MCyc WetScrub	(1)		-	-	620 -	-	- 25
035	-	- -		36	18	36	Cyc			-	-	-	36	-
061	20.85	Dry		39	18	780	MCyc	(1)		-	-	780	-	-
071	19.05	Dry	20	48	18	74	MCyc	(1)		-	-	74	-	-
011-a 095-a	18.9 18.7	Wet Dry	20	49 49	18 18	87 64	Cyc Cyc	(1) (1)		-	-	-	87 64	-
033	18.7	Wet	20	51	18	83	Сус	(1)		-	-	-	83	-
068-d	19.3	Dry		51	18	90	MCyc	(1); (2)		-	-	90	-	-
053-a 006-a	18 17	Dry Dry		53 66	18 18	53 50	WESP WESP	(1)		53 50	-	-	-	-
059-a	19	Dry		68	18	102	WetScrub	(1)		-	-	-	-	102
034	18.6	Dry		94	18	118	Сус			-	-	-	118	-
068	16	Dry		108	18	65	МСус	(1)	Min	- 1	- 1	65 5	- 7	- 25
rectly heated OSB dr	ryers								Г			Analysis		
		Data given on wet or	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated	Technology	Remarks		WESP	UTWS	Analysis Multi-Cyclone	Cyclone	Wet Scrubbe
Plant ID no	o2 reference (vol%)	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks		WESP	UTWS	Analysis Multi-Cyclone	Cyclone	Wet Scrubbe
Plant ID no	O2 reference (vol%)	dry basis Wet	35.8	5	18		МСус	Remarks		-	-	Multi-Cyclone 2	Cyclone -	-
Plant ID no 013 013-a	O2 reference (vol%)	dry basis			18 18	(mg/Nm3)	МСус МСус	Remarks		WESP		Multi-Cyclone	Cyclone	Wet Scrubbe
Plant ID no 013 013-a 027	O2 reference (vol%) 11 11	dry basis Wet	35.8	5 5.5	18	(mg/Nm3)	МСус	Remarks		-	- -	Multi-Cyclone 2 3	Cyclone	- -
013 013-a 027 010 079	02 reference (vol%) 11 11 -	dry basis Wet Wet	35.8 35.8	5 5.5 4 10 11	18 18 18 18	(mg/Nm3)	MCyc MCyc WESP WESP WESP	Remarks		- - 4 8	- - -	Multi-Cyclone 2 3	Cyclone	-
Plant ID no 013 013-a 027 010 079 088	02 reference (vol%) 11 11 - 17 17 -	dry basis Wet Wet Dry -	35.8 35.8 24.5	5 5.5 4 10 11 8	18 18 18 18 18	(mg/Nm3) 2 3 4 8 8	MCyc MCyc WESP WESP WESP WESP	Remarks		- - 4 8 8	- - -	Multi-Cyclone 2 3	Cyclone	- - - - -
Plant ID no 013 013-a 027 010 079 088	02 reference (vol%) 11 11 - 17 17	dry basis Wet Wet - Dry Wet	35.8 35.8 24.5	5 5.5 4 10 11 8 10	18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34	MCyc MCyc WESP WESP WESP WESP	Remarks		- - 4 8 8 8 8	- - - -	Multi-Cyclone 2 3	Cyclone	- - - -
Plant ID no 013 013-a 027 010 079 088 041 029	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64	dry basis Wet Wet - Dry Wet Dry Dry	35.8 35.8 24.5 11 12	5 5.5 4 10 11 8 10 13 17	18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 34 13	MCyc MCyc WESP WESP WESP WESP WESP WESP	Remarks		- - 4 8 8	- - - - - -	Multi-Cyclone 2 3	- - - - - -	- - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc			- 4 8 8 8 8 34 13 12	- - - - - - - -	Multi-Cyclone 2 3	- - - - - - - 31	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64	dry basis Wet Wet - Dry Wet Dry Dry	35.8 35.8 24.5 11 12	5 5.5 4 10 11 8 10 13 17	18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 34 13	MCyc MCyc WESP WESP WESP WESP WESP WESP	Remarks	Min	- 4 8 8 8 8 34 13	- - - - - - -	Multi-Cyclone 2 3	- - - - - - - 31	- - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Wet	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc		Min Mittelwert Max	- 4 8 8 8 8 34 13 12 -	- - - - - - - -	Multi-Cyclone 2 3	- - - - - - - 31	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5	dry basis Wet Wet - Dry - Wet Dry Dry Wet Wet Wet	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc		Mittelwert	- - 4 8 8 8 8 34 13 12 - - 4 12	- - - - - - - -	Multi-Cyclone 2 3 2 2 2	- - - - - - 31 88 31 60	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068).	dry basis Wet Wet - Dry - Wet Dry Dry Wet Wet Wet	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc		Mittelwert	- - 4 8 8 8 8 34 13 12 - - 4 12	- - - - - - - -	Multi-Cyclone 2 3 2 2 2	- - - - - - 31 88 31 60	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068).	dry basis Wet Wet - Dry - Wet Dry Wet Wet Wet 2	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc		Mittelwert	- - 4 8 8 8 8 34 13 12 - - 4 12	- - - - - - - -	Multi-Cyclone 2 3 2 2 2	- - - - - - 31 88 31 60	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068).	dry basis Wet Wet - Dry - Wet Dry Dry Wet Wet Wet	35.8 35.8 24.5 11 12 21.3	5 5.5 4 10 11 8 10 13 17 24.5	18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc		Mittelwert	- - 4 8 8 8 8 34 13 12 - - 4 12	- - - - - - - -	Multi-Cyclone 2 3 2 2 2 3	- - - - - - 31 88 31 60	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust IDF dryers Plant ID no	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per yer (first stage is D068). 2], [23, WBP industry 201 02 reference (vol%)	dry basis Wet Wet - Dry Wet Dry Wet Wet Yet Wet - Tormed. 2]	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Technology	(1)	Mittelwert	- - 4 8 8 8 34 13 12 - - 4 12 34	- - - - - - - - -	Multi-Cyclone 2 3 2 2 2 3 Analysis	- - - - - - 31 88 31 60 88	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. 02 reference (vol%) 19.4 20.2	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet 2] Data given on wet or dry basis - Dry	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc	(1)	Mittelwert	- - 4 8 8 8 34 13 12 - - 4 12 34	- - - - - - - - - - - Bio-Scrubber	Multi-Cyclone 2 3 2 2 2 3 Analysis	- - - - - - 31 88 31 60 88	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a	02 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per yer (first stage is D068). 2], [23, WBP industry 201 02 reference (vol%)	dry basis Wet Wet - Dry Wet Dry Wet Wet Yet Wet - Tormed. 2]	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc	(1)	Mittelwert	- - 4 8 8 8 34 13 12 - - 4 12 34	Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone	- - - - - - 31 88 31 60 88	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201 O2 reference (vol%) 19.4 20.2 18.8	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet *formed. 2] Data given on wet or dry basis - Dry Wet	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc	(1)	Mittelwert	- - 4 8 8 8 34 13 12 - - 4 12 34 WESP	Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone	- - - - - - 31 88 31 60 88	- - - - - - - -
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201 O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet - formed. 2] Data given on wet or dry basis - Dry Wet -	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 3.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	- - - - - - 31 88 31 60 88	
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a	O2 reference (vol%) 11 11 17 17 17 - 20 18 16.64 18 18.5 when no correction is per yer (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 -	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3.5 3.5 3.5 3.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	4	
Plant ID no 213 213-a 227 210 27 210 27 2010 27 2010 2029 2036 2032-a 2032 2032 2032 2032 2032 2041 2052 2053 2064 2075 2078 2	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Ury Company Dry Ury Dry Ury Ury Ury Ury Ury Ury Ury Ury Ury U	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc SioScrub Cyc BioScrub Cyc BioScrub BioScrub WESP WESP	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	- - - - - - 31 88 31 60 88	
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b	O2 reference (vol%) 11 11 17 17 17 - 20 18 16.64 18 18.5 when no correction is per yer (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 -	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Ury Ory Ory Ory Ory Ory Ory Ory Ory Ory O	35.8 35.8 24.5 11 12 21.3 20.8	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3.5 3.5 3.5 3.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	4	Wet Scrubbe
Plant ID no 213 213-a 227 210 27 210 27 288 241 29 256 232-a 232 1 Measured vol-% O2 2 Second stage PB dry urce: [22, TWG 2012 21st DF dryers Plant ID no 278 205-b 206-a 226 228 202 2088-a 230 254 2086-b 209	O2 reference (vol%) 11 11 17 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201 O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 -	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Dry Dry Wet	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%)	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34	MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WESP Cyc Cyc WetScrub Cyc WetScrub Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	4 34 14	
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 019 088-b	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet - Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Dry Wet Dry Wet	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%)	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP Cyc Cyc BioScrub Cyc BioScrub WESP WESP WetScrub WESP WetScrub Cyc Cyc Cyc WetScrub WetScrub	(1)	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 3 Multi-Cyclone 4	4 34 14	
Plant ID no 213 213 213 213 219 210 219 256 232 21 Measured vol-% O2 2 Second stage PB dry 2 urce: [22, TWG 2012 21st 25t 26t 27 28t 26t 27 29 29 29 29 29 29 29 29 29 29 29 29 29	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet Dry Wet Dry Wet Dry Wet Ury Wet Ury Wet	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%)	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34 14 8 5 5 5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WESP WESP Cyc BioScrub Cyc BioScrub Cyc BioScrub Cyc BioScrub Cyc WetScrub Cyc Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub	(1) Remarks	Mittelwert		Bio-Scrubber	Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4	4 34 14	
Plant ID no 13 13-a 13-a 127 10 79 188 141 129 156 132-a 132 Measured vol-% O2 Second stage PB dry urce: [22, TWG 2012 1st DF dryers Plant ID no 178 105-b 186-a 126 128 102 188-a 130 154 186-b 19 188-b 11-d 149 149-a	O2 reference (vol%) 11 11 17 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Dry Dry Wet - Dry Dry The content of the cont	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%)	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3.5 4.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Scrub Cyc BioScrub WESP WESP Cyc BioScrub Cyc BioScrub Cyc BioScrub Cyc BioScrub WESP WetScrub Cyc Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub	(1) Remarks	Mittelwert			Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4	4 34 14	
Plant ID no 13 13-a 13-a 127 10 179 188 141 129 156 132-a 132 Measured vol-% O2 Second stage PB dry urce: [22, TWG 2012 1st DF dryers Plant ID no 178 105-b 186-a 126 128 102 188-a 130 154 186-b 119 188-b 11-d 149 149-a 194	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20	wet Wet - Dry Wet Dry Dry Wet Wet Wet Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet - Dry Dry Dry Try Try Try Try Try Try Try Try Try T	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26	MCyc WESP WESP WESP WESP WESP WESP WESP Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WESP Cyc Cyc WetScrub Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 213 213-a 227 210 27 210 27 28 28 29 256 232-a 232 21 22 23 24 25 26 27 26 27 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	O2 reference (vol%) 11 11 17 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Dry Dry Wet - Dry Dry The content of the cont	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8 8.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Scrub Cyc BioScrub WESP WESP Cyc BioScrub Cyc BioScrub Cyc BioScrub Cyc BioScrub WESP WetScrub Cyc Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 13 13-a 13-a 127 10 179 188 141 129 156 132-a 132 Measured vol-% O2 Second stage PB dry urce: [22, TWG 2012 1st DF dryers Plant ID no 178 105-b 186-a 126 128 102 188-a 130 154 186-b 19 188-b 11-d 149 149-a 194 159 146 181-d	O2 reference (vol%) 11 11 17 17 17 17 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9	wet Wet - Dry Wet Dry Dry Wet Wet Wet - Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 9 4 34 14 8 5 5 5 10 240 26 270 11 300	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP WetScrub Cyc	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4 300		
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 011-d 049 049-a 094 059 046 081-d 081-d 081-d 081-d	O2 reference (vol%) 11 11 17 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201 O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20.9 20.9 20.9	wet Wet - Dry - Wet Dry Dry Wet Wet Wet formed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Dry Dry Dry Dry Dry Dry Dry Wet Wet Dry Dry Wet Wet Dry Dry Wet - Wet Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5 16.1 12.6 3 4.25 10 6.98 7.3	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3.5 3.5 4.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP WESP Cyc BioScrub BioScrub WESP WetScrub Cyc Cyc Cyc Cyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 019 088-b 011-d 049 049-a 094 059 046 081-d 081-d 085	O2 reference (vol%) 11 11 17 17 17 17 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9	wet Wet - Dry Wet Dry Dry Wet Wet Wet - Tormed. 2] Data given on wet or dry basis - Dry Wet - Dry Dry Wet Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 9 4 34 14 8 5 5 5 10 240 26 270 11 300	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc SioScrub Cyc BioScrub BioScrub WESP WESP WetScrub Cyc	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4		
Plant ID no 213 213-a 227 210 219 288 241 229 256 232-a 232 2 Measured vol-% O2 2 Second stage PB dry 2 curce: [22, TWG 2012 2 st DF dryers Plant ID no 278 205-b 206-a 226 228 202 288-a 203 2054 206-b 219 2088-a 209 2088-b 2011-d 209 209 209 209 209 209 209 209 209 209	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9 20,9 19.8 20.9 19.8 20.9 19.2	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet - Dry Dry Dry Dry Dry Dry Dry Dry C Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11 18 11 12	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WetSrub Cyc Cyc Cyc Cyc Cyc WetScrub MCyc WetScrub MCyc WetScrub MCyc WetScrub MCyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 0st DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 019 088-b 011-d 049 049-a 094 059 046 081-d 081-	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9 20.9 19.8 20.9 19.8 20.9 19.2 17	wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet - Dry Dry Wet - Dry Dry Dry Dry Dry Dry Wet - Dry Dry Vwet Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11 18 11 12 21	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20 16	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WESP WESP Cyc BioScrub Cyc BioScrub WESP WetScrub Cyc Cyc Cyc Cyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 213 213-a 227 210 27 210 29 256 232-a 232 2 Measured vol-% O2 2 Second stage PB dry 2 curce: [22, TWG 2012 2 St DF dryers Plant ID no 278 205-b 208-a 226 228 202 2088-a 230 254 266-b 279 2088-b 201-d 2099 2046 201-d 2099 2046 201-d 2099 2046 2081-d 2099 2046 2081-d 2099 2046 2081-d 2099 2046 2081-d 2081-	O2 reference (vol%) 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9 20,9 19.8 20.9 19.8 20.9 19.2	dry basis Wet Wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet - Dry Dry Dry Dry Dry Dry Dry Dry C Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11 18 11 12	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub Cyc BioScrub BioScrub WESP WetSrub Cyc Cyc Cyc Cyc Cyc WetScrub MCyc WetScrub MCyc WetScrub MCyc WetScrub MCyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4		
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust DF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 019 088-b 011-d 049 049-a 094 059 046 081-d 081-b 081-d 081-b 081-d 081-b 081-d	O2 reference (vol%) 11 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20.9 17 20.9 20.9 17 20.9 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8	wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet Dry Wet Dry Dry Wet	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11 18 11 12 21 13.5 24 24	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20 16 14 18 63	MCyc MCyc WESP WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub BioScrub BioScrub Cyc Cyc Cyc Cyc WetScrub WetScrub Cyc Cyc Cyc WetScrub Cyc Cyc BioScrub WetScrub WetScrub Cyc	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone 4		
Plant ID no 013 013-a 027 010 079 088 041 029 056 032-a 032) Measured vol-% O2) Second stage PB dry ource: [22, TWG 2012 ust IDF dryers Plant ID no 078 005-b 086-a 026 028 002 088-a 030 054 086-b 011-d 049 049-a 094 059 046 081-b 0611-d 079 088-b 011-d 079 088-b 071-d 078 078 078 078 078 078 078 078 078 078	O2 reference (vol%) 11 11 17 17 17 17 20 18 16.64 18 18.5 when no correction is perver (first stage is D068). 2], [23, WBP industry 201 O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20 20.9 17 20.9 20.9 17 20.9 20.9 17 20.9 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8	wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet Dry Wet - Dry Dry	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5 16.1 12.6 3 4.25 10 6.98 7.3 2.35 10 12.8 13 - 2.1 1.9 10.65	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.8 8.5 9 14 10 11 18 11 12 21 13.5 24 24 14.5	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20 16 14 18 63 15	MCyc MCyc WESP WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub BioScrub WESP WetScrub Cyc Cyc Cyc Cyc WetScrub	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		
Plant ID no 13 13-a 27 10 79 88 41 29 56 32-a 32 Measured vol-% O2 Second stage PB dry urce: [22, TWG 2012 st DF dryers Plant ID no 78 05-b 86-a 26 28 02 88-a 30 54 86-b 19 88-b 11-d 49 49-a 94 59 46 81-d 81-d 81-b 85 31 48 45 89-b 84 85-a	O2 reference (vol%) 11 11 11 - 17 17 - 20 18 16.64 18 18.5 when no correction is per ver (first stage is D068). 2], [23, WBP industry 201. O2 reference (vol%) 19.4 20.2 18.8 - 18.9 19.2 - 20.6 20 18.94 18.6 20.9 20.9 17 20.9 20.9 17 20.9 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8 20.9 19.8	wet - Dry Wet Dry Dry Wet Wet Wet - Dry Dry Wet Dry Wet Dry Dry Wet	35.8 35.8 24.5 11 12 21.3 20.8 Moisture (vol%) 16.5	5 5.5 4 10 11 8 10 13 17 24.5 58 Data given (mg/Nm3) 2 2.5 2.5 3 5 3.5 4.5 4.5 4.5 4.5 5 5 7 8 8 8 8.5 9 14 10 11 18 11 12 21 13.5 24 24	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 2 3 4 8 8 8 34 13 12 31 88 Data calculated (mg/Nm3) 4 9 4 3 7 6 4 34 14 8 5 5 5 10 240 26 270 11 300 356 45 367 20 16 14 18 63	MCyc MCyc WESP WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc BioScrub BioScrub BioScrub Cyc Cyc Cyc Cyc WetScrub WetScrub Cyc Cyc Cyc WetScrub Cyc Cyc BioScrub WetScrub WetScrub Cyc	(1) Remarks	Mittelwert	4 8 8 8 8 34 13 12 4 12 34 WESP 6		Multi-Cyclone 2 3 2 2 3 Multi-Cyclone Analysis Multi-Cyclone 4		Wet Scrubs

D050

D039

19.36

17

Source: [22, TWG 2012], [23, WBP industry 2012]

Dry

Wet

(2) Including dust abatement using multicyclones applied after the combustion plant and before drying.

(3) D049 is a first stage direct dryer, while D049-a is the indirectly heated second stage of the dryer.

(1) Including dust abatement using an ESP applied after the combustion plant and before drying.

37

5

10.19

16

18

18

68

WetScrub

WetScrub

Min

Max

Mittelwert

0

25

63

4

197

356

82

367

68

4

4

38

240

ectly & indirectly h	eated PB dryers								ſ			Analys	is		
Plant ID no	O2 reference (vol%)	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks		WESP	UTWS	Multi-Cyclone	Cyclone	Wet Scrubber	FF
	17	Dry		0.11	18	0.1	UTWS			-	0.1	-	-	-	
	18.7	Wet	20	0.2	18	0.3	WetScrub	(1)		-	-	-	-	0.3	
	- 17	- Dry		0.5 1	18 18	0.5 0.8	Cyc WESP			0.8	-	-	0.5 -	-	
	17	Dry		1	18	0.8	WESP			0.8	-	-	-	-	
	13.2	Dry		0.8	18	0.3	WESP	(1)		0.3	-	-	-	-	
	- 17	- Wet	20	0.85 1.5	18 18	0.9 1.4	MCyc WESP			- 1.4	-	0.9	-	-	
	18.7	Dry	20	0.93	18	1.2	WESP	(1)		1.2	-	-	-	-	
	17	Wet	20	1.8	18	1.7	WESP			1.7	-	-	-	-	
)	19.2 19.2	-		2.1 2.1	18 18	3.5 3.5	WESP WESP	(1) (1)		3.5 3.5	-	-	-	-	
,	15.75	Dry		2.4	18	1.4	MCyc	(1)		-	-	1.4	-	-	
	17	Dry		4	18	3.0	WESP			3.0	-	-	-	-	
	- 18.6	- Dry		3 2.8	18 18	3.0 3.5	WESP			3.0	-	-	- 3.5	-	
1	18	Dry Dry		3.3	18	3.3	Cyc WESP	(1)		-	- -	- -	-	-	
	18	Dry		5.6	18	5.6	WESP	. ,		5.6	-	-	-	-	
	17	Dry		7.9	18	5.9	WetScrub			-	-	-	-	5.9	
a	18 17	Dry Dry		6.2 9.2	18 18	6.2 6.9	WESP WESP			6.2 6.9	-	-	-	-	
	18	Dry		7	18	7.0	WESP			7.0	-	-	-	-	
	18	Dry		7.1	18	7.1	WESP	(1)		7.1	-	-	-	-	
	18	Dry	20	6.2	18	6.2	FF WESD	IHD		- 7.0	-	-	-	-	
	<i>18</i> 18.25	Wet -	20	6.3 6.8	18 18	7.9 7.4	WESP WESP	(1)		7.9 7.4	-	-	-	- -	
	18.9	Wet	20	7.4	18	13.2	Сус	(1)		-	-	-	13.2	-	
	18	Dry		7.5	18	7.5	FF	IHD		-	-	-	-	-	
	17	Dry	20	7.7	18	5.8	WESP	IHD		5.8	-	-	-	-	
	17 19.5	Wet Dry	20	19.4 16.5	18 18	18.2 33.0	WESP WESP	(1)		18.2 33.0	-	-	-	-	
	16.6	Dry		16.7	18	11.4	MCyc	(1)		-	-	11.4	-	-	
	-	-		23	18	23.0	WESP			23.0	-	-	-	-	
	17 19	Wet	20	52 1.3	18	48.8	WESP			48.8	-	-	- 2.0	-	
	19	Dry Wet	20	0.25	18 18	2.0 0.1	Cyc UTWS			-	0.1	-	2.U -	- -	
									Min	0.3	0.1	0.9	0.5	0.3	
nformation ava	illable. 2 when no correction is per								Mittelwert Max	8.9 48.8	0.1 0.1	4.5 11.4	4.8 13.2	3.1 5.9	
		Data siiraa aa wat aa										A	is		
lant ID no		Data given on wet or				Data calculated			l			Analys			
	O2 reference (vol%)	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks	l	WESP	UTWS	Multi-Cyclone	Cyclone	Wet Scrubber	Othe
	18	dry basis Dry		0.2	18	(mg/Nm3) 0.2	UTWS	Remarks		WESP - -	UTWS 0.2	Multi-Cyclone -		Wet Scrubber - -	Othe
	<i>18</i> 18	dry basis Dry Wet	21	0.2 0.6	18 18	(mg/Nm3) 0.2 0.8	UTWS MCyc	Remarks		WESP	0.2	Multi-Cyclone - 0.8		Wet Scrubber	Othe
	18	dry basis Dry		0.2	18	(mg/Nm3) 0.2	UTWS	Remarks		-	0.2	Multi-Cyclone -	Cyclone - -	- -	Othe
	18 18 18.5 11	dry basis Dry Wet Wet Wet Wet Wet	21 21 35 35	0.2 0.6 0.8 5.6 5.4	18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5	UTWS MCyc MCyc Cyc Cyc	Remarks		- - - -	0.2	Multi-Cyclone - 0.8 1.2	Cyclone - - -	- -	Othe
	18 18 18.5 11 11	dry basis Dry Wet Wet Wet Wet Wet Wet	21 21 35	0.2 0.6 0.8 5.6 5.4 9.2	18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3	UTWS MCyc MCyc Cyc Cyc WESP	Remarks		- - - - 9.3	0.2	Multi-Cyclone - 0.8 1.2 -	2.6	- - - -	Othe
	18 18 18.5 11	dry basis Dry Wet Wet Wet Wet Wet	21 21 35 35	0.2 0.6 0.8 5.6 5.4 9.2	18 18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3 10.5	UTWS MCyc MCyc Cyc Cyc WESP WESP	Remarks		- - - - 9.3 10.5	0.2	Multi-Cyclone - 0.8 1.2 -	2.6	- - - -	Othe
	18 18 18.5 11 11 17	dry basis Dry Wet Wet Wet Wet Wet	21 21 35 35 26	0.2 0.6 0.8 5.6 5.4 9.2	18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3	UTWS MCyc MCyc Cyc Cyc WESP	Remarks		- - - - 9.3 10.5 9.6 50.6	0.2	- 0.8 1.2 	2.6 2.5	- - - -	Othe
6	18 18.5 11 11 17 17 20	dry basis Dry Wet Wet Wet Wet Wet	21 21 35 35 26 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6	18 18 18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP	Remarks	Min	- - - - 9.3 10.5 9.6 50.6 9.3	0.2 - - - - - - - 0.2	- 0.8 1.2 0.8	2.6 2.5 2.5	- - - -	Oth
nformation ava	18 18.5 11 11 17 17 20	dry basis Dry Wet Wet Wet Wet Wet Wet Wet Wet	21 21 35 35 26 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6	18 18 18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP	Remarks	Min Mittelwert Max	- - - - 9.3 10.5 9.6 50.6	0.2	- 0.8 1.2 	2.6 2.5	- - - -	Othe
ıldehyde	18 18.5 11 11 17 17 20	dry basis Dry Wet Wet Wet Wet Wet Wet Wet Wet	21 21 35 35 26 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6	18 18 18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP	Remarks	Mittelwert	- - - - 9.3 10.5 9.6 50.6 9.3 20.0	0.2 - - - - - - - 0.2 0.2	- 0.8 1.2 0.8 1.0	Cyclone 2.6 2.5 2.5 2.5 2.5	- - - -	Othe
nformation ava [22, TWG 201 dehyde	18 18.5 11 11 17 17 20	dry basis Dry Wet Wet Wet Wet Wet Wet Wet 2]	21 21 35 35 26 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6	18 18 18 18 18 18 18	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP	Remarks	Mittelwert	- - - - 9.3 10.5 9.6 50.6 9.3 20.0	0.2 - - - - - - - 0.2 0.2	- 0.8 1.2 0.8 1.0	Cyclone 2.6 2.5 2.5 2.5 2.5 2.6	- - - -	
[22, TWG 201 lehyde yers	18 18.5 11 11 17 17 20	dry basis Dry Wet Wet Wet Wet Wet Wet Wet Wet	21 21 35 35 26 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6	18 18 18 18 18 18 18 18	(mg/Nm3) 0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP	Remarks	Mittelwert	- - - - 9.3 10.5 9.6 50.6 9.3 20.0	0.2 - - - - - - - 0.2 0.2	- 0.8 1.2 0.8 1.0 1.2	Cyclone 2.6 2.5 2.5 2.5 2.5 2.6	- - - -	Bio
nformation ava : [22, TWG 201 dehyde ryers Plant ID no	18 18.5 11 11 17 17 - 20 hilable. .2], [23, WBP industry 2013	dry basis Dry Wet Wet Wet Wet Wet Wet 2]	21 21 35 35 26 - - 11	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15	18 18 18 18 18 18 18 18	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6	UTWS MCyc MCyc Cyc WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2 0.8 1.0 1.2	Cyclone 2.6 2.5 2.5 2.5 2.5 2.6	- - - - - - - -	Bio
nformation ava [22, TWG 201 dehyde yers	18 18.5 11 11 17 17 20 Milable. 22], [23, WBP industry 2013	Dry Wet Wet Wet Wet Wet Wet Wet 2 Data given on wet or dry basis Wet	21 21 35 35 26 - - 11 Moisture (vol%)	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2 0.8 1.0 1.2	Cyclone 2.6 2.5 2.5 2.5 2.5 2.6		Bio
nformation ava : [22, TWG 201 dehyde ryers Plant ID no	18 18.5 11 11 17 17 - 20 Milable. 2], [23, WBP industry 2013 7 - 18.9 -	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet	21 21 35 35 26 - - 11 Moisture (vol%)	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2 0.8 1.0 1.2	Cyclone 2.6 2.5 2.5 2.5 2.5 2.6		Bio
nformation ava [22, TWG 201 dehyde yers Plant ID no	18 18.5 11 11 17 17 17 - 20 milable. 2], [23, WBP industry 2013 17 - 18.9 - 17	Dry Wet Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 26 - - 11 11 Moisture (vol%) 16 - - -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2 0.8 1.0 1.2	Cyclone 2.6 2.5 2.5 2.5 2.6 Cyclone is Cyclone		Bio
[22, TWG 201 lehyde yers	18 18 18.5 11 11 17 17 17 - 20 Milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9	Dry Wet Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet	21 21 35 35 26 - - 11 Moisture (vol%)	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2	Cyclone		Bio
[22, TWG 201 lehyde yers	18 18 18.5 11 11 17 17 17 - 20 milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 -	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry	21 21 35 35 26 - - 11 11 Moisture (vol%) 16 - - -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	- 0.8 1.2	Cyclone 2.6 2.5 2.5 2.5 2.6 Cyclone is Cyclone		Bio
nformation ava [22, TWG 201 dehyde yers Plant ID no	18 18.5 11 11 17 17 17 - 20 milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2	Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry Dry Dry	21 21 35 35 26 11 11 Moisture (vol%) 16 10 3 10 3 10	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 - - - - - - 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
[22, TWG 201 lehyde vers	18 18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry Dry Dry Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 10 3 11 12.8	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
[22, TWG 201 lehyde vers	18 18 18.5 11 11 17 17 17 - 20 milable. 2], [23, WBP industry 201: 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 11 12.8 -	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
[22, TWG 201 lehyde vers	18 18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry Dry Dry Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 10 3 11 12.8	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
[22, TWG 201 lehyde yers	18 18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 - 20.85 20.85 20.85 17	dry basis Dry Wet Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
nformation ava [22, TWG 201 dehyde yers Plant ID no	18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 2013 7 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 - 20.85 20.85 20.85 17 18.6	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry - Wet Wet Wet Uet Uet Uet Uet Wet Uet Uet Uet Uet Uet Uet Uet Uet Uet U	21 21 35 35 35 26 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13 12.6	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
nformation ava : [22, TWG 201 dehyde ryers Plant ID no	18 18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 201: 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 - 20.85 20.85 17 18.6 19.57	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 36 26 11 Moisture (vol%) 16 10 3 12.8 7.3 6.98 13 12.6 8.43	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1 9.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4 20.1	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
nformation ava : [22, TWG 201 dehyde ryers Plant ID no	18 18.5 11 11 17 17 17 - 20 milable. 22], [23, WBP industry 2013 7 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 - 20.85 20.85 20.85 17 18.6	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry Dry Dry Dry Dry Dry - Wet Wet Wet Uet Uet Uet Uet Wet Uet Uet Uet Uet Uet Uet Uet Uet Uet U	21 21 35 35 35 26 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13 12.6	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
nformation ava : [22, TWG 201 dehyde ryers	18 18 18.5 11 11 17 17 17 - 20 Milable. 22], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 19.2 - 20.85 20.85 20.85 17 18.6 19.57 20 19.4 19.75	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 12.8 7.3 6.98 13 12.6 8.43 14	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1 9.6 10.1 11 12.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4 20.1 35.2 20.6 30.2	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio
nformation ava : [22, TWG 201 dehyde ryers Plant ID no	18 18 18.5 11 11 17 17 17 - 20 Milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 19.2 - 20.85 20.85 20.85 17 18.6 19.57 20 19.4 19.75 18.81	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 36 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13 12.6 8.43 14 16.5	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1 9.6 10.1 11 12.6 12.9	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4 20.1 35.2 20.6 30.2 21.2	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone 2.6 2.5 2.5 2.5 2.6 is Cyclone is Cyclone		Bio-
information ava : [22, TWG 201 Idehyde ryers Plant ID no	18 18 18.5 11 11 17 17 17 - 20 Milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2 - 20.85 20.85 17 18.6 19.57 20 19.4 19.75 18.81 18.94	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 26 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13 12.6 8.43 14 16.5 16.09	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1 9.6 10.1 11 12.6 12.9 13.1	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 6.6 144.7 150.5 11.0 11.4 20.1 35.2 20.6 30.2 21.2 22.7	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone		Bio-Scrubb
information ava	18 18 18.5 11 11 17 17 17 - 20 Milable. 2], [23, WBP industry 2013 17 - 18.9 - 17 20.9 20 - 19.2 19.2 19.2 19.2 - 20.85 20.85 20.85 17 18.6 19.57 20 19.4 19.75 18.81	dry basis Dry Wet Wet Wet Wet Wet Wet Data given on wet or dry basis Wet Dry	21 21 35 35 36 11 Moisture (vol%) 16 10 3 12.8 - 7.3 6.98 13 12.6 8.43 14 16.5	0.2 0.6 0.8 5.6 5.4 9.2 14 9.6 15 Data given (mg/Nm3) 2 2.6 2.7 3.7 7.5 4.9 6 6.2 6.3 6.6 6.6 6.8 7 14.6 9.1 9.6 10.1 11 12.6 12.9	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.2 0.8 1.2 2.6 2.5 9.3 10.5 9.6 50.6 Data calculated (mg/Nm3) 1.8 2.6 3.9 3.7 5.6 147.0 18.0 6.2 10.5 11.0 6.6 146.7 150.5 11.0 11.4 20.1 35.2 20.6 30.2 21.2	UTWS MCyc MCyc Cyc Cyc WESP WESP WESP WESP WESP WESP WESP WESP		Mittelwert	- - - 9.3 10.5 9.6 50.6 9.3 20.0 50.6	0.2 0.2 0.2 0.2	Multi-Cyclone - 0.8 1.2	Cyclone 2.6 2.5 2.5 2.5 2.6 is Cyclone is Cyclone		Bio- Scrubk

10.5

10.5

Max

Mittelwert

88.3

150.5

19.7

30.2

22.0

147.0

15.1

22.5

'-': No information available.

Source: [22, TWG 2012], [23, WBP industry 2012]

ctly & indirectly hea	ated PB dryers								Γ			Analysi	is		
Plant ID no	O2 reference (vol%)	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks	L	WESP	UTWS	Multi-Cyclone	Cyclone	Wet Scrubber	FF
5	17	Dry		1.4	18	1.1	UTWS	NMVOC	DHD	-	1.1	-	-	-	
1-b 1	20.85	Dry		5.9	18	118.0	MCyc	TOC		-	-	118.0	-	-	
<u>1</u> 2	20.85 11	Dry Wet	20	7.7 12	18 18	154.0 4.5	MCyc UTWS	TOC TOC	DHD	-	- 4.5	154.0 -	-	-	
<u>2</u> 3	17 17	Dry Dry		19.8 24.4	18 18	14.9 18.3	WESP WESP	TOC TOC	DHD	14.9 18.3	-	-	-	-	
L	19.2	Dry		29.7	18	49.5	WESP	TOC	DHD	49.5	-	-	-	-	
	18 18	Dry Dry		37.1 37.6	18 18	37.1 37.6	WESP WESP	TOC TOC	DHD DHD	37.1 37.6	-	-	-	-	
l-a	18	Dry		38.5	18	38.5	WESP	TOC	DHD	38.5	-	-	-	-	
2	17 18	Wet Wet	20 20	43 47	18 18	40.3 58.8	WESP WESP	TOC TOC	DHD	40.3 58.8	-	-	-	-	
i-b	18	Wet	20	67	18	83.8	WESP	TOC		83.8	-	- -	-	-	
	18 18	Dry		69 80	18 18	69.0 80.0	WetScrub MCyc	TOC TOC	DHD	-	-	- 80.0	-	69.0	
	18	-		80.5	18	80.5	Сус	TOC	טחט	-	-	-	- 80.5	-	
a	18.9	Wet	20	81	18	144.6	Cyc	TOC			-	-	144.6	-	
	16.6 18.7	Dry Wet	20	83.2 84	18 18	56.7 137.0	MCyc Cyc	TOC NMVOC		-	-	56.7 -	- 137.0	-	
	17	Dry		92	18	69.0	WESP	TOC	IHD	69.0	-	-	-	-	
	19 15.75	Dry Dry		101 106	18 18	151.5 60.6	Cyc MCyc	VOC VOC		-	-	- 60.6	151.5 -	-	
a	18	Wet	20	108	18	135.0	MCyc	VOC		-	-	135.0	-	-	
	17 18	- Wet	20	133 138	18 18	99.8 172.5	WESP MCyc	TOC VOC	DHD	99.8 -	-	- 172.5	-	- -	
	19.2	-		138	18	230.0	WESP	TOC	DHD	230.0	-	-	-	-	
)	19.2 17	- Dry		138 139	18 18	230.0 104.3	WESP WESP	TOC TOC	DHD DHD	230.0 104.3	-	-	-	-	
	18	- -		143	18	143.0	WESP	TOC	DHD	143.0	-	-	-	-	
а	18	-	20	145	18	145.0	WESP	TOC		145.0	-	-	-	-	
l I	<i>18</i> 19	Wet Dry	20	156 165	18 18	195.0 247.5	WESP WetScrub	TOC TOC		195.0 -	-	-	- -	- 247.5	
l	17	-		185	18	138.8	WESP	TOC	DHD	138.8	-	-	-	-	
	17 17	Dry Wet	20	208 215	18 18	156.0 201.6	WESP WESP	TOC TOC	DHD	156.0 201.6	-	-	-	-	
	18	-		217	18	217.0	WESP	TOC		217.0	-	-	-	-	
	18 18	- Dry		230 205	18 18	230.0 205.0	FF FF	NMVOC VOC	IHD IHD	-	-	-	-	-	
	6	Dry Dry		240	18	48.0	WESP	VOC	DHD	48.0	-	-	-	-	
	18	Wet	20	280	18	350.0	WESP	NMVOC	IHD	350.0	-	-	-	-	
1	19 19	Dry Dry		70.9 249	18 18	106.4 373.5	WESP Cyc	NMVOC NMVOC		106.4	-	-	- 373.5	-	
		·					·		Min	14.9	1.1	56.7	80.5	69.0 158.3	
e: [22, TWG 2012	able.], [23, WBP industry 201:	2]							Mittelwert Max	117.2 350.0	2.8 4.5	111.0 172.5	177.4 373.5	247.5	
e: [22, TWG 2012]], [23, WBP industry 201:												373.5		
o information availa ce: [22, TWG 2012 c. tly heated OSB dry], [23, WBP industry 201:	Data given on wet or dry basis	Moisture (vol%)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks				172.5	373.5		Oth
e: [22, TWG 2012], [23, WBP industry 2013 yers O2 reference (vol%)	Data given on wet or dry basis Wet	20	182	18	(mg/Nm3) 68.3	МСус	тос		350.0	4.5	Analysi Multi-Cyclone 68.3	373.5	247.5	Ot
: [22, TWG 2012 y heated OSB dry Plant ID no], [23, WBP industry 2013 yers O2 reference (vol%) 11 11	Data given on wet or dry basis		182 226	18 18	(mg/Nm3) 68.3 84.8	MCyc MCyc	TOC TOC		350.0 WESP - -	4.5 UTWS	172.5 Analysi Multi-Cyclone	373.5	247.5	O
: [22, TWG 2012 y heated OSB dry Plant ID no], [23, WBP industry 2013 yers O2 reference (vol%)	Data given on wet or dry basis Wet Wet	20	182	18	(mg/Nm3) 68.3	МСус	тос		350.0 WESP	4.5 UTWS - -	Analysi Multi-Cyclone 68.3 84.8	373.5	247.5	0
y heated OSB dry], [23, WBP industry 2013 yers 11 11 18 18 18 17	Data given on wet or dry basis Wet Wet - Dry Wet	20	182 226 673 217 216	18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5	MCyc MCyc WESP WESP WESP	TOC TOC TOC TOC TOC		350.0 WESP 673.0 217.0 202.5	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5	247.5	0
: [22, TWG 2012 y heated OSB dry Plant ID no], [23, WBP industry 2013 yers 11 11 18 18	Data given on wet or dry basis Wet Wet - Dry	20 20	182 226 673 217	18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0	MCyc MCyc WESP WESP	TOC TOC TOC TOC		350.0 WESP 673.0 217.0	4.5 UTWS - - - -	Analysi Multi-Cyclone 68.3 84.8	373.5	247.5	0
: [22, TWG 2012 y heated OSB dry Plant ID no], [23, WBP industry 2013 yers 11 11 18 18 17 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet	20 20 20	182 226 673 217 216 402 29 52	18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0	MCyc MCyc WESP WESP WESP WESP WESP	TOC TOC TOC TOC VOC CVOC		350.0 WESP - 673.0 217.0 202.5 402.0 29.0 52.0	4.5 UTWS	172.5 Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	0
: [22, TWG 2012], [23, WBP industry 2013 yers 11 11 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet	20 20 20	182 226 673 217 216 402 29 52 349	18 18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc	TOC TOC TOC TOC VOC CVOC CVOC		350.0 WESP 673.0 217.0 202.5 402.0 29.0	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone 523.5	247.5	0
y heated OSB dry	(ers O2 reference (vol%) 11 11 18 18 18 17 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet	20 20 20	182 226 673 217 216 402 29 52	18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0	MCyc MCyc WESP WESP WESP WESP WESP	TOC TOC TOC TOC VOC CVOC	Max	350.0 WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone 523.5 323.8 323.8	247.5 Wet Scrubber	O
y heated OSB dry Plant ID no	(ers O2 reference (vol%) 11 11 18 18 18 17 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Wet Wet	20 20 20	182 226 673 217 216 402 29 52 349	18 18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc	TOC TOC TOC TOC VOC CVOC CVOC	Max	350.0 WESP - 673.0 217.0 202.5 402.0 29.0 52.0 -	4.5 UTWS	172.5 Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone 523.5 323.8	247.5 Wet Scrubber	0
y heated OSB dry Plant ID no nformation availa : [22, TWG 2012	7, [23, WBP industry 2013 11, [11, [18,	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Wet Wet	20 20 20	182 226 673 217 216 402 29 52 349	18 18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc	TOC TOC TOC TOC VOC CVOC CVOC	Min Mittelwert	350.0 WESP - 673.0 217.0 202.5 402.0 29.0 52.0 - 29.0 29.0 262.6	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone 523.5 323.8 323.8 423.6 523.5	247.5 Wet Scrubber	Of
y heated OSB dry Plant ID no Information availa : [22, TWG 2012	7, [23, WBP industry 2013 11, [11, [18,	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Wet Wet	20 20 20	182 226 673 217 216 402 29 52 349	18 18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc	TOC TOC TOC TOC VOC CVOC CVOC	Min Mittelwert	350.0 WESP - 673.0 217.0 202.5 402.0 29.0 52.0 - 29.0 29.0 262.6	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone 523.5 323.8 323.8 423.6 523.5	247.5 Wet Scrubber	O Screen
y heated OSB dry Plant ID no information availa : [22, TWG 2012] ryers Plant ID no	J, [23, WBP industry 2013 yers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Vet Vet Vet	20 20 20 20 20 20	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	E
y heated OSB dry Plant ID no ryers Plant ID no	J, [23, WBP industry 2013 yers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 19 19 10 10 11 11 11 11 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet - Wet Vet 2] Data given on wet or dry basis	20 20 20 20 20 20 - - -	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Analysi Multi-Cyclone	373.5 is Cyclone	247.5 Wet Scrubber	E
heated OSB dry Plant ID no 22, TWG 2012	J, [23, WBP industry 2013 Jers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Data given on wet or dry basis	20 20 20 20 20 20	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc Cyc	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	[
heated OSB dry Plant ID no 22, TWG 2012	7, [23, WBP industry 2013 7, [23, WBP industry 2013 11 11 18 18 18 18 18 18 18 19 19 19 10 10 11 11 11 11 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry	20 20 20 20 20 20 10 13	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc VetScrub WetScrub Cyc WetScrub WetScrub WetScrub WetScrub WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	[
heated OSB dry lant ID no graph of the state	Jers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Data given on wet or dry basis Dry Dry Wet	20 20 20 20 20 20 	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc VetScrub WetScrub Cyc WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
y heated OSB dry Plant ID no (1) Tyers Plant ID no	(Pers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet Dry Wet Wet Wet Data given on wet or dry basis Data given on wet or dry basis	20 20 20 20 20 20 20 10 13 0	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42 69.4 71	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc VetScrub WetScrub Cyc WetScrub WetScrub WetScrub WetScrub WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	350.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	[
heated OSB dry heated OSB dry Plant ID no 22, TWG 2012 yers Plant ID no	(Pers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 10 13 0 - 4.25	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42 69.4 71 85	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub Cyc WetScrub WetScrub Cyc WetScrub Cyc MCyc Cyc MCyc Cyc	TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 - 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
heated OSB dry heated OSB dry lant ID no 22, TWG 2012	(Pers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet Dry Wet Wet Wet Data given on wet or dry basis Data given on wet or dry basis	20 20 20 20 20 20 Moisture (vol%)	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42 69.4 71	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0	MCyc MCyc WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub WetScrub WetScrub Cyc WetScrub WetScrub MetScrub WetScrub WetScrub MetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
heated OSB dry Plant ID no (1) 122, TWG 2012	(23, WBP industry 2013) (yers) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet - Wet wet Data given on wet or dry basis Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 20 20 10 13 0 - 4.25 12.4 8.33 15	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42 69.4 71 85 148 171 227	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
heated OSB dry heated OSB dry Plant ID no 22, TWG 2012 yers Plant ID no	(Pers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 Moisture (vol%) 10 13 0 - 4.25 12.4 8.33	182 226 673 217 216 402 29 52 349 259 Data given (mg/Nm3) 32.6 61.1 72 12 45 58 42 69.4 71 85 148 171	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc VetScrub WetScrub	TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
heated OSB dry heated OSB dry Plant ID no (22, TWG 2012)	(23, WBP industry 2013) (yers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 Moisture (vol%) 10 13 0 - 4.25 12.4 8.33 15 16.5	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub BioScrub Cyc WetScrub WetScrub Cyc MCyc Cyc WetScrub WetScrub Cyc Cyc MCyc Cyc WetScrub WetScrub Cyc	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC NMVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8	373.5 is Cyclone	247.5 Wet Scrubber	
heated OSB dry heated OSB dry Plant ID no (22, TWG 2012)	(23, WBP industry 2013) (yers 11 11 11 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 20 20 4.25 12.4 8.33 15 -	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2 150.5	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub BioScrub Cyc	TOC TOC TOC VOC VOC CVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Multi-Cyclone Analysi Multi-Cyclone 4260.0	373.5 is Cyclone	247.5 Wet Scrubber	
y heated OSB dry Plant ID no ryers Plant ID no	(23, WBP industry 2013) (yers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 Moisture (vol%) 10 13 0 - 4.25 12.4 8.33 15 16.5 16.09	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2 150.5 21.5 19.2	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub BioScrub Cyc WetScrub WetScrub Cyc MCyc Cyc WetScrub WetScrub Cyc Cyc MCyc Cyc WetScrub WetScrub Cyc	TOC TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC NMVOC NMVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Multi-Cyclone Analysi 4260.0	373.5 is Cyclone	247.5 Wet Scrubber	
y heated OSB dry Plant ID no ryers Plant ID no	(23, WBP industry 2013) (yers O2 reference (vol%) 11 11 18 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 20 Moisture (vol%)	182 226 673 217 216 402 29 52 349 259 32.6 61.1 72 12 45 58 42 69.4 71 85 148 171 227 100 121.6 67.2 86.7 28.7 25.6 230	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2 150.5 21.5 19.2 230.0	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub WetScrub BioScrub Cyc	TOC TOC TOC VOC VOC CVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC NMVOC VOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Multi-Cyclone Analysi 4260.0	373.5 is Cyclone Cyclone Cyclone Cyclone Substite Substitute Subst	247.5 Wet Scrubber	E
y heated OSB dry Plant ID no (1 22, TWG 2012)	(ers O2 reference (vol%) 11 11 11 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Data given on wet or dry basis Data given on wet or dry basis Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 Moisture (vol%) 10 13 0 - 4.25 12.4 8.33 15 16.5 16.09	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2 150.5 21.5 19.2	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub BioScrub Cyc	TOC TOC TOC VOC CVOC CVOC NMVOC NMVOC NMVOC VOC NMVOC VOC NMVOC VOC VOC VOC VOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Multi-Cyclone Analysi 4260.0	373.5 is Cyclone	247.5 Wet Scrubber	[
y heated OSB dry Plant ID no ryers Plant ID no	(23, WBP industry 2013) yers 11 11 11 18 18 18 18 18 18 18 18 18 18	Data given on wet or dry basis Wet Wet - Dry Wet Wet Wet Vet Dry Dry Dry Dry Dry Dry Dry Dry Dry Dr	20 20 20 20 20 20 20 30 - 10 13 0 - 4.25 12.4 8.33 15 - - 16.5 16.09 - - 10.65	182 226 673 217 216 402 29 52 349 259	18 18 18 18 18 18 18 18 18 18 18 18 18 1	(mg/Nm3) 68.3 84.8 673.0 217.0 202.5 402.0 29.0 52.0 523.5 323.8 Data calculated (mg/Nm3) 32.6 61.1 72.0 12.0 33.8 43.5 1145.5 694.0 4260.0 204.0 233.7 296.5 243.2 142.9 121.6 110.2 150.5 21.5 19.2 230.0 39.8	MCyc MCyc WESP WESP WESP WESP WESP WESP Cyc Cyc Cyc WetScrub WetScrub WetScrub WetScrub BioScrub Cyc MCyc Cyc WetScrub WetScrub WetScrub Cyc Cyc Cyc Cyc WetScrub	TOC TOC TOC TOC VOC CVOC CVOC NMVOC	Min Mittelwert	WESP 673.0 217.0 202.5 402.0 29.0 52.0 29.0 262.6 673.0 WESP	4.5 UTWS	Analysi Multi-Cyclone 68.3 84.8 68.3 76.5 84.8 Multi-Cyclone Analysi August Analysi	373.5 is Cyclone	247.5 Wet Scrubber	[

(1) Chemical abatement of formaldehyde/biological oxidation.

Source: [22, TWG 2012], [23, WBP industry 2012]

296.5

694.0

4260.0

Max

1145.5

NOx													
Directly heated PB dry	yers										Analysis		
Plant ID no	O2 reference (vol%)	Data given on wet or dry basis	CO (mg/Nm3)	Data given (mg/Nm3)	O2 reference (vol%)	Data calculated (mg/Nm3)	Technology	Remarks		SNCR	UTWS	RTO	unknown
D051	19	Dry	79	10	18	15	SNCR	100%PR/RW		15	-	-	-
D064	18.5	Dry	14	47	18	56		98%PR2%G		-	-	-	56
D062	17	Dry	215	88	18	66		45%PR45%RW10%HFO		-	-	-	66
D076	17	Dry	67	77	18	58		50%PR50%G		-	-	-	58
D071	19.1	Dry	134	45	18	71		80%B20%G		-	-	-	71
D003	17	Dry	70	100	18	75		80%PR20%G		-	-	-	75
D034	18.6	Dry	173	65	18	81		35%PR65%RW		-	-	-	81
D017	16.6	Dry	872	148	18	101		50%PR50%G		-	-	-	101
0012	11	Dry	261	286	18	86	UTWS	PR/G		-	86	-	-
D069	18.5	Dry	-	110	18	132		35%RW,50%PR,15%HFO		-	-	-	132
0029	18.5	Dry	121	114	18	137		45%PR45%RW10%G		-	-	-	137
0022	17	Dry	60	170	18	128		75%PR25%HFO		-	-	-	128
D072	19.9	Dry	37	44	18	120		20%PR80%G		-	-	-	120
D035	18.5	Dry	154	113	18	136		72%PR22%RW6%G		-	-	_	136
D005	17	Dry	13	186	18	140	RTO	PR/G		-	-	140	-
D072-a	16.9	Dry	442	192	18	140		100%PR		-	-	_	140
D080	18	Dry	173	141	18	141		70%PR30%G		-	-	_	141
D006-a	11	Dry	1988	498	18	149		95%PR5%G		-	-	-	149
D043	18	Dry	111	171	18	171		56%PR33%RW11%G		-	-	-	171
D011a	18.9	Dry	17	137	18	196		62%PR38%HFO		-	-	_	196
D001	17	Dry	160	175	18	131	SNCR	10%PR90%RW		131	-	_	-
D005-a	17	Dry	11	288	18	216	RTO	PR/G		-	-	216	-
D006-b	11	Dry	283	696	18	209		90%PR10%HFO		-	-	-	209
D006	11	Dry	797	967	18	290		95%PR5%HFO		-	-	-	290
D068	19.3	Dry	53	158	18	279		PR/HFO		-	-	-	279
		,						·	Min	15.0	85.8	139.5	56.4
PR:	production residues								Mittelwert	73.1	85.8	177.8	136.8
RW:	recovered wood								Max	131.3	85.8	216.0	290.1

G: natural gas biomass.

heavy fuel oil

TBF + Partner AG

Source: [22, TWG 2012], [23, WBP industry 2012]

ANHANG 4

SWISS KRONO AG / Müller-BBM Spänetrockner Emissionsmessungen im Reingas nach Abgasreinigungsanlage SEKA vom 21. Mai 2014

(Auszug aus Bericht Nr. M115618 / 01 Kapitel 2 und 6)

Im Folgenden werden die auf die bei den Emissionsmessungen betrachtete Abgasreinigungsanlage (SEKA) aufgeschalteten Anlagenteile aufgeführt:

Spänetrockner:

Das angelieferte Holz (Langholz, Restholz) wird zerkleinert und im direkt beheizten Drehtrommeltrockner getrocknet. Das zur Trocknung eingesetzte Heizgas wird in einem Brenner erzeugt, an dem die Brennstoffe Holzstaub und Erdgas eingesetzt werden. Zusätzlich werden die Abgase von der Wiesloch-Rostfeuerung in die Brennkammer eingeleitet. Das aus dem Trockner austretende Rohgas wir über einen Multizyklon entstaubt und der SEKA- Anlage zugeführt.

VTS-Anlage (Imprägnieranlage):

Zur Beschichtung von Spanplatten wird ein mit Formaldehyd-Melamin Harz getränktes Papier hergestellt. Zu diesem Zweck sind mehrere Imprägnierkanäle aufgestellt, die z.T. mit Thermoöl, z. T. erdgasbeheizt sind. Die Abluft wird an den einzelnen Anlagen erfasst, in einem Sammelkanal zusammengefasst und der SEKA-Anlage zugeführt.

Mende-Anlage (Plattenpressen):

Die Späne werden mit Bindemittel vermischt und in Plattenpressen unter Druck und Temperatur zu Spanplatten verpresst. Die Abluft wird erfasst und der SEKA-Anlage zugeführt. Die Gesamtbetriebszeit der Anlagen sieht wie folgt aus:

24 Stunden pro Tag, 7 Tage pro Woche, abgesehen von Stillstands- und Revisionszeiten

Anlage zur Emissionserfassung:

Das Abgas folgender Anlageteile wird durch festinstallierte Rohrleitungen der SEKA-Anlage zugeführt:

- Spänetrockner
- VITS-Anlage
- Mende-Anlage

Zusammenstellung der Messergebnisse und Diskussion

Produktionsanlage

Spänetrockner:

Brenner:

Laststufe:

Brennstoffmengen: ca. 36.5 %

Holzstaub: 2'354 kg/h

Erdgas: ---

Temperatur Trommeleintritt 415 °C
Temperatut Trommelaustritt 116 °C

Spanplattenproduktion:

Anlagen M3, Karl 4, Mende:

Spandurchsatz total atro: 33'330 kg/h Spanplattenproduktion netto: 51.1 m³/h

Anmerkung des Betreibers:

Im Messzeitraum wurde an der Anlage Karl 1 nicht produziert.

An der Anlage Mende wird alle 2-3 Monate für ca. 2 Wochen produziert [19].

Abgasreinigungsanlagen:

Die Abluftreinigungsanlage besteht aus den Anlageteilen Multizyklonanlage nach Spänetrockner, welches zur Vorabscheidung des aus dem Spänetrockner ausgetragenen Staubs dient, sowie dem Nasselektrofilter SEKA (Scheuch-Elektro-Kondensationsfilter-Abgasreinigung).

Funktionsprinzip:

Eindüsung von Wasser in die Rohgasleitung zur Abkühlung von Sättigungsfeuchte (Quenchen)

Eintritt des Rohrgases in den Filter, gleichmässige Verteilung des Gasstroms über einen Wäscher- und Gasverteilboden (wird von oben mit Wasser bedüst, so dass das Rohgas bereits vorgereinigt wird)

Eintritt des vorgereinigten Rohrgases von unten in die Elektrofilterstufe 1 (ausgeführt als Röhren-Elektrofilter); an den senkrecht stehenden Rohrbündeln wird horizontal kalte Umgebungsluft vorbeigesaugt, so dass die Abgasfeuchte an der Innenseite der Rohrbündel auskondensiert und die Anbackung von Harzpartikeln verhindert (Kondensationssystem)

Wassertrennboden 2

Elektrofilterstufe 2 (analog Stufe 1, ebenfalls mit Kondensationssystem)

Entschwadung im Kamin: Die an den Rohrbündeln der Elektrofilter vorbeigeführt, erwärmte Umgebungsluft wird im Kamin dem Reingas nach SEKA zugemischt, so dass die Abgasfahne vermindert wird.

Die Anlage ist in entsprechenden Einrichtungen zur Aufbereitung des Kreislaufwassers (Sedimentationsbehälter, Dekanter) und zum Austrag des abgeschiedenen Schlammes sowie zur Spülung des Elektrofilters ausgestattet.

Das im Elektrofilter abgekühlte Abgas wird allerdings durch die Vermischung mit der erwärmten Kühlluft im Kamin wieder erwärmt.

Nasselelektrofilter SEKA:

Quenche vor Filter: Eindüsung von ca. 278 m³ Wasser/h in die Rohrgasleitung vor SEKA

Wäscherboden: Eindüsung von ca. 1'400 m³/h Wasser

Filterspannung: Stufe 1: 136 kV

Stufe 2: 139 kV

Stromaufnahme: Stufe 1: 987 mA

Stufe 2: 1'053 mA

Letzte Wartung: Mai 2014

Zusammenfassung der Messergebnisse [21]

Messung	Nr.	1	2	3	Grenzwert
Gesamt-C-Massenstrom	kg/h	20,7	18,8	18,8	
Holzeinsatz = Spandurchsatz gesamt	t/h	33,33	33,33	33,33	
Spezifische gesamte C-Emissionen	C ges C/t Holzatro	620	560	560	350
Abluftvolumenstrom trocken 273 K, 1013 hPa	m³/h	318'200			
Sauerstoff-Gehalt	Vol%	18,2	18,2	18,2	
Gesamtstaub - Konzentration, zuzügl. Mess- unsicherheiten Mittelwert / Maximum	mg/m³	2,8	/	2,9	50
Gesamtstaub - Massenstrom Mittelwert / Maximum	kg/h	0,46	1	0,48	
Gesamtkohlenstoff - Konzentration, zuzügl. Mess- unsicherheiten Mittelwert / Maximum	mg/m³	91	1	97	
Gesamtkohlenstoff - Massenstrom Mittelwert / Maximum	kg/h	19,4	/	20,7	
Stickstoffoxide - Konzentration, zuzügl. Mess- unsicherheiten Mittelwert / Maximum	mg/m³	215	,	218	
Stickstoffoxide	9/	2.0	,	2.0	
- Massenstrom Mittelwert / Maximum	kg/h	44,1	/	44,8	
Kohlenmonoxid - Konzentration, zuzügl. Mess- unsicherheiten	mg/m³	167	1	190	
Kohlenmonoxid - Massenstrom Mittelwert / Maximum	kg/h	34,7	/	39,9	

Im Vergleich zur letzten Messung in 2011 ist die Konzentrationsverteilung für die betrachteten Komponenten in 2014 ungleichmässiger. Dies ist auf folgende Faktoren zurückzuführen:

Die Anlage Mende, deren Abgas (O₂-Gehalt 21.-%) ebenfalls in die Abgasreinigungseinrichtung eingeleitet wurde, wurde im Messzeitraum betrieben. Offensichtlich ergab sich keine vollständige Durchmischung des Abgasleitstroms Mende mit dem Abgasstrom Spänetrockner, so dass in 2014 am Messquerschnitt Reingas eine verstärkte Inhomogenität auftrat. Dies deckt sich mit dem Ergebnissen der Emissionsmessungen 2008, bei denen die Angle Mende ebenfalls in Betrieb war.

Die Heissgastemperatur am Trommeleintritt war in 2014 um 25 °C niedriger. Dadurch werden im Trockner weniger organische Stoffe freigesetzt, die Abscheideleistung in der Abgasreinigungsanlage ist besser.

ANHANG 5

Beschreibung der Umweltaspekte Auszug aus UV-Bericht Kronospan vom 5. Januar 2009 Kapitel 6.3.1 Abluft

A. Allgemein

Heute bestehen im Span- und Faserplattenwerk insgesamt fünf Emissionsquellen, wobei der mit Abstand grösste Teil der Abluft gefasst und – falls nicht bereits sauerstoffarm – dem Verbrennungsprozess als Sekundärluft zugeführt oder – falls sauerstoffarm – zur Trocknung der Späne bzw. Fasern eingesetzt (Trockner) und danach über das Abluftreinigungssystem SEKA (Spanplattenwerk) oder SABA (Faserplattenwerk) gereinigt wird. Die Situation heute zeigt sich wie folgt:

- 1. Die Kronospan Schweiz AG besteht technisch gesehen aus zwei Werken: einem Spanplattenwerk und einem Faserplattenwerk, das Platten nach dem Trockenverfahren herstellt.
- Jedes Werk verfügt über eine eigene Energieerzeugung und Abluftreinigung.
- 3. Diverse Veredelungsstufen wie z.B. die Papierimprägnierung, das Dekorwerk etc. werden dem Spanplattenwerk hinzugerechnet. Dies ist vor allem historisch bedingt, hängt jedoch auch mit dem infrastrukturellen Aufbau zusammen.
- 4. Grundsätzlich werden Abluftquellen gefasst und als Sekundärluft dem zentralen Verbrennungsprozess zugeführt (je pro Werk).
- 5. Heisse, bereits verbrannte Abluft (O2-arm) wird wenn immer möglich nochmals thermisch genutzt, indem die enthaltene Wärme an einen Bezüger abgegeben wird (z.B. zum Trocknen der Späne im Spantrockner).
- 6. Neben den beiden Hauptemissionsquellen, dem Reingas Abluftvolumenstrom des Spanplattenwerkes (SEKA-Kamin) und des Faserplattenwerkes (SABA-Kamin), bestehen noch drei kleinere Emissionsquellen. Diese geben die Abluft aus der Verbrennung von Heizöl extraleicht bzw. Erdgas direkt über Kamin an die Atmosphäre ab. Die Emissionsquellen sind
 - a. GEKA 1 für Erdgas- und HEL-Feuerung zur Erzeugung thermischer Energie für Thermoöl
 - b. GEKA 2 f
 ür Erdgas- und HEL-Feuerung zur Erzeugung thermischer Energie f
 ür Thermo
 öl
 - c. Lackline-Erdgasfeuerung zur Erzeugung thermischer Energie für Thermoöl
- 7. GEKA 1 und 2 werden parallel betrieben, wobei ein Brenner nur Erdgas, der andere nur HEL verfeuert. Das erzeugte Thermoöl ist am übrigen Netz angeschlossen. Die Wärme wird somit nur zur Stützung des gesamten Thermoölnetzes eingesetzt.
- 8. Die Lackline-Erdgasfeuerung beliefert ein separates Thermoölnetz mit Wärme. Beim Bau der Biomassen-Energieanlage würde jedoch dieses Netz ins restliche eingebunden.
- 9. Somit können mit dem projektierten Ausbau der Biomassen-Energieanlage die drei Emissionsquellen (GEKA 1 und 2, Lackline-Feuerung) aufgehoben werden.

10. Dabei wird die Infrastruktur der Feuerungen bestehen bleiben und nur für den Notfall bereitstehen.

B. Spanplatten-Werk

Die vollständige Sanierung der Abluftreinigungsanlage des Spanplatten-Werkes wurde mit der SEKA-Anlage von Scheuch umgesetzt (Nass-Elektrofilter-Abluftreinigungsanlage). Die Anlage konnte im Jahr 2002 offiziell in Betrieb gehen. Es liegen mehrere Messreihen aus unterschiedlichen Jahren vor. Dabei hat sich gezeigt, dass der Wert der LRV für Gesamt-Kohlenstoff von 350g/to atro in keiner Situation zu erreichen war. Auch die Versuche im Jahr 2007, mit anderen Produktionsparametern zu fahren, z.B. mit geringerer Trocknertemperatur oder anderen Holzsortimenten, brachten keine signifikanten Verbesserungen. Es war allerdings schon vor der Projektierung der Anlage klar, dass der weltweit einzigartige Wert mit dieser Technologie nie einzuhalten wäre. Es drängt sich daher die berechtigte Frage auf, ob nicht er Wert der LRV an die technischen, und wirtschaftlich realisierbaren Gegebenheiten angepasst werden müsste (siehe Schreiben von Dr. Stettler, Leiter Luftreinhaltung Buwal vom 28.10.2002). Die von der LRV geforderten Sanierung bei Nichteinhaltung von Grenzwerten und vom Kanton mehrfach erwähntem Sanierungsbedarf muss entgegengehalten werden, dass die Art. 11 der LRV zur Anwendung kommt: Erleichterung, wenn eine Sanierung unverhältnismässig, insbesondere technisch oder betrieblich, nicht möglich oder wirtschaftlich nicht tragbar wäre (Absatz 1); als Erleichterung kann die Behörde mildere Grenzwerte festlegen (Absatz 2). Die beigelegten Schreiben von zwei bedeutenden Anlagebauern belegen, dass die technische und wirtschaftliche Verhältnismässigkeit mit dem in der LRV geforderten Wert nicht gegeben ist. Die Abluftreinigungsanlage SEKA beim Spanplattenwerk hält folgende Werte ein (Werte gemäss den aktuellsten Messungen pro Schadstoff):

Emissionswerte Reingas SEKA im Spanplattenwerk mit Grenzwerten und Frachten

Reingas-	Mittelwert	Grenzwert	Fracht/h	Fracht/J
Komponente	[mg/m3]			bei 8'000h/J
Stickoxid als NO2	209 mg/m3	250 mg/m3	49.0 kg/h	392'000 kg/J
VOC als Gesamt-C	130 mg/m3	300 mg/m3	36.6 kg/h	292'800 kg/J
	950 g/toatro	350 g/toatro		
Staub	5.3 mg/m3	50 mg/m3	1.5 kg/h	12'000 kg/J
Formaldehyd	6.9 mg/m3	20 mg/m3	1.5 kg/h	12'000 kg/J

Die TA-Luft wird beim Gesamt-C um den Faktor 2.3 unterschritten, gleichzeitig aber um den Faktor 2.7 überschritten bei Orientierung an der LRV. Im europäischen Kontext würde die Anlagereinigung als hervorragend eingestuft, in der Schweiz jedoch gilt sie als sanierungsbedürftig. Diese Diskrepanz ist massiv und unverständlich, gälte doch ein Grenzwert von knapp 48mg/m3 (auf die Produktionsparameter der Kronospan Schweiz AG

bezogen), also ein um Wert, der nur 16% des europäischen Grenzwertes erreichen dürfte. Daher ist von einer Sanierung der Abluftreinigungsanlage klar abzusehen. Die gesetzlichen Grundlagen hierzu könnten kurzfristig aus Art 11 LRV abgeleitet werden (Erleichterungen) und müssten dauerhaft in einer Anpassung des Anhangs 2 Abschnitt 843 (Herstellung von Spanplatten) münden. Die Emissionswerte und die Emissionsfrachten werden durch den Bau der neuen Energieanlage nicht verändert.

C. MDF-Werk

Das 1998/99 neu erstellte MDF-Werk basiert auf einem Abluft-Konzept mit Biowaschanlage, welche durch die Vorgaben der Kronospan Schweiz AG den bis dahin bekannten Stand der Technik wesentlich verbesserte. Die Emissionsmessung nach dem vollständigen Aufbau der Biokultur bestätigte den hohen Standard – die strengen Garantiewerte, die z. T. deutlich unter den gesetzlichen Vorgaben liegen, wurden massiv unterschritten. Diese Werte konnten auch in späteren Messungen, wenn auch nicht so deutlich, bestätigt werden. Die Abluftreinigungsanlage SABA beim MDF-Werk hält folgende Werte ein (Werte gemäss den aktuellsten Messungen pro Schadstoff 5):

Emissionswerte Reingas SABA im MDF-Werk mit Grenzwerten und Frachten

Reingas-	Mittelwert	Grenzwert	Fracht/h	Fracht/J
Komponente	[mg/m3]			bei 8'000h/J
Stickoxid als NO2	32 mg/m3	40 mg/m3	14.5 kg/h	116'000 kg/J
VOC als Gesamt-C	74 mg/m3	100 mg/m3	33.5 kg/h	268'000 kg/J
Staub	8 mg/m3	20 mg/m3	3.7 kg/h	29'600 kg/J
Formaldehyd	4.1 mg/m3	20 mg/m3	1.8 kg/h	14'400 kg/J

Mit der aktuellen Anlage werden somit sämtliche Grenzwerte eingehalten. Die Anlage ist jedoch ausgelegt auf den Energieträger Erdgas. Wird dieser durch den Brennstoff Holz ersetzt, können vor allem beim den Stickoxiden und beim Gesamt-C nicht dieselben tiefen Emissionswerte im Rohgas erwartet werden. Die Reinigungsanlage wäre zu ergänzen mit einer zusätzlichen Elektrostufe.

Energie:

Es wurde mit folgenden Parametern gerechnet (Parameter zur Berechnung der Jahresfrachten und der erzeugten Energiemengen pro Jahr):

Parameter Wert Einheit

Laufzeit der Anlagen 8200 h / Jahr

Bundesamt für Umwelt BAFU Stand der Technik in der Span-und Faserplattenherstellung

Abgasvolumen Erdgas	10.5	m3/Nm3(Normzustand, trocken)
Abgasvolumen HEL	13.8	m3/lt (Normzustand, trocken)
Heizwert Erdgas	11.3	kWh/m3 (Ho)
Heizwert HEL	9.94	kWh/lt
Heizwert Altholz	3.30	kWh/kg
Heizwert Holzstaub	4.60	kWh/kg

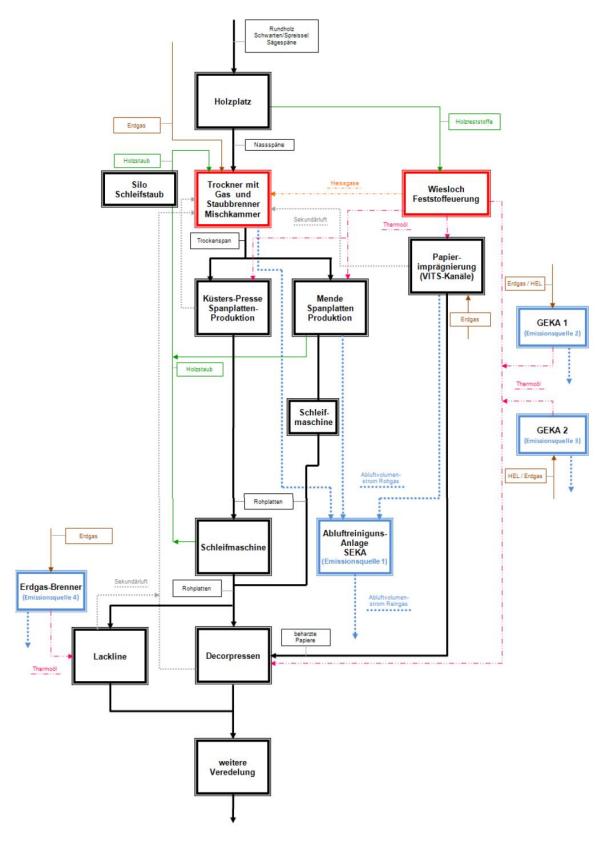
A. Energieerzeugung und damit verbundene Emissionen im Spanplattenwerk

Wie aus nachfolgender Tabelle ersichtlich wird, bestehen heute im Spanplattenwerk vier Emissionsquellen, wobei GEKA 1 und 2 sowie der Lackline-Brenner für die Thermoölerzeugung mit Erdgas- bzw. HEL-Brennern ausgerüstet sind. Die von der Dienststelle uwe zugestellte Tabelle mit den Energieerzeugungsanlagen kann wie folgt zugeteilt werden. GEKA 1 mit Gasbrenner (ES-Nr. gemäss Beiblatt uwe Nr. 26), mit HEL-Brenner (ES-Nr. 20), GEKA 2 mit Gasbrenner (ES-Nr. 31), mit HEL-Brenner (ES-Nr. 30), Lackline mit Gasbrenner (ES-Nr. 33), Wiesloch mit Biomassefeuerung (ES-Nr. 1), Spantrockner mit Gasbrenner (ES-Nr. 1). Die Biomasse der Wieslochanlage besteht zu rund je 40% aus Altholz und Rinden/Papierabfällen sowie 20% Siebstaub.

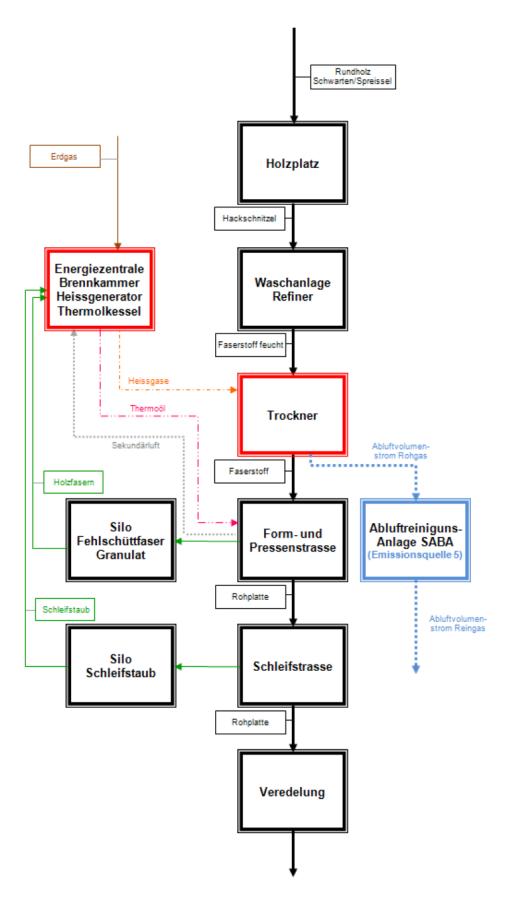
Name	Monn	Anlagentyp	Brennstoff	Brennstoff-	erzeugte	Volumen-	02	CO,	NO.	co	Staub	Formal-	Gesamt	I
Hallie	leistung	Amagentyp	breiniston	verbrauch	Energie	strom	02	CO2	HO ₂		Statio	dehyd	Gesamt C (VOC)	sions
(-)	(kW)	(-)	(-)	Einheit		(m³/h)	(%)		(marima ³)	(mg/m³)	(myt/m²)	(mg/m³)	(mg/m³)	18 B
Wiesloch	4	Feststoffeuerung	Biomasse (feucht)	5'000 kg/h	110 GW	, , , ,	(/0)		(mg/m/	(mg/m/	(mg/m/)	(mg/m /	(iiig/iii /	ш —
vviesiocn	13 000	resistoneuerung	Erdgas	5000 kg/n 50 m³/h	5 GW									1 !
Constant	051000	Brennkammer	Biomasse											
Spantrockner	35'000	Brennkammer	Diominoco	3'000 kg/h	115 GW		47.0		220.00	240.00	5.00	20.00	444.00	E1
			Erdgas	180 m³/h	17 GW		17.2		326.00	210.00	5.33	29.83	111.00	
VITS 1-8 (total)	2'700	Papierimpränierung	Erdgas (total alle)	235 m³/h	22 GW	n		1.89 kg/Nm3						1 1
			inkl. Wärme aus Ti	hermoöl										
Massenstrom g/	h								95'192	61'320	1'556	8'710	32'412	1 1
Jahresfracht kg	IJ				268 GW	n		7'188'649	780'574	502'824	12'762	71'425	265'778	
														_
GEKA 1	8140	Thermoölkessel	Erdgas	600 m³/h	56 GW	h 6'300	3	1.89 kg/Nm3	111	6				E2
			HEL	lt∕h										
GEKA 2	8140	Thermoölkessel	Erdgas	0 m³/h										E3
			HEL	13 lt/h	1 GW	h 182	3	2.64 kg/lt	111	6				23
Jahresbetrieb (li	äuft nur al	ternativ zu GEKA 1)		0 h/J										1 !
Massenstrom g/	h								699	38	-	-	-	
Jahresfracht GE	KA kg/J				57 GW	h		9'275'676	5'734	310	-	-	-	
LackLine	3'000	Thermoölkessel	Erdgas	40 m3/h	4 GW	h 420	11.6	1.89 kg/Nm3	79	8				E4
Massenstrom g/	h								33	3	-	-	-] -]
Jahresfracht La	ckline kg/.	J			4 GW	'n		618'378	272	28	-	-	-	
Gesamtfracht S	panplatte	nwerk [kg/J]			328 GW	h		17'082'703	786'581	503'162	12'762	71'425	265'778	

Energieanlagen und Brennstoffeinsatz mit Emissionsverhalten im Spanplattenwerk (Ist-Situation)

B. Energieerzeugung und damit verbundene Emissionen im Faserplattenwerk


Das MDF-Werk ist aufgrund des hohen und permanenten Energiebedarfes doppelt abgesichert mit Energieerzeugungsanlagen. Ein Thermoölkessel (973) und zwei Heissgaserzeuger (975, 976) sind als

Reserve im Standby-Modus in Betrieb. Die Korrelation zur erwähnten uwe-Liste ist wie folgt: Kessel 971 für Thermoöl entspricht ES-Nr. 21, die Brennkammer zur Heissgaserzeugung mit Biomasse bzw. Thermoöl mit Erdgas entspricht ES-Nr. 2. Im MDF-Werk besteht nur eine einzige Emissionsquelle.


Es gelten dieselben Berechnungs-Parameter wie beim Spanplattenwerk.

ANHANG 6

- a) Flussdiagramm Spanplattenwerk inkl. Abluftquellen
- b) Ablaufschema MDF-Werk inkl. Rohgas / Reingas-Prozesse

Flussdiagramm Spanplattenwerk inkl. Abluftquellen

Ablaufschema MDF-Werk inkl. Rohgas/Reingas-Prozesse

ANHANG 7

ecoDry by Swiss Combi

REFERENCE LIST eco*Dry*

COMBI ecoury

27.01.2016

YEAR	CLIENT	LOCATION	#	TYPE	PRODUCT	COUNTRY
2016	TTKP	Tiszapüspöki	1	20	Corn Gluten Feed	Hungary
2015	Agrana	Aschach	1	5	Corn Gluten Feed	Austria
2015	Four Roses Bourbon	Lawrenceburg KY	1	5	DDGS	USA
2015	Landi Aachtal	Oberaach	1	7.5	Gras/Corn/Wood	Switzerland
2014	United Dalby Bio-Refinery	Dalby	1	18.5	DDGS	Australia
2013	Ethanol Energy a.s.	Vrdy	1	11	DDGS	Czech Republic
2012	Shouguang Meilun Paper Co.Ltd	Shouguang	1	10	Corn Gluten Feed	China
2011	Grain Processing Corp.	Muscatine IA	1	32	Corn Gluten Feed	USA
2008	ABENCS	West Franklin IN	2	28	DDGS	USA
2008	ABENCS	Madison IL	2	28	DDGS	USA
2007	Abener Abengoa	Rotterdam	3	36	DDGS	The Netherlands
2007	GEA Wiegand	Zolotonosha	1	22	DDGS	Ukraine
2007	Biotanol	Goswinowice	1	25	DDGS	Poland
2007	ADM	Clinton IA	4	25	Corn Gluten Feed	USA
2007	Roquette	Beinheim	1	25	DDGS	France
2006	Alco Bio Fuels	Gent	1	35	DDGS	Belgium
2006	Hungrana	Szabadegyhaza	1	31	DDGS	Hungary
2006	Abengoa France	Lacq	2	18	DDGS	France
2006	Agrana Bioethano	Pischelsdorf	2	22	DDGS	Austria
2006	MGP Ingredients Inc.	Pekin 2	1	25	DDGS	USA
2006	GEA Wiegand	Leopoldov	1	25	DDGS	Slovakia
2006	Husky Energy	Minnedosa	1	31	DDGS	Canada
2006	Frucon	Ravenna	1	28	DDGS	USA
2005	Tate & Lyle	Zaragoza	1	15	Corn Gluten Feed	Spain
2004	novel ferm, Brennerei	Dettmannsdorf	1	5	DDGS	Germany
2004	MGP Ingredients Inc.	Atchison	1	25	DDGS	USA
2004	Kronospan / Sanem	Sanem	1	30	Wood	Luxemburg
2004	Roquette	Benifayo	1	12.5	Corn Gluten Feed	Spain
2002	Roquette	Lestrem	1	20	Corn Gluten Feed	France
2002	Roquette	Lestrem	1	20	Corn Gluten Feed	France
2002	Midwest Grain	Pekin	1	20	DDGS	USA
2001	Roquette	Lestrem	1	20	Starch Wheat	France
2000	Syral	Marckolsheim	1	12.5	Starch Wheat	France
2000	A. Heggenstaller	Unterbernbach	1	16	Wood	Germany
2000	Agrana	Aschach	1	9	Corn Gluten Feed	Austria
2000	Homogenholz	Neudörfl	1	8	Wood / Straw	Austria
1999	Roquette	Lestrem	1	20	Starch Wheat	France
1998	Staral	Marckolsheim	1	12.5	Corn Gluten Feed	France
1998	A. Heggenstaller	Uelzen	1	15	Wood	Germany
1995	Törrecentralen Vestjylland	Ringköbing	1	17	Gras/alfalfa	Denmark
1995	Inca Presswood Pallets	Dover	1	6,2	Wood	USA
1995	WKI, Braunschweig	Braunschweig	1	0,1	Wood	Germany
1995	Domtar, Decorative Panels	Huntsville	1	12,5	Wood	Canada
1995	BEMAP	Bemmel	1	1,5	Wood	The Netherlands

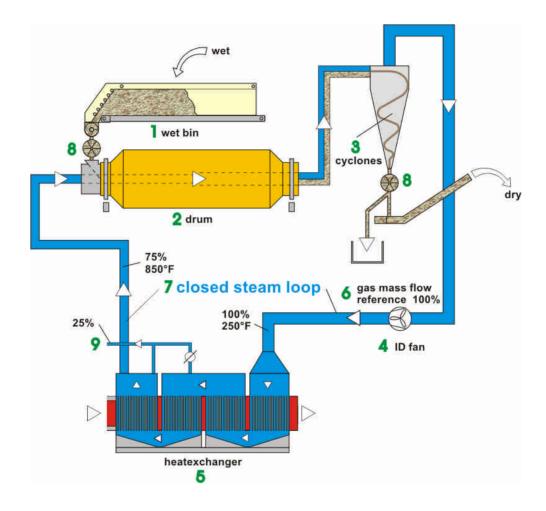
ecoDry for drying wood flakes and particels: Typical Emission Guarantees

	ecoDry natural gas burner	ecoDry dust burner	ecoDry solid fuel burner (bark, wood chips)
Dust	20 mg/m³	15-20 mg/m³. (depending on dry ESP)	15-20 mg/m³. (depending on dry ESP)
Total C	50 mg/m³ destruction efficiency 98%	50 mg/m³ destruction efficiency 98%	50 mg/m³ destruction efficiency 98%
Formaldehyde	20 mg/m³	20 mg/m³	20 mg/m³
NOx	100 mg/m³	depending on fuel and furnace	depending on fuel and furnace
CO	100 mg/m³	depending on fuel and furnace	depending on fuel and furnace
Smell – Odor DIN EN 13725 TO6	4000 SU/m³	4000 SU/m³	4000 SU/m³
Smell – Odor ipt-1158	1500 SU/m³	1500 SU/m³	1500 SU/m³

All values related to dry standard m³ and actual O₂

ecoDry by Swiss Combi

for OSB and Wood Particle Dryers


is the patented closed steam loop drying technology with integrated combustion of VOC's

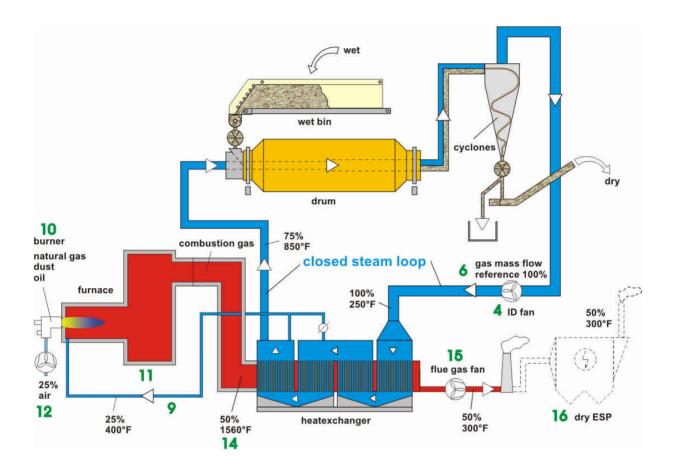
ecoDry	is the alternative to WESP and RTO for OSB flake and wood particle dryers with same exhaust gas quality
ecoDry	means no contact of combustion gas with the flakes or wood particles
ecoDry	improves colour, surface and quality of the dried flakes, wood particles etc.
ecoDry	reduces fire risk due to the steam drying with very low oxygen content
ecoDry	reduces significantly deposit build-up in cyclones, ductings and fans
ecoDry	reduces production cost by lower energy and electrical power consumption and longer operation time between cleaning
ecoDry	was first time built 1989 for smell free drying of sewage sludge and is in operation for wood particle drying since 1996.
ecoDry	is also proven technology in the starch, ethanol and biomass industries to produce non contaminated, high quality animal feed, and fulfils MACT emission standard for these industries.

W. Kunz dryTec AG 1/6

The Closed Steam Loop

The wet strands or wood particles are fed in the known manner from the wet bin (1) into the drum (2). Dry, they are separated after the drum from the drying gas in a drop out chamber and/or cyclones, here shown only as one cyclone (3).

The drying gas is pulled by the ID fan (4) through the drum and cyclones and blown thereafter through the gas/gas heat exchanger (5) for re-heating (see reference 100% (6) as mass flow at the ID fan). About 75% is recycled to the drum inlet forming the "closed steam loop" (7).

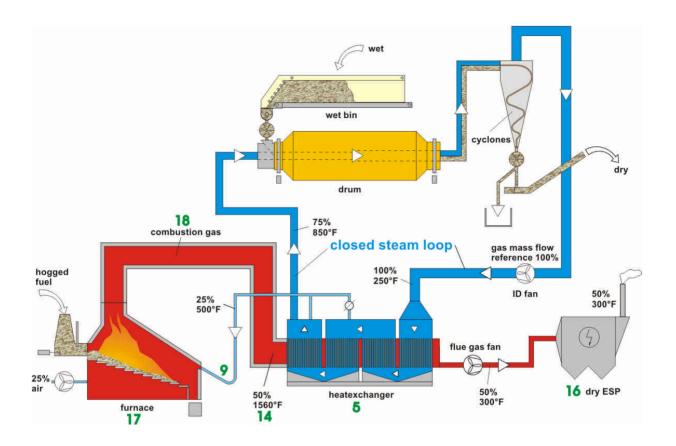

The water evaporation and leakage air from drum seals and rotary valves (8) represent typically 25 %, which makes again 100 % mass flow passing through the ID fan.

The mass flow produced by the water evaporation, VOC's etc. driven out of the wood particles + the leakage air are bled off prewarmed at the heat exchanger to be guided to the furnace for thermal oxidation (9).

W. Kunz dryTec AG 2/6

Energy Generation and Oxidation of VOC

The diagram shows a typical arrangement of a natural gas, sanding dust or oil burner (10) with furnace (11). The figure shows that the bled off steam, which we call "inert gas" (9), is directed to the front end of the primary combustion chamber. This "inert gas" is there mixed with the flame for oxidation of the VOC's, carbon monoxide etc. To assure maximum destruction or oxidation, a temperature of about 1560 °F (1500 - 1600 °F) (14) is needed.


As shown, about the same mass flow of air (12) is needed through the burner as primary combustion air as the mass flow of "inert gas", which makes then the 50 % hot gas flow (14) entering the heat exchanger, where this gas is typically cooled down to about 300 °F at the flue gas fan (15). This makes about half the exhaust gas flow compared to the flow (6) through the ID fan (4).

When natural gas or oil is used as fuel, no further exhaust gas cleaning is needed. When burning sanding/screening dust, a dry ESP (16) is needed for fly ash separation.

W. Kunz dryTec AG 3/6

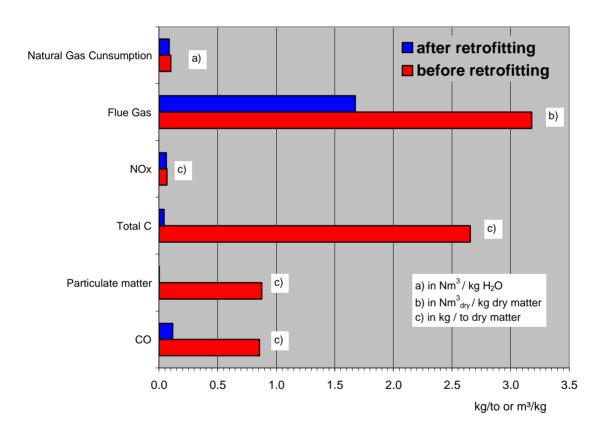
Bark/Wet Fuel Heating

This figure shows a wet fuel heating furnace (17) including how the inert gas (9) can be introduced to an inclined grate furnace system without disturbing the combustion. Depending on type of furnace, part of the inert gas can be added through the normal secondary gas nozzles (not shown). The arrangement of the ducting between furnace and heat exchanger must be realized assuring good mixing of the flue gas for VOC destruction and burn out of sparks.

Due to the lower flame temperature of wet fuel, the inert gas (9) needs to be more pre-heated in the heat exchanger (5), (bleed off more from the hot end) to guarantee the needed temperature (13) of the furnace combustion gas (18).

It is obvious that this type of fuel produces fly ash needing a dry ESP (16) for flue gas cleaning.

W. Kunz dryTec AG 4/6


Emission reduction by ecoDry

In spring 1999 a Duplex dryer with nominal capacity of 16 to/h water evaporation was retrofitted to *ecoDry* in northern Germany to solve exhaust emission problems. The facility produces blocks for pallets of pine wood particles.

The German research institute WKI in Braunschweig published emission testing results before and after conversion. The results below are an extract of the paper published in German.

There is no screening or sanding dust available in that facility, and therefore the plant is heated by natural gas. Similar reductions are however possible when other fuels are used provided the furnace is operated with the necessary temperatures to destroy the VOC's.

The next page shows pictures of an OSB flake dryer converted to ecoDry.

Emissions before and after the conversion of the Duplex dryer in Uelzen

W. Kunz dryTec AG 5/6

Single pass 5.4×24 NH after retrofit to *ecoDry*. In front the heat exchanger. Picture below shows hot flue gas ducting from furnace in the back through the no more used mixing chamber to the heat exchanger

W. Kunz dryTec AG 6/6

Möglichkeiten zur Verringerung der Emissionen bei der Trocknung von Holzspänen und Holzfasern

Dipl. Ing. W. Kunz, W. Kunz dryTec AG, Dintikon/Schweiz

Einleitung

Bei der Holzspantrocknung werden überwiegend direkt befeuerte Trommeltrockner eingesetzt. In Spanplattenwerken wird in aller Regel Schleifstaub als Brennstoff verwendet. Der eingesetzte Brennstoff hat aber nur untergeordnet – z.B. auf den Reststaub im Abgas – Einfluss auf die problematischen Emissionen der Spänetrockner.

Thema hier sind die bekannten Emissionen, nebst Staub, Kohlenmonoxyd und Stickoxyd, der typische blaue Rauch oder blue haze. Weiter der störende, meist aggressive Geruch, also die Kohlenwasserstoffe oder VOC's. Aufgezeigt werden Möglichkeiten, diese Emissionen deutlich zu reduzieren.

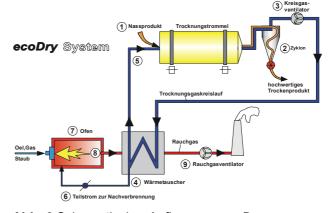
Die Problematik ist auf den beiliegenden Aufnahmen sichtbar.

Abb. 1 & 2 Typische Abgasfahnen von Holzspantrocknern mit direkter Befeuerung

Diese organischen und nicht harmlosen Kohlenwasserstoffe in Trocknungs- oder Prozessabluft werden meist gemessen mit einem FID-Messgerät. Die noch gültige TA Luft begrenzt die zulässige Konzentration für alle Industrien auf 20 mg/Nm³, ausser bei Holztrocknern, welche bisher ausgenommen sind und bei denen dieser Wert um ein Vielfaches überschritten wird. Wie lange dieser Zustand im Hinblick auf die Ozonprobleme und die Klimaerwärmung noch akzeptiert wird, ist offen. Dass die Probleme mit vertretbarem Aufwand lösbar sind und die Technik dazu auch industriell erprobt ist, zeigen wir anschliessend.

Nasselektrofilter reduzieren den sichtbaren Teil der Emissionen, aber nur begrenzt die störenden Gerüche und eben die Kohlenwasserstoffmengen.

Abb. 3 & 4 Abgasfahne bei Trocknern mit Nasselektrofiltern


Die weniger verbreiteten, meist dampfbeheizten Rohrbündeltrockner oder auch die Röhren-Trommeltrockner lösen das Geruchsproblem nicht und emittieren ebenfalls grosse Mengen an Geruch- und Holzinhaltstoffen.

Das System ecoDry, die emissionstechnisch beste Lösung

Das System *ecoDry* wurde 1989 erstmals gebaut für die geruchfreie Trocknung von Klärschlamm, bei einer Leistung von 1 t/h Wasserverdampfung. Das System ist seither bei der Trocknung von Gras, Obsttrestern, Zuckerrübenschnitzeln, Restprodukten der Stärkeindustrie sowie von Rückständen der Alkoholerzeugung eingesetzt mit Leistungen bis 25 t/h Wasserverdampfung. Zur Holzspänetrocknung ist *ecoDry* bisher gebaut worden bis 16 to/h Wasserverdampfung.

Abb. 6 Schematischer Aufbau von *ecoDry*

Das Prinzip *ecoDry* ist aufgrund des Schemas hiermit kurz erklärt.

Das zu trocknende Produkt (1) wird meist in eine Trocknungstrommel nass aufgegeben, in der Trommel getrocknet und anschliessend im Zyklon (2) (oder Multizyklonen) vom Trocknungsgas abgeschieden und ausgetragen. Das Trocknungsgas wird nun durch den Kreisgasventilator (3) nicht über einen Schornstein in die Atmosphäre abgeleitet, sondern zu einem Gas/Gas-Wärmetauscher (4), wo dieses Dampf/Luftgemisch wieder aufgewärmt und mit etwa 450 °C zurück zur Trommel gefördert wird. Dies gibt den so genannt "geschlossenen Dampfkreislauf".

Das in der Trommel verdampfte Wasser, die ausgetriebenen Holzinhaltsstoffe oder Kohlenwasserstoffe mit blauem Rauch etc. werden beim Wärmetauscher als Teilstrom (6) ausgekoppelt, dann als Sekundärgas in die Brennkammer (7) geleitet und hier mit den Verbrennungsgasen vermischt. Enthaltener Staub, die Kohlenwasserstoffe, Geruch- und Schadstoffe werden bei einer Temperatur von ca. 850 °C verbrannt, geben dabei noch Energie frei, welche für den Trocknungsprozess genutzt wird und zum niedrigen, spezifischen Energieverbrauch des *ecoDry* Systems beiträgt. Das heisse, thermisch gereinigte Gas (8) gibt nun im Wärmetauscher den grössten Teil seiner Energie an den Trocknungskreislauf ab, ähnlich einem Heizkessel, und verlässt die Anlage sauber über den Schornstein bei etwa gleichen Temperaturen wie bei einem Dampfkessel.

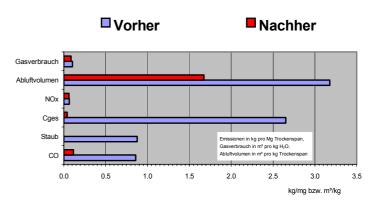
Abb. 7 Unterbernbach - Nur ganz kurze Zeit wurden die konventionellen Trockner [links] parallel zur *ecoDry* Anlage [rechts] betrieben

Abb. 8 Uelzen - Die eindrückliche Abgasqualität von *ecoDry* zeigt der klare Durchblick durch die Abgasfahne am Schornstein

Die wichtigsten Vorteile:

- Nahezu geruchfreies Trocknerabgas
- Kein blauer oder sichtbarer Rauch mehr
- Praktisch kein Staub mehr im Abgas
- ca. 95 % weniger Kohlenwasserstoff-Emissionen als konventionelle Trockner
- Wesentlich geringerer Abluftmassenstrom bei gleicher Leistung
- Sehr niedrige Stick- und Kohlenmonoxyd-Emissionen
- Merklich reduzierter Primärenergieverbrauch
- Sehr helle Trockenspanfarbe

Das patentierte System *ecoDry* ist einzigartig und verbindet die thermische Nachverbrennung prozessintegriert mit dem Trocknungsprozess. Die Anlagen sind meist Erdgas befeuert, aber auch mit Öl, Schleifstaub und sogar Steinkohle. *ecoDry* bietet zudem interessante Möglichkeiten zur Energierückgewinnung beispielsweise zum Beheizen von meist mehrstufigen Eindampfanlagen bei industriellen Prozessen oder, wie ebenfalls realisiert, zur "Gratis"-Beheizung von Bandtrocknern, wodurch der spezifische Wärmeenergiebedarf zusätzlich um etwa 40 % reduziert werden kann. Wir nennen dieses System *ecoTwin*, wobei hier "*Twin*" steht für 2-stufig und *eco* natürlich für "ecology und economy".


Markteinführung von ecoDry bei der Holzspantrocknung

Eine wesentliche Schwierigkeit bei der Markteinführung war, potenzielle Kunden davon zu überzeugen, dass man mit überhitztem Dampf, wie er im Trocknungskreislauf entsteht, überhaupt trocknen kann. Insbesondere Späne zu trocknen auf niedrige Restfeuchten von 2 %, wie sie bei der Spanplattenherstellung benötigt werden. Dies konnte im Labor beim Wilhelm-Klauditz-Institut in Braunschweig zwar nachgewiesen werden, überzeugte aber potenzielle Kunden noch lange nicht. Die Holzwerkstoffbranche kennt zudem die Probleme mit Staub- und Harzablagerungen in den Trocknungsanlagen und die davon ausgehende Brandgefahr sehr gut. Wie viel grösser schienen die Gefahren und Probleme beim Wärmetauscher zu sein.

Mit einer ans WKI in Braunschweig gelieferten Kleinanlage (Abb. 9) konnte aber über längere Perioden demonstriert werden, dass das System funktioniert und mit den dabei gewonnenen Erkenntnissen Firma Heggenstaller in Uelzen überzeugt werden, den bestehenden Duplex-Trockner auf System *ecoDry* umzubauen. Bild 10 zeigt die neutral ermittelten Unterschiede bei den Emissionen vor und nach dem Umbau.

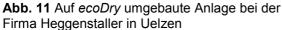

Abb. 9 *ecoDry*-Versuchsanlage beim WKI Braunschweig

Abb. 10 Emissionen ermittelt durch das WKI Braunschweig vor und nach Umbau Uelzen auf System *ecoDry*

Die erreichten Ergebnisse ermutigten ein österreichisches Spanplattenwerk zum Kauf einer neuen *ecoDry* Anlage zur Trocknung von abwechslungsweise Holzspänen und Stroh, welche in der Spanplattenproduktion verarbeitet werden. Auch Firma Heggenstaller kaufte, nach erfolgreichem Betrieb der umgebauten Anlage Uelzen (Abb. 11), bei uns eine komplett neue *ecoDry* Trocknungsanlage für das Hauptwerk in Unterbernbach (Abb. 12). Die Anlage wurde durch uns schlüsselfertig als Ersatz für zwei konventionelle Trockner zur Lösung der Emissionsprobleme geliefert.

Abb. 12 Neuste *ecoDry* Anlage für Holzspäne bei der Firma Heggenstaller in Unterbernbach

Die überzeugenden Ergebnisse der Abnahmemessung in Unterbernbach und Neudörfl sind in Abb. 13 dargestellt und zum Vergleich mit konventionellen Trocknern auch auf 17 % Sauerstoffgehalt umgerechnet. Fachleute erkennen sofort, dass hier neue Massstäbe gesetzt wurden.

	Unterbe	rnbach	Neu	dörfl	bezogen auf Normzustand	
	Gemessen im Durchschnitt	Umgerechnet auf 17% O ₂	Gemessen im Durchschnitt	Umgerechnet auf 17% O ₂		
Sauerstoffgehalt O ₂	9.8 %	17 %	9.2 %	17 %	trocken	
Stickoxyde NOx	78 mg/Nm ³	28 mg/Nm ³	84 mg/Nm ³	28 mg/Nm ³	trocken	
Kohlenmonoxid CO	39 mg/Nm ³	14 mg/Nm ³	58 mg/Nm ³	20 mg/Nm ³	trocken	
Gesamtkohlen- wasserstoffe	9.7 mg/Nm ³	3.5 mg/Nm ³	36 mg/Nm ³	12 mg/Nm ³	trocken	
Staub	3.6 mg/Nm ³	1.6 mg/Nm ³	Nicht gemessen	Nicht gemessen	feucht	

Abb. 13 Ergebnisse der Abnahmemessung der ecoDry Trockner in Unterbernbach und Neudörfl

Anfang November 2004 wurde in Luxemburg ein Büttner OSB-Flaketrockner nach Umbau auf *ecoDry* erfolgreich in Betrieb genommen. Es ist dies die leistungsmässig grösste *ecoDry*-Anlage in der Holzwerkstoffindustrie, zudem mit Schleifstaub/ Erdgasfeuerung ausgerüstet.

Der Niedertemperaturtrockner KUVO, eine gute Alternative

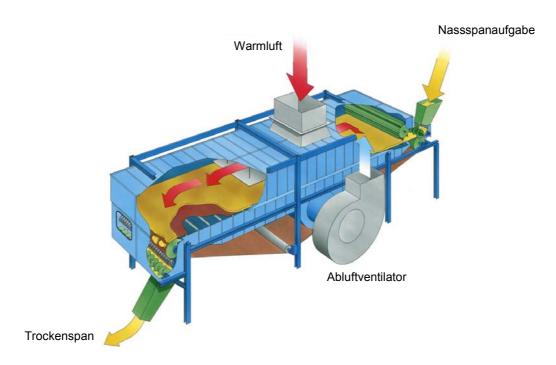


Abb. 14 Aufbau eines KUVO-Bandtrockners

Emissionstechnisch günstig ist der Niedertemperatur-Bandtrockner KUVO, welcher meist in Verbindung mit Kraft-Wärme-Kopplung eingesetzt werden kann oder bei Rinde befeuerten Warmwassersystemen und Fernwärmeversorgungen.

Beim KUVO wird Umgebungsluft in Lamellenwärmetauschern oder Luftvorwärmern mit Warmwasser, durch Dampfkondensation oder aus einem ORC-Prozess auf ca. 90 °C erwärmt. Sie durchströmt dann die zu trocknende Spanschicht und das luftdurchlässige Gewebeband. Die abgekühlte und weitgehend gesättigte Trocknungsluft wird vom Abluftventilator ohne weitere Behandlung mit nur geringer Staubbeladung ins Freie gefördert. Die Abluft ist nicht geruchlos, aber riecht dank der niedrigen Trocknungslufttemperatur wie frisch geschnittenes Holz, was nicht oder kaum als störend empfunden wird.

In grossen Sägewerken sind diese Trockner speziell geeignet zur notwendigen Trocknung der Späne auf etwa 10 % Restwassergehalt vor deren Veredelung zu Pellets als sauberem, weitgehend CO₂-neutralem Brennstoff. Der Aufbau der KUVO Bandtrockner ist auf Abb. 14 ersichtlich.

Die niedrige Trocknungslufttemperatur und der geringe Staubgehalt in der Abluft erübrigen eine weitere Abluftbehandlung. Ein weiterer Vorteil besteht darin, dass nur bei kaltem Wetter eine Dampffahne entsteht dank der vielfachen Luftmenge im Vergleich zu konventionellen Trocknern gleicher Leistung. Dies gibt einen Entschwadungseffekt.

Abb. 15 Anordnung der Lamellenwärmetauscher Abb. 16 Die sehr gleichmässige Produktschicht zur Warmlufterzeugung

auf dem Trocknungsband

Bandtrockner können für beliebige Leistungen von klein bis gross gebaut werden.

Dass Bandtrockner auch respektable Dimensionen (Abb. 18) annehmen können, zeigen von uns 1983 gelieferte Anlagen in die Zuckerindustrie, welche mit Abwärme aus der Zuckergewinnung je ca. 30 to/h Wasserverdampfung erreichen.

Abb. 17 Mittelgrosser Bandtrockner bei *ecoTwin* Anlage, einer Kombination von ecoDry und KUVO Bandtrockner

Abb. 18 4-Etagen Bandtrockner in Zuckerfabrik mit ca. 30 t/h Wasserverdampfung

Zusammenfassung

Die W. Kunz dryTec AG hat über 500 Trocknungsanlagen in über 40 Länder weltweit geliefert, mit Wasserverdampfungsleistungen pro Anlage bis 55 to/h. In den letzten Jahren konzentrierten wir uns vor allem auf die Entwicklung und Lieferung von sehr umweltfreundlichen und energiesparenden Trocknungssystemen. Daneben wurden Bandfilter zur Filtrierung und Energierückgewinnung von Trocknerabgasen gebaut und grosse Kaminwaschanlagen *ecoWash* für zahlreiche Zuckerfabriken und Abgasströme bis ca. 400'000 m³/h für beide Systeme geliefert. Auch dies sind Entwicklungen in Richtung Energieeinsparung und Umweltschutz.

Weltweit ist *ecoDry* das sicher umweltfreundlichste Trocknungssystem für Sägespäne und viele Geruch emittierende Produkte, welche getrocknet werden müssen. Dass das System für die Trocknung von OSB Strands oder Holzfasern, zumindest unbeleimte, eingesetzt werden könnte, ist naheliegend.

Bandtrockner KUVO sind vor allem geeignet zur Holzspantrocknung bei verfügbarer Niedertemperaturenergie, also Warmwasser, zu kondensierendem Dampf nach Turbinen bei Kraft/Wärmekopplungsanlagen und hier speziell für die Holzpelletherstellung. Dank der niedrigen Lufttemperatur bei der Trocknung sind sie ebenfalls produktschonend und arbeiten entsprechend mit geringen Emissionen.

ecoDry und KUVO Bandtrockner sind geschützte Produkte der W. Kunz dryTec AG, besser bekannt unter SWISS COMBI, einem ebenfalls eingetragenen Markennamen. Weitere Informationen findet man unter www.swisscombi.ch

Schrifttum:

- Becker, M.: Abschlussbericht "Entwicklung eines emissionsfreien und energetisch günstigen Holzspänetrocknungssystems mit geschlossenem Gaskreislauf" bmb+f Projektnr. 01-VQ9526/0, WKI Braunschweig, 12/1998
- Bundesministerium für Bildung und Forschung (Hrsg): Holzspäne energiesparend und schonend getrocknet, Informationsbroschüre des bmb+f, Berlin, 12/2000
- Kunz, W.: Verfahren zum Trocknen einer Substanz, insbesondere von Holzspänen, Europäisches Patent EP 01714006B1, 12/1997
- Marutzky, R.: Dust and VOC Emissions in the European Particle Board and Fibre Board Industry, 3rd EUROWOOD Symposium and 4th FESYP Technical Conference, Fraunhofer Wilhelm-Klauditz-Institut, Braunschweig, 10/1996
- Vgl. Artikel aus dem Holz-Zentralblatt über Pfeifer in Kundl (Österreich), 10.12.1999, S. 2000
- Vgl. Artikel aus dem Holz-Zentralblatt "Spänetrocknung mit Dampf", 7.12.2001, S. 1886

REFERENZLISTE BANDTROCKNER

SWISS COMBI Bandtrockner

08.09.2016

JAHR	KUNDE	ORT	#	TYP*	PRODUKT	LAND
2016	Chiping County Xinlida Wood Industry Co., Ltd.	Chiping	1	7.2 / 324	Sägespäne	China
2016	Stobart Energy	Widnes	1	6 / 200	Hackschnitzel	UK
2015	Axpo Tegra AG	Domat Ems	2	6 / 200	Waldabfälle	Schweiz
2015	Alex Anderson	Bo'ness	1	6 / 130	Hobelspäne	Schottland
2015	Quattrofoglio / Nazzareno	Montenero di Bisaccia	1	6 / 130	Sägespäne	Italien
2015	Landi Aachtal	Oberaach	1	6 / 88	Gras / Mais / Hackschnitzel	Schweiz
2015	Tschopp Holzwerke AG	Buttisholz	1	6 / 102	Sägespäne	Schweiz
2014	NewFuels	Rezekne	1	7.2 / 375	Hackschnitzel	Lettland
2014	FM Pellets	Markt St. Martin	1	6 / 88	Sägespäne	Osterreich
2014 2014	Holzindustrie Schweighofer	Radauti	1 1	7.2 / 424 6 / 60	Sägespäne Sägespäne	Rumänien Frankreich
2014	Alpes Energie Bois / Bois du Dauphiné Holzindustrie Schweighofer	Le Cheylas Reci	1	7.2 / 424	Sägespäne Sägespäne	Rumänien
2014	ASIA LES / Prodesa (Lizenz)	Khabarovsk	1	6 / 157	Sägespäne	Russland
2014	OKI / Metso (Lizenz)	Südsumatra	2	7.2 / 341	Sägespäne / Rinde	Indonesien
2014	Enocell / Metso (Lizenz)	Uimaharju	1	7.2 / 257	Sägespäne	Finland
2013	Ceramicas Utzubar / Prodesa (Lizenz)	Echarri Aranaz	1	6 / 101	Hackschnitzel	Spanien
2013	Prodeva	Vatry	1	6 / 60 **	Gras / Luzerne	Frankreich
2013	Codema	Changé	1	7.2 / 236	Gras / Luzerne	Frankreich
2013	Holzwerke Weinzierl GmbH	Vilshofen	1	7.2 / 224	Sägespäne	Deutschland
2013	Südzucker AG	Rain	2	7.2 / 290	Rübenschnitzel	Deutschland
2013	CellMark / Prodesa (Lizenz)	Sarawak	1	6 / 157	Hackschnitzel	Malaysia
2013	Piveteau Bois	Egletons	1	7.2 / 342	Sägespäne	Frankreich
2013	IBV	Vielsalm	2	7.2 / 240	Sägespäne	Belgien
2013	Martens EKO	Venray	1	6 / 157	Sägespäne	Niederlande
2013	Bürli	Alberswil	1	3.7 / 35 **	Sägespäne / Gras	Schweiz
2013	Bioenergeticheskaya Kompaniya LLC / Metso (<i>Lizenz</i>)	Syktyvkar	1	6 / 60	Hackschnitzel	Russland
2012	Desia 25	Pontarlier	1	6 / 144	Sägespäne / Gras	Frankreich
2012	Scierie Archimbaud	Labouheyre	1	7.2 / 274	Sägespäne	Frankreich
2012	Lux Energy / KIOWATT	Roost	1	6 / 130	Sägespäne	Luxemburg
2012	Fortum / Metso (Lizenz)	Joensuu	1	7.2 / 240	Hackschnitzel	Finnland
2012 2012	TorrCoal Enerbois	Dilsen Rueyres	1 1	6 / 130 6 / 130	Hackschnitzel Sägespäne	Belgien Schweiz
2012	Agrana Zucker GmbH	Tulln	3	7.2 / 290	Rübenschnitzel	Österreich
2012	Agrana Zucker GmbH	Leopoldsdorf	3	7.2 / 290	Rübenschnitzel	Österreich
2012	Südzucker AG	Plattling	2	7.2 / 290	Rübenschnitzel	Deutschland
2011	Siat Braun	Urmatt	1	7.2 / 307	Sägespäne	Frankreich
2011	Ecopower	Kwaadmechelen	1	6 / 88	Sägespäne	Belgien
2011	AlbAm	Oostende	1	6 / 115	Hobelspäne	Belgien
2011	Robeta / Rudnick & Enners	Milmersdorf	1	6 / 88	Sägespäne	Deutschland
2011	Land Energy / Knoblinger	Girvan	1	6 / 185	Sägespäne	Schottland
2011	Vaskiluodon Voima / Metso (Lizenz)	Vaskiluoto	1	7.2 / 274	Hackschnitzel	Finnland
2011	Kronospan Luxembourg S.A.	Sanem	1	6 / 185	OSB-Flakes	Luxemburg
2011	Swedwood / Prodesa (Lizenz)	Incukalns	1	4 / 42	Sägespäne	Lettland
2011	Ribpellet / Prodesa (Lizenz)	Huerta del Rey	1	6 / 140	Sägespäne	Spanien
2011	Galpellet / Prodesa (Lizenz)	Orense	1	6 / 66	Sägespäne	Spanien
2011	Energías Renovables de Tarazona / Prodesa (<i>Lizenz</i>)	Tarazona de la Mancha	1	6 / 84	Sägespäne	Spanien
2010	Falu Energi & Vatten	Falun	2	6 / 88	Sägespäne	Schweden
2010	Friedli AG / Juwi Bio GmbH	Langelsheim	2	6 / 88	Sägespäne	Deutschland
2010	Beniwood AG	Gossau	1	6 / 60	Sägespäne	Schweiz
2010	J. Rettenmaier & Söhne GmbH	Ellwangen	1	6 / 130	Sägespäne	Deutschland
2010	Alpes Energie Bois / Bois du Dauphiné	Le Cheylas	1	7.2 / 105	Sägespäne	Frankreich
2010	Alex Anderson	Bo'ness	1	6 / 115	Hobelspäne	Schottland
2010	BK Bioenergie GmbH	Kehl	1	6 / 115	Sägespäne	Deutschland
2010	Holzwerke Weinzierl GmbH	Vilshofen	1	7.2 / 224 6 / 102	Sägespäne Sägespäne	Deutschland Spanion
2010 2010	Pellets Asturias / Prodesa (Lizenz) Piveteau Bois / Prodesa (Lizenz)	Tineo Egletons	1 1	6 / 102 5 / 70	Sägespäne Sägespäne	Spanien Frankreich
2010	I IVOLEGU DOIS / I TOUESA (LIZETIZ)	Lyielolis	ı	3770	Jayespalle	i iaiiki GiUll

REFERENZLISTE BANDTROCKNER

SWISS COMBI Bandtrockner

08.09.2016

2009	Enviva / AREVA Bioenergy GmbH	Thimister-Clermont	1	6 / 130	Sägespäne	Belgien
JAHR	KUNDE	ORT	#	TYP*	PRODUKT	LAND
2008	Brandenburg Holzfaserstoffe GmbH	Goldenstedt	2	4 / 39	Sägespäne	Deutschland
2008	Johannes Brandenburg GmbH	Goldenstedt	1	6 / 120	Hobelspäne	Deutschland
2008	Stora Enso / Metso (Lizenz)	Varkaus	1	6 / 150	Rinde	Finnland
2008	Enermontijo / Prodesa (Lizenz)	Pegões	1	6 / 96	Sägespäne	Portugal
2007	Balcas, Ltd.	Invergordon	2	6 / 120	Sägespäne	Schottland
2007	AEK Pellet AG	Balsthal	1	6 / 120	Sägespäne	Schweiz
2007	Steidle	Krauchenwies	1	6 / 120	Sägespäne	Deutschland
2007	VAPO	Vilppula	1	6 / 222	Sägespäne	Finnland
2007	IBV	Vielsalm	2	6 / 204	Sägespäne	Belgien
2007	Binder Holz GmbH	Kösching	1	6 / 204	Sägespäne	Deutschland
2007	Ebaki / Prodesa (Lizenz)	Muxika	1	6 / 66	Sägespäne	Spanien
2006	Barlinek	Barlinek	1	6 / 120	Sägespäne	Polen
2006	Heggenstaller	Uelzen	1	6 / 258	Sägespäne	Deutschland
2006	Energiepellets Oberhonnefeld / Van Roje	Oberhonnefeld	1	6 / 100	Sägespäne	Deutschland
2006	Holzindustrie Pabst	Zeltweg	1	6 / 130	Sägespäne	Österreich
2006	Holzmühle Westerkamp	Visbek	1	3 / 40	Sägespäne	Deutschland
2005	RECY BOIS, Paletteries Francois	Virton	1	6 / 80	Sägespäne	Belgien
2005	IN Energie	Ingolstad	1	5 / 55	Sägespäne	Deutschland
2005	Pelletierwerk Schwedt GmbH	Schwedt / Oder	1	6 / 204	Sägespäne	Deutschland
2004	Balcas, Ltd.	Enniskillen	1	6 / 130	Sägespäne	Irland
2004	Binder Holz GmbH	Fügen	1	6 / 126	Sägespäne	Österreich
2004	Tereos	Escaudoeuvres	2	6 / 200	Rübenschnitzel	Frankreich
2004	Bioenergie Sonnen Pellets GmbH	Buchenbach	1	6 / 88	Sägespäne	Deutschland
2003	Holzindustrie Pfeifer	Kundl	1	5 / 125	Sägespäne	Österreich
2003	URBAS Maschinenfabrik	Ybbs	1	6 / 160	Sägespäne	Österreich
2003	Ziegler-Erdenwerk	Plössberg	1	6 / 100	Sägespäne	Deutschland
2003	Beniwood AG	Gossau	1	3 / 40	Rinde	Schweiz
2003	Peter Seppele GmbH	Sachsenburg	1	6 / 160	Sägespäne	Österreich
2002	Mann / Westerwälder Holzpellets	Langenbach	1	5 / 54	Sägespäne	Deutschland
1999	NUFRI	Mollerusa	1	5 / 100	Trester	Spanien
1997	Holzindustrie Pfeifer	Kundl	1	5 / 125	Sägespäne	Österreich
1996	Sucreries Dist., Lillers	Lillers	1	5 / 38 **	Rübenschnitzel	Frankreich
1996	Calau	Calau	1	5 / 150	Gras/Alfalfa	Deutschland
1995	Societe Sucriere & Agricole	Vauciennes	1	3 / 20 **	Rübenschnitzel	Frankreich
1995	Sabi	Vaggeryd	1	3 / 35 **	Sägespäne	Schweden
1994	Trocknungsgenossenschaft	Neuhof / Zenn	1	3 / 25 **	Gras/Alfalfa	Deutschland
1994	OGO, Obstverwertung	Oberaach	1	5 / 75 **	Gras/Alfalfa	Schweiz
1994	H. Kaufmann, Winikon	Winikon	1	2 / 15 **	Gras/Alfalfa	Schweiz
1994	Trocknungswerk, Bobingen	Bobingen	1	5 / 60 **	Gras/Alfalfa	Deutschland
1993	Trocknungswerk Leibi	Leibi	1	3 / 30 **	Gras/Alfalfa	Deutschland
1987	Grastrocknungs-Genossenschaft	Muri	1	3 / 20 **	Gras/Alfalfa	Schweiz
1986	Schleswig-Holsteinische Zucker AG	Schleswig	1	6 / 150 **	Rübenschnitzel	Deutschland
1986	Union Zucker Südhannover GmbH	Nörten-Hardenberg	1	5 / 85 **	Rübenschnitzel	Deutschland
1986	Köpingebro Sockerbruk	Köpingebro	1	6 / 62	Rübenschnitzel	Schweiz
1985	Shell-Farm A/S, Tjele	Aars	1	3 / 16 **	Gras/Alfalfa	Dänemark
1985	Törrecentralen Vestjylland	Ringköbing	1	3 / 25 **	Gras/Alfalfa	Dänemark
1985	Coop. de Déshydratation	Marigny-le-Châtel	1	3 / 16 **	Alfalfa/Rübenschnitzel	Frankreich
1985	Grastrocknungs-Genossenschaft	Merenschwand	1	2 / 12 **	Gras/Alfalfa	Schweiz
1985	Landw. Genossenschaft	Sins	1	2 / 12 **	Gras/Mais/Stroh	Schweiz
1984	Ratör	Gredstedbro	1	3 / 16 **	Gras/Alfalfa	Dänemark
1984	Zuckerfabrik Düren	Düren	1	6 / 80 **	Rübenschnitzel	Deutschland
1983	Süddeutsche Zucker AG	Offstein	1	5 / 600	Rübenschnitzel	Deutschland
1983	Zuckerfabrik Franken	Zeil	1	5 / 600	Rübenschnitzel	Deutschland
* Bandbreite [[m] / aktive Fläche [m²]					

^{*} Bandbreite [m] / aktive Fläche [m²] ** KUVO: Band-Filter/Trockner

VEREIN DEUTSCHER INGENIEURE

Emissionsminderung Holzbearbeitung und -verarbeitung Holzwerkstoffherstellung

Emission control Wood machining and processing Production of wood-based panels

VDI 3462

Blatt 2 / Part 2

Ausg. deutsch/englisch Issue German/English

Der Entwurf dieser Richtlinie wurde mit Ankündigung im Bundesanzeiger einem öffentlichen Einspruchsverfahren unterworfen. Die deutsche Version dieser Richtlinie ist verbindlich. The draft of this standard has been subject to public scrutiny after announcement in the Bundesanzeiger (Federal Gazette).

The German version of this standard shall be taken as authoritative. No guarantee can be given with respect to the English translation

Vorbemerkung 2 Preliminary note 2 1 Anwendungsbereich 2 1 Scope 2 2 Normative Verweise 4 2 Normative references 4 3 Begriffe 4 3 Terms and definitions 4 4 Allgemeine Hinweise 7 4 General notes 7 5 Technologie 7 5 Technology 7 5.1 Sperrholz 7 5.1 Plywood 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 6.1 Delivery and storage 26 6.2 Holzaufbereitung/Holzfasererzeugung 28 6.3 Drying and gluing 29 6.3 Trocknung und Beleimung 29 6.4 Pressing 32 6.5 Endbearbeitung <th>In</th> <th>halt</th> <th>Seite</th> <th>Contents</th> <th>Page</th>	In	halt	Seite	Contents	Page
2 Normative Verweise 4 2 Normative references 4 3 Begriffe 4 3 Terms and definitions 4 4 Allgemeine Hinweise 7 4 General notes 7 5 Technologie 7 5 Technology 7 5.1 Sperrholz 7 5.1 Plywood 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 6.1 Anlieferung und Verminderung von Emissionen in die Atmosphäre 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.2 Holzaufbereitung/Holzfasererzeugung 28 6.3 Drying and gluing 29 6.3 Trocknung und Beleimung 29 6.3 Drying and gluing 29 6.5 Endbearbeitung 34 7 Other	V	orbemerkung	. 2	Preliminary note	. 2
3 Begriffe 4 3 Terms and definitions 4 4 Allgemeine Hinweise 7 4 General notes 7 5 Technologie 7 5 Technology 7 5.1 Sperrholz 7 5.1 Plywood 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 5.7 Composite board 26 6 Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 26 Generation, prevention and reduction of emissions to air 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.2 Holzaufbereitung/Holzhackschnitzel- erzeugung/Holzfasererzeugung 28 6.3 Trocknung und Beleimung 29 6.3 Drying and gluing 29 6.4 Pressen 32 6.4 Pressing 32 6.5 Endbearbeitung 34 <th>1</th> <th>Anwendungsbereich</th> <th>. 2</th> <th>Scope</th> <th>. 2</th>	1	Anwendungsbereich	. 2	Scope	. 2
4 Allgemeine Hinweise 7 4 General notes 7 5 Technologie 7 5 Technology 7 5.1 Sperrholz 7 5.1 Plywood 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 5.7 Composite board 26 6 Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 26 6 Generation, prevention and reduction of emissions to air 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.2 Holzaufbereitung/Holzfasererzeugung 28 6.3 Trocknung und Beleimung 29 6.3 Drying and gluing 29 6.4 Pressen 32 6.5 Finishing 34 7 Sonstige Umweltauswirkungen 34 7.0 Waste 34 7.1 Lärm 34 7.1 Noise 34	2	Normative Verweise	. 4	Normative references	. 4
5 Technologie 7 5 Technology 7 5.1 Sperrholz 7 5.1 Plywood 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formtteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 5.7 Composite board 26 6 Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 26 6.1 Delivery and storage 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.2 Holzaufbereitung/Holzhackschnitzelerzeugung 28 6.3 Drying and gluing 29 6.4 Pressen 32 6.4 Pressing 32 6.5 Endbearbeitung 34 7.5 Tinishing 34 7.1 Lärm 34 7.1 Noise 34 7.1 Lärm 34 7.2 Waste 35	3	Begriffe	. 4	3 Terms and definitions	. 4
5.1 Sperrholz 7 5.1 Plywood. 7 5.2 Spanplatten 8 5.2 Particleboard 8 5.3 Oriented Strandboards (OSB) 18 5.3 Oriented strandboards (OSB) 18 5.4 Faserplatten 21 5.4 Fibreboard 21 5.5 Formteile aus Holzfasern 25 5.5 Moulded wood fibre products 25 5.6 Holzfaserdämmplatten 25 5.6 Wood fibre insulation board 25 5.7 Verbundplatten 26 5.7 Composite board 26 6 Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.1 Anlieferung und Lagerung 26 6.1 Delivery and storage 26 6.2 Wood preparation/would chip production/ 26 6.3 Trocknung und Beleimung 29 6.3 Drying and gluing 29 29 6.4 Pressen 32 6.4 Pressing 32 6.5 Endbearbeitung 34 7 Other environmental impacts 34 7 Lärm 34 7.1 Noise 34 7.1 Lärm 34 7.1 Noise 35 7.3 Abwässer 36 <t< th=""><th>4</th><th>Allgemeine Hinweise</th><th>. 7</th><th>General notes</th><th>. 7</th></t<>	4	Allgemeine Hinweise	. 7	General notes	. 7
von Emissionen in die Atmosphäre .26 reduction of emissions to air .26 6.1 Anlieferung und Lagerung .26 6.1 Delivery and storage .26 6.2 Holzaufbereitung/Holzhackschnitzelerzeugung/Holzfasererzeugung .28 6.2 Wood preparation/would chip production/ fibre production .28 6.3 Trocknung und Beleimung .29 6.3 Drying and gluing .29 6.4 Pressen .32 6.4 Pressing .32 6.5 Endbearbeitung .34 6.5 Finishing .34 7 Sonstige Umweltauswirkungen .34 7 Other environmental impacts .34 7.1 Lärm .34 7.1 Noise .34 7.2 Abfälle .35 7.2 Waste .35 7.3 Abwässer .36 7.3 Waste water .36 7.4 Energieeffizienz .36 7.4 Energy efficiency .36 8 Emissionswerte .37 8 Emission values .37	5	5.1 Sperrholz	. 7 . 8 .18 .21 .25	5.1 Plywood	. 7 . 8 . 18 . 21 . 25
7.1 Lärm .34 7.1 Noise .34 7.2 Abfälle .35 7.2 Waste .35 7.3 Abwässer .36 7.3 Waste water .36 7.4 Energieeffizienz .36 7.4 Energy efficiency .36 8 Emissionswerte .37 8 Emission values .37		5.7 Verbundplatten		5.7 Composite board	. 26
	6	Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 6.1 Anlieferung und Lagerung 6.2 Holzaufbereitung/Holzhackschnitzelerzeugung/Holzfasererzeugung 6.3 Trocknung und Beleimung 6.4 Pressen	.26 .26 .26 .28 .29 .32	Generation, prevention and reduction of emissions to air	. 26 . 26 . 28 . 29 . 32
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 6.1 Anlieferung und Lagerung 6.2 Holzaufbereitung/Holzhackschnitzelerzeugung/Holzfasererzeugung	.26 .26 .28 .29 .32 .34 .34 .34 .35 .36	Generation, prevention and reduction of emissions to air 6.1 Delivery and storage	. 26 . 28 . 29 . 32 . 34 . 34 . 35 . 36
	7	Entstehung, Vermeidung und Verminderung von Emissionen in die Atmosphäre 6.1 Anlieferung und Lagerung 6.2 Holzaufbereitung/Holzhackschnitzelerzeugung/Holzfasererzeugung	.26 .26 .28 .29 .32 .34 .34 .35 .36	Generation, prevention and reduction of emissions to air 6.1 Delivery and storage 6.2 Wood preparation/would chip production/ fibre production 6.3 Drying and gluing 6.4 Pressing 6.5 Finishing 7 Other environmental impacts 7.1 Noise 7.2 Waste 7.3 Waste water 7.4 Energy efficiency	. 26 . 26 . 28 . 29 . 32 . 34 . 34 . 35 . 36

Kommission Reinhaltung der Luft im VDI und DIN - Normenausschuss KRdL

Bibliography . . .

Fachbereich Umweltschutztechnik

Zu beziehen durch / Available at Beuth Verlag GmbH, 10772 Berlin – Alle Rechte vorbehalten / All rights reserved © Verein Deutscher Ingenieure e.V.,

Former editions: 10/95; 12/10 Draft, in German only

Düsseldorf 2013

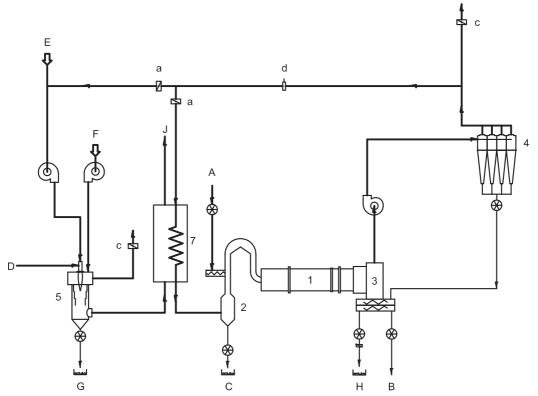


Bild 12. Schema eines indirekt beheizten Spänetrockners mit Umlufttrocknung nach dem UTWS-Prinzip (Trommeltrockner) – Typ 2b

- 1 Trommeltrockner
- 2 Vortrockner
- 3 Ausfallgehäuse
- 4 Zyklonentstaubung
- 5 Brennkammer

(Die Mischkammer (6) entfällt bei diesem Verfahren.)

- 7 Wärmeübertrager
- A Materialeintrag
- B Produktaustrag
- C Grobgut
- D Brennstoff
- E Verbrennungsluft
- F Frischluft
- G Ascheaustrag
- H Notaustrag
- I Abgasreinigung
- a Regelklappe
- c Notklappe/Notkamin
- d Schieber

Trommel ab und wird danach einer Entstaubungsanlage (z.B. Trockenelektrofilter) zugeführt. Das im Trockenelektrofilter entstaubte Trocknungsabgas wird über einen Schornstein abgeleitet.

Die zur Nachverbrennung erforderliche Energie beträgt 50 % bis 70 % der Trocknungsenergie.

Die systematische Minimierung von Falschlufteintritt und der Betrieb des Brenners mit niedriger Verbrennungsluftmenge führen zu einer deutlichen Reduktion des Abgasvolumenstroms sowie einer Einsparung von Trocknungswärme.

Figure 12. Schematic diagram of an indirect-heated particle drier operated with drying air recirculation according to the UTWS principle (rotary drier) – type 2b

- 1 rotary drier
- 2 pre-drier
- 3 drop-out box
- 4 product recovery cyclone
- 5 combustion chamber

(The mixing chamber (6) is not required with this technology.)

- 7 heat exchanger
- A material inlet
- B product outlet
- C coarse material
- D fuel
- E combustion air
- F fresh air
- G ash discharge
- H emergency discharge
- I waste gas cleaning system
- a control damper
- c emergency damper/emergency stack
- d line blind

drying gas before being sent to a dust collector (e.g. dry-type electrostatic precipitator). After dedusting in the dry-type electrostatic precipitator, the waste gas is discharged to the atmosphere via a stack.

The energy required for the thermal oxidation of the drier exhaust stream accounts for approx. 50% to 70% of the drying energy.

Consistent minimisation of air-in leakage and operation of the burner at a low combustion air rate significantly reduce the exhaust gas flow rate and result in drying heat savings.

ANHANG 8

Ausgewählte Kapitel der Luftreinhalte-Verordnung (LRV)

- a) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985, Stand 16. Dezember 1985
- b) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985, Stand 1. Januar 1995
- c) Luftreinhalte-Verordnung (LRV) vom 16. Dezember 1985, Stand 1. Januar 2016

Luftreinhalte-Verordnung (LRV)

vom 16. Dezember 1985

Der Schweizerische Bundesrat.

gestützt auf die Artikel 12, 13, 16 und 39 des Umweltschutzgesetzes vom 7. Oktober 1983¹⁾ (Gesetz),

verordnet:

1. Kapitel: Allgemeine Bestimmungen

Art. 1 Zweck und Geltungsbereich

- ¹ Diese Verordnung soll Menschen, Tiere, Pflanzen, ihre Lebensgemeinschaften und Lebensräume sowie den Boden vor schädlichen oder lästigen Luftverunreinigungen schützen.
- ² Sie regelt:
 - a. die vorsorgliche Emissionsbegrenzung bei Anlagen nach Artikel 7 des Gesetzes, welche die Luft verunreinigen;
 - b. die Anforderungen an Brenn- und Treibstoffe;
 - c. die höchstzulässige Belastung der Luft (Immissionsgrenzwerte);
 - d. das Vorgehen für den Fall, dass die Immissionen übermässig sind.

Art. 2 Begriffe

- ' Als stationäre Anlagen gelten:
 - a. Bauten und andere ortsfeste Einrichtungen;
 - b. Terrainveränderungen;
 - c. Geräte und Maschinen;
 - d. Lüftungsanlagen, welche die Abgase von Fahrzeugen sammeln und als Abluft an die Umwelt abgeben.
- ² Als Fahrzeuge gelten Motorfahrzeuge, Luftfahrzeuge, Schiffe und Eisenbahnen.
- ³ Als Verkehrsanlagen gelten Strassen, Flugplätze, Geleise und andere Anlagen, bei denen die Abgase von Fahrzeugen nicht gesammelt als Abluft an die Umwelt abgegeben werden.
- ⁴ Als neue Anlagen gelten auch Anlagen, die umgebaut, erweitert oder instand gestellt werden, wenn:

SR 814.318.142.1

1) SR 814.01

84 Anlagen zur Herstellung von Holzfaser- oder Spanplatten

841 Staub

842 Organische Stoffe

- ¹ Die Emissionsbegrenzungen nach Anhang 1 Ziffer 7 gelten nicht.
- ² Die Emissionen von organischen Stoffen werden als Gesamtkohlenstoff angegeben.
- ³ Die Emissionen von organischen Stoffen dürfen 120 g pro Kubikmeter produzierter Spanplatten nicht überschreiten.

843 Verhältnis zu Ziffer 81

Für Anlagen, in denen Güter durch unmittelbare Berührung mit Feuerungsabgasen behandelt werden, gelten zusätzlich die Bestimmungen von Ziffer 81.

85 Chemische Kleiderreinigung

Die Maschinenabluft ist mit einem Aktivkohlefilter oder mit gleichwertigen Massnahmen zu reinigen.

1066

Luftreinhalte-Verordnung (LRV)

vom 16. Dezember 1985 (Stand am 1. Januar 1995)

Der Schweizerische Bundesrat.

gestützt auf die Artikel 12, 13, 16 und 39 des Bundesgesetzes vom 7. Oktober 1983¹⁾ über den Umweltschutz (Gesetz),

verordnet:

1. Kapitel: Allgemeine Bestimmungen

Art. 1 Zweck und Geltungsbereich

- Diese Verordnung soll Menschen, Tiere, Pflanzen, ihre Lebensgemeinschaften und Lebensräume sowie den Boden vor schädlichen oder lästigen Luftverunreinigungen schützen.
- 2 Sie regelt:
- die vorsorgliche Emissionsbegrenzung bei Anlagen nach Artikel 7 des Gesetzes, welche die Luft verunreinigen;
- a.bis2) die Abfallverbrennung im Freien;
- b. die Anforderungen an Brenn- und Treibstoffe;
- c. die höchstzulässige Belastung der Luft (Immissionsgrenzwerte);
- d. das Vorgehen für den Fall, dass die Immissionen übermässig sind.

Art. 2 Begriffe

- Als stationäre Anlagen gelten:
- a. Bauten und andere ortsfeste Einrichtungen;
- b. Terrainveränderungen;
- c. Geräte und Maschinen;
- d. Lüftungsanlagen, welche die Abgase von Fahrzeugen sammeln und als Abluft an die Umwelt abgeben.
- ² Als Fahrzeuge gelten Motorfahrzeuge, Luftfahrzeuge, Schiffe und Eisenbahnen.
- ³ Als Verkehrsanlagen gelten Strassen, Flugplätze, Geleise und andere Anlagen, bei denen die Abgase von Fahrzeugen nicht gesammelt als Abluft an die Umwelt abgegeben werden.

AS 1986 208

-) SR 814.01
- 2) Eingefügt durch Ziff. I der V vom 20. Nov. 1991, in Kraft seit 1. Febr. 1992 (AS 1992 124).

Luftreinhalte-Verordnung

836 Stickoxide

¹ Die Emissionen von Stickoxiden (Stickstoffmonoxid und Stickstoffdioxid), angegeben als Stickstoffdioxid, dürfen im Dauerbetrieb folgende Werte nicht überschreiten:

 bei Anlagen mit einer Feuerungswärmeleistung von 60 MW oder mehr, die mit Gasbrennstoffen nach Anhang 5 betrieben werden

80 mg/m³ 120 mg/m³

b. bei allen übrigen Anlagen

² Bei Anlagen mit einem Wirkungsgrad von mehr als 30 Prozent, gemessen als elektrischer Wirkungsgrad, dürfen die Stickoxid-Emissionen abweichend von Absatz 1 folgenden Grenzwert nicht überschreiten:

$$G = G_1 \frac{\eta_r}{30}$$

Dabei bedeuten:

G = Grenzwert in mg/m³

G, = Wert in mg/m3 nach Absatz 1

ne = elektrischer Wirkungsgrad in Prozent

³ Der Emissionsgrenzwert G für die Stickoxide bezieht sich auf einen Gehalt anorganisch gebundenem Stickstoff im Brennstoff von 140 mg/kg. Bei höherem Stickstoffgehalt dürfen die Emissionen an Stickoxiden, angegeben als Stickstoffdioxid, pro 1 mg Stickstoff im Brennstoff um 0,2 mg/m³ höher sein; bei niedrigerem Stickstoffgehalt müssen die Emissionen an Stickoxiden, angegeben als Stickstoffdioxid, pro 1 mg Stickstoff im Brennstoff um 0,2 mg/m³ niedriger sein.

837 Prüfstände

Für Prüfstände, auf denen Gasturbinen getestet werden, sind Anhang 1 und diese Ziffer nicht anwendbar.

84 Anlagen zur Herstellung von Holzfaser- oder Spanplatten

841 Geltungsbereich

Die Bestimmungen dieser Ziffer gelten für Anlagen, in denen Holzfaser- oder Spanplatten im Trockenprozess hergestellt werden.

842 Staub

Die staubförmigen Emissionen dürfen folgende Werte nicht überschreiten:

a. im Abgas von Spänetrocknern

50 mg/m³

b. in Abgasen von Schleifmaschinen

10 mg/m³

843 Organische Stoffe

- Die Emissionsbegrenzungen nach Anhang 1 Ziffer 7 gelten nicht.
- ² Die Emissionen von gas- und dampfförmigen organischen Stoffen werden, gemessen bei einer Temperatur von 150 °C, als Gesamtkohlenstoff angegeben.
- ³ Diese Emissionen sind so weit zu begrenzen, als dies technisch und betrieblich möglich und wirtschaftlich tragbar ist, mindestens aber auf 350 g pro Tonne Holzeinsatz (absolut trocken).

844 Verhältnis zu Ziffer 81

Für Anlagen, in denen Güter durch unmittelbare Berührung mit Feuerungsabgasen behandelt werden, gelten zusätzlich die Bestimmungen von Ziffer 81.

85 Chemische Kleiderreinigung

- ¹ Die Beladetüre einer Chemisch-Reinigungsmaschine muss durch eine automatische Sicherung so lange verriegelt bleiben, bis die Konzentration an gas- und dampfförmigen organischen Stoffen in der Maschinenluft 2 g/m³ unterschreitet.
- ² Die für die Verriegelung massgebende Konzentration nach Absatz 1 muss im Innern der Maschine im Bereich der Beladetüre kontinuierlich messtechnisch überwacht werden.
- ³ Das Reinigungsgut muss vor der Entnahme aus der Maschine eine Temperatur von mindestens 35 °C aufweisen.
- ⁴ Wird Maschinenabluft abgesaugt, so muss diese mit einem Aktivkohlefilter oder gleichwertigen Massnahmen gereinigt werden.
- ⁵ Die Raumluft muss so abgesaugt werden, dass in den Betriebsräumen stets ein Unterdruck herrscht.

86 Krematorien

861 Organische Stoffe

- ¹ Die Emissionsbegrenzungen nach Anhang 1 Ziffer 7 gelten nicht.
- ² Die Emissionen von gas- und dampfförmigen organischen Stoffen, angegeben als Gesamtkohlenstoff, dürfen 20 mg/m³ nicht überschreiten.

862 Kohlenmonoxid

Die Emissionen von Kohlenmonoxid dürfen 50 mg/m³ nicht überschreiten.

Anhang 8c 814.318.142.1

Luftreinhalte-Verordnung (LRV)

vom 16. Dezember 1985 (Stand am 1. Januar 2016)

Der Schweizerische Bundesrat.

gestützt auf die Artikel 12, 13, 16 und 39 des Bundesgesetzes vom 7. Oktober 1983¹ über den Umweltschutz (Gesetz),

verordnet:

1. Kapitel: Allgemeine Bestimmungen

Art. 1 Zweck und Geltungsbereich

¹ Diese Verordnung soll Menschen, Tiere, Pflanzen, ihre Lebensgemeinschaften und Lebensräume sowie den Boden vor schädlichen oder lästigen Luftverunreinigungen schützen.

- ² Sie regelt:
 - a. die vorsorgliche Emissionsbegrenzung bei Anlagen nach Artikel 7 des Gesetzes, welche die Luft verunreinigen;
 - a.bis 2 die Abfallverbrennung im Freien;
 - b. die Anforderungen an Brenn- und Treibstoffe;
 - c. die höchstzulässige Belastung der Luft (Immissionsgrenzwerte);
 - d. das Vorgehen für den Fall, dass die Immissionen übermässig sind.

Art. 2 Begriffe

- ¹ Als stationäre Anlagen gelten:
 - a. Bauten und andere ortsfeste Einrichtungen;
 - b. Terrainveränderungen;
 - c. Geräte und Maschinen:
 - d. Lüftungsanlagen, welche die Abgase von Fahrzeugen sammeln und als Abluft an die Umwelt abgeben.

AS 1986 208

- 1 SR 814.01
- Eingefügt durch Ziff. I der V vom 20. Nov. 1991, in Kraft seit 1. Febr. 1992 (AS 1992 124).

² Als Fahrzeuge gelten Motorfahrzeuge, Luftfahrzeuge, Schiffe und Eisenbahnen.

835 Schwefeloxide

Die Emissionen von Schwefeloxiden, angegeben als Schwefeldioxid, dürfen bei einem Massenstrom von 2,5 kg/h oder mehr 120 mg/m³ nicht überschreiten.

836 Stickoxide und Ammoniak

¹ Die Emissionen von Stickoxiden (Stickstoffmonoxid und Stickstoffdioxid), angegeben als Stickstoffdioxid, dürfen folgende Grenzwerte nicht überschreiten:

		Feuerungswärmeleistung		
		bis 40 MW	über 40 MW	
 Stickoxide (NO_x) beim Betrieb mit Gasbrenn- oder Gastreibstoffen nach Anhang 5 Ziffer 41 Absatz 1 beim Betrieb mit flüssigen Brenn- oder Treibstoffen 	mg/m ³	40 50	20 40	

² Wird eine Gasturbine mit einer Entstickungsanlage betrieben, dürfen die Emissionen von Ammoniak und Ammoniumverbindungen, angegeben als Ammoniak, 10 mg/m³ nicht überschreiten.

837 Prüfstände und Notstromgruppen

- ¹ Für Prüfstände, auf denen Gasturbinen getestet werden, legt die Behörde die vorsorglichen Emissionsbegrenzungen nach Artikel 4 fest; Anhang 1 und Anhang 2 Ziffern 831–836 gelten nicht.
- ² Für Gasturbinen von Notstromgruppen, die während höchstens 50 Stunden pro Jahr betrieben werden, legt die Behörde die vorsorglichen Emissionsbegrenzungen nach Artikel 4 fest; Anhang 1 und Anhang 2 Ziffern 833, 834 und 836 gelten nicht.

84 Anlagen zur Herstellung von Spanplatten

841 Geltungsbereich

Die Bestimmungen dieser Ziffer gelten für Anlagen, in denen Spanplatten im Trockenprozess hergestellt werden.

842 Staub

Die staubförmigen Emissionen dürfen folgende Werte nicht überschreiten:

a. im Abgas von Spänetrocknern 50 mg/m³
 b. in Abgasen von Schleifmaschinen 10 mg/m³

843 Organische Stoffe

- ¹ Die Emissionsbegrenzungen nach Anhang 1 Ziffer 7 gelten nicht.
- ² Die Emissionen von gas- und dampfförmigen organischen Stoffen werden, gemessen bei einer Temperatur von 150 °C, als Gesamtkohlenstoff angegeben.
- ³ Diese Emissionen sind so weit zu begrenzen, als dies technisch und betrieblich möglich und wirtschaftlich tragbar ist, mindestens aber auf 350 g pro Tonne Holzeinsatz (absolut trocken).

844 Verhältnis zu Ziffer 81

Für Anlagen, in denen Güter durch unmittelbare Berührung mit Feuerungsabgasen behandelt werden, gelten zusätzlich die Bestimmungen von Ziffer 81.

85 Textilreinigung

- ¹ Die Bestimmungen dieser Ziffer gelten für Textilreinigungsanlagen, die mit halogenierten Kohlenwasserstoffen betrieben werden.
- ² Die Beladetüre einer Textil-Reinigungsmaschine muss durch eine automatische Sicherung so lange verriegelt bleiben, bis die Konzentration an gas- und dampfförmigen organischen Stoffen in der Maschinenluft 2 g/m³ unterschreitet
- ³ Die für die Verriegelung massgebende Konzentration nach Absatz 2 muss im Innern der Maschine im Bereich der Beladetüre kontinuierlich messtechnisch überwacht werden.
- ⁴ Das Reinigungsgut muss vor der Entnahme aus der Maschine eine Temperatur von mindestens 35 °C aufweisen.
- ⁵ Wird Maschinenabluft abgesaugt, so muss diese mit einem Aktivkohlefilter oder gleichwertigen Massnahmen gereinigt werden.
- ⁶ Die Raumluft muss so abgesaugt werden, dass in den Betriebsräumen stets ein Unterdruck herrscht.

86 Krematorien

861 Organische Stoffe

- ¹ Die Emissionsbegrenzungen nach Anhang 1 Ziffer 7 gelten nicht.
- 2 Die Emissionen von gas- und dampfförmigen organischen Stoffen, angegeben als Gesamtkohlenstoff, dürfen 20 $\rm mg/m^3$ nicht überschreiten.

862 Kohlenmonoxid

Die Emissionen von Kohlenmonoxid dürfen 50 mg/m³ nicht überschreiten.