

Atmosphärische Stickstoff-Deposition in der Schweiz 2000 bis 2014

Im Auftrag des Bundesamtes für Umwelt BAFU, der OSTLUFT, der WSL und der Kantone AG, BE, BL, GE, GR, LU, NE, SO, SZ, TI, ZG und ZH

Autoren:

Eva Seitler, Lotti Thöni, Mario Meier

Impressum

Auftraggeber

BAFU	Bundesamt für Umwelt Abteilung Luftreinhaltung und Chemikalien; Sektion Luftqualität Rudolf Weber, Beat Achermann, Reto Meier, Richard Ballaman
OSTLUFT	Zusammenschluss der Ostschweizer Kantone und des Fürstentums Liechtenstein zur gemeinsamen Überwachung der Luftqualität, Projektgruppe N-Deposition: Markus Meier, AWEL Amt für Abfall, Wasser, Energie und Luft Kanton Zürich Albert Kölbener, Amt für Umwelt Kanton Appenzell Innerrhoden
WSL	Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf: Messungen auf LWF-Flächen (Langfristige Waldökosystemforschung) Maria Schmitt, Anne Thimonier, Peter Waldner Stickstoffdynamik Alpthal Patrick Schleppi
Kt. AG	Departement Bau, Verkehr und Umwelt, Abteilung für Umwelt Franziska Holzer Küng
Kt. BE	beco Berner Wirtschaft, Immissionsschutz Stefan Schär, Gerrit Nejedly
Kt. BL/BS	Lufthygieneamt beider Basel Markus Camenzind
Kt. GE	SABRA Service de l'air, du bruit et des rayonnements non ionisants Bennoît Lazzarotto
Kt. GR	ANU GR Amt für Natur und Umwelt Hanspeter Lötscher
Kt. LU	uwe Umwelt und Energie, Abteilung Energie, Luft und Strahlen Peter Bucher
Kt. NE	Service de l'énergie et de l'environnement, énergie, air et bruit Denis Jeanrenaud
Kt. SO	AfU SO Amt für Umwelt Rolf Stampfli
Kt. SZ	AfU SZ Amt für Umweltschutz Melinda Suter
Kt. TI	Ufficio dell'aria, del clima e delle energie rinnovabili Ticino Ivan Maffioli
Kt. ZG	AfU ZG Amt für Umweltschutz, Luftreinhaltung Immissionen Gabriele Llopart
Kt. ZH	AWEL Amt für Abfall, Wasser, Energie und Luft Kanton Zürich, Abteilung Lufthygiene Regula Rometsch

1

Beteiligte Institutionen

Agroscope Klima und Lufthygiene, Reckenholz, Zürich

Matthias Volk, Andreas Gauer

Empa Dübendorf, Abteilung Luftfremdstoffe/Umwelttechnik:

Christoph Hüglin, Claudia Zellweger

IAP Institut für Angewandte Pflanzenbiologie, Schönenbuch

Sabine Braun

Meteotest Bern Beat Rihm

UNESCO Biosphäre Entlebuch (UBE)

Theo Schnider

Universität Basel Pflanzenökologie

Erika Hiltbrunner

Autoren

Eva Seitler, Lotti Thöni, Mario Meier

FUB - Forschungsstelle für Umweltbeobachtung

Alte Jonastrasse 83 CH – 8640 Rapperswil

E-Mail: fub@fub-ag.ch, www.fub-ag.ch

Der Dank

Der Dank geht an die Empa, welche Daten aus dem NABEL-Netzwerk sowie an die WSL, welche Daten aus dem LWF-Programm zur Verfügung gestellt haben, an René Locher ZHAW-IDP für die statistische Auswertung und an alle Personen, welche die Sammler installiert und gewechselt haben oder auf eine andere Art die Untersuchungen unterstützt haben.

Hinweis

Dieser Bericht wurde im Auftrag des Bundesamtes für Umwelt (BAFU) verfasst. Für den Inhalt ist allein der Auftragnehmer verantwortlich.

Titelbild

Standort Rothenthurmer Moor, SZ, 27.11.2013

Zitierung

Seitler E., Thöni L., Meier M. 2016: Atmosphärische Stickstoff-Deposition in der Schweiz 2000 bis 2014. FUB – Forschungsstelle für Umweltbeobachtung, Rapperswil. 105 S.

PDF-Download

www.bafu.admin.ch/luft/00575/11210/index.html?lang=de Eine gedruckte Fassung liegt nicht vor.

(Stickstoffhaltige Luftschadstoffe)

Inhaltsverzeichnis

Αl	ostract		1
1	Zusam	menfassung, Résumé	2
	1.1 Zu	sammenfassung	2
	1.2 Ré	śsumé	12
2	Einleit	ung	23
		ısgangslage	
		ojektrahmen	
		elsetzung	
•		·	
3		dik	
		obesammlung und Analytik im Überblick	
	3.2 Me	essstandorte im Überblick	28
	3.3 Be	erechnung der Gesamtstickstoff-Einträge	31
4	Result	ate	32
	4.1 Ko	onzentrationen der einzelnen Komponenten	32
	4.1.1	Ammoniak	
	4.1.2	Stickstoffdioxid	
	4.1.3	Ammonium und Nitrat im Niederschlag (Gravitationsdeposition)	35
	4.2 At	mosphärische Gesamtstickstoff-Deposition 2014	
	4.2.1	Einträge in verschiedene Ökosystemtypen – Vergleich Critical Loads	
	4.2.2	Anteile der sieben N-Komponenten am N-Eintrag	
		esamtstickstoff-Einträge – Langjährige Entwicklung	
	4.3.1 4.3.2	Fortlaufende Messungen	
		Messungen 2000 und 2014, sowie weiterer Jahre	
	4.4 Ge	esamtstickstoff-Deposition – Vergleich mit modellierten Werten	50
5	Diskus	sion und Schlussfolgerungen	53
6	Fachte	il	54
	6.1 Sa	ammelmethoden	54
	6.1.1	Gravitations-Depositionssammlung	
	6.1.2	Passivsammler zur Messung von Ammoniak	
	6.1.3	Passivsammler zur Messung Stickstoffdioxid	
	6.1.4	Passivsammler zur Messung von gasförmiger Salpetersäure	
	6.1.5	Minidenuder / -filter (Midefix) für Gase und Aerosole	
	6.1.6	Summenfilter (Sufix) für Gase und Aerosole	
		obevorbereitung und Spurenanalytik	
		Jalitätssicherung	
	6.3.1	Transport-Blindwerte	
	6.3.2 6.3.3	Nachweis- und Bestimmungsgrenzen Vergleich mit zertifiziertem Referenzmaterial	
	6.3.4	Vergleich mit zertiliziertem Reierenzmaterial	

	6.3.5	Rückhalt von Ionen im Trichter	66
	6.4 Vei	rvollständigung von Datensätzen	66
	6.4.1	Wet zu "Bulk"	
	6.4.2	Schätzwerte von Salpetersäure, Nitrat- und Ammonium-Aerosolen	68
	6.5 Voi	n Konzentration zu Fracht	71
	6.5.1	Depositionsgeschwindigkeiten	
	6.5.2	Waldrand – über Wald	73
	6.6 Ver	rgleich der Depositionsgeschwindigkeiten von FUB und Meteotest	74
	6.7 Org	ganischer Stickstoff im Niederschlag	76
	6.8 Abs	schätzung der Qualität der Gesamtstickstoff-Resultate	76
7	Anhang	J	78
	7.1.1	Standortbeschreibung und Resultate	78
	7.1.2	Gesamtstickstoffeinträge als Kuchendiagramme	95
	7.1.3	Statistische Betrachtung der langjährigen Messreihen	
Li	teratur		101
Δ	hkiirzunge	en und Definitionen	104

Abstract

Überhöhte Stickstoffeinträge in empfindliche Ökosysteme tragen zur Bodenversauerung bei und bewirken eine Überdüngung, welche langfristig zu einer Verschiebung der Artenzusammensetzung führt. Um die Bedeutung dieser Prozesse in der Schweiz abschätzen zu können, wurden im Jahr 2000 und 2014, sowie teilweise auch dazwischen, an diversen Standorten die atmosphärische Stickstoff-Deposition bestimmt und mit den Critical Loads für Stickstoff (CLN) verglichen. Dabei wurde die Gravitationsdeposition mit Bulk-Regen- und -Schneesammlern oder Wet-only-Sammlern, so wie die Konzentrationen von Ammoniak (NH₃) und Stickstoffdioxid (NO₂) in der Luft mit Passivsammlern gemessen. An einigen Orten wurden zudem auch die Aerosole und Salpetersäure (HNO₃) erfasst. Die Resultate zeigen, dass die Stickstoffeinträge in der Schweiz weitgehend um oder über den CLN liegen und dies unabhängig der betrachteten Ökosysteme, wobei in der Nähe von intensiver Landwirtschaft beträchtliche Überschreitungen festgestellt wurden. Im langjährigen Vergleich (2000 – 2014) wurde eine geringe Abnahme der Stickstoffeinträge festgestellt.

Les apports excessifs d'azote dans les écosystèmes sensibles contribuent à l'acidification du sol et provoquent une surfertilisation qui conduit, à longue échéance, à une modification de la composition des espèces. Afin de pouvoir estimer l'importance de ce processus en Suisse, on a procédé lors des années 2000 et 2014, et en partie aussi entre celles-ci, à la détermination de la déposition atmosphérique de l'azote sur divers sites et comparé les valeurs obtenues avec les charges critiques pour l'azote (Critical loads for Nitrogen, CLN). Pour cela, on a mesuré la déposition gravitationnelle avec des pluviomètres ou des nivomètres de type Bulk ou des collecteurs Wet-Only ainsi que les concentrations d'ammoniac (NH₃) et de dioxyde d'azote (NO₂) dans l'air avec des collecteurs passifs. Sur quelques sites on a de plus procédé à la détermination des aérosols et de l'acide nitrique (HNO₃). Les résultats montrent qu'en Suisse les apports d'azote se situent en majeure partie aux alentours ou sont supérieurs aux CLN et ceci indépendamment des écosystèmes considérés, avec des dépassements massifs au voisinage d'exploitations agricoles intensives. En comparaison à long terme (2000 – 2014) on constate une faible diminution des apports d'azote.

1 Zusammenfassung, Résumé

1.1 Zusammenfassung

Stickstoffemissionen in die Luft haben seit der Industrialisierung und vor allem seit der Intensivierung der Landwirtschaft stark zugenommen. Diese Emissionen führen zu bedeutenden Stickstoffeinträgen aus der Luft in empfindliche Ökosysteme wie Wälder, naturnahe Wiesen und Moore, was zur Bodenversauerung beiträgt und eine Überdüngung bewirkt, welche langfristig zu einer Verschiebung der Artenzusammensetzung führt.

Im Jahr 2000 wurde die Stickstofffracht an 20 Orten, meist nahe von sensiblen Ökosystemen, erfasst. 2014 wurde die Untersuchung an 18 Orten wiederholt. Zudem wurden weitere Standorte beprobt, so dass insgesamt 38 Standorte resultierten (Abb. Z1). Dabei wurden fast immer Standorte berücksichtigt an denen bereits Stickstoffkomponenten gemessen werden, z.B. NABEL-, WSL-LWF- und IAP-Stationen. An vier NABEL-Standorten wurde von 2000 bis 2014 durchgehend gemessen, an zwei weiteren Standorten während 14 dieser 15 Jahre. Viele Kantone und das BAFU beteiligten sich an den Kosten dieses Projekts.

Abbildung Z1 Standorte an denen die Stickstoff-Deposition erfasst wurde

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Im Rahmen dieser Studie werden folgende Ziele verfolgt:

- Erfassung der Stickstoffbelastung in Gebieten mit unterschiedlichen Quelleneinflüssen und Vergleich mit Critical Loads für Stickstoff (CLN) für empfindliche Ökosysteme
- Erfassung der zeitlichen Veränderung der Stickstoffeinträge an Orten, an denen in früheren Jahren gemessen wurde
- Vergleich mit räumlich hoch aufgelösten, modellierten Daten
- Ermittlung von atmosphärischen N-Einträgen für andere Forschungsprojekte bei empfindlichen Ökosystemen
- Bereitstellung von Daten als Instrument zur Erfolgskontrolle im Zusammenhang mit den eingeleiteten Massnahmen der Umwelt- und Agrarpolitik

Die Stickstoffkomponenten wurden einerseits in der Gravitationsdeposition mit Bulk-Regen- und -Schneesammlern (durch WSL, FUB) oder Wet-only-Sammlern (durch Empa), sowie mit Passivsammlern (NH₃, NO₂) gemessen. An einigen Standorten wurden auch die Aerosole und HNO₃ erfasst. Die Messungen von Aerosolen und von HNO₃ wurden verwendet, um Schätzwerte für Standorte/Jahre ohne solche Messungen abzuleiten. An einzelnen Standorten mussten auch für NO₂ Schätzwerte beigezogen werden. Zur Bestimmung der Stickstofffracht wurden die Konzentrationen der Gase und Aerosole mit Depositionsgeschwindigkeiten (wie bei der Ausbreitungs- und Depositionsmodellierung von Meteotest verwendet) multipliziert und die einzelnen Komponenten aufsummiert.

Resultate

Bei der Interpretation der Resultate muss berücksichtigt werden, dass die meteorologischen Verhältnisse eines Jahres die Deposition von Stickstoff beeinflussen.

NH₃-Konzentration

Die Ammoniakkonzentrationen sind stark abhängig von der landwirtschaftlichen Tätigkeit in der Umgebung des jeweiligen Standortes (Abbildung Z2 links). Während an Standorten ohne landwirtschaftlicher Tätigkeit oder bei Alpweiden und an solchen mit extensiv betriebener Landwirtschaft (modellierte NH₃-Emissionen <10 kg N ha⁻¹ a⁻¹) Jahresmittelwerte unter 2 μg N-NH₃ m⁻³ zu finden sind, wurde an Standorten mit intensiver Landwirtschaft (modellierte NH₃-Emissionen >50 kg N ⁻¹ a⁻¹) mehr als 4 μg N-NH₃ m⁻³ gemessen. Wegen erhöhter landwirtschaftlicher Tätigkeit in der Umgebung sind die Konzentrationen von NH₃ über Mooren im Mittelland höher als jene über Mooren im Jura oder in den Nordalpen; die niedrigsten Konzentrationen werden an den hochgelegenen zentralalpinen Standorten gemessen (Abbildung Z2 rechts).

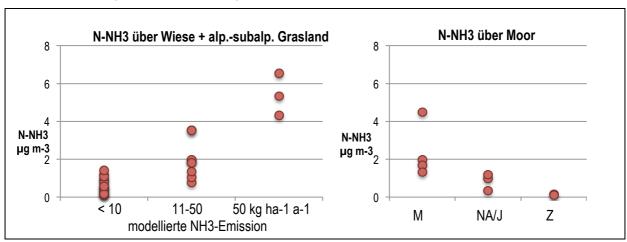


Abbildung Z2 Ammoniakkonzentration, links: über Wiese + alp.-subalp. Grasland , rechts über Hoch- oder Flachmooren M = Mitteland; NA/J = Nordalpen und Jura; ZA = Zentralalpen

Gravitationsdeposition

Auch bei den Stickstoff-Gravitationsdepositionen (Summe N-NH₄⁺ und N-NO₃⁻) zeigen die Zentralalpen tendenziell die tiefsten Werte (<5 kg ha⁻¹ a⁻¹). Der höchste Wert wurde mit 25 kg ha⁻¹ a⁻¹ (Summe N-NH₄⁺ und N-NO₃⁻) in den Südalpen gefunden (Abbildung Z3).

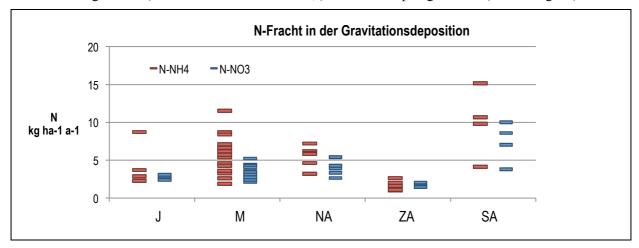


Abbildung Z3 Stickstofffracht in der Gravitationsdeposition

Regen, Schnee usw. mit Bulkregensammler gesammelt. Die Wet-only-Proben der NABEL-Stationen wurden mit einem Faktor multipliziert um den trockenen Gravitationseintrag miteinzubeziehen.

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Stickstoff-Einträge in empfindliche Ökosysteme und Vergleich mit Critcal Loads für Stickstoff (CLN)

In den Abbildungen Z4, Z5 und Z6 werden die Gesamtstickstoffeinträge als Säulen auf der Schweizerkarte dargestellt. An Standorten mit empfindlichen Ökosystemen ist zum Vergleich der Kritische Eintrag – Critical Load für Stickstoff (CLN) der Ökosystemtypen direkt bei resp. innerhalb 200 m der Messstationen eingezeichnet, wobei der Mittelwert des jeweiligen CLN-Bereichs benutzt wurde. Dazu als Beispiel: Der CLN-Bereich für Hochmoor weisst einen Spanne von 5 – 10 kg N ha⁻¹ a⁻¹ auf. Der angegebene Wert in der entsprechenden Abbildung beträgt demnach 7.5 kg N ha⁻¹ a⁻¹. Die Resultate an einem bestimmten Standort müssen nicht für die ganze Region repräsentativ sein, da vor allem Ammoniak lokal stark variieren kann.

Die CLN für alpines/subalpines Grasland (Abb. Z4) und für Moore (Abb. Z5) sind mit Ausnahme der Standorte in den östlichen Zentralalpen und im Urserental überschritten. Wird aber berücksichtigt, dass nicht alle Stickstoffkomponenten erfasst werden, und beim Sammeln des Niederschlags bei starken Winden und/oder Schneefall Verluste auftreten, kann ein Überschreiten der CLN an den hoch gelegenen zentralalpinen Standorten nicht ausgeschlossen werden. Die stärksten Überschreitungen finden sich im Wauwilermoos (WAU) im Kt. Luzern und im Moor nahe der NABEL-Station Magadino (MAG).

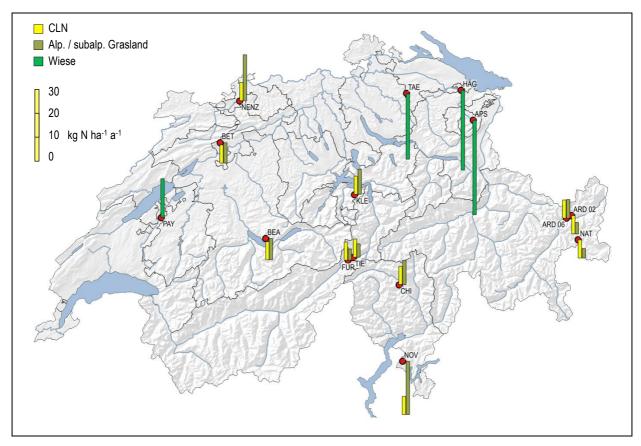


Abbildung Z4 "Wiese" und "Alpines/subalpines Grasland": Vergleich der Stickstofffrachten 2014 mit den Critical Loads
Bei den CLN ist der Mittelwert des Bereiches der empirischen CLN nach UNECE eingezeichnet. Die dargestellten Werte
gelten für die eingezeichneten Standorte (rote Punkte). Sie müssen nicht für die ganze Region repräsentativ sein.

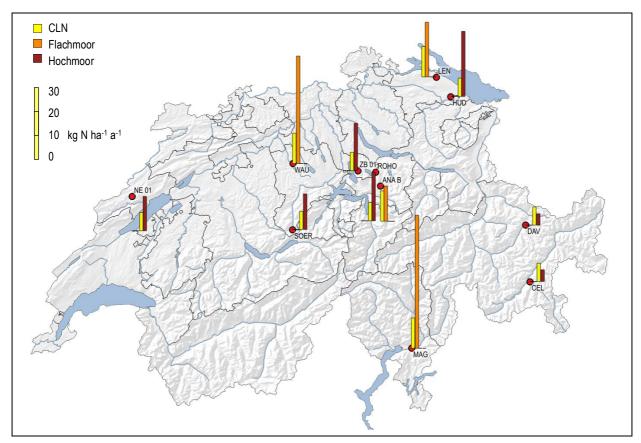


Abbildung Z5 "Moore" Vergleich der Stickstofffrachten 2014 mit den Critical Loads

Bei den CLN ist der Mittelwert des Bereiches der empirischen CLN nach UNECE eingezeichnet. Die dargestellten Werte gelten für die eingezeichneten Standorte (rote Punkte). Sie müssen nicht für die ganze Region gelten.

In Abbildung Z6 sind die N-Einträge und die CLN für Wälder abgebildet, welche im Umkreis von 200 m um die Messstationen stehen. Nur bei den zentralalpinen Standorten Davos (DAV), Celerina (CEL) und Nationalpark (NAT), Kt. GR ist die Stickstofffracht an der unteren Grenze des CLN-Bereichs. Wird aber berücksichtigt, dass nicht alle Stickstoffkomponenten erfasst werden, und beim Sammeln des Niederschlags bei starken Winden und/oder Schneefall Verluste auftreten, kann ein Überschreiten der CLN an den hoch gelegenen zentralalpinen Standorten nicht ausgeschlossen werden. An allen anderen Orten liegen die Frachten im Bereich des CLN oder werden überschritten. Starke Überschreitungen sind an vielen Mittellandstandorten zu finden, am stärksten im Laubwald nördlich von Lausanne (LAU) und am Hang ob Schänis (SCH) am Rand der Nordalpen. Es muss davon ausgegangen werden, dass praktisch alle Wälder im Mittelland zu viel Stickstoff aus der Luft erhalten.

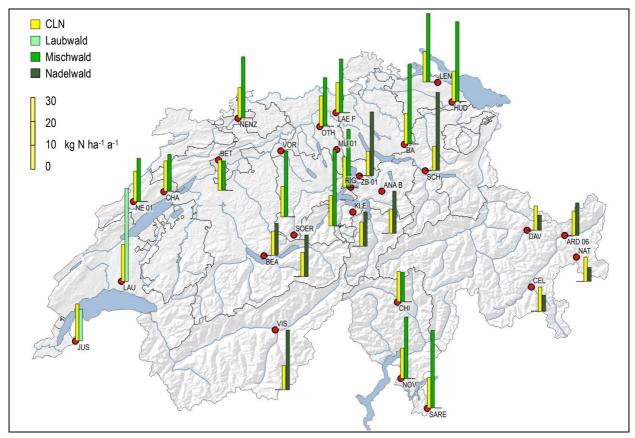


Abbildung Z6 "Wälder": Vergleich der Stickstofffrachten 2014 mit den Critical Loads (CLN)

Bei den CLN ist der Mittelwert des Bereiches der empirischen CLN nach UNECE eingezeichnet. Die dargestellten Werte gelten für die eingezeichneten Standorte (rote Punkte). Sie müssen nicht für die ganze Region gelten.

Form des Stickstoff-Eintrags

In Abbildung Z7 wird die Eintragsform der Stickstofffrachten dargestellt, einerseits aus Niederschlag gegenüber Gasen und Aerosolen, andererseits aufgeteilt auf reduzierte / oxidierte Komponenten. Ausser im Mittelland überwiegt meistens der Stickstoffeintrag aus der Gravitationsdeposition und damit der Eintrag durch Niederschläge. Im Allgemeinen sind die reduzierten Stickstoffeinträge, welche hauptsächlich aus der Landwirtschaft stammen, grösser als die oxidierten, welche hauptsächlich durch Verkehr, Industrie und Haushalte emittiert werden. Der Anteil an oxidiertem N überwiegt beim Standort Jussy Kt. GE (JUS), in einer grossen Waldlichtung bei Genf im Mittelland gelegen, und an den hochgelegenen zentralalpinen Standorten. Ausgenommen ist ARD 06 im Unterengadin, welche nahe bei Bauernhöfen liegt.

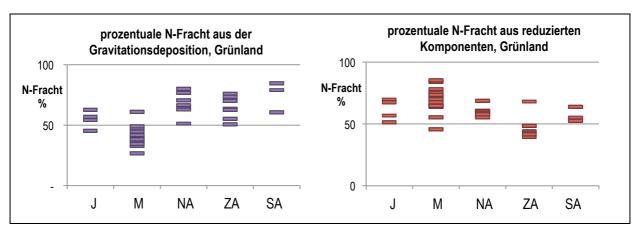


Abbildung Z7 Prozentuale Anteile der Stickstofffrachten

Links der Anteil der Gravitationsdeposition, rechts der Anteil der reduzierten Komponenten am Gesamteintrag am Beispiel der Standorte bei den Ökosystemtypen Grünland (Wiese, alpines/subalpines Grasland und Moore)

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

In den Abbildungen Z8 bis Z10 wird an Beispielen die Eintragsform der Stickstofffrachten aus Niederschlag (dunkel) resp. Gasen und Aerosolen (hell) sowie die Aufteilung auf reduzierte (rot) und oxidierte (blau) Komponenten aufgezeigt. Die Säulenflächen sind dabei proportional zur Stickstofffracht.

Abbildung Z8 (links) zeigt die Einträge in Wiesen. APS (Kt. AI) und MAG (Kt. TI) haben ähnliche Frachten, aber in APS überwiegt die Immission von NH₃ sehr stark (53 %), in MAG sind es vor allem die hohen Niederschläge, welche eine grossen Eintrag ergeben (61 %). Auch JUS (Kt. GE) und CHA im Jura, haben ähnliche aber deutlich kleinere Frachten, jedoch ist der Einfluss der Verbrennungsprozesse (Verkehr, Heizung) bei JUS etwas grösser (54 %) als derjenige der Landwirtschaft, bei CHA ist es umgekehrt (57 % reduzierte Komponenten).

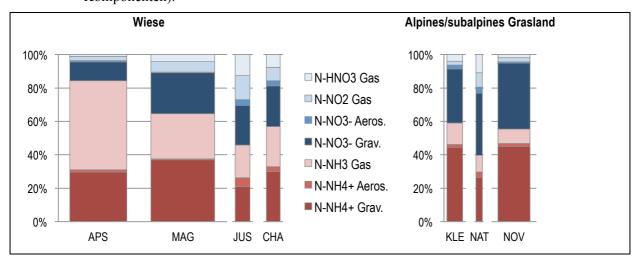


Abbildung Z8 Ökosystemtypen "Wiese" und "alpines/subalpines Grasland". Eintragsform der Stickstofffrachten Die Säulenflächen sind proportional zur Stickstofffracht.

Bei den Standorten in alpinem/subalpinem Grasland (Abbildung Z8 rechts) überwiegt der Einfluss der Gravitationsdeposition (64 - 85 %). Von der Zusammensetzung sind KLE in

den Nordalpen und NOV in den Südalpen ähnlich, mit höherem reduziertem Anteil (59 bzw. 55 %). Im Nationalpark NAT überwiegt hingegen der oxidierte Anteil (60 %).

Auch bei Flachmooren (Abbildung Z9 links) ist die Eintragsform einerseits geographisch und andererseits durch die landwirtschaftlichen Tätigkeiten in der Umgebung bedingt. Bei WAU im Luzerner Seeland überwiegt der landwirtschaftliche Einfluss (85 %). Auch bei anderen Standorten ist der reduzierte Anteil gross, je näher bei der Landwirtschaft umso höher. Bei ANA B im Alpthal (Kt. SZ) mit viel Niederschlag und wenig Landwirtschaft überwiegt die Gravitationsdeposition von Stickstoff. Da dort die Konzentrationen der gasförmigen reaktiven Stickstoffverbindungen sehr klein sind, werden Aerosole nicht lokal gebildet, sondern durch atmosphärischen Transport herangeführt.

Die Beispiele aus Hochmooren (Abbildung Z9 rechts) zeigen wiederum, dass die geographische Lage wichtig ist. In HUD in der Ostschweiz ist der Ammoniakanteil hoch (47 %), in SOER im Luzerner Entlebuch wird der Stickstoff vor allem durch den hohen Niederschlag eingetragen wie auch in DAV im Wald neben Davos. Bei diesen zwei überwiegen die Einträge über Gravitationsdeposition (80 resp. 63 %).

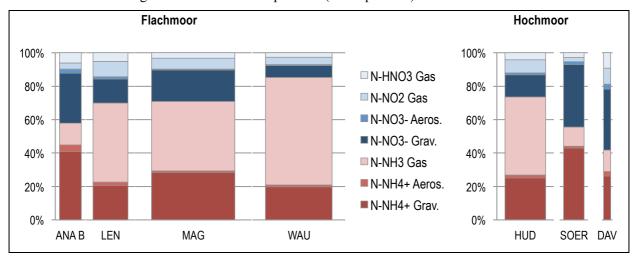


Abbildung Z9 Ökosystemtypen "Flachmoor" & "Hochmoor". Eintragsform der Stickstofffrachten Die Säulenflächen sind proportional zur Stickstofffracht.

Abbildung Z10 (oben links) zeigt die Situation von Laubwald oberhalb von Lausanne nahe einer Landwirtschaftszone im Vergleich mit derjenigen von Jussy bei Genf auf einer grossen Waldlichtung. In LAU dominiert Ammoniak (65 %), in JUS haben reduzierte und oxidierte Stickstoffverbindungen die gleichen prozentualen Anteile.

Die N-Einträge in den Mischwald ums Moor LEN im Kt. TG in der Nähe des Bodensees werden zur Hälfte durch NH₃ Einträge bestimmt (Abbildung Z10 oben rechts), bei RIG auf der Seebodenalp und OTH im Mittelland sind es 37 %. Bei SARE im Südtessin überwiegt der Eintrag durch die Niederschläge mit 56 %. Bei OTH im Mittelland ist der Einfluss der vielen Strassen bemerkbar, was sich durch den relativ hohen Anteil Einträgen durch NO₂ von 24 % zeigt. Im Gegensatz dazu betragen die NO₂-bedingten Einträge an allen anderen Standorte nahe Mischwald 15 % oder weniger.

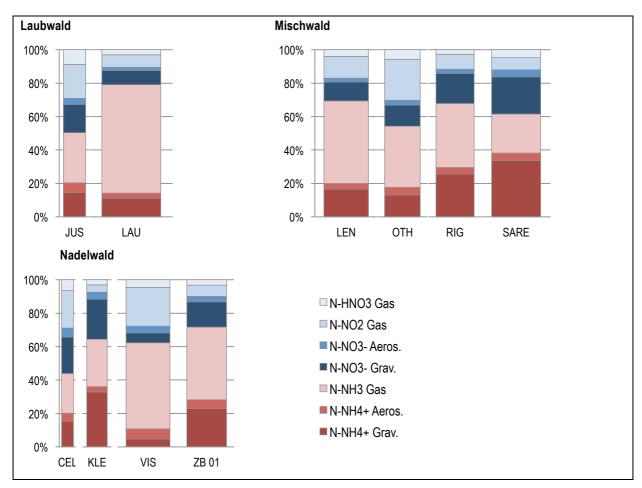


Abbildung Z10 Ökosystemtyp "Laubwald", "Mischwald" & "Nadelwald". Eintragsform der Stickstofffrachten Die Säulenflächen sind proportional zur Stickstofffracht.

An den hochgelegenen zentralalpinen Standorten beim Ökosystemtyp "Nadelwald" im Osten der Schweiz überwiegt der Anteil an oxidierten Komponenten (Beispiel CEL: 46 %), während in VIS im Rhonetal der Stickstoffanteil aus Ammoniak hoch ist (51%). Der Gravitationsdepositionsanteil beträgt bei VIS nur 10 % der Stickstoff-Deposition. In den Nordalpen hingegen beträgt er 38% bei ZB 01 und 57 % bei KLE (Abbildung Z10 unten rechts).

Veränderung zwischen 2000 und 2014

Die Verläufe an den vier Standorten an denen die Stickstoffeinträge seit 2000 und den zwei Standorten an denen in 14 von diesen 15 Jahren gemessen wurde, zeigen, dass die Einträge tendenziell leicht zurückgehen (Abbildung Z11). Am Standort SCH, BA und CHA ist die Abnahme signifikant (95 % Niveau). Es ist zu beachten, dass die meteorologischen Bedingungen eines Jahres grossen Einfluss auf einzelne Werte haben können.

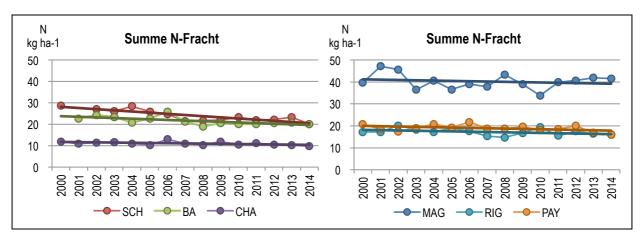


Abbildung Z11 Verlauf der jährlichen Stickstofffrachten 2000 – 2014
Standorte mit statistisch signifikanter (links) und nicht signifikanter (rechts) Abnahme

Vergleich mit Ausbreitungsmodell von Meteotest

Die aus Depositions-Messungen abgeschätzten Frachten von 2014 wurden mit den aus Emissionserhebungen modellierten Werten (Datengrundlage 2010) verglichen (Abbildung Z12). Die Übereinstimmung ist gut, wobei vor allem die modellierten Werte der reduzierten Komponenten tendenziell höher liegen. Dies kann zum Teil daran liegen, dass verschiedene Jahre verglichen werden. Zudem hat die Jahreswitterung einen Einfluss auf die Messwerte und beim Modell wird eine gemittelte Witterung berücksichtigt. Auch basieren die abgeschätzten Frachten von 2014 auf Punktmessungen, die Modellwerte beziehen sich hingegen auf eine Fläche (500 x 500 m).

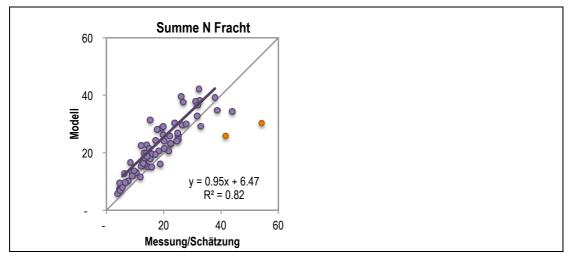


Abbildung Z12 Vergleich der aus Messungen abgeschätzten und den modellierten jährlichen Gesamtstickstoff-Frachten
Datengrundlage der Messung: 2014, der Emissionserhebung für das Modell: 2010. Die beiden orangen Punkte rechts
stammen von der NABEL-Station MAG, in deren Umgebung 2011 vermutlich eine Änderung bei den Emissionen stattfand.

Fazit

- Die Stickstoffeinträge in naturnahe Wiesen, Wälder und Moore der Schweiz sind vielerorts zu hoch und können so die Biodiversität sowie die Stabilität der Wälder negativ beeinflussen (z.B. erhöhtes Windwurfrisiko durch Nährstoffungleichgewicht).
- Ausser bei den zentralalpinen Standorten überwiegen meist die reduzierten N-Komponenten, wobei dies umso stärker ausgeprägt ist, je näher ein Standort bei landwirtschaftlichen Quellen liegt.
- An sechs Standorten mit langjährigen Messungen nahmen die Stickstofffrachten leicht ab. Bei BA, CHA und SCH war die Abnahme signifikant, bei MAG, PAY und RIG nur tendenziell.

1.2 Résumé

Les émissions d'azote dans l'air ont fortement augmenté depuis l'industrialisation et surtout depuis l'intensification de l'agriculture. Ces émissions conduisent à des apports aériens importants dans des écosystèmes sensibles tels que les forêts, les prairies à l'état seminaturel et les marais, ce qui contribue à l'acidification du sol et provoque une surfertilisation qui entraine à long terme une modification de la composition des espèces.

En 2000, on a mesuré les charges d'azote sur 20 sites, le plus souvent situés à proximité d'écosystèmes sensibles. En 2014 cette étude a été renouvelée sur 18 de ces sites. On a de plus procédé à un échantillonnage d'autres sites, le nombre de sites atteignant ainsi au total 38 (fig. Z1). Les sites retenus étaient presque toujours des sites où l'on procédait déjà à des mesures de composés azotés, tels que les stations NABEL, WSL-LWF et IAP. Sur quatre stations NABEL, les mesures ont eu lieu sans interruption de 2000 à 2014, sur deux autres sites, durant 14 de ces 15 années. De nombreux cantons et l'OFEV ont participé au financement de ce projet.

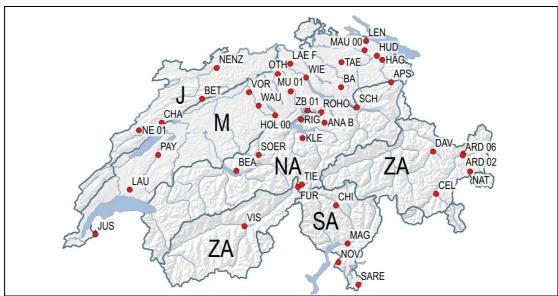


Figure Z1 Sites sur lesquels la déposition d'azote a été déterminée

J = Jura, M = Plateau, NA = Nord des Alpes, ZA = Alpes centrales, SA = Alpes du Sud

Cette étude poursuivait les buts suivants:

- Détermination de la charge d'azote dans des régions soumises à l'influence de différentes sources et comparaison avec les charges critiques pour l'azote nutritif (CLN) pour les écosystèmes sensibles
- Détermination de l'évolution temporelle des apports d'azote sur des sites où des mesures avaient déjà été effectuées par le passé
- Comparaison avec les données d'un modèles de simulation à haute résolution spatiale
- Détermination des apports d'azote atmosphérique pour d'autres projets sur les écosystèmes sensibles
- Mise à disposition de données comme instrument de contrôle de l'efficacité des mesures prises dans le domaine de la politique environnementale et agricole.

Les composés azotés ont été mesurés dans la déposition gravitationnelle soit avec des pluviomètres et des nivomètres de type Bulk (par WSL, FUB) soit avec les collecteurs Wet-Only (par l'Empa) ainsi qu'avec des capteurs passifs (NH₃, NO₂). Les aérosols et HNO₃ ont aussi été mesurés sur quelques sites. Les mesures des aérosols et de HNO₃ ont été utilisées pour déterminer des valeurs estimées pour les années/sites ou de telles mesures n'avaient pas été effectuées. Sur quelques sites, il a aussi fallu recourir à des valeurs estimées pour NO₂. Pour la détermination de l'apport d'azote, les concentrations des gaz et des aérosols ont été multipliées par les vitesses de déposition (analogues au modèle de diffusion et de déposition de Météotest) et les valeurs obtenues pour les différents composés ont ensuite été additionnées.

Résultats

Dans l'interprétation des résultats, il faut tenir compte du fait que les conditions météorologiques au cours de l'année exercent une influence sur la déposition de l'azote.

Concentrations de NH₃

Les concentrations d'ammoniac dépendent fortement de l'activité agricole au voisinage des sites considérés (figure Z2, à gauche). Alors que sur les sites sans activité agricole ou sur les alpages et sur ceux où l'on pratique une agriculture extensive (émissions de NH₃ modélisées <10 kg N ha⁻¹ a⁻¹) on trouve des moyennes annuelles inférieures à 2 μg N-NH₃ m⁻³, on a mesuré sur les sites avec une pratique agricole intensive, (émissions de NH₃ modélisées >50 kg N ⁻¹ a⁻¹) plus de 4 μg N-NH₃ m⁻³. Du fait de l'activité agricole élevée dans leur voisinage, les concentrations de NH₃ sont plus élevées sur les marais du Plateau que sur ceux du Jura ou du Nord des Alpes; les concentrations les plus basses sont mesurées sur les sites en haute altitude des Alpes centrales (figure Z2, à droite).

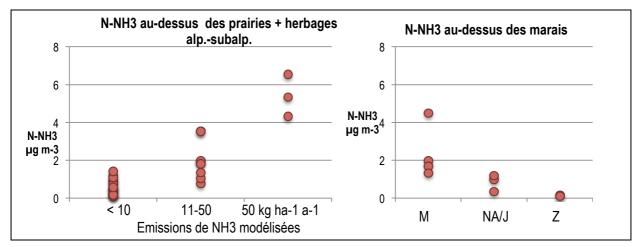


Figure Z2 Concentrations d'ammoniac, à gauche: sur prairies + herbages alp-.subalp., à droite sur hauts-marais ou basmarais

M = Plateau; NA/J = Nord des Alpes et Jura; ZA = Alpes centrales

Déposition gravitationnelle

Pour la déposition gravitationnelle d'azote (somme N-NH₄⁺ et N-NO₃⁻), les Alpes centrales présentent aussi tendanciellement les valeurs les plus basses (<5 kg ha⁻¹ a⁻¹). La valeur la plus élevée, 25 kg ha⁻¹ a⁻¹ (somme N-NH₄⁺ et N-NO₃⁻) a été trouvée dans les Alpes du Sud (figure Z3).

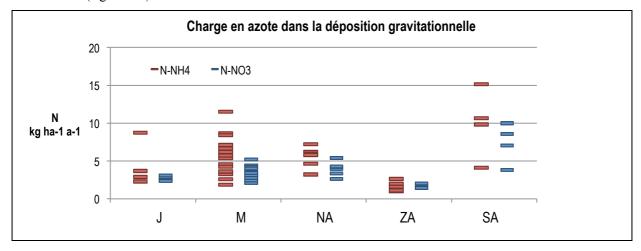


Figure Z3 Charge en azote dans la déposition gravitationnelle

Pluie, neige, etc. collectés avec collecteurs type Bulk. Les valeurs des échantillons Wet-Only des stations NABEL ont été multipliées par un facteur pour inclure les apports secs par gravitation.

J = Jura, M = Plateau, NA = Alpes du Nord, ZA = Alpes centrales, SA = Alpes du Sud

Apports d'azote dans les écosystèmes sensibles et comparaison avec les charges critiques pour l'azote nutritif (CLN)

Les figures Z4, Z5 et Z6 représentent les apports d'azote totaux sous forme de barres sur la carte de la Suisse. Sur les sites avec des écosystèmes sensibles, on a indiqué, à titre de comparaison, la charge critique d'azote – Critial Load for Nitrogen (CLN) – de l'écosystème correspondant soit directement sur la station soit dans les 200 mètres autour de celle-ci, en utilisant pour cela la moyenne du domaine de CLN correspondant. A titre d'exemple: le CLN des hauts-marais présente une étendue de 5 – 10 kg N ha⁻¹ a⁻¹. La valeur indiquée sur l'illustration est donc ici de 7.5 kg N ha⁻¹ a⁻¹. Les résultats sur un site déterminé ne sont pas forcément représentatifs d'une région entière car les apports d'ammoniac peuvent varier fortement à l'échelle locale.

Les CLN pour les herbages alpins/subalpins (fig. Z4) et pour les marais (fig. Z5) sont partout dépassées, sauf sur les sites à l'est des Alpes centrales et dans la vallée d'Urseren. Cependant, si l'on tient compte du fait que tous les composés azotés ne sont pas pris en compte et qu'il se produit des pertes lors de la collecte des précipitations par fort vent et/ou lorsqu'il neige, un dépassement des CLN sur les sites situés à haute altitude dans la Alpes centrales n'est pas à exclure. Les plus forts dépassements ont été enregistrés dans le Wauwilermoos (WAU) dans le canton de Lucerne et dans le marais à proximité de la station NABEL de Magadino (MAG).

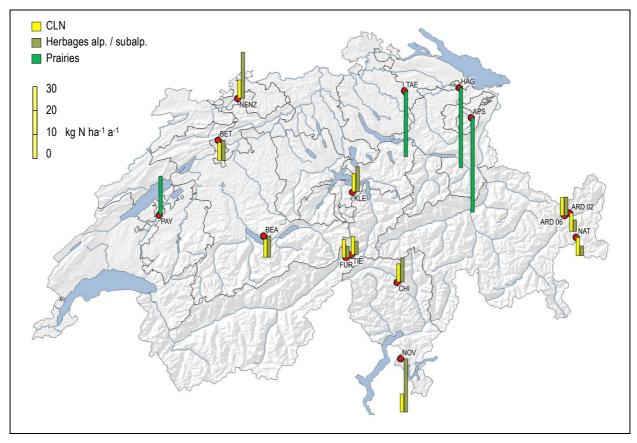


Figure Z4 "Prairies et herbages alpins/subalpins": Comparaison des charges en azote 2014 avec les charges critiques
Pour les CLN on a indiqué la moyenne du domaine du CLN empirique selon l'UNECE. Les valeurs représentées
s'appliquent au site indiqué (point rouge) et ne sont pas forcément représentatives pour toute la région.

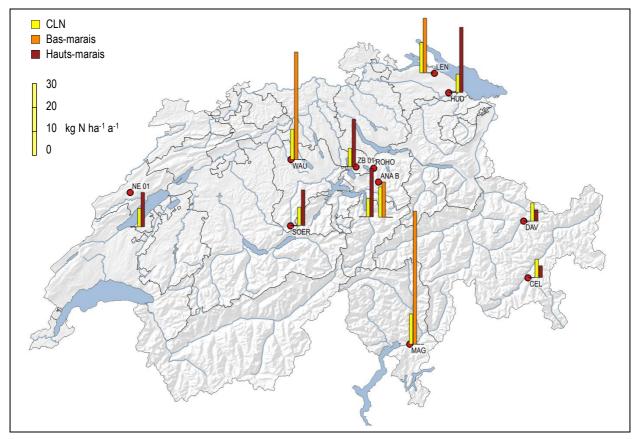


Figure Z5 "Marais": Comparaison des charges en azote 2014 avec les Critical Loads
Pour les CLN on a indiqué la moyenne du domaine du CLN empirique selon l'UNECE. Les valeurs représentées
s'appliquent au site indiqué (point rouge) et ne sont pas forcément représentatives pour toute la région.

La figure Z6 donne les apports d'azote et les CNL pour les forêts qui se situent dans un périmètre de 200 m autour des stations de mesure. La charge en azote n'est située à la limite inférieure du domaine des CLN que sur les sites des Alpes centrales de Davos (DAV), Celerina (CEL) et Parc national (NAT) dans le canton des Grisons. Cependant si l'on tient compte du fait que tous les composés azotés ne sont pas pris en compte et qu'il se produit des pertes lors de la collecte des précipitations par fort vent et/ou lorsqu'il neige, un dépassement des CLN sur les sites situés à haute altitude dans la Alpes centrales n'est pas à exclure. Sur tous les autres sites, les charges se situent dans le domaine des CLN ou sont supérieures à celles-ci. On constate de forts dépassements sur de nombreux sites du Plateau, les plus élevés dans la forêt de feuillus au nord de Lausanne (LAU) et sur le coteau audessus de Schänis (SCH) en bordure des Alpes du Nord. Il faut ainsi admettre que pratiquement toutes les forêts du Plateau subissent un apport aérien d'azote trop élevé.

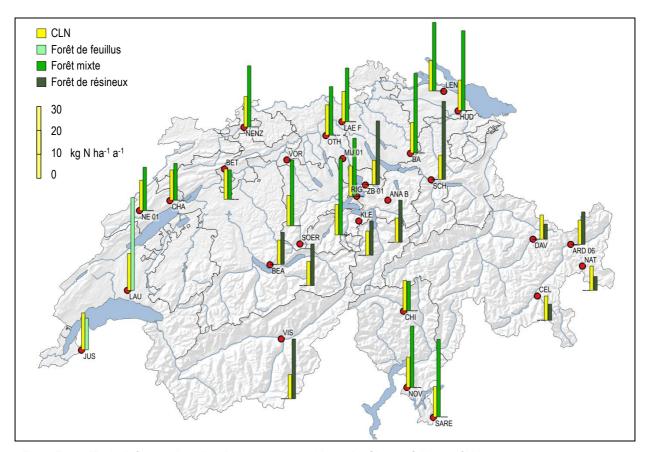


Figure Z6 "Forêts": Comparaison des charges en azote 2014 avec les Charges Critiques (CLN)

Pour les CLN, on a indiqué la moyenne du domaine des CLN empiriques selon l'UNECE. Les valeurs représentées s'appliquent au site indiqué (point rouge) et ne sont pas forcément représentatives pour toute la région.

Formes de l'apport d'azote

La figure Z7 indique les formes d'apport des apports d'azote, d'une part en provenance des précipitations par rapport aux gaz et aux aérosols et d'autre part subdivisées en composés réduits /oxydés. Mis à part sur le Plateau, il y a dominance des apports d'azote en provenance de la déposition gravitationnelle, et donc des apports par les précipitations. D'une manière générale, les apports des composés azotés réduits, qui proviennent principalement de l'agriculture, sont plus importants que ceux des composés azotés oxydés dont les émissions proviennent essentiellement du trafic routier, de l'industrie et des ménages. Le pourcentage des composés azotés oxydés domine sur le site de Jussy (JUS), situé sur le Plateau dans une grande clairière près de Genève, et sur les sites de haute altitude des Alpes centrales, à l'exception du site ARD 06 en Basse-Engadine qui se trouve à proximité d'exploitations agricoles.

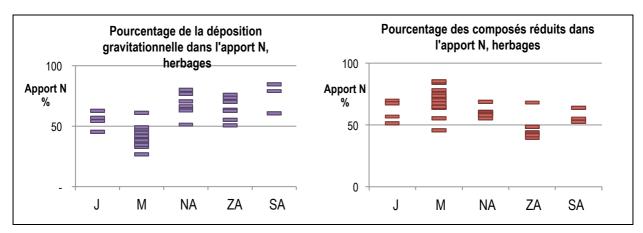


Figure Z7 Pourcentages des apports d'azote
A gauche la part de la déposition gravitationnelle, à droite la part des composés réduits à l'apport total pour l'exemple de sites représentatifs des types d'écosystèmes surfaces herbagères (prairies, herbages alpins/subalpins et marais)
J = Jura, M = Plateau, NA = Alpes du Nord, ZA = Alpes centrales, SA = Alpes du Sud

Les figures Z8 à Z10 illustrent à l'aide d'exemples les formes d'apport en azote provenant des précipitations (foncé), des gaz et des aérosols (clair) ainsi que leur subdivision en composés réduits (rouge) et oxydés (bleu). Les surfaces des colonnes sont proportionnelles aux charges en azote.

La figure Z8 (à gauche) montre les apports dans les prairies. APS (Ct. AI) et MAG (Ct. TI) présentent des apports semblables, mais à APS les immissions de NH₃ dominent fortement (53 %) alors qu'à MAG, ce sont avant tout les fortes précipitations qui contribuent le plus à l'apport élevé (61 %). JUS (Ct. GE) et CHA dans le Jura présentent aussi des apports semblables quoique notablement moins élevés; toutefois l'influence des processus de combustion (trafic, chauffage) est un peu plus importante à JUS (54 %) que celle de l'agriculture alors que sur CHA c'est l'inverse (57 % de composés réduits).



Figure Z8 Types d'écosystèmes "prairies" et "herbages alpins/subalpins". Forme d'apport des apports d'azote Les surfaces de colonnes sont proportionnelles à l'apport d'azote.

Sur les sites situés dans les herbages alpins/subalpins (figure Z8 droite) l'influence de la déposition gravitationnelle domine (64 - 85 %). Pour ce qui est de leur composition, les

charges sur KLE dans les Alpes du Nord et NOV dans les Alpes du Sud sont semblables, avec un pourcentage élevé de composés réduits (59, resp. 55 %. Dans le Parc national, ces sont par contre les composés oxydés qui dominent (60 %).

Pour les bas-marais (figure Z9, à gauche) la forme d'apport résulte d'une par de la situation géographique et d'autre part des activités agricoles à proximité. Sur WAU, dans le Seeland lucernois, l'influence agricole domine (85 %). Sur d'autres sites aussi, le pourcentage de composés réduits est élevé, cela d'autant plus qu'ils se trouvent à proximité d'activités agricoles. Sur ANA dans l'Alpthal (Ct. SZ), avec de fortes précipitations et peu d'activités agricoles, la déposition gravitationnelle de l'azote domine. Comme là les concentrations des composés azotés réactifs gazeux sont très faibles, les aérosols ne se forment pas localement mais sont apportés par transport atmosphérique.

Les exemples des hauts-marais (figure Z9, à droite) mettent à nouveau en évidence l'importance de la situation géographique. A HUD dans la Suisse orientale le pourcentage d'ammoniac est élevé (47 %), A SOER dans l'Entlebuch lucernois, l'azote est avant tout apporté par les fortes précipitations, tout comme à DAV, situé dans la forêt près de Davos. Sur ces deux sites, les apports par déposition gravitationnelle dominent (80, resp. 63 %).

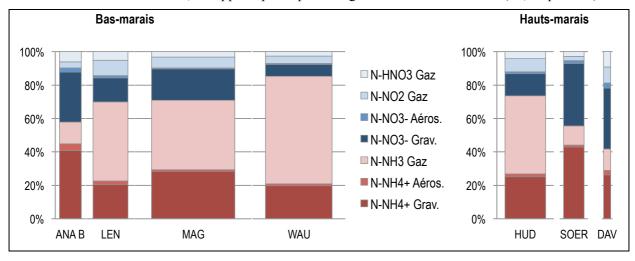


Figure Z9 Types d'écosystèmes "bas marais" & "hauts-marais". Forme d'apports en'azote Les surfaces des colonnes sont proportionnelles à l'apport d'azote.

La figure Z10 (en haut, à gauche) montre la situation de la forêt de feuillus située au-dessus de Lausanne à proximité d'une zone agricole en comparaison de celle de Jussy près de Genève, située dans une grande clairière. A LAU l'ammoniac domine (65 %), alors qu'à JUS les composés azotés réduits et oxydés présentent des pourcentages égaux.

Les apports d'azote dans la forêt mixte autour du marais LEN à proximité du Lac de Constance dans la canton de Thurgovie sont déterminés pour moitié par les apports de NH₃ (figure Z10, en haut à droite). A RIG sur le Seebodenalp et à OTH sur le Plateau, la part de NH₃ dans ces apports est de 37 %. A SARE dans le sud du Tessin, l'apport par les précipitations domine avec 56 %. A OTH sur le Plateau, on remarque l'influence des nombreuses routes, qui se traduit par un pourcentage relativement élevé des apports par NO₂ de 24 %. Par contre, sur tous les autres sites à proximité de forêts mixes les apports dus à NO₂ n'atteignent que 15 % ou moins.

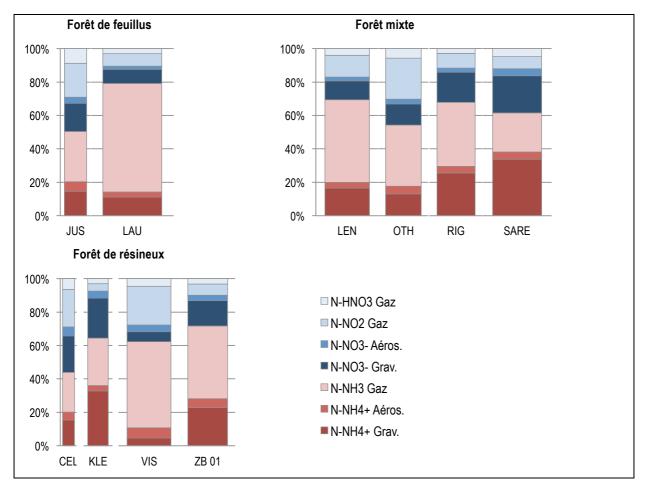


Figure Z10 Type d'écosystèmes "Forêt de feuillus", "Forêt mixte" & "Forêt de résineux". Forme des apports d'azote Les surfaces des colonnes sont proportionnelles à l'apport d'azote.

Sur les sites de haute altitude des Alpe centrales, dans l'est de la Suisse, pour l'écosystème "Forêt de résineux", le pourcentage des composés oxydés domine (exemple CEL: 46 %), alors qu'à VIS dans la vallée du Rhône, le pourcentage provenant de l'ammoniac est élevé (51 %). A VIS, la part de la déposition gravitationnelle n'est que de 10 %. Par contre dans les Alpes du Nord, elle atteint 38 % à ZB 01 et 57 % à KLE (figure Z10, en bas à droite).

Variations entre 2000 et 2014

Les courbes des quatre sites sur lesquels les mesures ont été réalisées sans interruption depuis 2000 et celles des deux sites sur lesquels ces mesures ont eu lieu durant 14 de ces 15 années montrent une légère tendance à la baisse de ces apports (figure Z11). Sur les sites SCH, BA et CHA cette diminution est statistiquement significative (niveau de confiance 95 %). Il convient de noter que les conditions météorologiques d'une année peuvent exercer une grande influence sur certaines valeurs.

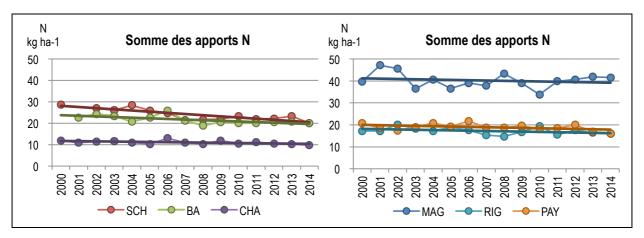


Figure Z11 Courbes des apports d'azote annuels 2000 – 2014 Sites avec diminution statistiquement significative (à gauche) et avec diminution non significative (à droite)

Comparaison avec le modèle de diffusion de Meteotest

Les charges estimées à partir des mesures de déposition de 2014 ont été comparées avec les valeurs modélisées à partir des inventaires des émissions (base des données 2010) (figure Z12). La concordance est bonne, avec cependant des valeurs modélisées tendanciellement plus élevées avant tout pour les composés réduits. Ceci peut être dû en partie au fait que l'on compare entre elles des années différentes. De plus, les conditions météorologiques au cours de l'année exercent une influence sur les valeurs de mesure alors que le modèle prend en compte des conditions météorologiques moyennées. En outre, les charges estimées de 2014 reposent sur des mesures ponctuelles alors que les valeurs modélisées se rapportent à une surface (500x500 m).

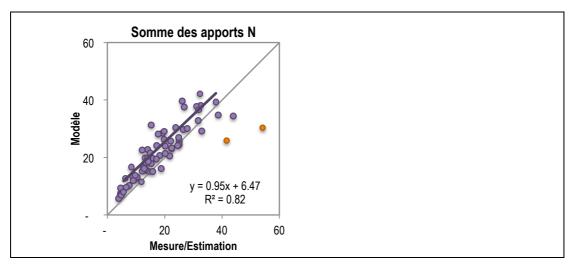


Figure Z12 Comparaison entre les apports totaux d'azote estimés à partir des mesures avec ceux obtenus par modélisation.

Base des données des mesures: 2014, inventaire des émissions pour le modèle: 2010. Les deux points orange à droite représentent la station NABEL MAG aux environs de laquelle il s'est probablement produit un changement des émissions.

Conclusions

- En maints endroits, les apports d'azote dans les prairies à l'état semi-naturel, les forêts et les marais de Suisse sont trop élevés et ils peuvent ainsi exercer une influence négative sur la biodiversité et la stabilité des forêts (p. ex. risque accru de chablis dû au déséquilibre de l'apport en substances nutritives).
- Mis à part sur les sites des Alpes centrales, ce sont le plus souvent les composés azotés réduits qui dominent, ceci étant d'autant plus marqué que le site est plus proche d'une source agricole.
- Sur six sites où les mesures s'étendaient sur plusieurs années, les apports d'azote ont légèrement diminué. Sur les sites BA, CHA et SCH, cette diminution était significative, sur les sites MAG, PAY et RIG, uniquement tendancielle.

2 Einleitung

2.1 Ausgangslage

Stickstoffemissionen haben seit der Industrialisierung, der starken Zunahme des Verkehrs und der Intensivierung der Landwirtschaft stark zugenommen. Seit den 1980er Jahre haben die Emissionen wieder abgenommen, sind aber immer noch hoch. Diese Emissionen führen zu bedeutenden Stickstoffeinträgen in empfindliche Ökosysteme wie Wälder, Moore und oligotrophe Stillgewässer, was langfristig eine Bodenversauerung, eine Überdüngung und eine Verschiebung der Artenzusammensetzung verursacht. Die ökologisch kritische Eintragsgrenze von Stickstoff in naturnahe Ökosysteme (Critical Loads für Stickstoff – CLN) werden weiträumig überschritten, selbst an quellenfernen Standorten (UNECE 2010; Bobbink & Hettelingh 2011; Thimonier et al. 2005; Waldner et al. 2007). In der Schweiz werden die Critical Loads für Stickstoff bei mehr als 90 % der Waldfläche und rund 55 % der Flächen von weiteren naturnahen Ökosystemen überschritten (EKL 2005, 2014, BAFU 2014).

Bei der Emission von Stickoxiden spielt die Verbrennung von Brenn- und Treibstoff die wichtigste Rolle. Diese Emissionen haben sich nach der Einführung des Katalysators für Autos und Low-NOx-Feuerungen von rund 140 Kilotonnen (1990) auf rund 70 Kilotonnen (2012) Stickstoff halbiert (BAFU 2015).

Die Ammoniakemissionen betrugen im Jahr 2013 in der Schweiz 50.6 kt N (FOEN 2015). Die "Land- und Forstwirtschaft" verursachte davon 93 % und ist damit die wichtigste Stickstoffquelle überhaupt. Weitere Ammoniak-Emittenten sind der "Verkehr" mit einem Anteil von 4.2 %, "Industrie und Gewerbe" mit 1.5 % und "Haushalte" mit 1.3 % (BAFU 2013). Die NH₃-Emissionen aus der Landwirtschaft in der Schweiz sanken zwar zwischen 1980 und 2000 – vor allem wegen der Reduzierung der Tierbestände – von 64'000 auf 48'000 Tonnen Stickstoff pro Jahr (FOEN 2015), stagnieren aber seither auf diesem Niveau. Somit liegt der Wert nach wie vor über der Zielsetzung für Ammoniakemissionen aus der Landwirtschaft von 25'000 Tonnen Stickstoff pro Jahr (BAFU & BLW 2008).

Emittiertes Ammoniak wird teilweise in der näheren Umgebung der Emissionsquellen deponiert, es bildet jedoch auch mit Säuren – vor allem Salpetersäure aus den Verbrennungsprozessen – Aerosole, die über weite Strecken transportiert werden können (EKL 2005). Im Feinstaub ist Ammonium das weitaus wichtigste beteiligte Kation. Während winterlicher Inversionen konnte gezeigt werden, dass Ammoniumnitrat- und Ammoniumsulfat-Anteile im PM10 etwa die Hälfte (Empa 2006) und im PM1 bis zu zwei Drittel (PSI & uwe 2007) betragen.

Sowohl die direkte Belastung der Vegetation mit gasförmigem Ammoniak als auch die durch Ammoniak und Ammoniumsalze zusammen mit oxidierten Stickstoffverbindungen verursachten Stickstoffeinträge in empfindliche Ökosysteme haben schädliche Auswirkungen. Diese grossflächige und teilweise massive Überdüngung mit Stickstoff führen neben Verschiebungen in der Artenzusammensetzung auch zu einer Reduktion der Artenzuslicht (BAFU 2011, Roth et al. 2013, 2015).

Im Anhang 7 der Luftreinhalteverordnung (LRV) sind für NO₂ Immissionsgrenzwerte vorgegeben. In der von der Schweiz ratifizierten UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung sind Critical Loads für Stickstoff (CLN) und Critical Levels für Ammoniak (CLe-NH₃) für verschiedene Typen von empfindlichen Ökosystemen festgelegt (UNECE 2010; Bobbink&Hettelingh 2011). Critical Loads für Stickstoff

und Critical Levels sind von der Bedeutung her mit Immissionsgrenzwerten der LRV gleichwertig (BAFU & BLW 2011). Bei deren Überschreitung müssen die Immissionen demnach als übermässig bezeichnet werden. Damit sind die Behörden gemäss LRV verbindlich aufgefordert, Massnahmen zur Reduktion der massgeblich durch Ammoniak und NO_x verursachten übermässigen Stickstofffrachten zu treffen (EKL 2014).

Die aus den gemessenen Ammoniakkonzentrationen, den Stickoxiden sowie den Ammonium- und Nitratkonzentrationen in Niederschlägen ableitbaren Gesamtstickstofffrachten liegen in der Umgebung von intensiv landwirtschaftlich genutzten Gebieten weit über den Critical Loads für empfindliche Ökosysteme, welche im Rahmen der UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung festgelegt sind (EKL 2005; EKL 2014). Der Anteil des von der Landwirtschaft stammenden Ammoniaks/Ammoniums macht dabei je nach Standort 60-80 % des gesamten Stickstoffeintrags aus.

In Bobbink & Hettelingh (eds. 2011) sowie im UNECE (2010) Report sind die Bereiche der empirischen CLN für N hergeleitet. Eine für die Schweiz wichtige Auswahl ist in EKL (2014, S. 15) angegeben (Tabelle 1). Bei den montanen Heuwiesen haben neuere Untersuchungen in der Schweiz gezeigt, dass der Critical Load für Stickstoff etwas niedriger bei 10-15 kg N ha⁻¹a⁻¹ festgelegt werden müsste (Roth et al 2013).

Tabelle 1 Empirische Critical Loads für Stickstoff
Stickstoff-Belastungsgrenzen für verschiedene Ökosysteme (Auszug aus EKL 2014 und gemäss UNECE 2010)

Ökosystemtyp	Critical Loads Bereich kg N ha-1 a-1
Hochmoore	5-10
Flachmoore	10-15
Alpines/subalpines Grasland	5-10
Montane Heuwiesen	10-201
Laubwälder	10-20
Nadelwälder	5-15

 $^{^1}$ nach neueren Studien ist der CLN-Bereich für montane Heuwiesen eher 10-15 kg N ha $^{-1}$ a $^{-1}$ (Roth et al 2013)

2.2 Projektrahmen

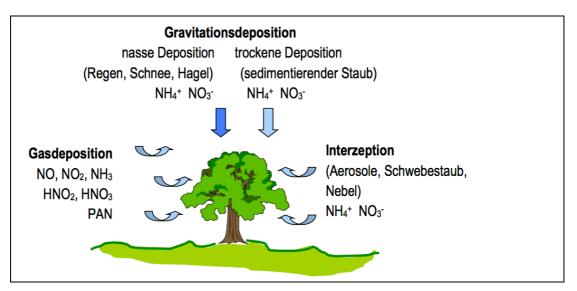


Abbildung 1 Stickstoffeinträge aus der Atmosphäre
Deposition durch Gravitationsdeposition, Gasdeposition oder Interzeption

Verschiedene Stickstoffkomponenten tragen zum Gesamtstickstoffeintrag bei (Abb. 1). Wegen Kosten und Aufwand können nicht alle Komponenten erfasst werden, z.B. werden okkulte Deposition (aus Nebel) und organische Stickstoffeinträge in dieser Studie nicht berücksichtigt. Erfasst werden die Gravitationsdeposition von NH₄⁺ und NO₃⁻, die Gasdeposition NH₃, NO₂, HNO₃ und die Deposition von NH₄⁺ und NO₃⁻ in Aerosolen. Die Summe dieser Komponenten wird als Gesamtstickstoffeintrag bezeichnet. Weil diese Stickstoffverbindungen über unterschiedliche Pfade aus der Luft abgelagert werden, müssen verschiedene Techniken zur Sammlung und Messung benutzt werden. Mit relativ kleinem messtechnischem Aufwand zur Messung der Gravitationsdeposition (Bulkregensammler resp. Wet only), Passivsammlern zur Messung von NH₃ und NO₂ und Denuder-Filter-Systemen zur Messung von HNO₃ und Aerosolen (NH₄⁺, NO₃⁻) kann der Gesamtstickstoffeintrag in Ökosysteme unter Beizug von Depositionsgeschwindigkeiten abgeschätzt werden. Die Denuder-Filter-Messungen wurden nur an einzelnen, ausgesuchten Orten durchgeführt und die dort gemessenen Werte wurden als Schätzwerte für alle anderen Standorte eingesetzt.

Im Jahr 2014 sind die Gesamtstickstoffeinträge an 38 Standorten geschätzt worden. Darunter sind Standorte mit routinemässigen Messungen, an verschiedenen NABEL- und WSL-LWF-Stationen und weitere Standorte, bei denen schon bestehende Messungen von Stickstoffverbindungen durch zusätzliche Messungen ergänzt werden konnten. Die Zusatzkosten für Wechsel und/oder Analyse wurde von OSTLUFT, BAFU, WSL, Uni Basel, Kantone: AG, BE, BL/BS, GE, GR, LU, NE, SO, SZ, TI, ZG und ZH, UNESCO Biosphärenreservat Entlebuch, IAP, Agroscope, sowie von der FUB übernommen. Im Jahr 2000 wurden die Gesamtstickstoffeinträge an 20 Standorten erfasst, an einzelnen Standorten wurden auch in anderen Jahren Messungen durchgeführt. Es liegen Messungen von insgesamt 41 Standorten vor.

2014 wurde an allen 38 Standorten mindestens Ammonium und Nitrat im Bulkregensammler (oder Wet-) und NO₂ und NH₃ mit Passivsammler gemessen. An den NABEL-Stationen CHA, MAG, PAY und RIG wird Stickstoff im Regen (Wet only) sowie NH₃ und NO₂

mindestens seit 15 Jahren gemessen, von BA und SCH liegen 14 Jahre vor. Diese Daten können für eine Zeitreihen-Auswertung benutzt werden. An den OSTLUFT-Standorten (APS, HÄG, HUD, sowie bei TAE) wurden in weiteren Jahren ebenfalls mehrere N-Komponenten erfasst. Auch für diese Standorte kann eine gewisse zeitliche Entwicklung gezeigt werden.

2.3 Zielsetzung

Im Rahmen dieses Projektes werden folgende Ziele verfolgt:

- Stickstoffbelastungen in Gebieten mit unterschiedlichen Quelleneinflüssen erfassen, Vergleich mit Critical Loads (CLN) für empfindliche Ökosysteme. UNE-CE (2010; Critical Loads für Stickstoff)
- An den Orten, an denen in früheren Jahren gemessen wurde, zeitliche Veränderung der Stickstoffeinträge erfassen
- Vergleich mit räumlich hoch aufgelösten, modellierten Daten
- Ermittlung von atmosphärischen N-Einträgen für andere Forschungsprojekte bei empfindlichen Ökosystemen¹
- Bereitstellung von Daten als Instrument zur Erfolgskontrolle im Zusammenhang mit den eingeleiteten Massnahmen der Umwelt- und Agrarpolitik

¹**AlpGrass** Experiment: Wirkung von Klimawandel und Luftverschmutzung auf subalpine Weiden, Forschungsflächen in Ardez GR, Agroscope Zürich, matthias.volk@agroscope.admin.ch

Alpfor: Wirkung atmosphärischer Stickstoffdeposition auf die alpine Vegetation in drei verschiedenen alpinen Lebensraumtypen, Forschungsflächen KLE, TIE & FUR, Bot. Inst., DUW, Uni Basel, erika.hiltbrunner@unibas.ch

Stickstoffdynamik Alpthal, WSL, patrick.schleppi@wsl.ch

3 Methodik

3.1 Probesammlung und Analytik im Überblick

In Tabelle 2 sind die eingesetzten Methoden kurz dargestellt. Genauere Beschreibungen befinden sich im Fachteil (Kapitel 6.1)

Tabelle 2 Gemessene Stickstoffkomponenten
Sammel- und Messmethoden; Institutionen, welche die im Bericht verwendeten Daten erhoben haben.

Art der Deposition	Komponenten	Sammelverfahre	n		Analytik
Gravitationsdeposition Regen, Schnee, sedimentierender Staub etc.	Ammonium, Nitrat		Bulk Regensammler	FUB WSL	Ionenchromatografie (IC), Fliessinjektionsanalyse (FIA)
	Ammonium, Nitrat		Schneesammler	WSL	
Nassdeposition "Wet" Regen, Schnee etc.	Ammonium, Nitrat		"Wet only" Sammler	Empa	IC, FIA
Gasdeposition Gase	Ammoniak, Salpetersäure		Denuder	FUB Empa	IC, FIA
	Ammoniak	9	Passivsammler	FUB	FIA
	Salpetersäure		Passivsammler	FUB	IC
	Stickstoffdioxid		Passivsammler	FUB	Photometrie
	Stickstoffdioxid		Kontinuierlich	Empa	Chemolumineszenz
Interzeption Aerosole	Ammonium, Nitrat		Aerosolfilter Summenfilter	FUB Empa	IC, FIA

3.2 Messstandorte im Überblick

Bei der Auswahl der Standorte wurden verschiedene Regionen und Ökosystemtypen berücksichtigt. Die Wahl fiel vor allem auf Standorte mit schon bestehenden Messungen der Nass- resp. Gravitationsdeposition, welche z.B. durch die Empa an NABEL- oder durch die WSL an LWF-Stationen durchgeführt werden. Einige Standorte, an denen seit Jahren Ammoniak gemessen wird, wurden mit Bulk- und NO₂-Passivsammlern ergänzt. Zwei Moorstandorte (Rothenthurm, Sörenberg) wurden für ein Jahr ins Messprogramm aufgenommen (Abbildung 2).

In Tabelle 3 werden die Standorte und Messzeitpunkte beschrieben. Die Werte von 2000 sind meist von Herbst 1999 bis Herbst 2000 ermittelt worden. In den anderen Jahren wurde von meist von Januar bis Dezember gemessen. Die Standortinformationen sind ausführlicher im Anhang sowie in den Standortdatenblätter (Seitler et al. 2015) dokumentiert.

In Abbildung 3 werden die Ökosystemtypen direkt am Standort, in Abbildung 4 die empfindlichen Ökosystemtypen innerhalb 200 m Umkreis der Messstandorte dargestellt.

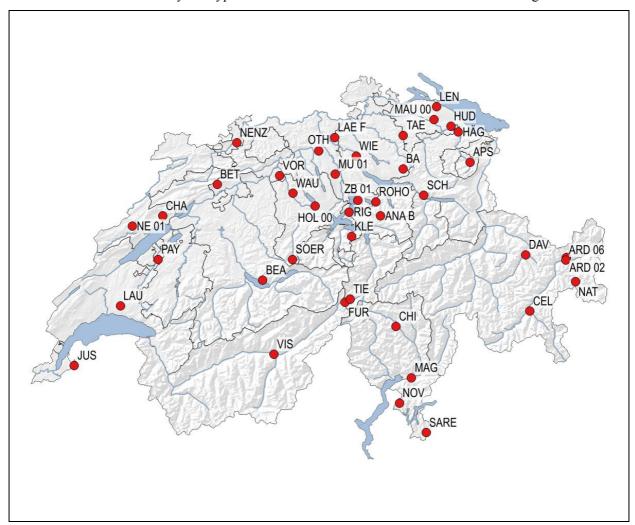


Abbildung 2 Die Standorte, an denen Gesamtstickstoffeinträge ermittelt wurden Die eingezeichneten grauen Linien sind Kantonsgrenzen

Tabelle 3 Standorte, an denen aus Messungen Gesamtstickstoff-Depositionen abgeschätzt wurden Zuweisung der Ökosystemtypen nach map.geo.admin.ch, Geokatalog Wälder: Laubwald < 50 %, Mischwald 50 – 65 %, Nadelwald > 65 % Nadelholzanteil

Standort Name	Code	Kanton	Höhe	Ökosystemtypen		Messungen	
			m ü. Meer	an Station	Innerhalb 200 m von Station ¹	N-Komponenten	
Alpthal	ANA B	SZ	1190	Nadelwald	Flachmoor	2014	
ApSteinegg	APS	Al	820	Wiese		2003, 2008, 2014	
Ardez 2	ARD 02	GR	2180	Alpines/subalpines Grasland		2014	
Ardez 6	ARD 06	GR	1680	Alpines/subalpines Grasland	Nadelwald	2014	
Bachtel	BA	ZH	930	Wiese	Mischwald	2001 - 2014	
Beatenberg	BEA	BE	1560	Alpines/subalpines Grasland	Nadelwald	2000, 2014	
Bettlachstock	BET	SO	1076	Alpines/subalpines Grasland	Mischwald	2000, 2014	
Celerina	CEL	GR	1760	Hochmoor	Nadelwald	2000, 2014	
Chaumont	CHA	NE	1137	Wiese	Mischwald	2000 - 2014	
Chironico	CHI	TI	1479	Alpines/subalpines Grasland	Mischwald	2014	
Davos	DAV	GR	1629	Hochmoor	Nadelwald	2014	
Furka	FUR	UR	2440	Alpines/subalpines Grasland		2014	
Häggenschwil	HÄG	SG	555	Wiese		2003, 2008, 2014	
Holderhus 0	HOL 00	LU	590	Wiese	Mischwald	2000	
Hudelmoos	HUD	TG	520	Hochmoor	Mischwald	2000, 2001, 2014	
Jussy	JUS	GE	501	Wiese	Laubwald	2000, 2014	
Klewenalp	KLE	NW	1722	Alpines/subalpines Grasland	Nadelwald	2014	
Lägeren WSL	LAE F	AG	508	Wiese	Mischwald	2014	
Lausanne	LAU	VD	790	Wiese	Laubwald	2000, 2014	
Lengwiler Weiher	LEN	TG	505	Flachmoor	Mischwald	2000, 2014	
Magadino-Cadenazzo	MAG	TI	204	Wiese	Flachmoor	2000 - 2014	
Mauren 0	MAU 00	TG	439	Wiese		2000	
Muri 1	MU 01	AG	470	Waldlichtung	Mischwald	2014	
Nationalpark	NAT	GR	1900	Alpines/subalpines Grasland	Nadelwald	2000, 2014	
Tourbières	NE 01	NE	1000	Hochmoor	Mischwald	2014	
Nenzlingen	NENZ	BL	500	Alpines/subalpines Grasland ²	Mischwald	2014	
Novaggio	NOV	TI	1075	Alpines/subalpines Grasland	Mischwald	2000, 2014	
Othmarsingen	OTH	AG	462	Waldlichtung	Mischwald	2000, 2014	
Payerne	PAY	VD	489	Wiese		2000 - 2014	
Rigi-Seebodenalp	RIG	SZ	1031	Wiese	Mischwald	2000 - 2014	
Rothenturmer Hochmoor	ROHO	SZ	905	Hochmoor, Flachmoor	IIIIooniiia	2014	
Sagno Reservoir	SARE	TI	820	Waldlichtung	Mischwald	2014	
Schänis	SCH	SG	630	Wiese	Nadelwald	2000, 2002 - 2014	
Sörenberg Husegg	SOER	LU	1450	Hochmoor, Flachmoor	Nadelwald	2014	
Tänikon	TAE	TG	539	Wiese		2000, 2008, 2014	
Tiefenbach	TIE	UR	2127	Alpines/subalpines Grasland		2014	
Visp	VIS	VS	664	Waldlichtung	Nadelwald	2014	
Vordemwald	VOR	AG	486	Wiese	Mischwald	2000, 2014	
Wauwiler Moos	WAU	LU	499	Flachmoor	Moonwald	2000, 2014	
Schimmelstrasse	WIE	ZH	415	Siedlung		2008	
Zugerberg 1	ZB 01	ZG	990	Hochmoor	Nadelwald	2014	

¹ Die Stickstoffdeposition der innerhalb von 200 m der Stationen gelegenen Ökosysteme wurden mit den an der Station gesammelten Gravitationsfrachten, Gas und Aerosolkonzentrationen, aber mit ökosystemspezifischen Depositionsgeschwindigkeiten ermittelt.

² NENZ gehört zum Ökosystemtyp "Montane Heuwiese", wird in diesem Bericht der Vereinfachung halber aber mit "Alpinem/subalpinem Grasland" abgehandelt.

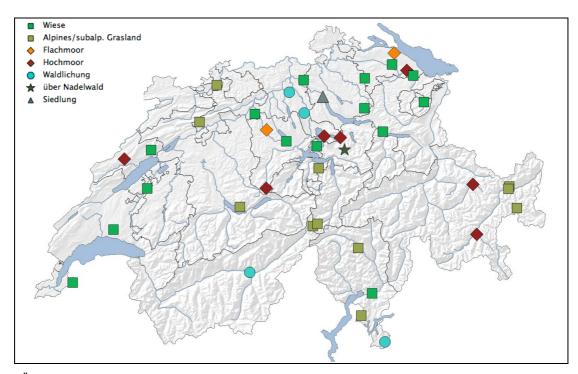


Abbildung 3 Ökosystemtypen direkt an den Messstandorte

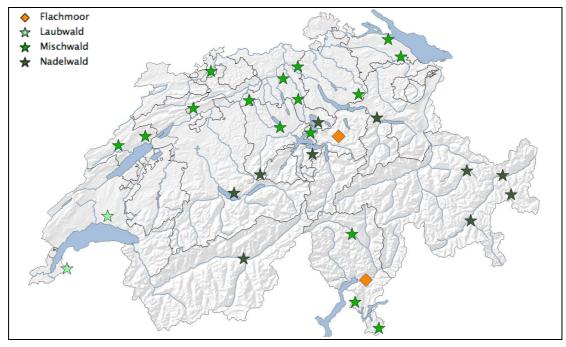


Abbildung 4 Ökosystemtypen im Umkreis von 200 m der Messstandorte
Es werden nur diejenigen Standorte dargestellt, bei denen im Umkreis von 200 m ein zusätzliches, empfindliches Ökosystem vorhanden ist.

Für die Auswertung wurden die Naturräume Jura (J), Mittelland (M), Nordalpen (NA), Zentralalpen (ZA) und Südalpen (SA) nach Gutersohn (1973) beigezogen (Abbildung 5), da sich vor allem die Niederschlagsmengen dieser Regionen unterscheiden und sich dies

auf die Stickstofffrachten auswirkt. TIE und FUR im Urserental wurden zu den zentralalpinen Standorten gezählt, da diese ebenfalls von direkter Anströmung von Norden und Süden geschützt sind.

Abbildung 5 Naturräume in der Schweiz

Jura (J), Mittelland (M), Nordalpen (NA), Zentralalpen (ZA), Südalpen (SA) (nach Gutersohn 1973)

3.3 Berechnung der Gesamtstickstoff-Einträge

Zur Abschätzung des Eintrags von Stickstoffkomponenten kann die gemessene Konzentration der nassen Deposition mit der Niederschlagsmenge direkt in Fracht umgerechnet werden. Für gasförmige und Aerosol-Stickstoffkomponenten müssen die Konzentrationen mit empirischen, rezeptorspezifischen Depositionsgeschwindigkeiten (v_d) multipliziert werden, um die Fracht zu berechnen. Diese Annäherung an die Eintragsmenge wird als "inferential technique" bezeichnet (Schmitt et al. 2005). Vor allem für Ammoniak werden in der Literatur unterschiedliche Depositionsgeschwindigkeiten aufgeführt, (z.B. in der "Review of recent studies" von Schrader & Brümmer 2014 zusammengestellt). Für diese Arbeit werden die vom BAFU gemeinsam mit Experten zusammengestellten v_d verwendet (SAEFL 1996, Thimonier et al. 2005). Für Ammoniak werden die v_d in den Bergen verkleinert, da bei langer Schneebedeckung kleinere v_d zu erwarten sind (siehe auch Fachteil 6.5.1, Tabelle 13). Zur Berechnung der gesamten Einträge werden die Frachten der erfassten und geschätzten Komponenten aufsummiert. Einträge in Wälder werden über die ermittelten Konzentrationen im Freiland nebenan berechnet. Die Ermittlung der Gesamtstickstoffeinträge ist mit Unsicherheiten behaftet. Im Kapitel 6.8 im Fachteil sind diese diskutiert.

Für den Vergleich mit den Critical Loads wurden sowohl der Ökosystemtyp am Standort als auch im Umkreis von 200 m beigezogen. Die Ökosystemtypen wurden mit dem Geokatalog des Bundesamtes für Landestopographie zugeordnet (map.geo.admin.ch).

Die jeweiligen Ökosystemtypen sind in Tabelle 3 und die dazugehörigen Depositionsgeschwindigkeit v_d im Fachteil (Kapitel 6.5.1) aufgelistet.

4 Resultate

Die Messwerte sind im Anhang (Konzentrationen: Tabelle 19, Frachten: Tabelle 20) aufgeführt.

Bei der Interpretation der Resultate muss berücksichtigt werden, dass die Deposition von Stickstoff durch die meteorologischen Bedingungen beeinflusst wird. So steigt z.B. die Ammoniakkonzentration mit der Temperatur an und die nasse Deposition folgt der Niederschlagsmenge.

4.1 Konzentrationen der einzelnen Komponenten

4.1.1 Ammoniak

Jahreswerte 2000 und 2014

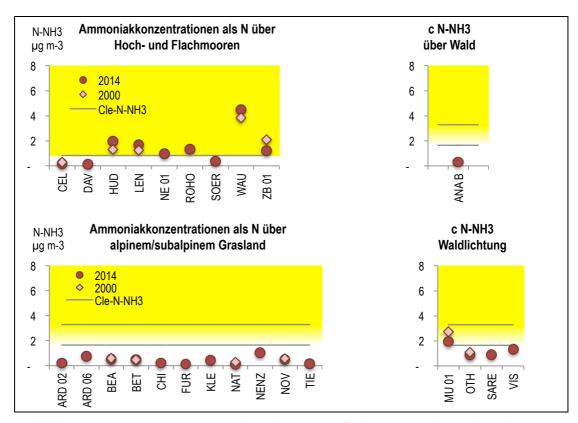


Abbildung 6 N-NH₃-Konzentrationen der Jahre 2000 und 2014, verglichen mit den Critical Levels von Ammoniak (als N)

CLe -N-NH₃ = graue Linie resp. Bereich innerhalb grauer Linien, gelb zeigt die Überschreitung

In Abbildung 6 sind die Jahresmittelwerte von 2014 und wo vorhanden von 2000 dargestellt, sodass sie mit dem Critical Level für Ammoniak (CLe–N-NH₃: graue Linie resp. Bereich innerhalb grauer Linien; gelb unterlegt = Überschreitung) für den jeweiligen Ökosystemtyp verglichen werden können. An den alpinen/subalpinen Graslandstandorten, sowie in den höher gelegenen Mooren von Celerina, Davos und Sörenberg (CEL, DAV, SOER) werden die CLe-NH₃ nicht überschritten, hingegen sind die NH₃-Konzentrationen in den Mooren im Flachland und im Hügelgebiet sowie im Jura (NE 01) z.T. deutlich über der

CLe-NH₃, vor allem im Wauwilermoos im Kt. Luzern (WAU), welches von intensiver Landwirtschaft umgeben ist. Auf Waldlichtungen, im und ob Wald sind die Konzentration nur bei Muri (MU 01) im Bereich des CLe-NH₃.

Für Wiesen, welche gedüngt werden, gibt es keinen CLe-NH₃. In Abbildung 7 sind die Standorte nach der Höhe der modellierten Emission im Umkreis von 500 m sortiert (Thöni et al. 2004). Appenzell-Steinegg (APS), Hägenschwil SG (HÄG) und Holderhus LU (HOL) sind in Gebieten mit relativ intensiver Landwirtschaft, bei der NABEL-Station Chaumont (CHA) im Jura, auf der Rigi-Seebodenalp (RIG), bei Jussy im Kt. Genf (JUS), am Fuss der Lägern AG (LAE F) und am Hang ob Schänis SG (SCH) wird nur extensiv gewirtschaftet. Die restlichen Standorte liegen in Ackerbaugebieten und/oder Gebieten mit wenig intensiver Viehwirtschaft.

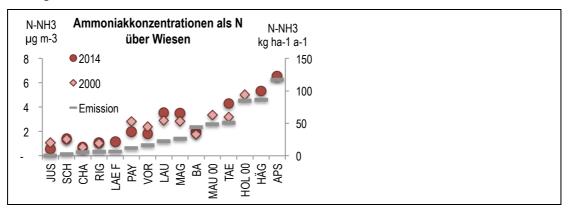


Abbildung 7 N-NH₃-Konzentrationen der Jahre 2000 und 2014 und modellierte N-NH₃-Emission
Die Standorte sind nach ihrer mittleren totalen NH₃-Emission als N im 500 m-Radius sortiert, Bezugsjahr modellierte Emission 2010. Links Konzentration, rechts Emission

Ergebnisse von Ammoniakmessungen an einigen dieser Standorte sind im Bericht von Seitler und Thöni (2015) ausführlich dargestellt.

Von 22 Standorten, an denen Ammoniak 2000 und 2014 gemessen wurde, zeigten elf kaum Unterschiede in den beiden Zeiträumen, sechs hatten 2014 deutlich höhere, fünf deutlich niedrigere Jahreskonzentrationen.

Jahreswerte von 2000 bis 2014 an ausgewählten Standorten

In Abbildung 8 sind die Ammoniakkonzentrationen (als N) derjenigen Standorte dargestellt, an denen an einigen oder allen Jahren zwischen 2000 und 2014 weitere Stickstoff-komponenten gemessen wurden. In den Jahren 2003 und 2011 wurden schweizweit erhöhte NH₃-Konzentrationen gemessen, 2003 war der Jahrhundertsommer, 2011 das zweitwärmste Jahr seit Messbeginn 1864. Einerseits wird bei höheren Temperaturen mehr Ammoniak emittiert, andererseits bei trockenen Bedingungen weniger deponiert. APS und HÄG weisen über die gesamte Zeitperiode eine signifikante Abnahme auf (95 % Niveau) (Seitler & Thöni 2015). Bei MAG ist 2011 vermutlich eine neue Ammoniakquelle dazu gekommen sein, da ab dem Jahr 2011 die Werte gestiegen sind. Die anderen drei Standorte zeigen über die 15 Jahre keine signifikante Veränderung (95 % Niveau) (Tab. 22).

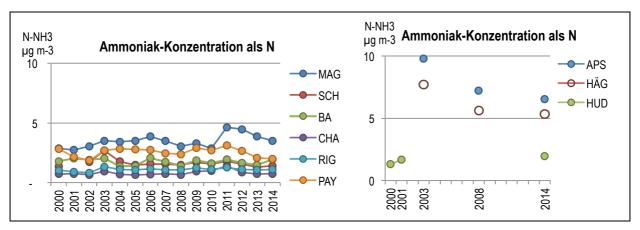


Abbildung 8 N-NH₃-Konzentrationen der Jahre 2000 bis 2014

4.1.2 Stickstoffdioxid

Jahreswerte 2000 und 2014

Die NO_2 -Konzentrationen (als N) an den beprobten Standorten sind in Abbildung 9 dargestellt. An keinem der 41 Standorte wurde der LRV-Jahresgrenzwert von 30 $\mu g/m^3$ überschritten. Am niedrigsten waren die Werte in den Alpen, am höchsten an der NABEL-Station Magadino (MAG). An Standorten mit Messwerten von 2000 und 2014 waren die Messwerte 2014 entweder gleich hoch oder niedriger als im Jahr 2000.

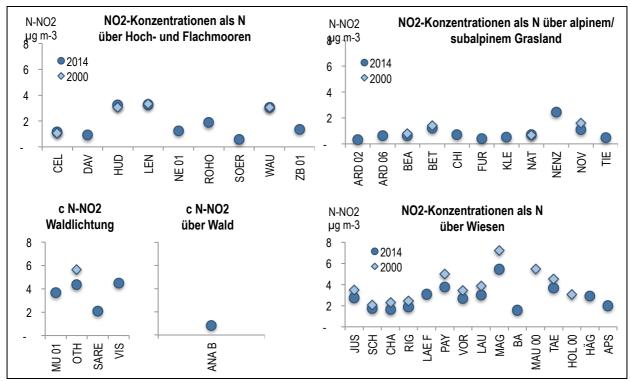


Abbildung 9 N-NO₂-Konzentrationen der Jahre 2000 und 2014

Jahreswerte von 2000 bis 2014 an ausgewählten Standorten

In Abbildung 10 sind die NO₂-Konzentrationen (als N) derjenigen Standorte dargestellt, an denen an einigen oder allen Jahren zwischen 2000 und 2014 gemessen wurde. Alle Standorte ausser HUD und BA zeigen eine Abnahme der NO₂-Konzentration. Die Abnahme ist signifikant für die Stationen CHA, MAG und RIG (95 % Niveau) (Tab.22).

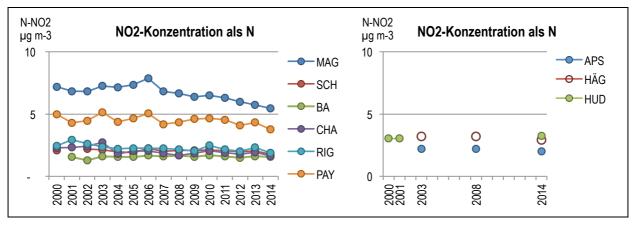


Abbildung 10 N-NO₂-Konzentrationen der Jahre 2000 bis 2014

4.1.3 Ammonium und Nitrat im Niederschlag (Gravitationsdeposition)

In Abbildungen 11 und 12 sind die Stickstofffrachten von Ammonium resp. Nitrat an den verschiedenen Standorten dargestellt. Die Grafiken sind auf die Ökosystemtypen aufgeteilt, obwohl diese beim Niederschlag keine Rolle spielen. Die Frachten schwanken stark: In zentralalpinen Tälern mit relativ geringen Niederschlagsmengen sind sie meist am niedrigsten (CEL, DAV, ARD, FUR, NAT, TIE, VIS), in der Südschweiz mit häufig hohen Niederschlagsmengen sind sie am höchsten (NOV, SARE, MAG, nicht in CHI). Bei hochgelegenen Standorten sind die Niederschlagsmengen oft höher als gemessen. Bei FUR und TIE kam es zusätzlich zu Minderbefunden, da im Winter wegen Lawinengefahr nicht gewechselt werden konnte. Vor allem bei der Station FUR, welche relativ stark windexponiert ist, wurde 2014 mit dem Bulk nur 67 % aufgefangen, gegenüber der in 3 m Distanz aufgestellten automatischen Wetterstation (persönliche Mitteilung E. Hiltbrunner, www.alpfor.ch). Darum werden die Stickstoffeinträge unterschätzt.

Die eingebrachte Nitratfracht steht in direktem Zusammenhang mit der Niederschlagsmenge (R² 0.73), für die Ammoniumfracht ist dieser Zusammenhang weniger stark (R² 0.37) (Abbildung 13).

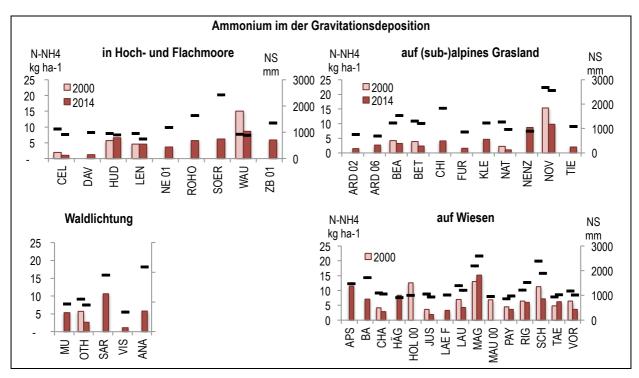


Abbildung 11 Jährliche Ammonium-Frachten als Stickstoff im Niederschlag, Werte 2000 und 2014 Die Niederschlagsmengen sind mit schwarzen Linien gekennzeichnet.

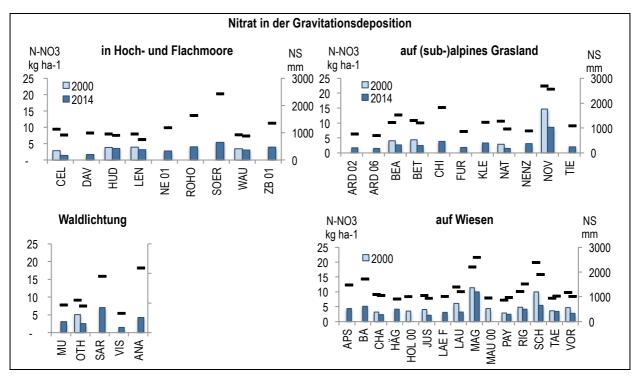


Abbildung 12 Jährliche Nitrat-Frachten als Stickstoff im Niederschlag, Werte 2000 und 2014 Die Niederschlagsmengen sind mit schwarzen Linien gekennzeichnet.

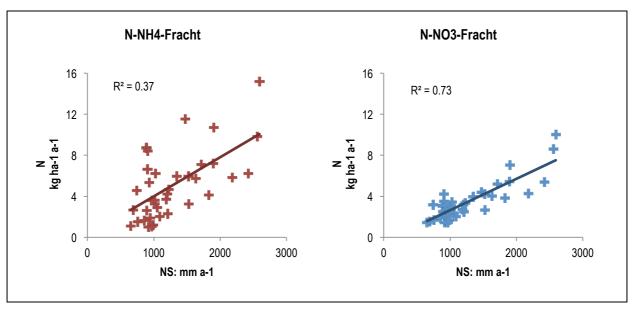


Abbildung 13 Stickstofffracht (N) in der Gravitationsdeposition im Vergleich mit der Niederschlagsmenge (NS)

Links:Ammonium, rechts: Nitrat, Jahreswerte

Jahreswerte von 2000 bis 2014, ausgewählte Standorte

In Abbildung 14 sind die Niederschlagsmenge und die Jahresfrachten von denjenigen Standorten dargestellt, an denen an einigen oder allen Jahren zwischen 2000 und 2014 die Stickstoffkomponenten gemessen wurden.

Die Ammoniumfrachten in der Gravitationsdeposition nahmen zwischen 2000 und 2014 tendenziell ab. Für BA, CHA, PAY und SCH ist die Abnahme signifikant (95 % Niveau). Auch die Nitratfrachten nahmen tendenziell ab, die Abnahme ist signifikant für die Stationen CHA und SCH.

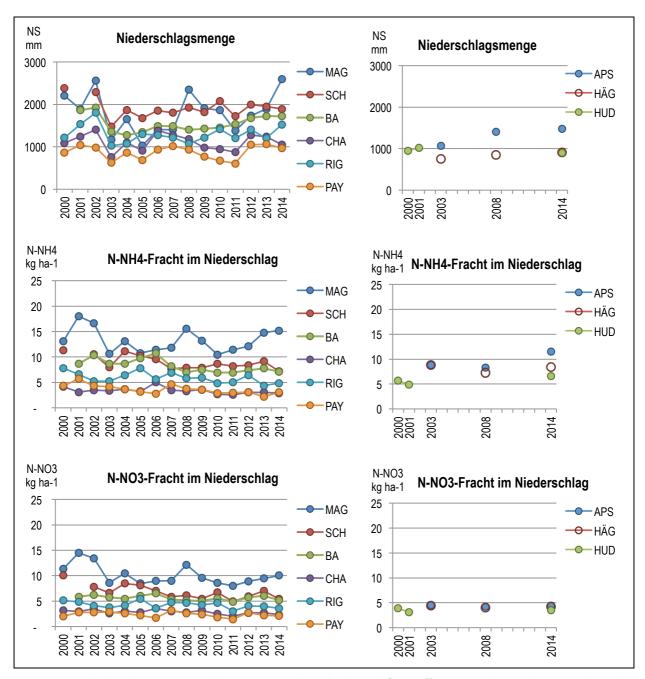


Abbildung 14 Niederschlagsmengen und Ammonium- und Nitrat-Frachten als Stickstoff im Niederschlag der Jahre 2000 bis 2014 Jahreswerte

4.2 Atmosphärische Gesamtstickstoff-Deposition 2014

4.2.1 Einträge in verschiedene Ökosystemtypen – Vergleich Critical Loads

Hohe atmosphärische Stickstoffeinträge in Wiesen (Abbildung 15) treten vor allem in Gebieten mit intensiver Landwirtschaft auf. In APS betragen diese fast 40 kg ha⁻¹ a⁻¹und werden durch die trockene Deposition von Ammoniak dominiert. An Standorten mit wenig intensiver Landwirtschaft ergeben sich Frachten um 15 - 20 kg ha⁻¹ a⁻¹. An Standorten mit extensiver Landwirtschaft sind die Einträge immer noch um die 10 kg ha⁻¹ a⁻¹. In Magadino (MAG) wird wenig intensiv gewirtschaftet aber durch die hohen Niederschläge gelangt sehr viel Stickstoff in den Boden. Um die WSL-Station Schänis (SCH) wird ebenfalls nur geweidet, aber auch da sind die Regenmengen relativ hoch.

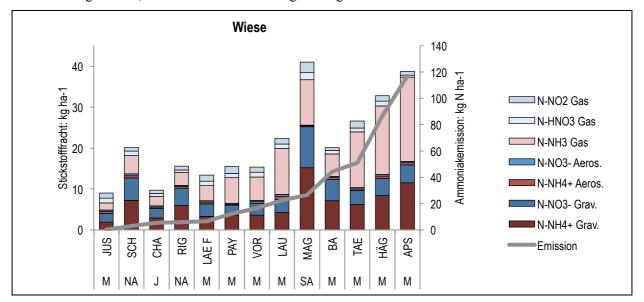


Abbildung 15 Stickstofffeinträge an Standorten im Ökosystemtyp "Wiese" im Jahr 2014

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Grav. = Gravitationsdeposition

Die Standorte sind nach ihrer mittlerne totalen NH₃-Emission als N im 500 m-Radius sortiert, Bezugsjahr 2010

J = Jura, M = Mittelland, NA = Nordalpen, SA = Südalpen

Die empirischen Critical Loads für Stickstoff, (CLN) welche im Rahmen der UNECE Konvention über weiträumige grenzüberschreitende Luftverunreinigung festgelegt sind, sind nicht als feste Zahl sondern als Bereich angegeben (UNECE 2010). Die konkrete Anwendung der Critical Loads erfordert eine Einschätzung der lokalen Umstände durch Experten, um zu entscheiden, wann der untere, mittlere resp. obere Bereich beim Vergleich mit den N-Einträgen berücksichtigt werden soll. Eine Hilfestellung wurde anlässlich der UNECE Expertenworkshops gegeben (UNECE 2003, UNECE 2010). Zum Beispiel soll in den Bergen (kalte Temperaturen, lange Frostperiode) mit dem unteren Teil, im Mitteland eher mit dem mittleren Bereich verglichen werden.

An den Standorten im alpinen/subalpinen Grasland (Abbildung 16), welches gegenüber Stickstoffeinträgen relativ empfindlich ist, sind nur die hochgelegenen zentralalpinen Standorte (ZA) unter den CLN oder im unteren Bereich. Wobei bei Berücksichtigung aller N-Komponenten und der wahrscheinlichen Mindererfassung des Niederschlags bei starken Winden und/oder Schnee auch hier von einer Überschreitung der CLN ausgegangen werden kann. Die CLN von NOV in der Südschweiz sind deutlich überschritten, aber auch

BET im Jura, BEA und KLE in den Nordalpen, ARD 06 (Zentralalpen) und CHI in den Südalpen sind zu stark belastet. Der Ökosystemtyp von NENZ im Jura ist "montane Heuwiese", für welche ein CLN von 10 bis 20 kg N ha⁻¹ a⁻¹ aufgelistet ist, wobei bei neueren Studien eher auf 10 bis kg N ha⁻¹ a⁻¹s 15 kg N ha⁻¹ a⁻¹ geschlossen wird (Roth et al. 2013). Der Vereinfachung halber wird NENZ mit den Standorten in "alpinem/subalpinem Grasland" gezeigt.

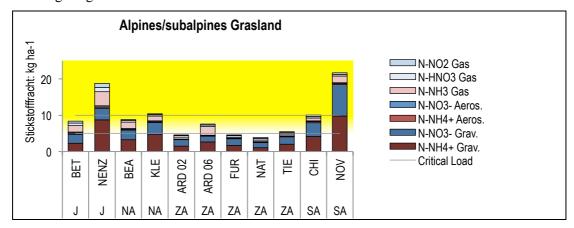


Abbildung 16 Stickstofffrachten an Standorten im Ökosystemtyp "alpines/subalp. Grasland" im Jahr 2014, Vergleich mit CLN

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der

Critical Loads für Stickstoff (CLN) für diesen Ökosystemtyp. Der gelbe Hintergrund zeigt die Überschreitung des CLN. Grav.

= Gravitationsdeposition, J = Jura, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Die Frachten an den hochgelegenen Standorten sind aufgrund unterschätzter Niederschlagmengen vermutlich etwas zu tief berechnet.

Der N-Eintrag in Waldlichtungen (Abbildung 17) liegt im zentralalpinen Tal (VIS) bei 12 kg ha⁻¹ a⁻¹, im Südtessin (SARE) als Folge der hohen Niederschläge bei 25 kg ha⁻¹ a⁻¹.

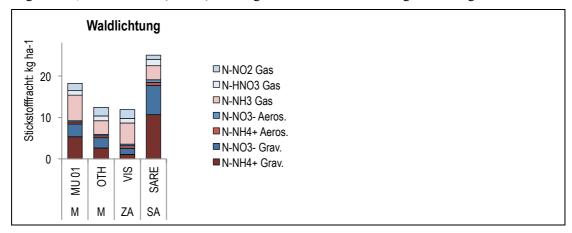


Abbildung 17 Stickstofffrachten an Standorten in Waldlichtungen im Jahr 2014

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Grav. = Gravitationsdeposition

M = Mittelland, ZA = Zentralalpen, SA = Südalpen

Moore sind empfindlich auf zu hohe Stickstoffeinträge. Speziell stark belastet sind die Flachmoore Wauwilermoos (WAU) im Kt. Luzern und Demanio nördlich der NABEL-Station MAG im Tessin (Abbildung 18). Auch für das Flachmoor Lengwilerweiher (LEN)

im Thurgau sind die Stickstoffeinträge viel zu hoch. Die Einträge in die Moore im Alpthal (ANA B), Kt. SZ sind ebenfalls nahe der kritischen Belastung.

Nur gerade die N-Einträge in die zentralalpinen Hochmoore von Celerina (CEL) und Davos (DAV) liegen unter der CLN. Hudelmoos HUD (Kt. TG) ist stark überlastet, aber auch bei den Hochmooren von Rothenthurm SZ (ROHO), Zugerberg ZG (ZB 01), Tourbière im Jura NE (NE 01) und Husegg Sörenberg LU (SOER) sind die CLN mehr oder weniger deutlich überschritten.

Schon allein durch den Ammonium-Stickstoff im Niederschlag, ohne Nitrat, Gase und Aerosole sind an einigen Standorten die CLN überschritten.

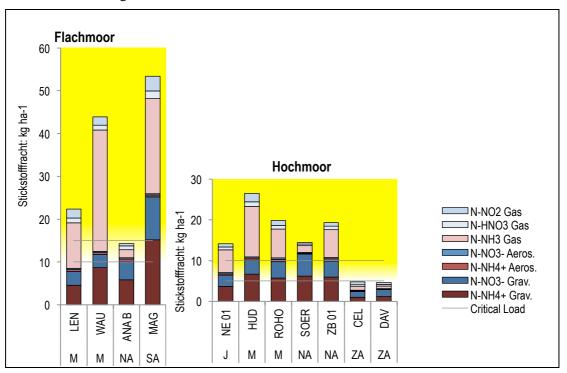


Abbildung 18 Stickstofffrachten an Moor-Standorten im Jahr 2014, Vergleich mit CLN

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für die Ökosystemtypen "Flachmoor" und "Hochmoor". Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition,

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Die Wälder sind ebenfalls empfindlich auf zu viel Stickstoffeintrag. In Abbildung 19 ist der Eintrag in Wälder dargestellt, die innerhalb von 200 m um die Messstation gelegen sind. Dabei wird angenommen, dass die Gas- und Aerosolkonzentrationen am Waldrand ähnlich sind wie an der Station selber. Bei wenig intensiv bewirtschafteten Standorten wurden über dem Wald ähnliche Ammoniakkonzentrationen gemessen wie neben dem Wald (Kapitel 6.5.2). Wälder bei Stationen mit hohen Emissionen erhalten mindestens am Waldrand die hohen Stickstoff-Frachten aus Gasen und Aerosolen.

Ausser bei den hochgelegenen zentralalpinen Standorten CEL, DAV und NAT, welche am unteren Rand des CLN-Bereichs liegen, sind alle Wälder deutlich mit Stickstoff überlastet. Neun Standorte sind innerhalb des Bereichs der CLN, und sechzehn liegen deutlich über diesem Bereich. Der höchste Eintrag wurde für die WSL-Station LAU berechnet.

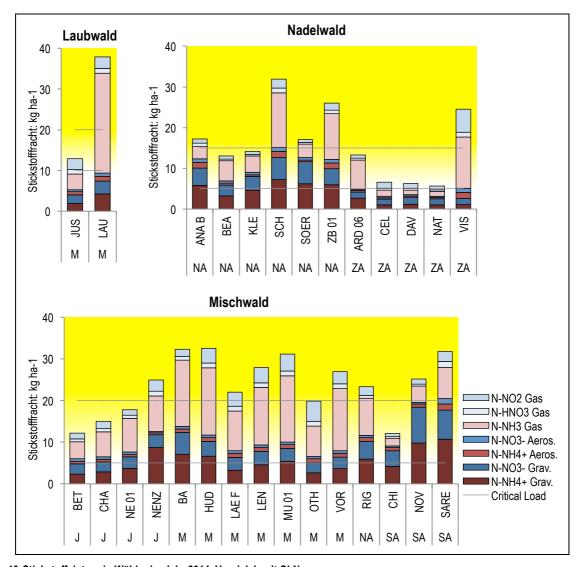


Abbildung 19 Stickstoffeintrag in Wälder im Jahr 2014, Vergleich mit CLN

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical Loads für Stickstoff (CLN) für die Ökosystemtypen "Laubwald", "Mischwald" und "Nadelwald". Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

4.2.2 Anteile der sieben N-Komponenten am N-Eintrag

In Tabelle 4 sind die Anteile der verschiedenen Stickstoffkomponenten am Gesamteintrag aufgeführt. Im Anhang 7.1.2 sind zusätzlich die Anteile von Gravitationsdeposition und Gas/Aerosol sowie von reduzierten und oxidierten Komponenten als Kuchendiagramme dargestellt und dies relativ zur Höhe des Gesamteintrags.

Tabelle 4

Anteil von Stickstoffkomponenten an der Gesamtstickstoff-Deposition in %

Dunkle Farben sind für Gravitationsdeposition, helle für Aerosole und Gase, rot sind die reduzierten, blau die oxidierten Komponenten, Werte über 50 % sind fett gedruckt,

J = Jura, M = Mittelland, NA = Nordalpen, ZA = Zentralalpen, SA = Südalpen

Standort	N-NH₄ ⁺	N-NH₄ ⁺	N-NH ₃	N-NO ₃	N-NO ₃	N-NO ₂	N-HNO ₃	N	N	N-NH ₄ ⁺	N-NO ₃ -, N-NO ₂	Naturraum
Code	Grav.	Aeros.	Gas	Grav.	Aeros.	Gas	Gas	Grav.	Aeros.&Gas	& N-NH ₃	& N-HNO ₃	Code
				%					%	3	%	
							Wiese					
APS	30	1	53	11	1	2	1	41	59	84	16	М
BA CHA	35 30	2	27 24	26 24	1	4 8	4 8	61	39 46	65	35 43	M J
HÄG	26	3 2	51	13	3 1	0 4	3	54 38	62	57 78	22	M
JUS	21	5	19	24	3	14	13	45	55	46	54	M
LAE F	24	4	27	23	2	11	8	47	53	55	45	M
LAU	19	3	50	14	2	6	5	33	67	72	28	M
MAG	37	1	27	24	0	6	4	61	39	65	35	SA
PAY	23	2	40	16	2	11	6	39	61	65	35	M
RIG SCH	38 36	3	20 22	27 27	2 2	6 4	4 6	65 63	35 37	61 61	39 39	NA NA
TAE	23	2	51	13	1	7	4	36	64	76	24	M
VOR	24	3	37	18	2	8	7	42	58	64	36	M
					Α	Ipines/s	ubalpines	Grasland				
ARD 02	33	2	13	37	2	4	9	70	30	48	52	ZA
ARD 06	35	2	32	20	2	4	6	55	45	68	32	ZA
BEA BET	37 27	2	20 21	30 29	3 4	3 7	5 9	67 57	33 43	59 51	41 49	NA J
CHI	41	4	8	38	2	3	4	79	21	53	49 47	SA
FUR	35	2	7	41	2	4	9	76	24	44	56	ZA
KLE	44	2	13	32	2	2	4	77	23	59	41	NA
NAT	27	3	10	37	4	9	11	64	36	40	60	ZA
NENZ	46	3	21	16	2	6	6	63	37	70	30	J
NOV TIE	45 37	2	8 10	40 37	1 3	2 4	2 8	85 74	15 26	55 49	45 51	SA ZA
IIE	31		10	31	J		lachmoo		20	49	31	ZA
ANA B	41	4	13	30	2	4	6	71	29	58	42	NA
LEN	20	2	47	14	1	9	5	35	65	70	30	M
MAG	28	1	42	19	1	6	3	47	53	71	29	SA
WAU	20	1	64	7	1	4	3 lochmoo	27	73	85	15	M
CEL	21	3	19	30	3	15	9	r 51	49	43	57	ZA
DAV	26	3	13	36	3	9	9	63	37	42	58	ZA
HUD	25	2	47	13	1	8	4	38	62	74	26	М
NE 01	26	2	39	19	2	6	5	46	54	68	32	J
ROHO	29	3	36	20	2	6	4	49	51	68	32	М
SOER	43	1	11	37	2	2 4	3	80	20	56	44	NA
ZB 01	31	3	35	20	2		4 /aldlichur	51	49	69	31	NA
MU 01	29	3	34	17	2	9	6	46	54	66	34	М
OTH	21	4	27	20	2	17	9	41	59	52	48	M
SARE	43	3	14	28	3	4	6	71	29	59	41	SA
VIS	9	5	43	12	3	18	10	22	78	57	43	ZA
JUS	15	6	30	17	4	20	Laubwald 9	31	69	50	50	М
LAU	11	3	65	8	2	8	3	20	80	79	21	M
							/lischwal					
BA	22	3	49	16	2	5	3	38	62	74	26	M
BET	19	5	34	20	5	11	6	39	61	58	42	J
CHA CHI	19 34	4 6	40 15	16 32	4 3	12 6	5 4	35 66	65 34	63 56	37 44	J SA
HUD	20	3	49	11	2	11	3	31	69	73	27	M
LAE F	15	4	43	14	3	15	5	29	71	63	37	M
LEN	16	3	49	11	2	13	4	28	72	69	31	M
MU 01	17	3	51	10	2	13	4	27	73	72	28	М
NE 01 NENZ	21 35	3 2	45 34	15 12	3 1	8 11	4 5	36 47	64 53	69 71	31 29	J J
NOV	39	3	34 16	34	1	5	2	73	53 27	71 58	42	SA
OTH	13	4	37	13	3	24	6	26	74	54	46	M
RIG	26	4	38	18	2	9	3	44	56	68	32	NA
SARE	34	5	23	22	4	7	5	56	44	61	39	SA
VOR	24	3	37	18	2	8	7	42	58	64	36	M
ANA B	34	8	17	25	5	6	Nadelwald 5	d 59	41	59	41	NA
ARD 06	20	2	54	12	3	6	3	32	68	76	24	ZA
BEA	25	3	37	20	4	6	3	45	55	66	34	NA NA
CEL	15	5	24	22	5	22	6	37	63	44	56	ZA
DAV	19	5	18	27	6	19	7	46	54	42	58	ZA
KLE	33	3	28	24	4	4	3	57	43	64	36	NA
NAT	18	6	20	26	6	16	8	44	56 60	44	56	ZA
SCH SOER	23 36	5 3	42 19	17 32	3	7 4	4 2	40 68	60 32	69 58	31 42	NA NA
VIS	5	6	52	6	4	23	5	10	90	62	38	ZA
ZB 01	23	5	43	15	3	7	3	38	62	72	28	NA
			-									

An den Standorten auf "Wiesen" fallen die meist hohen Anteile an reduzierten Stickstoffeinträgen auf, welche dem direkten Einfluss durch die Landwirtschaft zugeordnet werden können. Die höchsten Anteile finden sich bei APS mit 84 %, HÄG 78 % und TAE 76 %. Nur bei JUS mit kleinem Gesamteintrag ist dieser Anteil kleiner als 50 %. Bei APS, HÄG, LAU, PAY und TAE, d.h. Standorten mit direktem Einfluss durch intensive Landwirtschaft, trägt Ammoniak zu mehr als 50 % zur N-Fracht bei. An den Standorten BA, CHA, MAG, RIG und SCH, welche am Alpenrand liegen, überwiegt der Eintrag durch Gravitationsdeposition. Das gleiche gilt für alle Standorte im Ökosystemtyp "alpiner/subalpiner Rasen". Bei vielen dieser Standorte ist der reduzierte Anteil über 50 %. Die Ausnahmen bilden ARD 02, FUR, NAT und TIE, welche hochgelegen zentralalpine Standorte sind.

Die Zusammensetzung der N-Fracht in "Flach- und Hochmooren" ist stark abhängig von der geografischen Lage der Moore. Bei den hochgelegegenen zentralalpinen Standorten CEL und DAV ist der reduzierte Anteil unter 50 %, bei den anderen, im Mittelland, Jura oder Nordalpen gelegenen, darüber. Im Alpthal (ANA B) und bei Sörenberg (SOER) überwiegt die Gravitationsdeposition mit 71 % respektive 80 % stark, weniger bei den Standorten CEL und DAV und auf dem Zugerberg (ZB 01). Am Mittellandstandort Wauwilermoos (WAU) trägt Ammoniak zu 64 % zur N-Fracht bei

Der Eintrag in "Waldlichtung" und in "Laub-, Misch- und Nadelwälder" überwiegen die reduzierten Verbindungen, ausser bei den zentralalpinen Standorten CEL, DAV und NAT. Die Gravitationsdeposition ist bei den südalpinen Standorten SARE (71 %), CHI (66 %) und NOV (73 %) sowie bei den am Alpenrand gelegenen ANA B (59 %), KLE (57 %) und SOER (68 %) höher als diejenige der Gase und Aerosole. Es sind alles regenreiche Standorten. Bei JUS sind die Einträge Gas/Aerosol und Regen ausgeglichen. An den Standorten LAU, MU 01, ADR 06 und VIS trägt Ammoniak zu mehr als 50 % zur N-Fracht bei.

4.3 Gesamtstickstoff-Einträge – Langjährige Entwicklung

4.3.1 Fortlaufende Messungen

Bei den sechs Standorten an denen seit 2000 oder 2001 gemessen wird, kann die Entwicklung der N-Einträge über die Jahre betrachtet werden (Abbildungen 20 bis 23).

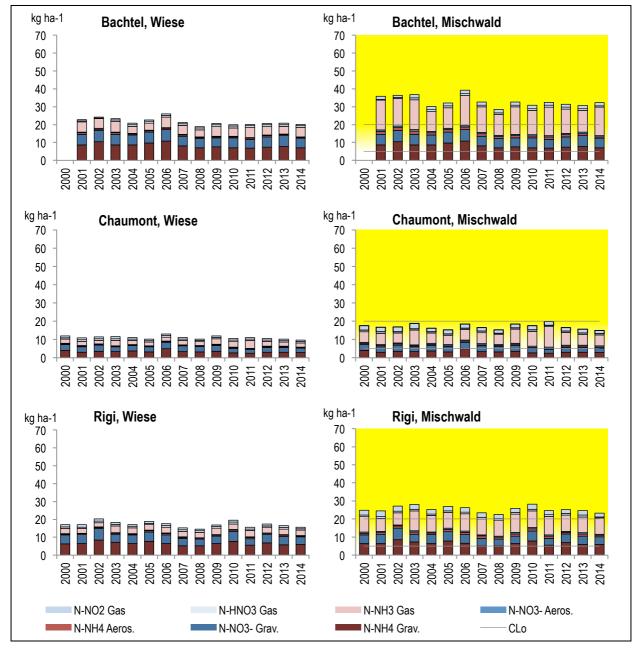


Abbildung 20 Jahresverläufe der Stickstofffrachten an Standorten auf Wiesen (links) und in Mischwald, Vergleich mit CLN
Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der
Critical Loads für Stickstoff (CLN) für die Ökosystemtypen "Mischwald". Der gelbe Hintergrund zeigt die Überschreitung der
CLN. Für "Wiesen" gibt es keinen CLN

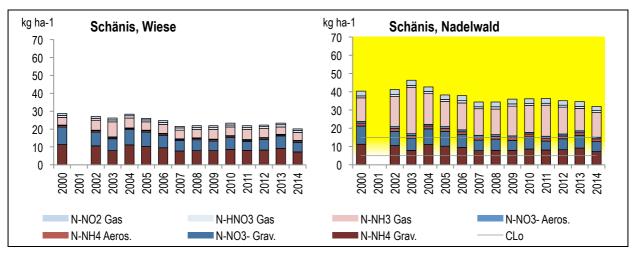


Abbildung 21 Jahresverläufe der Stickstofffrachten am Standort Schänis auf Wiese und in Nadelwald, Vergleich mit CLN

Die Frachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der Critical

Loads für Stickstoff (CLN) für die Ökosystemtypen "Nadelwald". Der gelbe Hintergrund zeigt die Überschreitung der CLN.

Für "Wiesen" gibt es keinen CLN

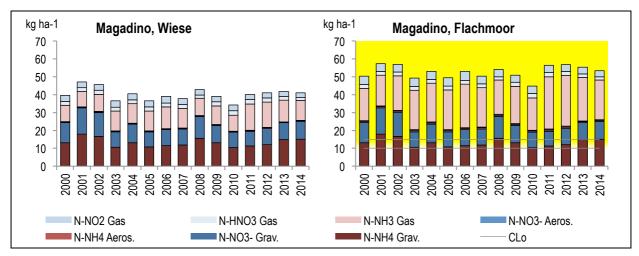


Abbildung 22 Jahresverläufe der Stickstofffrachten am Standort Magadino auf Wiese nahe Flachmoor Vergleich mit CLN
Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Innerhalb der grauen Linien liegt der Bereich der
Critical Loads für Stickstoff (CLN) für die Ökosystemtypen "Flachmoor". Der gelbe Hintergrund zeigt die Überschreitung der
CLN. Für "Wiesen" gibt es keinen CLN

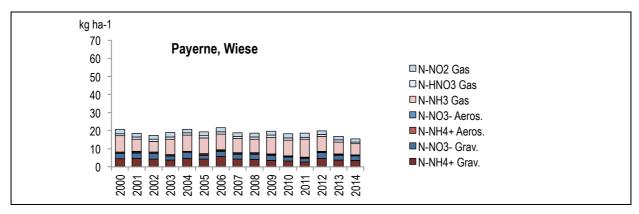


Abbildung 23 Jahresverläufe der Stickstofffrachten am Standort Payerne auf Wiese

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Grav. = Gravitationsdeposition. Für "Wiesen" bestehen keine Critical Loads für Stickstoff (CLN).

Statistische Betrachtung der zeitlichen Veränderung von Stickstofffrachten

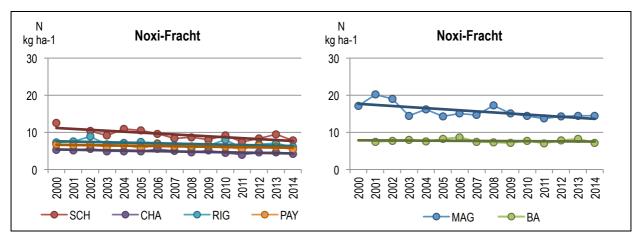


Abbildung 24 Verlauf der jährlichen oxidierten Stickstofffrachten 2000 – 2014

Standorte mit statistisch signifikanter (links) und nicht signifikanter (rechts) Abnahme

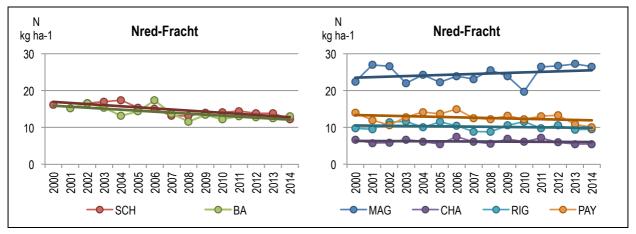


Abbildung 25 Verlauf der jährlichen reduzierten Stickstofffrachten 2000 – 2014
Standorte mit statistisch signifikanter Abnahme (links) und nicht signifikanter Veränderung (rechts)

Die N-Einträge nahmen leicht ab, signifikant (95 % Niveau) nur bei Schänis, Bachtel und Chaumont (siehe Abb. Z 11). Aufgeteilt auf die oxidierten resp. reduzierten Komponenten zeigt sich, dass die oxidierten Stickstoffkomponenten an allen 6 Standorten abgenommen haben, wenn auch nur bei SCH, CHA, RIG und PAY signifikant (Abbildung 24). Die reduzierten Komponenten nahmen ausser bei MAG ebenfalls ab, signifikant bei SCH und BA (Abbildung 25).

4.3.2 Messungen 2000 und 2014, sowie weiterer Jahre

An 19 Standorten wurde mindestens in den Jahren 2000 und 2014 gemessen (Abbildung 26). An den meisten Standorten sind die Stickstofffrachten im Jahr 2014 tiefer als im Jahr 2000. Dies trifft vor allem auf die LWF-Standorte der WSL zu. Bei den WSL Bulksammlern musste die Sammelmethode für die Niederschlagssammlung 2001 gewechselt werden. Ein europäischer Sammlervergleich Anfang der 2000 Jahre hat gezeigt, dass die WSL-Sammler aufgrund einer undichten Stelle zwischen Flasche und Trichter tendenziell zu viel Wasser sammelten, und die Deposition daher überschätzt wurde. Es kann somit nicht ausgeschlossen werden, dass ein Teil der Abnahme der N-Deposition zwischen 2000 und 2014 auf die methodische Umstellung zurückzuführen ist.

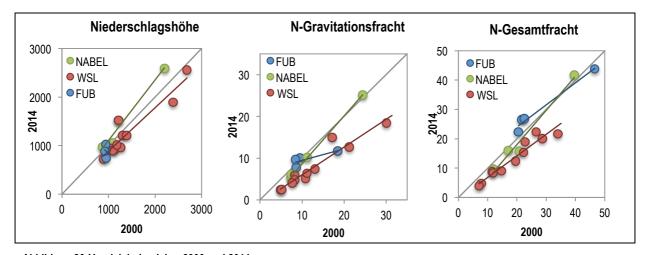


Abbildung 26 Vergleich der Jahre 2000 und 2014
Niederschlagsmenge (mm), N-Gravitationsfracht und N-Gesamtfracht (kg ha-1 a-1), aufgeteilt auf die 3 Messlabors Empa (NABEL), WSL und FUB. Die graue Diagonale entspricht der 1:1 Linie.

An fünf weiteren Standorten wurde nur sporadisch gemessen (Abbildung 27). Diese Daten reichen nicht aus, um die Veränderung der Einträge zu beurteilen. Im Jahr 2003 wurde zwar bei APS und HÄG eine deutlich höhere Fracht gemessen, dies kann jedoch auf den Jahrhundertsommer zurückgeführt werden, in welchem generell hohe Ammoniakkonzentrationen gemessen wurden.

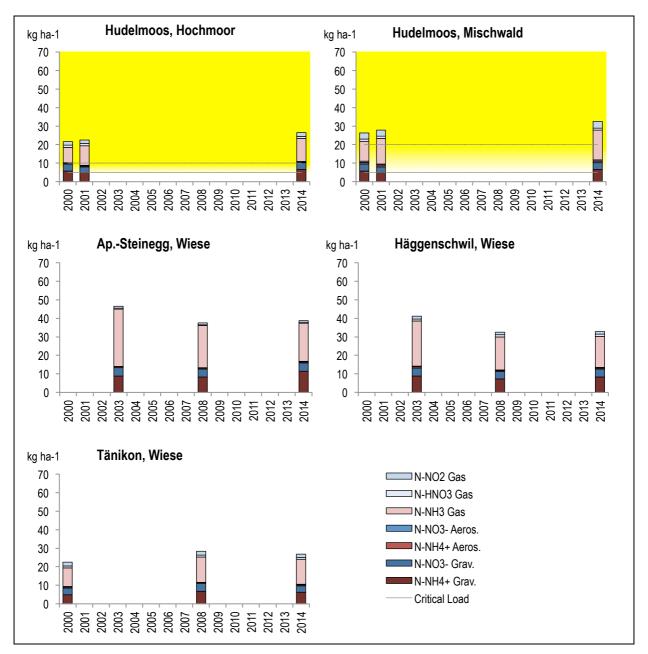


Abbildung 27 Stickstoffeintrag an Standorten an denen nur in drei Jahren gemessen wurde

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition

Zur Vervollständigung werden die Frachten von fünf Standorten gezeigt an denen nur im Jahr 2000 resp. 2008 gemessen wurden (Abbildung 28).

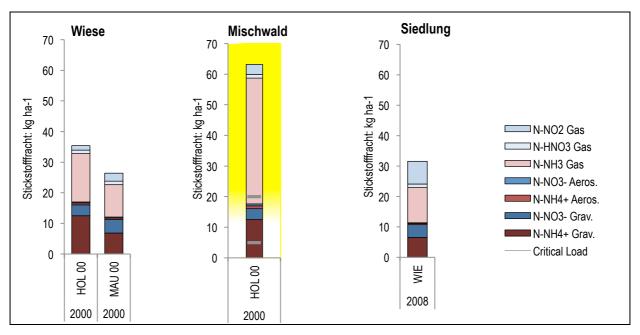


Abbildung 28 Gesamtstickstofffracht an Standorten, an denen 2014 keine Messungen durchgeführt wurden

Die Jahresfrachten von sieben Stickstoffkomponenten sind aufsummiert. Der gelbe Hintergrund zeigt die Überschreitung der CLN. Grav. = Gravitationsdeposition

4.4 Gesamtstickstoff-Deposition – Vergleich mit modellierten Werten

In Abbildung 29 werden die mit der "inferential technique" ermittelten Frachten von 2014 mit den durch Meteotest modellierten Werten (Bezugsjahr 2010) verglichen. Die Übereinstimmung ist im Allgemeinen gut, wobei das Modell sowohl die NH₃-, die NO₂- und die NH₄-Aerosol-Fracht eher höher schätzt. Die HNO₃-Fracht wird hingegen niedriger modelliert. In Abbildung 30 werden einerseits die aufsummierten reduzierten resp. oxidierten Frachten wie auch die Gesamtfracht verglichen. Die modellierten oxidierten N-Verbindungen stimmen sehr gut mit den ermittelten Werten überein, die reduzierten werden höher modelliert. Da die reduzierten Verbindungen überwiegen, ist die modellierte Gesamtfracht etwas höher als die Fracht, welche aufgrund der Depositionsmessungen geschätzt wurde. Dieser Unterschied kann unter anderem dadurch bedingt sein, dass nicht die gleichen Jahre verglichen werden. Die beiden orange markierten Punkte in Abbildung 29 für NH₃-Fracht sowie in Abbildung 30 für Nred- und Summe N-Fracht stammen von der NABEL-Station MAG, in deren Umgebung 2011 vermutlich eine Änderung bei den NH₃-Emissionen stattfand. Diese Punkte sind nicht in die Regressionsgleichung einbezogen.

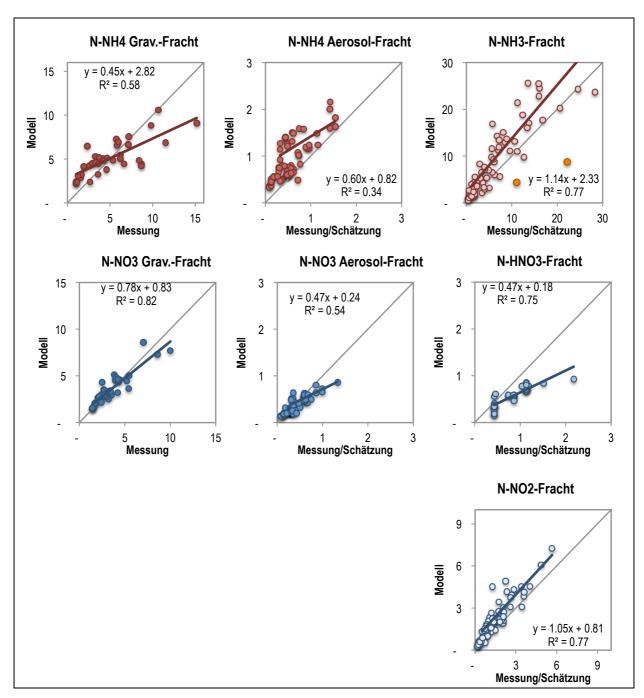


Abbildung 29 Vergleich der 2014 ermittelten Jahresfrachten mit den von Meteotest modellierten Werten: Einzelne Komponenten Frachten aus Ammoniak, NO₂, Salpetersäure, Ammonium- und Nitrat-Aerosolen sowie Ammonium und Nitrat aus dem Niederschlag. Die graue Diagonale entspricht der 1:1 Linie. Die beiden orangen Punkte bei der NH₃-Fracht stammen von der NABEL-Station MAG, in deren Umgebung 2011 eine Änderung bei den NH₃-Emissionen stattfand. Diese Punkte sind nicht in die Regressionsgleichung einbezogen

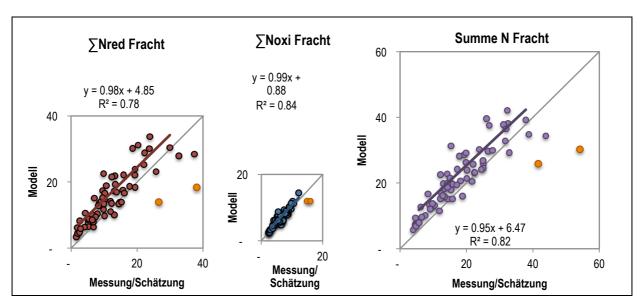


Abbildung 30 Vergleich der 2014 ermittelten Jahresfrachten mit den modellierten Werten der Meteotest: Aufsummierte Frachten Reduzierte, oxidierte und Gesamtfrachten. Die graue Diagonale entspricht der 1:1 Linie.

Die beiden orangen Punkte stammen von der NABEL-Station MAG, in deren Umgebung 2011 vermutlich eine Änderung bei den NH₃-Emissionen stattfand. Diese Punkte sind nicht in die Regressionsgleichung einbezogen.

5 Diskussion und Schlussfolgerungen

Die Messungen im Rahmen dieser Studie zeigen, dass der Gesamtstickstoffeintrag durch verschiedene Faktoren bestimmt wird. Aufgrund der ausgeprägten Topographie sind die N-Emittenten über die ganze Schweiz betrachtet unregelmässig verteilt. Gleichzeitig schränkt die Topographie in Kombination mit den meteorologischen Bedingungen den Transport in gewisse, vor allem zentralalpine Gebiete ein. Gleichzeitig sind diese oft quellenfern, so dass an hoch gelegenen zentralalpinen Standorten Stickstofffrachten unter den CLN ermittelt wurden. Ein Überschreiten der CLN an diesen Standorten kann dennoch nicht ausgeschlossen werden, da mit der verwendeten Messtechnik nicht der ganze Niederschlag erfasst und somit der Stickstoffeintrag unterschätzt wird. Alle anderen Standorte weisen, unabhängig von den betrachteten Ökosystemtypen (naturnahe Wiesen und Weiden, Wälder und Moore), Frachten im Bereich um bis deutlich über den CLN auf. Aufgrund der Differenzierung des Stickstoffs in oxidierte und reduzierte Komponenten konnte aufgezeigt werden, dass sich die Prozesse, welche zu den Überschreitungen führten, von Standort zu Standort unterscheiden. Einerseits kommt es aufgrund von wichtigen Quellen (vor allem der Landwirtschaft) lokal zu hohen Stickstofffrachten, anderseits findet ein Ferntransport des Stickstoffs statt, welcher in Zusammenhang mit hohen Niederschlagsmengen zu einem hohen Stickstoffeintrag führen kann. Typische Standorte, welche durch unterschiedliche Prozesse beeinflusst sind, sind der Standort Wauwiler Moos im Luzerner Mitteland, wo die intensive Landwirtschaft als lokale Quelle reduzierter Stickstoffverbindungen eine Überschreitung der CLN zur Folge hatte, sowie Sörenber in den nördlichen Voralpen oder Novaggio im Südtessin, wo der Ferntransport in Kombination mit einer hohen Niederschlagsmenge zu hohen Stickstoffeinträgen führt. Es kann davon ausgegangen werden, dass die Kombination von quellennahem Standort und hohem Niederschlag zum höchsten Stickstoffeintrag führt, wie er bei Magadino im Tessin gemessen wird.

Betrachtet man die Datenlage an den langjährigen Messstandorten, so kann eine leichte Reduktion der Stickstofffracht festgehalten werden, welche bei BA, CHA und SCH signifikant ist (95 % Niveau). MAG, PAY und RIG zeigten ebenfalls tendenziell eine Abnahme. Der Vergleich mit den CLN zeigen allerdings, dass die Zielsetzung bei weitem nicht erfüllt wird. Grosses Reduktionspotential besteht bei den ammoniakgebundenen Stickstoffemissionen durch die Landwirtschaft, welche aktuell bei 48'000 Tonnen Stickstoff pro Jahr liegen (FOEN 2015). Gemäss Umweltzielen der Landwirtschaft ist ein Wert von 25'000 Tonnen pro Jahr anzustreben (BAFU & BLW 2008). Damit gesicherte Aussagen über die Entwicklung von Stickstoffeinträgen gemacht werden können, ist es wichtig, dass es an verschiedenen Orten mehrjährige Messreihen durchgeführt werden.

Der Vergleich der in dieser Studie abgeschätzten Stickstofffrachten mit den modellierten Daten der Meteotest zeigt, dass das Modell im Bereich der Messdaten liegt, die Stickstofffracht aber meist etwas höher schätzt. Dies kann davon herrühren, dass nicht identische Jahre miteinander verglichen wurden (Modelldaten aus 2010 mit Messdaten aus 2014) und z.B. die meteorologischen Begebenheiten beim Modell nicht berücksichtigt werden, diese hingegen bei der Erfassung der Stickstoffeinträge eine wichtige Rolle spielen. Aber auch Unsicherheiten bei der Schätzung und Modellierung der Emissionen wie auch bei der Erfassung der Stickstoffeinträge sind dafür verantwortlich. Auffallend ist, dass der Unterschied vor allem auf die reduzierten Stickstoffkomponenten zurückzuführen ist.

6 Fachteil

6.1 Sammelmethoden

6.1.1 Gravitations-Depositionssammlung

Bulk-Regensammler

Der Bulksammler ist im Gegensatz zum weiter unten beschriebenen "Wet only" immer offen und sammelt sowohl nassen wie trockenen Niederschlag (VDI 4320, Blatt 3). Der FUB-Bulksammler besteht aus zwei, über den Kopf zusammengeschraubten, 5-Liter-Polyethylen-Flaschen; bei der einen Flasche wurde der Boden abgetrennt, so dass sie als Trichter dient (Auffangfläche 196 cm²). Die Verengung verhindert die Verdunstung weitgehend. Die Trichter-Flasche-Einheit steckt in einem weissen Rohr, das als Haltevorrichtung und als Lichtschutz dient (Abbildung 31).

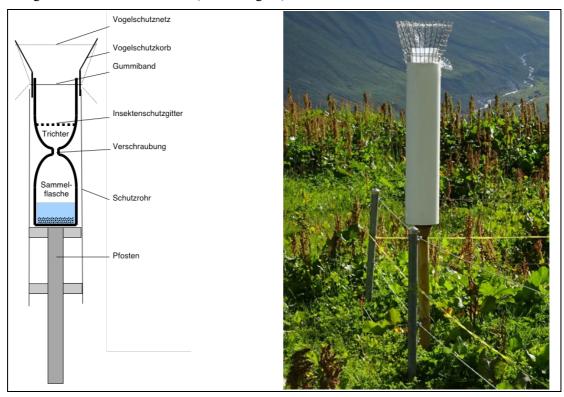


Abbildung 31 Methode zur Erfassung von Gravitationsdeposition mit einem Bulkgerät schematische Skizze, Bulk-Regensammler an der Station Tiefenbach

Die Öffnung des Bulksammlers wird gewöhnlich 1.5 – 1.8 m über dem Boden angebracht und mit einem Vogelschutzkorb ausgerüstet. Zum Schutz vor Insekten und Pflanzenteilen wird im Trichter ein Netz aus rostfreiem Quadratmaschengewebe (Maschenweite: 3 mm, Drahtdurchmesser: 1 mm) angebracht. Da bei früheren Probenahmen zum Teil Vogelkot im Trichter gefunden wurde, wurde ab 2003 in den Sommerhalbjahren zusätzlich ein grobmaschiges Netz über den Vogelschutzkorb befestigt, damit sich Vögel nicht allfällige Insekten im Trichter holen und dabei koten. Die Bulk-Sammler wurden mit genügend Ab-

stand zu Bäumen und Sträuchern aufgestellt, um einen Eintrag von Blättern, Flugfrüchten etc. zu vermeiden.

Flaschen, Trichter, Stahlgitter und Netz wurden nach jedem Probewechsel gereinigt.

Die Bulksammelgefässe wurden vierwöchentlich oder monatlich gewechselt.

Die Stickstoffeinträge an LWF-Standorten wurden von der WSL im Rahmen der Langfristigen Waldökosystem-Forschung erhoben (Thimonier et al. 2005). Für Depositionsmessungen setzt die WSL im Sommer Regensammler (Bulksammler) ein, die aus einem tiefen Auffangtrichter aus Polyethylen mit einer Auffangfläche von 100 cm² bestehen, welcher mit einer Probeflasche aus Polyethylen mit einem Inhalt von 2 Litern verbunden ist. Die Auffangfläche wird mit einem Plexiglasverstärkungsring mit abgeschrägter Kante konstant gehalten. Eine kleine Scheibe aus Polyethylen am Grund des Trichters erlaubt grobe Teilchen vorzufiltern. Ein zweiter Filter aus Polyestergewebe ist am verengten Ende des Trichters platziert. Die Regensammler werden in ein PVC-Rohr gesteckt.

Schneesammler

An höheren Lagen werden von der WSL im Winter anstatt der Regensammler Schneesammler eingesetzt. Sie bestehen aus zwei übereinander gestülpten Plastikbeuteln in einem Polyethylen-Eimer von 30 cm Durchmesser, welcher in einem PVC-Rohr steckt. Das Zentrum der Auffangfläche befindet sich 1.5 m über dem Boden.

Wet-only-Sammler

Während eines Niederschlagsereignisses steht ein Polyethylen-Trichter offen, der das Niederschlagswasser in eine Polyethylen-Flasche leitet. In der niederschlagsfreien Zeit wird der Trichter abgedeckt, gesteuert durch einen Regensensor. Das Gerät wird beheizt, so dass Schnee im Trichter schmilzt und ebenfalls erfasst wird. Diese Methode wird an den NA-BEL-Stationen angewendet (Empa & BAFU 2015, Seite 92). Der Wet-only-Sammler sammelt im Durchschnitt 85 % des Bulksammlers, welcher auch den trockenen Niederschlag aufnimmt. Für die Bestimmung des Gesamtstickstoff-Eintrags in dieser Studie wurden die Wet-Werte um diese Differenz erhöht, d.h. die Werte der Wet-Sammler wurden mit 1.15 (NH4+) bzw. 1.17 (NO3-) multipliziert (siehe Kapitel 6.4.1).

Berechnung der Stickstofffracht

In der Gravitationsdeposition wird die Konzentration der Stickstoffionen (Ammonium oder Nitrat) direkt gemessen. Über die Niederschlagsmenge und den Trichterdurchmesser wird daraus die Stickstofffracht folgendermassen berechnet:

$$f_{\text{lon, GD}} = \frac{\rho_{\text{lon, GD}} \cdot V_{\text{GD}}}{A}$$

 $f_{\text{lon, GD}}$ = Fracht des lons in der Gravitationsdeposition

 $\rho_{\text{lon. GD}}$ = Massenkonzentration des lons in der Gravitationsdeposition

V_{GD} = Volumen der Gravitationsdeposition A = Fläche der Sammleröffnung

6.1.2 Passivsammler zur Messung von Ammoniak

Die Messungen wurden mit Passivsammlern nach VDI 3869 Blatt 4 durchgeführt. Bis 2003 wurde der Zürcher Passivsammler (Thöni et al. 2003) eingesetzt, anfangs 2004 wurde auf das qualitativ bessere Messsystem von Radiello* umgestellt. Die Vergleichbarkeit der Ergebnisse der beiden Methoden wurden durch Parallelmessungen an verschiedenen Standorten untersucht. Die Resultate der Zürcher Passivsammler wurden dabei rückwirkend mit einem Korrekturfaktor an die Radiello Passivsammler angeglichen. (Thöni & Seitler 2010).

Radiello®-Passivsammler

Der Radiello*-Passivsammler ist ein käufliches System, das zur Bestimmung einer grossen Anzahl gasförmiger Stoffe (anorganisch und organisch) eingesetzt werden kann. Es fusst auf dem Prinzip der Diffusion. Bei den herkömmlichen Palmes Sammlern sind eine relativ kleine Diffusionsöffnung und eine lange Diffusionsstrecke vorhanden, was zu einer kleinen Sammelrate führt. Um diese zu vergrössern und damit die analytische Empfindlichkeit zu erhöhen, wurde bei den Radiello Passivsammlern die Diffusions- und Absorptionsoberfläche zylindrisch und co-axial gestaltet (Radial-Sammler) (Abbildung 32).

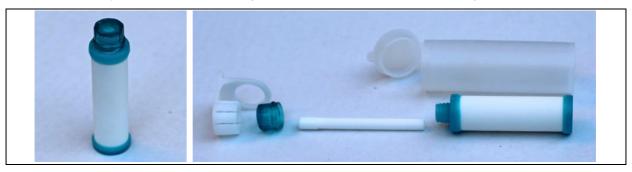


Abbildung 32 Radiello®-Passivsammler

Linkes Bild: Der einsatzbereite Passivsammler

rechtes Bild: Einzelteile eines Radiello-Passivsammlers mit (von links) Adapter zum Aufhängen des Sammlers, der Deckel, die säurebeschichtete Cartridge, der Body mit gasdurchlässigem Zylinder und oben der gasdichte Transportbehälter.

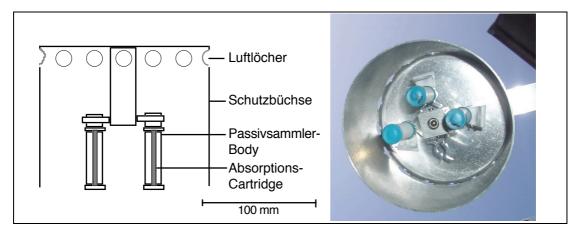


Abbildung 33 Radiello®-Passivsammler mit Aufhängevorrichtung

Links: Schema des Radiello-Passivsammlers mit Schutzbüchse, die gleichzeitig als Aufhängevorrichtung dient. Rechts: Radiello-Passivsammler mit Schutzbüchse von unten

Der Body (Diffusive surface) ist aus mikroporösem Polyethylen gebildet. Die Absorptions-Cartridge für die Ammoniaksammlung besteht ebenfalls aus mikroporösem Polyethylen und wird mit Phosphorsäure belegt.

Die Passivsammler werden in einer gut durchlüfteten Aufhängevorrichtung exponiert, die gleichzeitig als Witterungsschutz fungiert (Abbildung 33). Die Cartridges werden mit hochreinem Wasser desorbiert. Das Eluat wird mit Ionenchromatografie oder Fliessinjektionsanalyse mit Gasdiffusionsmembrane und UV-Detektion anstelle der vorgeschlagenen Fotometrie mit Indophenol-Methode auf Ammonium analysiert. Die Blindwerte und damit die Nachweis- und Bestimmungsgrenzen können so deutlich gesenkt werden.

Berechnung der Ammoniakkonzentration

$$\rho_{\,\mathrm{NH}_3,\,\mathrm{Luft}} = \frac{m_{\mathrm{NH}_4}{}^+ \cdot M_{\mathrm{NH}_3}}{m_{\mathrm{NH}_4}{}^+ \cdot \mathbf{Q} \cdot t}$$

 $\rho_{\,\mathrm{NH_{3},\,Luft}}$ = Konzentration von Ammoniak in Luft

 $m_{NH_A^+}$ = Masse Ammonium, das von der Cartridge desorbiert wurde

 M_{NH_3} = Molare Masse von NH₃ $M_{\text{NH}_4}^+$ = Molare Masse von NH₄⁺

Q = Sammelrate bei 293 K und 1013 hPa

t = Zeit der Exposition

6.1.3 Passivsammler zur Messung Stickstoffdioxid

Für die NO₂-Messung wurden Passivsammler nach Palmes verwendet (Palmes 1976) Für diese Messungen wurde der OSTLUFT-Passivsammler mit Windschutz verwendet (Brunner & Schlatter 2002) (Abbildung 34).

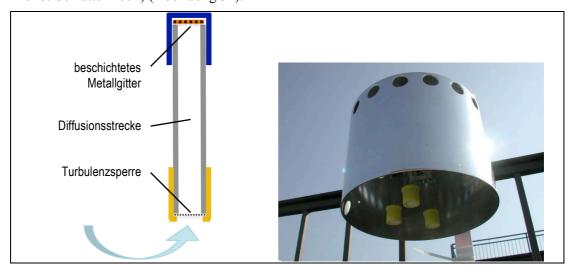


Abbildung 34 OSTLUFT-Passivsammler für NO₂-Messungen schematische Skizze und Foto

Berechnung der NO₂ Konzentration

$$\rho_{\text{NO}_{2}, \text{ Luft}} = \frac{m_{\text{NO}_{2}, \text{PS}} \cdot I_{\text{PS}}}{A_{\text{PS}} \cdot D_{\text{NO}_{2}} \cdot t}$$

 $ho_{
m NO_2,\,Luft}$ = Konzentration von Stickstoffdioxid in Luft

 $m_{NO_2, PS}$ = Masse Nitrit, das vom Passivsammler desorbiert wurde

I_{PS} = Länge der Diffusionsstrecke
 A_{PS} = Fläche der Diffusionsöffnung
 D_{NO2} = Diffusionskoeffizient von NO2

t = Zeit der Exposition

6.1.4 Passivsammler zur Messung von gasförmiger Salpetersäure

Der axiale Passivsammler nach IVL-Bauweise besteht aus einem PP-Tubus (Länge: 10 mm), der zur Exposition mit der Eintrittsfläche nach unten befestigt wird. Die obere Tubus-Öffnung wird mit einer Verschlusskappe (Material: PE) verschlossen, auf der sich ein mit Natriumhydroxid beschichteter Quarzfilter befindet. Die untere Öffnung wird von einem Quarzfilter verschlossen, das beidseitig mit einem Edelstahlnetz stabilisiert und vor grober Verschmutzung geschützt wird. Membran und Stahlnetz werden mit Hilfe eines PE-Halterings auf den Tubus gedrückt. Diese Verschlusskappe hat eine gestanzte Öffnung von 20 mm Durchmesser, die gleichzeitig die Eintrittsfläche des Passivsammlers darstellt. (Abbildung 35)

IVL-Passivsammler sind auch unter dem Namen Ferm-Passivsammler im Einsatz. Sie wurden von Martin Ferm am Swedish Environmental Research Institute IVL entwickelt (Ferm 1991) und werden in vielen Immissionsmessnetzen vor allem für die Messung von Ammoniak eingesetzt.

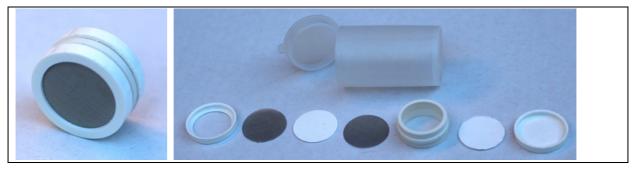


Abbildung 35 Passivsammler nach Ferm-Bauweise

Links: einsatzbereiter Passivsammler mit dem Sammlereingang nach vorne rechtes Bild: Einzelteile eines IVL-Passivsammlers mit (von links) Haltering, Quarzfilter als Turbulenzbarriere zwischen zwei stabilisierenden Drahtnetzen, Tubus, NaOH-beschichteter Quarzfilter als Sorbens und Verschlusskappe, sowie oben der gasdichte Transportbehälter

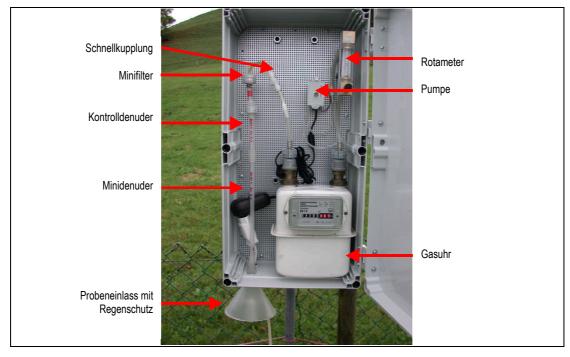
Berechnung der Salpetersäure-Konzentration

$$\rho \ \text{HNO}_3 \cdot \text{Luft} \qquad = \qquad \frac{m_{\text{HNO}_3} \cdot M_{\text{HNO}_3} \cdot l_{\text{PS}}}{M_{\text{NO}_2} \cdot \cdot A_{\text{PS}} \cdot D_{\text{HNO}_2} \cdot t}$$

 $\rho_{\text{HNO}_3,\text{ Luft}}$ = Konzentration von Salpetersäure in Luft

 m_{NO_2} = Masse Nitrit, das vom Quarzfilter desorbiert wurde

 M_{HNO_3} = Molare Masse von HNO₃ $M_{\text{NO}_3}^{-}$ = Molare Masse von NO₃- I_{PS} = Länge der Diffusionsstrecke A_{PS} = Fläche der Diffusionsöffnung D_{HNO_3} = Diffusionskoeffizient von HNO₃


t = Zeit der Exposition

6.1.5 Minidenuder / -filter (Midefix) für Gase und Aerosole

Der Midefix ist ein aktives Verfahren zur Sammlung von Gasen und Aerosolen (VDI 3869, 3).

Ein Denuder besteht aus einem innen aufgerauten Glasrohr, welches mit Phosphorsäure (für Ammoniak) resp. Kaliumhydroxid (für Salpetersäure) beschichtet ist. Die zu analysierende Aussenluft wird durch die Denuder geleitet. NH₃ oder HNO₃ werden im laminar durchströmten Minidenuder (Glasrohr) absorbiert. Partikelgebundenes Ammonium oder Nitrat – mit einer um drei bis fünf Zehnerpotenzen (je nach Partikelgrösse) geringeren Diffusionsgeschwindigkeit – passiert den Denuder und wird am nachgeschalteten beschichteten Filter (Phosphorsäure für Ammonium, NaCl für Nitrat) abgelagert.

Um eine laminare Strömung in Minidenudern zu gewährleisten, wird eine Einlaufstrecke (unbeschichtetes Glasrohr) vorgeschaltet. Um zu prüfen, ob Ammoniak vollständig vom Denuder erfasst wurde, wird ein 10 cm langer Kontrolldenuder zwischen Minidenuder und Filter geschaltet (Abbildung 36).

Abbildung 36 Offener Midefix

Probeneinlass, Minidenuder, Kontrolldenuder, Minifilter, Gasuhr, Rotameter und Pumpe

Einlaufstrecke, Minidenuder, Kontrolldenuder und Minifilter werden als Einheit verschickt. Für die Messung wird der Kunststoffverschluss bei der Einlaufstrecke entfernt und diese in den Probeeinlass gesteckt, die Filterseite kann über eine Schnellkupplung direkt mit der Gasuhr verbunden werden (Abbildung 37).

Abbildung 37 Anordnung der Probesammeleinheit im Midefix

Einlaufstrecke E, Minidenuder MD, Kontrolldenuder KD, Minifilter MF und Schnellkupplung SK – Midefix

Denuder und Filter werden mit einem definierten Volumen Reinstwasser desorbiert. Die Filtereluate werden mikrofiltriert. Die Eluate werden ohne weitere Aufbereitung analysiert.

Berechnung der Konzentration von Ammoniak und Salpetersäure

 $ho_{
m Gas, Luft} = rac{m_{
m lon} \cdot M_{
m Gas}}{M_{
m lon} \cdot V_{
m Luft}}$ $ho_{
m Gas, Luft} = {
m Konzentration \ von \ Ammoniak \ oder \ Salpeters \"{a}ure \ in \ Luft}$

 m_{lon} = Masse NH₄⁺ oder NO₃⁻, das vom Denuder desorbiert wurde M_{Gas} = Molare Masse von NH₃ oder HNO₃

 M_{lon} = Molare Masse von NH₄* oder NO₃* V_{Luft} = Durchgesetztes Luftvolumen

Berechnung der Konzentration von Ammonium und Nitrat

 $\rho_{\text{lon,Luft}} = \frac{m_{\text{lon}}}{V_{\text{Luft}}}$

 $ho_{\text{lon,Luft}} = \text{Konzentration von Ammonium oder Nitrat in Luft} \\ m_{\text{lon}} = \text{Masse NH}_4^+ \text{ oder NO}_3^-, \text{ das vom Filter desorbiert wurde}$

 V_{Luft} = Durchgesetztes Luftvolumen

MD-System von Empa

Die Empa betreibt im NABEL-Messnetz ebenfalls einige Minidenuder-Filter-Systeme, deren Messwerte für diese Studie beigezogen wurden (Empa & BAFU 2015, Seite 101).

6.1.6 Summenfilter (Sufix) für Gase und Aerosole

Der Sufix ist ebenfalls ein aktiv sammelndes Verfahren für Gase und Aerosole. Im Gegensatz zu den Midefix werden Gase und Aerosole nicht getrennt, sondern nur als Summe von Ammonium und Ammoniak resp. Nitrat und Salpetersäure erfasst. Ein Filter oder zwei Filter in Serie (für oxidierte Stickstoffverbindungen) werden über eine Schnellkupplung mit

der Gasuhr verbunden, ihr sind der Rotameter und die Pumpe nachgeschaltet (Abbildung 38).

Durch gleichzeitige Probenahme von Ammoniak resp. Salpetersäure mit Passivsammlern kann der Aerosolanteil als Differenz aus Sufix und Passivsammler bestimmt werden.

Abbildung 38 links: Offener Sufix, rechts: Summenfilter und Kontrollsummenfilter in Serie
Probeneinlass, Summenfilter, ev. Kontrollsummenfilter, Gasuhr, Rotameter und Pumpe

Filtermessungen als Tagesproben von Empa

Empa betreibt an einigen Orten im NABEL-Messnetz Summenfiltermessungen als Tagesproben. Die Ammoniumdaten von PAY 2004 und 2005 sowie von RIG 2000 – 2004 wurden für diese Studie verwendet (Empa & BAFU 2015, Seite 98).

6.2 Probevorbereitung und Spurenanalytik

In der Analytik muss bei allen Handlungen sorgfältig darauf geachtet werden, dass die Proben nicht kontaminiert werden.

Wiederverwendbare Probegefässe und -geräte werden mechanisch gereinigt. Gefässe zur Bestimmung der Ionen und NO_2 werden mit Reinstwasser gespült und über Nacht stehen gelassen. Denuder werden für die Ammoniaksammlung mit KOH $0.5\,\mathrm{M}$, für die Salpetersäuresammlung mit Phosphorsäure $0.5\,\mathrm{M}$ vorbehandelt. Alle Geräte werden dann mehrmals mit Reinstwasser gespült. Die Filter für Ammonium- und Nitratbestimmung werden vor der Belegung mit Reinstwasser gewaschen.

Die Bulkproben werden ohne weitere Vorbehandlung analysiert. Bei sichtbarem Schwebestoffgehalt werden sie mikrofiltriert. Die Filter für Ammonium- und Nitratbestimmung werden nach der Ultraschallbad-Eluation mikrofiltriert. Die Eluate der Denuder und Passivsammler werden direkt analysiert.

Messtechnik

NO₂-Bestimmung mit Photometer PerkinElmer Lambda 25

- Ammonium-Bestimmung mit Fliessinjektionsanalysator Foss FIAstar 5000 Analyzer, bestehend aus automatischem Probegeber, Injektionsventil, peristaltischer Pumpe, Mischstrecke, Gasdiffusionsmembrane, Durchflussküvetten und Detektion durch UV/VIS-Photometrie (SN EN ISO 11732)
- Nitrat-Bestimmung mit isokratischer Elution, mit Ionenchromatografie System ICS-1600 von Dionex, bestehend aus Probegeber, Injektionsventil, Pumpe, Vorund Trennsäule, Suppression und Leitfähigkeitsdetektion

6.3 Qualitätssicherung

Die Qualität der Messungen von FUB wird mit der Bestimmung von Blindwerten und Referenzmaterial kontrolliert. Von Passivsammlern werden in der Regel Doppel- oder Dreifachproben genommen. Verschiedene Methoden werden innerhalb der FUB wie auch mit anderen Institutionen im In- und Ausland verglichen (Tabelle 5) (Interne Berichte, Dämmgen et al. 2010).

Tabelle 5 Übersicht über die Qualitätssicherungsmassnahmen

Sammelmethode	Anz. Proben pro Standort & Periode	Standort werte grenzen Ref anderen		Vergleich mit anderen Verfahren	Vergleich mit ande- ren Labors	Andere Massnahmen	
Bulk	1 oder 2	Х	Х	Х	Wet & dry	WSL	Trichter Analyse
NH₃ PS	2 oder 3	х	х		Minidenuder	NABEL, LUBW, LANUV, SMUL, vTi, LfU BY	
NO ₂ PS	1, 2 oder 3	Х	х		kont. Verfahren	UGZ, SEn, in-Luft, LUBW, LfU	
HNO₃ PS		Х	х		Minidenuder		
Minidenuder NH ₃	1	Х	х		NH3 PS	NABEL, LUBW, SMUL, vTi	Kontrolldenuder
Minifilter NH ₄ +	1	Х	Х			NABEL, vTi	
Minidenuder HNO ₃	1	Х	х			NABEL	
Minifilter NO ₃ -	1	Х	х			NABEL	
Summenfilter N _{red}	1	Х	Х		Midefix, Tagesfilter	NABEL	
Summenfilter N _{oxi}	1 oder 2	Х	х		Midefix, Tagesfilter	NABEL	Kontrollfilter

Die Messmethoden und die Qualitätssicherung der NABEL-Daten ist im Technischen Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL) beschrieben (Empa & BAFU 2015).

Die Messmethoden und die Qualitätssicherung der WSL-Messungen ist in Thimonier et al. (2005), Marchetto et al. (2011) und Waldner et al. (2014) publiziert.

6.3.1 Transport-Blindwerte

Blindproben wurden parallel zu den Proben im Feld transportiert, behandelt und analysiert. In Tabelle 6 sind die Blindwerte mit den jeweiligen Messwerten verglichen. Die Blindwerte

te wurden von den Analysewerten abgezogen (Ausnahme: NO₂). Sie sind im Vergleich zu den Proben meist niedrig.

Tabelle 6 Blindwerte im Vergleich zu den Proben

		Bulk		Passivsammler			Minidenuder		Minifilter		Summenfilter	
		NH₄⁺	NO ₃	NH₃	NO_2	HNO ₃	NH₃	HNO ₃	NH₄⁺	NO ₃	NH₄⁺	NO ₃
		µg l⁻¹	µg l⁻¹	µg l⁻¹	abs		µg l⁻¹	µg l⁻¹	µg l⁻¹	µg l⁻¹	µg l⁻¹	µg l⁻¹
Blinds	Mittelwert	13	24	67	0.005	69	149	157	143	109	138	179
	SD	9	23	40	0.003	29	181	146	97	34	43	79
	Anzahl	16	18	535	305	17	22	43	107	30	30	38
	% vom Minimalwert	108	82		57	82	129	192	61	143	94	39
	% vom Median	2	1	4	5	25	3	11	7	4	8	5
Proben	Mittelwert	920	1'865	2'313	0.147	279	6'059	1'675	2'549	4'539	3'939	5'121
	Minimalwert	12	29	0	0.009	84	115	82	233	76	148	459
	Median	729	1'653	1'674	0.103	278	5'486	1'466	1'974	2'948	1'819	3'640
	Maximalwert	14'388	10'883	32'242	0.616	578	19'603	4'764	8'318	21'339	30'613	28'519
	Anzahl	812	814	4'635	1'076	160	86	120	86	111	87	104

6.3.2 Nachweis- und Bestimmungsgrenzen

Die Nachweis- und Bestimmungsgrenzen der Messverfahren wurde gemäss Empfehlung der SN EN 13528 2 (2002) bestimmt.

Nachweisgrenze: 3 x Standardabweichung der Blindwerte Bestimmungsgrenze: 10 x Standardabweichung der Blindwerte

Dazu wurden Transportblindproben analysiert und die Standardabweichung der Einzelwerte berechnet.

Um die Nachweisgrenzen der Gase und Aerosole mit den gemessenen Konzentrationen in der Luft vergleichen zu können, wurden sie je mit einer mittleren Expositionszeit von 14 und 28 Tagen berechnet. Um die Nachweisgrenzen der Ionen mit den Depositionsfrachten in den Proben vergleichen zu können, wurden sie je mit tiefen, mittleren und hohen monatlichen Niederschlagsmengen berechnet (Tabelle 7).

Um Jahresmittelwerte mit vollständiger zeitlicher Abdeckung zu erhalten, wurden auch Messwerte unter der Bestimmungsgrenze verwendet.

Tabelle 7 Nachweisgrenzen

	Ві	ılk	Passivsammler			Minidenuder		Minifilter		Summenfilter	
	N-NH₄ ⁺	N-NO ₃	N-NH ₃	N-NO ₂	N-HNO ₃	N-NH ₃	N-HNO ₃	N-NH₄ ⁺	N-NO ₃	N-NH₄ ⁺	N-NO ₃
	kg ha ⁻¹	kg ha ⁻¹	µg m⁻³	µg m ⁻³	µg m⁻³	µg m⁻³	µg m ⁻³	µg m⁻³	µg m ⁻³	µg m⁻³	µg m⁻³
14 Tage Exposition			0.24	0.25	0.23	0.36	0.07	0.19	0.02	0.13	0.05
28 Tage Exposition			0.12	0.13	0.11	0.18	0.03	0.10	0.01	0.07	0.02
10 mm tiefer Monatswert	0.002	0.002						•			
80 mm mittlerer Monatswert	0.02	0.01									
300 mm hoher Monatswert	0.06	0.05									

6.3.3 Vergleich mit zertifiziertem Referenzmaterial

Tabelle 8 Messung von Standardreferenzmaterialien "Simulated rainwater" CRM 408 (CEC, bcr 1993) und ERM® CA408 (EC, JRC, IRMM 2010)

				ERM® CA408								
		Zertifizierter Wert		anderes CH Labor	FUB	FUB	FUB	FUB	Zertifizierter Wert		FUB	
Jahr der Anal	Jahr der Analyse			2003	2003	2008	2013	2015			2015	
		c mg kg⁻¹	CI +/-	c mg kg ⁻¹	c mg kg ⁻¹	c mg kg⁻¹	c mg kg⁻¹	c mg kg⁻¹	c mg kg⁻¹	CI +/-	c mg kg⁻¹	
Ammonium	$\mathrm{NH_4}^{+}$	(0.38)		0.37	0.36	0.37		0.41	0.910	0.03	0.98	
Nitrat	NO ₃	1.25	0.02	1.1	1.06	1.17	1.25	1.24	2.01	0.09	2.00	

Zur Überprüfung der Analytik wurden Standardreferenzmaterialien aus "Simulated rainwater" analysiert. Die Übereinstimmung der gemessenen mit den zertifizierten Werten ist gut (Tabelle 8).

6.3.4 Vergleich mit anderen Messverfahren

Von August 2003 bis März 2004 wurden umfangreiche Vergleichsmessungen von FUB Bulk Sammlern mit WSL Regen- und Schneesammlern an drei Standorten durchgeführt (Abbildungen 39 bis 41). Sowohl die analytische Übereinstimmung als auch die Vergleichbarkeit der Sammler ist meist gut.

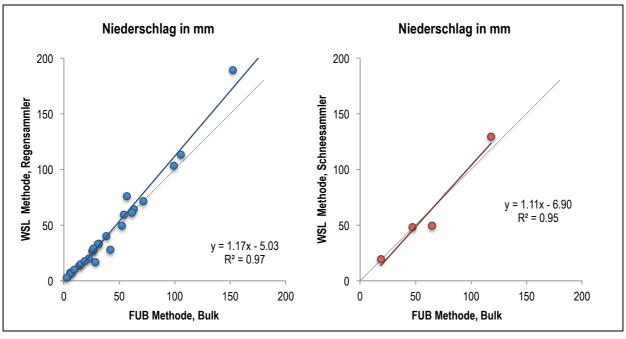


Abbildung 39 Niederschlag: Vergleich WSL mit FUB

Links: Vergleich der beiden Regensammler rechts: Vergleich der WSL Schneesammler mit FUB Bulks bei Schnee und Eis Die graue Diagonale entspricht der 1:1 Linie

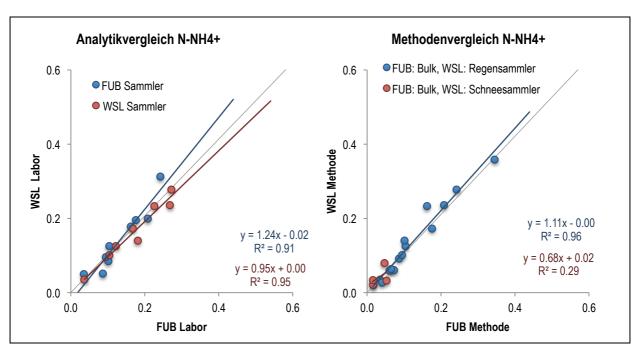


Abbildung 40 Ammonium in kg N ha-1: Methodenvergleich (links), Laborvergleich (rechts)

Links: Blau = FUB Bulk, Rot = WSL Regensammler

Rechts: Blau = Vergleich der beiden Regensammler, Rot = Vergleich der WSL Schneesammler mit FUB Bulks, Aufbereitung und Analytik im jeweiligen Labor

Die graue Diagonale entspricht der 1:1 Linie.

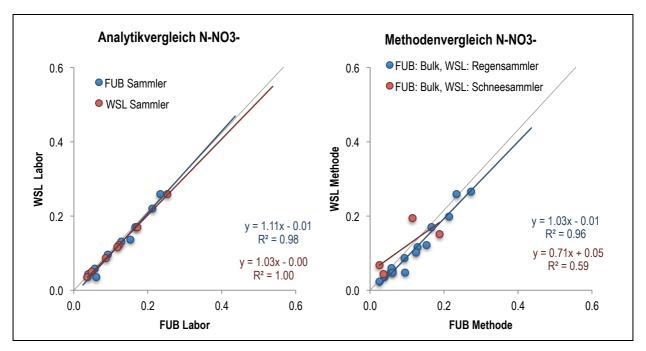


Abbildung 41 Nitrat in kg N ha-1: Methodenvergleich (links), Laborvergleich (rechts)

Links: Blau = FUB Bulk, Rot = WSL Regensammler

Rechts: Blau = Vergleich der beiden Regensammler, Rot = Vergleich der WSL Schneesammler mit FUB Bulks, Aufberei-

Rechts: Blau = Vergleich der beiden Regensammler, Rot = Vergleich der WSL Schneesammler mit FUB Bulks, Aufbereitung und Analytik im jeweiligen Labor

Die graue Diagonale entspricht der 1:1 Linie.

6.3.5 Rückhalt von Ionen im Trichter

2008 wurden die Bulk-Trichter bei ausgewählten Standorten mit Reinstwasser ausgespült und die Ionen darin gemessen. Durchschnittlich wurden 2 % (Ammonium) resp. 5 % (Nitrat) Masseanteil an Ionen, die im Bulk gemessen wurden, im dazugehörigen Trichter gefunden (Abbildung 42). Um Kontaminationen zu vermeiden, wurden bei jedem Probewechsel frisch gereinigte Trichter installiert.

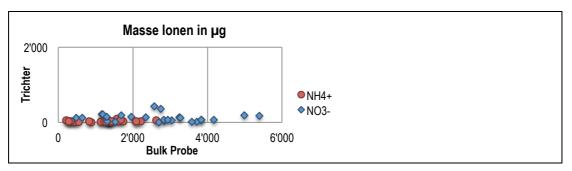


Abbildung 42 Analyse von Bulk-Trichtern

Anteil von der Masse der Ionen, die im Trichter gefunden wurden, verglichen mit der Masse der Ionen im dazugehörigen Bulk

6.4 Vervollständigung von Datensätzen

Nicht alle Komponenten konnten an jedem Ort gemessen werden. Darum wurden die fehlenden Werte und Jahre durch Schätzungen ergänzt.

6.4.1 Wet zu "Bulk"

An den meisten Orten wurde mit Bulk-Regensammlern gemessen, an den NABEL-Stationen CHA, MAG, PAY und RIG wird mit Wet-only-Geräten gesammelt. Um die Vergleichbarkeit zu verbessern wurden die Werte der Wet-Sammler zu "Bulk" umgerechnet:

Der Wet-only-Sammler sammelt weniger als der Bulksammler, welcher auch die trockene Gravitations-Deposition aufnimmt. An der Bachtelstation (BA) wurden drei Jahre lang beide Methoden parallel geführt (4-wöchentliche Sammelintervall). In Abbildung 43 sind die Werte in einem Scatterdiagramm dargestellt. Dabei ist ersichtlich, dass bei kleinen Depositionswerten der Bulk überproportional mehr sammelt. Dies kann damit erklärt werden, dass es bei kleinen Frachten oft längere regenfreie Zeiten gab und damit Staub aus der Luft eingetragen wurde. Für die "Anpassung" des Wet-Jahreswertes wurde die durchschnittliche Abweichung des Perioden-Wet- zum Perioden-Bulkwert beigezogen (Tabelle 9). Die Wet-Jahreswerte wurden mit 1.15 (NH₄⁺) resp. 1.17 (NO₃⁻) multipliziert.

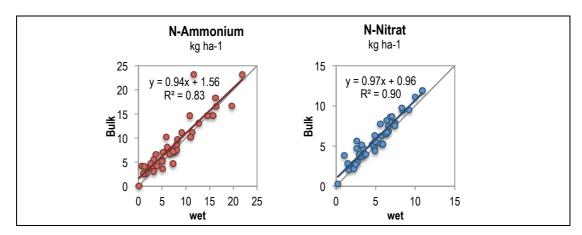


Abbildung 43 Vergleich der Frachten gesammelt mit Bulkregensammler und Wet-only
Methodenvergleich an der Station Bachtel von 2001 bis 2003. Die graue Diagonale entspricht der 1:1 Linie.

Tabelle 9 Frachten gesammelt mit Bulkregensammler und Wet-only
Vergleich von 4-Wochen-Werten an der Station Bachtel von 2001 bis 2003

Expositions-	Wet	Bulk	% wet von	Wet	Bulk	% wet vo
ende	N-NH₄ ⁺	N-NH ₄ ⁺	Bulk	N-NO ₃	N-NO ₃	Bulk
Datum	kg ha ⁻¹	kg ha ⁻¹		kg ha ⁻¹	kg ha ⁻¹	
03.01.01	1.6	2.6	60	1.6	2.1	78
30.01.01	1.0	2.6	39	1.6	2.6	61
27.02.01	6.2	7.7	81	4.9	6.3	78
27.03.01	5.9	10.3	57	5.6	5.3	105
24.04.01	10.8	14.7	74	10.9	11.9	92
22.05.01	7.2	7.3	98	3.3	3.7	89
19.06.01	16.4	16.6	99	9.2	9.5	97
16.07.01	7.6	7.3	105	3.7	3.9	95
14.08.01	8.0	8.5	94	4.9	4.8	101
11.09.01	12.7	13.1	97	7.4	7.9	94
09.10.01	8.0	7.5	107	5.7	6.3	92
06.11.01	2.1	3.9	53	2.2	2.2	103
04.12.01	5.2	7.0	73	4.9	5.6	89
03.01.02	2.5	4.0	63	2.7	3.0	91
22.01.02	0.1	0.1	111	0.2	0.3	79
19.02.02	0.7	4.2	18	1.0	3.8	27
19.03.02	3.1	4.1	76	2.3	2.9	80
16.04.02	6.6	6.6	99	4.6	5.2	88
14.05.02	11.3	11.2	101	8.4	9.5	89
11.06.02	11.6	23.2	50	6.4	8.2	78
09.07.02	9.1	11.1	82	5.0	5.6	90
06.08.02				6.3	6.5	96
03.09.02	19.7	16.7	118	10.0	11.1	90
01.10.02	8.2	9.7	85	6.6	7.5	88
29.10.02	10.9	10.2	108	6.9	8.6	80
26.11.02	6.0	8.1	74	6.6	6.8	96
24.12.02	3.2	5.5	58	3.4	4.7	73
21.01.03	1.3	4.2	30	1.5	2.8	52
18.02.03	3.9	4.2	92	5.9	5.2	112
18.03.03	5.0	5.4	93	3.1	3.7	85
15.04.03	7.3	4.6	156	4.9	4.4	111
13.05.03	16.3	18.4	88	5.6	7.8	72
10.06.03	21.9	23.2	95	8.3	9.7	85
08.07.03	14.6	14.6	100	7.1	8.7	81
05.08.03	15.7	14.6	107	7.4	7.5	98
02.09.03	5.1	3.6	141	2.9	3.9	75
30.09.03	5.0	5.2	96	3.2	5.1	62
28.10.03	7.3	7.2	101	6.4	6.7	95
25.11.03	3.2	3.0	107	2.5	2.7	90
23.12.03	2.6	4.7	55	2.6	5.6	47
20.01.04	3.7	6.6	55	2.6	4.7	55
	298.5	343.5	87%	200.3	234.5	85%
		Faktor:	1.15		Faktor:	1.17

6.4.2 Schätzwerte von Salpetersäure, Nitrat- und Ammonium-Aerosolen

HNO₃ (gasförmig) und die Nitrat- und Ammonium-Aerosole konnten nicht an allen Standorten gemessen werden. Erfahrungsgemäss schwanken die Konzentrationen jedoch über grössere Gebiete relativ wenig. Deshalb wurden die vorhandenen Messwerte (Tabelle 10, Abbildung 44) verwendet, um Konzentrationen für die anderen Standorte abzuschätzen (Tabelle 11).

Ein potentieller, durch falsche Abschätzungen entstehender Fehler würde sich nicht stark auf die Gesamtstickstofffracht auswirken, da der Stickstoff-Anteil dieser drei Komponenten an der Gesamtstickstofffracht 2014 nur zwischen 3 und 21 %, mit einem Median von 11 % betrug.

Tabelle 10 Grundlage für Schätzung der Salpetersäure- und Aerosol-N-Konzentrationen
Vorhandene Messwerte an verschiedenen Orten der Schweiz. Diese Messungen wurden im Rahmen verschiedener Projekte durchgeführt. Auftraggeber: OSTLUFT (APS), BAFU (SA, OEN, CHA, WTG1, HAE, NEU 02), ROB (Oekoscience)

Standort	Jahr		ug m ⁻³	N-NO ₃ - ug m ⁻³ n von NA	ug m ⁻³	Bemerkungen	Standort	Jahr		ug m ⁻³		ug m ⁻³	Bemerkungen
MAG	2008	204	0.36	0.75	1.21		BA	2012		0.21	0.53	0.71	
	2009	20.	0.49	0.64	0.93		5,1	2013		0.21	0.65	0	NH4 zu viele Ausfälle
	2010		0.53	0.68	1.11			2014		0.18	0.48	0.67	111124 11010714014110
	2011		0.52	0.78	1.46		APS	2007	820			1.12	
	2012		0.50	0.73	1.59			2014	820	0.10	0.45		NH4: Sufix minus PS
	2013		0.44	0.63	0.97		PAY	2006	489	0.10	0.10		von FUB
	2014		0.37	0.50	0.73			2007		0.25	0.69	0.93	
SA	2009	600	0.25	0.96	1.68			2008		0.24	0.72	1.02	
SA	2010		0.52	0.91	1.40			2009		0.29	0.94	1.49	
SA	2011		0.52	1.00	1.71			2010		0.28	0.88	1.43	
SA	2012		0.28	0.74	1.51			2011		0.26	0.96	1.47	
SARE	2014	820	0.34	1.06		NH4: Sufix minus PS		2012		0.24	0.79	1.13	
ROB	1998 99	1960	0.09	0.28	0.59	THITI: Gally Hilliag I C		2013		0.23	0.92	1.35	
UR	2013_14	2440		0.13		NO3: Sufix minus ROB; NH4: Sufix minus PS		2014		0.20	0.60	0.90	
ΓIE	2013_14	2127		0.22		NO3: Sufix minus ROB: NH4: Sufix minus PS	WTG1	2011	444			1.34	
KLE	2013_14	1722		0.37		NO3: Sufix minus RIG; NH4: Sufix minus PS		2013					NH4: Sufix minus PS
CHA	2014	1137	0.16	0.48		NH4: Sufix minus PS		2014					NH4: Sufix minus PS
RIG	2005	1031			1.05	von FUB	OEN	2008	450	0.25	0.69	1.22	
	2006				1.04	von FUB		2009		0.13	0.73	1.40	
	2007		0.20	0.52	0.66			2010		0.38	0.97	1.49	
	2008		0.17	0.45	0.70		NEU 02	2012	735			0.78	
	2009		0.19	0.66	0.95			2013				1.17	
	2010		0.20	0.61	1.05			2014				1.00	
	2011		0.18	0.61	1.01		TAE	2008	539	0.20	0.74	1.10	
	2012		0.18	0.47	0.79			2012		0.24	0.75	1.44	
	2013		0.19	0.58	0.96			2013		0.25	0.87	1.31	
	2014		0.14	0.43	0.74			2014		0.20	0.60	0.94	
3A	2005	930			1.05		RAP	2004	430			1.45	
	2006				1.14			2005				1.48	
	2007				1.05			2006				1.51	
	2008		0.21	0.58	0.87			2007				1.26	
	2009				0.97		HAE	2006	431			1.69	
	2010				1.01			2007				1.46	
	2011		0.22	0.66	1.01			2008				1.39	
HAE	= Härking	en (SO)		NEU 02	= Neudo	rf (LU) OEN = Oensingen (SO)	ROB =	Robiei	(TI)	SA	= Sagno	(TI)	WTG 1 = Gimmiz

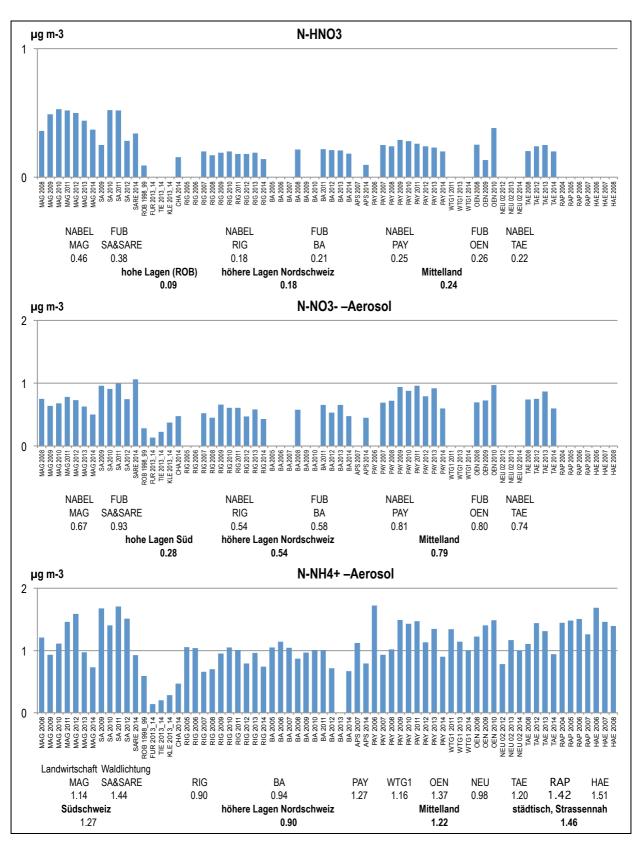


Abbildung 44 Messwerte von Salpetersäure und Aerosol-N-Komponenten mit Schätzwerten
An verschiedenen Orten, als Grundlage für Schätzwerte in der gleichen Region

Tabelle 11 Zugewiesene Schätzwerte an die verschiedenen Standorte Herkunft der Schätzwerte oder (bei NO2) Verwendung von Monitor-Messwerten

Stao Code	Herkunft der Schätzwerte				Herkunft (Schätz-)Wert NO ₂ , wenn nicht	NO_2
		µg m⁻³	μg m ⁻³	µg m ⁻³	mit Passivsammlern an Station gemessen	µg m ⁻³
ANA B	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS	0.18	0.54	0.90		
APS	APS direkt 2014	0.10	0.45	0.79		
ARD 02	von FUR, HNO3 von ROB	0.09	0.13	0.14		
ARD 06	von TIE, HNO3 von ROB	0.09	0.22	0.20		
BA	2000-2004 direkt, weitere von Mittelwert BA, Rest direkt	0.21	0.58	0.94	2001-2003: Schätzw. von BATU/0.88	4.2-5.3
BEA	von KLE, HNO3 von ROB	0.09	0.37	0.28		
BET	von CHA	0.16	0.48	0.47		
CEL	von TIE, HNO3 von ROB	0.09	0.22	0.20		
CHA	CHA direkt 2014	0.16	0.48	0.47	Monitor, NABEL	
CHI	von ROB	0.09	0.28	0.59		
DAV	von TIE, HNO3 von ROB	0.09	0.22	0.20		
FUR	FUR direkt, HNO3 von ROB	0.09	0.13	0.14		
HÄG	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
HOL 00	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22	2000: Schätzwert von LU 35	10
HUD	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22	2001: Schätzwert	10
JUS	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
KLE	KLE direkt, HNO3 von ROB	0.09	0.37	0.28		
LAE F	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
LAU	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
LEN 1	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
MAG	2000-2007 Mittelwert MAG, nachher direkt	0.46	0.67	1.14	Monitor, NABEL	
MAU 00	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22	2000: OSTLUFT	18
MU 01	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
NAT	von TIE, HNO3 von ROB	0.09	0.22	0.20		
NE 01	von CHA	0.16	0.48	0.47		
NENZ	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
NOV	von ROB	0.09	0.28	0.59		
OTH	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
PAY	2000-2006 Mittelwert PAY, nachher direkt	0.25	0.81	1.27	Monitor, NABEL	
RIG	2000-2006 Mittelwert RIG, nachher direkt	0.18	0.54	0.90	Monitor, NABEL	
ROHO	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS N	0.18	0.54	0.90		
SARE	SARE direkt	0.34	1.06	0.93		
SCH	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
SOER	von KLE, HNO3 von ROB	0.09	0.37	0.28		
TAE	2000-2011 Mittelwert TAE, nachher direkt	0.22	0.74	1.20	Monitor, NABEL	
TIE	von TIE, HNO3 von ROB	0.09	0.22	0.20		
VIS	von Mittelland: kein inneralpiner Vergleichsstandort	0.24	0.79	1.22		
VOR	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22		
WAU 16.4	von Mittelland: oxi PAY, OEN, TAE: NH4+: auch WTG 1, NEU 02	0.24	0.79	1.22	2000: Schätzwert von LU 35	10
WIE	von Mittelland: oxi PAY, OEN, TAE: NH4+: RAP	0.24	0.79	1.46		
ZB 01	von höheren Lagen Nordschweiz: CHA, RIG, BA, APS	0.18	0.54	0.90		

HAE = Härkingen (SO), NEU 02 = Neudorf (LU), OEN = Oensingen (SO), ROB = Robiei (TI), SA = Sagno (TI), WTG 1 = Gimmiz (BE), BATU = Bachtel Turm (ZH), LU 35 = Schüpfheim

6.5 Von Konzentration zu Fracht

Die Gravitationsfracht kann direkt ermittelt werden. Bei Gasen und Aerosolen wird die Fracht berechnet indem die Konzentration mit der rezeptorspezifischen Depositionsgeschwindigkeit $\nu_{\rm d}$ multipliziert wird. Hierfür wurden die Depositionsgeschwindigkeiten der Komponenten, dem Standort und dem Ökosystemtyp (z.B. Nadelwald, Flachmoor, Wiese) angepasst. Zur Berechnung der gesamten Stickstofffracht wurden die Frachten der sieben Komponenten aufsummiert.

6.5.1 Depositionsgeschwindigkeiten

Depositionsgeschwindigkeit $\nu_{\rm d}$ ist die Geschwindigkeit, mit der sich Gase oder Aerosole auf Oberflächen absetzen. Sie sind sehr variabel und abhängig von der Stickstoffkomponente, den meteorologischen Begebenheiten sowie von der Oberflächenrauigkeit des Ökosystems, welche die Gasdeposition und Interzeption von Aerosolen stark beeinflusst. In der Literatur gibt es verschiedene Angaben mit einer grossen Streuung der Depositionsgeschwindigkeiten (z.B. Übersichtsartikel von Schrader/Brümmer, 2014). Für diese Untersuchung wurden Depositionsgeschwindigkeiten nach FOEFL (1996) und Thimonier et al. (2005) eingesetzt (Jahreswerte) (Tabelle 12). Diese wurden von Meteotest auch bei der Ausbreitungs- und Depositionsmodellierung verwendet. Sie sind mit Unsicherheiten behaftet. Die in den 1990er Jahren festgelegten Depositionsgeschwindigkeiten waren auch Teil der Grundlagen für die Herleitung der Expositions-Wirkungsbeziehungen zwischen Stickstoffeinträgen und Auswirkungen bei empfindlichen Ökosystemen.

Tabelle 12 Ökosystemtypen (ÖT) und Depositionsgeschwindigkeiten (v_d) N-haltiger Luftschadstoffe Jahresmittelwerte, Einheit: mm s⁻¹

Komponente	NO ₂ Gas	NH₃ Gas	HNO₃ Gas	NH ₄ + / NO ₃ - Aerosole
Hoch- / Flachmoore	2	20	15	1 - 2
Wiesen/Weiden (TWW)	1.5	12	15	1 - 2
Alp./subalpines Grasland (ÖT);		wie -	ΓWW	-1
Acker, Kunstwiesen	1.5	10	15	1 - 2
Wiesen		wie Kun	stwiesen	-1
Laubwald	3	22	15	1.5 – 3
Mischwald	3 - 4	26	15	2 - 4
Nadelwald	4	30	15	2.5 - 5
Siedlung	1.5	8	15	1 - 2
Felsen, Gletscher	1.5	5	15	1 - 2
Schnee		wie Felsen	, Gletscher	•

Bei HNO_3 wird von einer konstanten v_d ausgegangen, da diese Komponente auf jeglicher Oberfläche sehr schnell abgesetzt wird. Für NO_2 werden höhere v_d für die eher rauen Oberflächen in Flach- und Hochmooren, sowie in Wälder angenommen. Für die **Aerosole** wird neben der Rauigkeit der Oberfläche mit einer Höhenabhängigkeit gerechnet (siehe unten).

Bei der Deposition von **Ammoniak** wurde berücksichtig, wenn am Standort über mehrere Monate eine geschlossene Schneedecke liegt, da bei dieser deutlich weniger Ammoniak deponiert wird (siehe oben).

Aerosole

Nach SAEFL (1996) verdoppelt sich (infolge Zunahme der Windgeschwindigkeit) die Depositionsgeschwindigkeit für Aerosole von 400 auf 800 m ü.M. Für die Schätzung an den jeweiligen Orten wurde eine lineare Erhöhung angenommen (Abbildung 45):

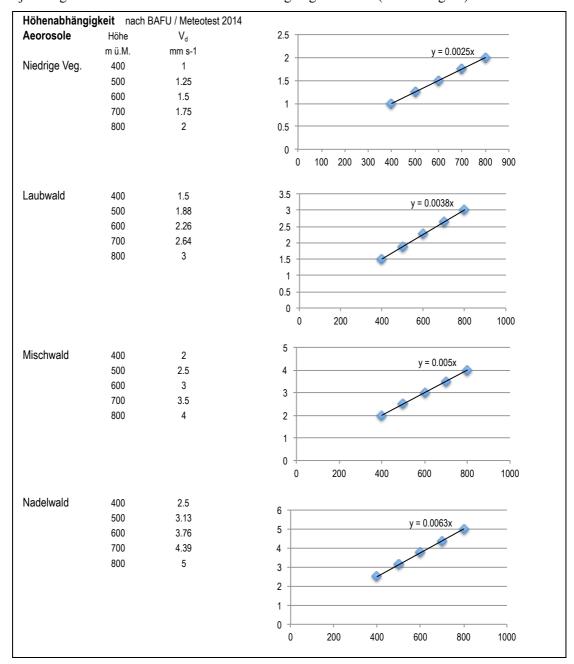


Abbildung 45 Höhenabhängigkeit der Depositionsgeschwindigkeiten von Aerosolen für verschiedene Ökosystemtypen

Ammoniak

Bei geschlossener Schneedecke ist die Depositionsgeschwindigkeit v_d bei Ammoniak reduziert (Gletscher: v_d NH₃ = 5 mm s⁻¹). Darum wurde für den Jahreswert die v_d des jeweiligen Ökoystems an Standorten oberhalb 900 m ü.M. reduziert (für tiefere Lagen wird nicht von einer langen Schneebedeckung ausgegangen).

Für die Anpassung wurde folgendermassen vorgegangen: Mit Nachfrage bei den Stationsbetreibern resp. Anwohnern wurden die Monate mit mehrheitlich geschlossener Schneedecke ermittelt. (i) Der Mittelwert dieser Schneezeit wurde mit der v_d von Gletscher und mit den Anzahl Monaten multipliziert. Die restlichen Monate (Vegetationszeit) wurden mit der am jeweiligen Ökosystem geltenden v_d multipliziert. Beides wurde summiert und durch die 12 Monate geteilt. Dies ergab die ermittelte Fracht an N-NH₃. (ii) Die geltende v_d wurde mit dem NH₃-Jahresmittelwert multipliziert was die Fracht ohne Reduktion ergab. Mit dem Faktor beider Berechnungen (i)/(ii) wurde nun der am Standort geltenden v_d multipliziert, was nun die spezifische v_d am jeweiligen Standort ergab. Siehe Tabelle 13 für verwendete Werte.

Tabelle 13 Depositionsgeschwindigkeit von Ammoniak an höher gelegenen Standorten (> 900 m ü.M.)

Anpassung an die Zeit mit geschlossener Schneedecke, bei der die Depositionsgeschwindigkeit reduziert ist a./suba. GL = alpines / subalpines Grasland

Code	Angaben von Stationsbetreiber oder Anwohner	Ökotop resp. Rezeptor	Depositions- g gescheindigkeit vd c Schnee (Gletscher)	ತ್ತ vd ಸ್ತ್ರ Vegetationszeit	る NH3-Konzentration B ganzes Jahr 2014	MH3-Konzentration Schneebedeckung Jahr 2014	NH3-Konzentration Wegetationszeit Jahr 2014	Dauer Schneebedeckung	Dauer Wegetationszeit	A N-NH3-Fracht 짜 Schneebedeckung	A N-NH3-Fracht 교 Vegetationsperiode	중 N-NH3-Fracht 편 Jahr 2014	N-NH3-Fracht By Jahr 2014 ohne Anpassung	Faktor für Anpassung vd	avd angepasstan ∽ Schneebedeckung
ARD 02	Andreas Gauer, Agroscope, Bodentemp. 2014/15	a/suha Gl	5	12	0.26	0.20	0.32	6	6	0.13	0.49	0.62	0.80	0.77	9
ARD 06			5	12	0.92	0.81	0.98	4	8	0.35	2.03	2.39	2.88	0.83	10
BEA	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.63	0.22	0.77	3	9	0.07	1.79	1.86	1.96	0.95	11
BET	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.60	0.28	0.67	2	10	0.06	1.73	1.79	1.88	0.95	11
CHI	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.27	0.09	0.33	3	9	0.03	0.78	0.81	0.85	0.95	11
FUR	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.15	0.14	0.18	7	5	0.10	0.23	0.33	0.48	0.70	8
KLE	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.52	0.35	0.63	5	7	0.19	1.15	1.34	1.61	0.83	10
NAT	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.15	0.13	0.16	5	7	0.07	0.30	0.37	0.46	0.79	10
NOV	Maria Schmitt, WSL, Schneehöhen	a./suba. GL	5	12	0.59	0.15	0.68	2	10	0.03	1.76	1.79	1.83	0.98	12
TIE	Erika Hiltbrunner, Uni Basel	a./suba. GL	5	12	0.20	0.11	0.30	6	6	0.07	0.47	0.54	0.63	0.85	10
ANA B	Patrick Schleppi, WSL, Schneehöhen	Flachmoor	5	20	0.38	0.15	0.46	3	9	0.05	1.77	1.82	1.96	0.93	19
CEL	Maria Schmitt, WSL, Schneehöhen	Hochmoor	5	20	0.20	0.12	0.25	4	8	0.05	0.85	0.91	1.03	0.88	18
DAV	Maria Schmitt, WSL, Schneehöhen	Hochmoor	5	20	0.14	0.13	0.15	4	8	0.05	0.52	0.57	0.73	0.78	16
NE 01	Margrit Bolliger, La-Chaux-de-Fonds	Hochmoor	5	20	1.19	0.69	1.36	3	9	0.22	5.28	5.51	6.18	0.89	18
ZB 01	Annahme: ähnlich wie BA	Hochmoor	5	20	1.44	0.60	1.73	3	9	0.19	6.71	6.91	7.49	0.92	18
ROHO	Albert Marty, Rothenthurm	Hochmoor	5	20	1.61	1.25	1.73	3	9	0.41	6.74	7.14	8.36	0.85	17
SOER	Mario Meier, PV	Hochmoor	5	20	0.42	0.41	0.43	4	8	0.18	1.49	1.67	2.20	0.76	15
BA	Silvia Marty, FUB	Wiese	5	10	2.35	1.16	2.75	3	9	0.38	5.35	5.73	6.11	0.94	9
CHA	Stefan Bugmann, EMPA, webcam	Wiese	5	10	0.89	0.36	0.99	2	10	0.08	2.14	2.22	2.30	0.97	10
RIG	Stefan Bugmann, EMPA, webcam	Wiese	5	10	1.32	0.75	1.51	3	9	0.24	2.94	3.18	3.43	0.93	9

6.5.2 Waldrand – über Wald

Der Eintrag in den Wald wird über die ermittelten Konzentrationen im Freiland nebenan berechnet. Belastet wird vor allem der Waldrand. An emissionsarmen Standorten finden sich auch oberhalb des Waldes ähnliche Konzentrationen (Beispiele bei Hofstetten (SO) und an der Lägeren (AG), (Tabelle 14, Abbildung 46) wie im angrenzenden Freiland, so dass auch weiter innen im Wald mit ähnlichen Belastungen gerechnet werden muss.

Tabelle 14 Ammoniakkonzentrationen über und neben Wald Emittentenferne Standorte

Standorte	Messperiode	NH₃-Konzentration über Wald	NH₃-Konzentration neben Wald
Hofstetten (SO)	Mai 2002 – Jan. 2003	1.2 µg m ⁻³	1.4 µg m ⁻³
Lägeren (AG)	Jan. – Dez. 2014	1.4 µg m ⁻³	1.4 µg m ⁻³

Abbildung 46 Ammoniakmessungen an Standorten über und neben dem Wald
Linkes Bild: Hofstetten (SO), links die Messstelle auf einem Kran über Baumkrone, rechts Messstelle nahe am Waldrand
Rechtes Bild: Lägeren (AG), links auf der Freilandfläche WSL-LWF, rechts über Baumkrone auf Messturm NABEL

6.6 Vergleich der Depositionsgeschwindigkeiten von FUB und Meteotest

Meteotest Bern hat im Auftrag des BAFU die Stickstoffeinträge mit Hilfe eines pragmatischen Ansatzes aufgrund von Emissionsinventarien, räumlicher Interpolation, Ausbreitungsmodellen und Monitoringdaten modelliert. Dabei wurden zuerst die verschiedenen N-Komponenten gerechnet, diese dann wie bei den Messungen mit Depositionsgeschwindigkeit multipliziert und anschliessend aufsummiert. Das Vorgehen ist in Roth et al. (2013) und der darin zitierten Literatur beschrieben.

In Tabelle 15 werden die in dieser Studie verwendeten Ökosystemtypen und Depositionsgeschwindigkeiten für Ammoniak mit den Bezeichnungen und Werten von Meteotest verglichen (SAEFL 1996, Thimonier et al 2005). Die Abweichungen bei den Depositionsgeschwindigkeiten sind hauptsächlich darauf zurückzuführen, dass in dieser Studie die Länge der Schneebedeckung am jeweiligen Standort berücksichtigt wurde (siehe Tabelle 13).

Tabelle 15 Vergleich der Bezeichnungen und Depositionsgeschwindigkeiten für Ammoniak
Von FUB und von Meteotest zugeordnete Ökosystemtypen resp. Bodennutzung und verwendete Depositionsgeschwindigkeiten für Jahreswerte

Code	Ökosystemtyp 1	Bodennutzung		Jahres-Dep	ositionsgesch	windigkeit v _d
	(EKL 2014, map.geo.admin.ch)	Meteotest	BN24	FUB	Meteotest NH ₃ mm s ⁻¹	Differenz
APS	Wiese	Wies- und Ackerland	8	10	10	0
BA	Wiese	Wies- und Ackerland	8	9	10	-1
CHA	Wiese	Wies- und Ackerland	8	10	10	0
HÄG	Wiese	Wies- und Ackerland	8	10	10	0 ¦
HOL 00	Wiese	Wies- und Ackerland	8	10	10	0 !
JUS	Wiese	Wies- und Ackerland	8	10	10	0
LAE F	Wiese	Wies- und Ackerland	8	10	10	0
LAU	Wiese	Wies- und Ackerland	8	10	10	0
MAG	Wiese	Wies- und Ackerland	8	10	10	0
MAU 00	Wiese	Wies- und Ackerland	8	10	10	0
PAY	Wiese	Wies- und Ackerland	8	10	10	0
RIG	Wiese	Wies- und Ackerland	8	9	10	-1
SCH	Wiese	Wies- und Ackerland	8	10	10	0
TAE	Wiese	Wies- und Ackerland	8	10	10	0
VOR	Wiese	Wies- und Ackerland	8	10	10	0
NENZ	Alpines/subalpines Grasland	Wies- und Ackerland	8	12	10	2
ARD 02	Alpines/subalpines Grasland	Alp- und Juraweiden	11	9	12	-3
ARD 06	Alpines/subalpines Grasland	Alp- und Juraweiden	11	10	12	-2
BEA	Alpines/subalpines Grasland	Alp- und Juraweiden	11	11	12	-1
BET	Alpines/subalpines Grasland	Alp- und Juraweiden	11	11	12	-1
CHI	Alpines/subalpines Grasland	Alp- und Juraweiden	11	11	12	-1
FUR	Alpines/subalpines Grasland	Alp- und Juraweiden	11	8	12	-4
KLE	Alpines/subalpines Grasland	Alp- und Juraweiden	11	10	12	-2
NAT	Alpines/subalpines Grasland	Alp- und Juraweiden	11	10	12	-2
NOV	Alpines/subalpines Grasland	Alp- und Juraweiden	11	12	12	0
TIE	Alpines/subalpines Grasland	Alp- und Juraweiden	11	10	12	-2
LEN	Flachmoor	unproduktive Vegetation	14	20	20	0
WAU 05	Flachmoor	unproduktive Vegetation	14	20	20	0
ROHO	Hochmoor, Flachmoor	unproduktive Vegetation	14	17	20	-3
SOER	Hochmoor, Flachmoor	unproduktive Vegetation	14	15	20	-5
CEL	Hochmoor	unproduktive Vegetation	14	18	20	-2
DAV	Hochmoor	unproduktive Vegetation	14	16	20	-4
HUD	Hochmoor	unproduktive Vegetation	14	20	20	0
NE 01	Hochmoor	unproduktive Vegetation	14	18	20	-2
ZB 01	Hochmoor	unproduktive Vegetation	14	18	20	-2
MU 01	Waldlichung	Wies- und Ackerland	8	10	10	0
OTH	Waldlichung	Wies- und Ackerland	8	12	10	2
SARE	Waldlichung	Wies- und Ackerland	8	12	10	2
VIS	Waldlichung	Wies- und Ackerland	8	12	10	2
ANA B	Nadelwald	Geschlossener Wald	1	30	30	0
WIE	Siedlung	Gebäudeumschwung	17	8	8	0

BN24 Bodennutzung (Meteotest)

9 v_d angepasst an den Zeitanteil mit Schneebedeckung

6.7 Organischer Stickstoff im Niederschlag

Der Niederschlag enthält wasserlösliche organische Stickstoffverbindungen (Dissolved organic N - DON), z.B. Aminosäuren. Diese wurden in der vorliegenden Studie nicht berücksichtigt. Es ist nicht klar, ob und wie viel diese zur Überdüngung beitragen. Der Anteil DON am totalen Eintrag aus der Gravitationsdeposition schwankt stark. Gonzàles Benitez et al. (2010) fanden im Freiland von Schottland einen Anteil am totalen N-Eintrag (Nitrat, Ammonium, DON) von 23 % \pm 6 %. Daten aus Niedersachsen (D), Finnland und Slowenien (Abb. 47) zeigen im Mittel 17 % \pm 6 % DON bei einer mittleren anorganischen N-Fracht von 6 kg ha⁻¹ a⁻¹. Die prozentualen Werte aus Niedersachsen mit einer anorganischen Fracht von 12 kg ha⁻¹ a⁻¹ sind 6 % \pm 4 %, in Finnland mit 2 kg ha⁻¹ a⁻¹ 20 % \pm 4 %, in Slovenien 17 % \pm 3 % bei 11 kg ha⁻¹ a⁻¹ anorganischen Stickstoff. (Diese Daten waren Grundlagen für die Publikation Harmens et al. 2014, bei welchem die Stickstofffracht im Niederschlag mit der Stickstoffkonzentration in Moos verglichen wurde).

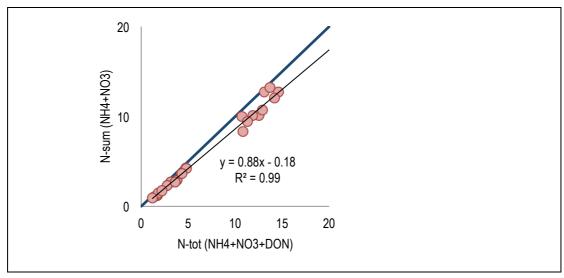


Abbildung 47 Vergleich von anorganischem Anteil zu totalem Stickstoff in der Gravitationsdeposition
Anorganischer Anteil: Summe Ammonium- und Nitratfracht, Totaleintrag: anorganischer Teil plus lösliche organische Fracht
(DON). Blau 1:1 Linie

6.8 Abschätzung der Qualität der Gesamtstickstoff-Resultate

Die Ermittlung der Gesamtstickstoff-Einträge ist mit Unsicherheiten behaftet. Diese liegen nur wenig auf der Seite der Analytik (meist kleiner als \pm 10 %), hingegen können bei der Sammlung der Proben je nach Technik Probleme auftreten. Die Niederschlagsmenge wird vor allem bei Schneefall und/oder Wind tendenziell unterschätzt was sich vor allem an hochgelegenen Standorten auswirkt. Mit dem grössten Minderbefund muss an der Station FUR gerechnet werden. Dort konnte im Winter wegen Lawinengefahr nicht regelmässig gewechselt und der Schnee somit nur unvollständig aufgefangen werden. Nahe an der Passhöhe herrscht auch relativ viel und starker Wind. Werden die Regenmengen für die gleichen Sammelintervalle mit der automatischen ALPFOR-Wetterstation verglichen, lag die mit Bulk aufgefangene Regenmenge im Mittel 17% tiefer als was die in 3 m Distanz gelegene Wetterstation mass. Bei Schnee ist die Differenz noch grösser. Für das Jahr 2014 betrug die Gesamtniederschlagsmenge der Wetterstation Furka 1280 mm, der Bulk sam-

melte 859 mm was bedeutet, dass mit dem Bulk nur 67 % aufgefangen wurde (pers. Mitteilung Erika Hiltbrunner, ALPFOR Uni Basel).

Auch bei TIE, ARD 02 und KLE, alle drei auf einer Alp gelegen, muss ebenfalls mit einigem Minderbefund der Niederschlagsmenge gerechnet werden. Die anderen, höher gelegenen Standorte befinden sich in geschützter Lage und dort konnte auch regelmässig gewechselt werden, so dass von einem kleineren Minderbefund ausgegangen werden kann. Ein Minderbefund des Niederschlags muss jedoch nicht bedeuten, dass der N-Eintrag im gleichen Ausmass unterschätzt wird.

Auch der Eintrag aus dem Nebel wird unterschätzt, da abtropfender Niederschlag oder Stammabfluss des ausgekämmten Nebels von den verwendeten Sammelmethoden unzureichend erfasst werden. An den meisten in diesem Bericht berücksichtigten Standorten ist der Einfluss von Nebel gering. Er spielt vor allem in alpinen, windausgesetzten Lagen mit häufigen Inversionsschichten eine Rolle (Spreafico & Weingartner 2005, Turner 1985).

Nicht einbezogen wurden die wasserlöslichen organischen Stickstoffverbindungen (DON), z.B. Aminosäuren (siehe Kapitel 6.7).

In SOER kam es zwei Mal zu Verlusten, da es deutlich mehr regnete als in der Flasche Platz hatte. Die Regenmenge wurde mit Hilfe der Messstelle "Marbach LU" geschätzt (uwe 2015).

Bei der trockenen Deposition von Aerosol- und gasförmigen Stickstoffverbindungen wird in einzelnen Fällen mit einer Unter- oder Überschätzung des Eintrags von bis zu 50 % gerechnet. Zusätzlich wurde bei vielen Standorten mit geschätzten Konzentrationen gerechnet.

Bei Ammoniak wird ein Kompensationspunkt erwartet, d.h. dass bei kleinen Konzentrationen in der Luft eine Emission stattfinden kann (Flechard et al. 2013). Die gemessenen Ammoniakkonzentrationen an quellenfernen Standorten sind somit unter Umständen nicht nur durch Transport des Ammoniaks zur Messstelle, sondern auch durch den aus dem Boden ausgedünsteten Ammoniak bestimmt. Dies kann zu einer Überschätzung des Stickstoffeintrages über Ammoniak führen. Wobei auch dieser an Ort emittierte Ammoniak in den nahen Ökosystemen wieder deponiert werden kann.

Bei der Berechnung von Gesamtstickstoffeintrag in Wald aus Messungen im Freiland (Inferential technique, Schmitt et al. 2005) gibt es Unsicherheiten, da die Sammlung wenige Meter über Boden stattfindet, der Wald aber von der Luft von Duzenden von Metern über Boden beeinflusst ist, wo die Gas- und Aerosolkonzentrationen unter Umständen anders sind. Speziell bei Messungen in Waldlichtungen können Aerosole und Gase bereits ausgekämmt sein.

Jedoch sind die Depositionsgeschwindigkeiten die grössten Unsicherheitsfaktoren. Diese sind sehr variabel und abhängig von der Stickstoffkomponente, den meteorologischen Begebenheiten sowie von der Rauigkeit der Oberfläche, welche die Auskämmung von Gasen und Aerosolen beeinflusst. Die verwendeten Depositionsgeschwindigkeiten wurden auf der Basis von wissenschaftlicher Literatur der 1990 Jahre im Rahmen eines Expertenworkshops festgelegt. (FOEFL 1996).

7 Anhang

7.1.1 Standortbeschreibung und Resultate

Tabelle 16 Standortbeschreibung
Beschreibung der Messstandorte und der Umgebung.

Code	Standort Name	•	Kt.	Natur-	Stationsbetreiber	Koord	inaten	Höhe	Relief	Ехро-	Neigung
				raum		E	N			sition	> 5 %
						km	km	m ü. M.			%
ANA B	Alpthal	Erlentobel	SZ	NA	WSL	696.810	211.110	1190	Н	SW	13
APS	ApSteinegg	Appenzell	Al	М	OSTLUFT	750.813	243.664	820	Е	_	
ARD 02	Ardez Szen. 2		GR	ZA	Agroscope	809.042	186.024	2180	T	S	
ARD 06	Ardez Szen. 6		GR	ZA	Agroscope	808.659	184.410	1680	Н	S	
BA	Bachtel	hinterer Sennenberg, Wald	ZH	М	OSTLUFT, FUB	710.340	239.607	930	Н	Е	18
BEA	Beatenberg	Vorsass	BE	NA	WSL/LWF	625.510	172.200	1560	Н	SW	22
BET	Bettlachstock	Stockmätteli	SO	J	WSL/LWF	597.896	230.150	1076	Н	S	21
CEL	Celerina	Punt Muragl - Staz.	GR	ZA	WSL/LWF	787.043	153.436	1760	Е	NW	5
CHA	Chaumont	Neuenburg	NE	J	NABEL	565.090	211.040	1137	Н	SE	7
CHI	Chironico	Lampenca	TI	SA	WSL/LWF	706.013	144.215	1479	Н	NE	19
DAV	Davos		GR	ZA	WSL/LWF	784.450	187.600	1629	Е	S	8
FUR	Furka		UR	ZA	UNIBAS	675.336	158.956	2440	Н	SE	15
HÄG	Häggenschwil		SG	М	OSTLUFT	743.660	261.770	555	Е	_	
HOL 00	Holderhus 0	Neuenkirch	LU	М	Kt. LU	657.129	216.962	590	Н	N	7
HUD	Hudelmoos		TG	М	Kt. TG	739.180	265.235	520	Е	_	
JUS	Jussy	La Forêt	GE	М	WSL/LWF	511.633	120.631	501	Е	NW	
KLE	Klewenalp		NW	NA	UNIBAS	679.107	198.636	1722	K	NW	21
LAE F	Lägeren WSL	Tigelmoos	AG	М	WSL/LWF	669.033	258.591	508	Н	S	11
LAU	Lausanne	Chalet de la ville	VD	М	WSL/LWF	539.387	156.702	790	K	SE	
LEN	Lengwiler Weih	er	TG	М	Kt. TG	730.530	276.998	505	Е	_	
MAG	Magadino-Cade	enazzo	TI	SA	NABEL	715.500	113.200	204	Е	_	
MAU 00	Mauren 0	Pünt	TG	М	Kt. TG		269.400	439	Е	_	
MU 01	Muri 1		AG	М	IAP	669.347	236.256	470	Н	Е	6
NAT	Nationalpark	Porta 9	GR	ZA	WSL/LWF	814.454	171.381	1900	Е	S	5
NE 01	Tourbières	Le Ponts de Martel	NE	J	Kt. NE	546.745	204.903	1000	Е	_	
NENZ	Nenzlingen	Nenzlingerweid	BL	J	Kt. BL	609.799	255.259	500	Н	SW	30
NOV	Novaggio	oberhalb Pianea commune	TI	SA	WSL/LWF	708.159	97.953	1075	Н	S	13
OTH	Othmarsingen	Berg	AG	М	WSL/LWF	659.218	250.228	462	Н	SW	12
PAY	Payerne	·	VD	М	NABEL	562.285	184.775	489	Е	_	
RIG	Rigi-Seebodena	alp	SZ	NA	NABEL	677.845	213.462	1031	Н	NW	30
ROHO	Rothenturmer H		SZ	М	Kt. SZ		219.533	905	Е	_	
SARE	Sagno Reservo		TI	SA	IAP	724.286	80.024	820	Т		
SCH	Schänis		SG	NA	OSTLUFT, WSL-LWF	722.923		630	Н	W	59
SOER	Sörenberg Huse	eaa	LU	NA	Kt. LU	643.514	184.831	1450	Е	_	
TAE	Tänikon	Aadorf	TG	М	NABEL	710.500	259.810	539	Е	_	
TIE	Tiefenbach		UR	ZA	UNIBAS		160.750	2127	Т	SW	
VIS	Visp	nicht auf WSL-Freifläche	VS	ZA	WSL/LWF		127.410	664	H	N	6
VOR	Vordemwald	Probsthol	AG	M	WSL/LWF		235.431	486	E	SE	
WAU	Wauwiler Moos		LU	M	Kt. LU		224.689	499	E	_	
WIE		se Zürich, Wiedikon	ZH	M	OSTLUFT		247.250	415	E		
ZB 01	Zugerberg 1	Zug	ZG	NA	IAP		220.489	990	K		
Legende	_agoinery i	y		J	= Jura	002.002	220.703	550	E	= Ebene	
Legende				M	= Jura = Mittelland				Н	= Hang	
				NA	= Nordalpen				K	= Kuppe	
	1			ZA	= Zentralalpen & Urser	ental			Т	= Terrass	e

Code	direkte Umgebung	landwirtschaftliche Nutzung	Strassen- abstand m	Verkehr DTV (% LKW)	Siedlungs- grösse	bedeutender Wechsel am Standort
ANA B	Wald, Waldlichtung	_	_	_	Einzelgebäude	
APS	Wiesen	intensive Tierwirtschaft	_	_	Weiler	2008 (10m) & 2014 (80m) versch.
ARD 02	Alpweiden	Alpweide, Rinder	_	_	Einzelgebäude	
ARD 06	Wiese, lichter Lärchenwald	Wiesen, Tierwirtschaft	_	_	Weiler	
BA	Wiesen, Weiden	Wiesen, Weiden, Graswirtschaft	_	_	Einzelhöfe	
BEA	Wiese, Weide	Alpweide, Rinder	_	_	Einzelgebäude	
BET	Waldlichtung	_	_	_	_	
CEL	Moor	_	_	_	_	
CHA	Wiesen, Weiden	Wiesen, Weiden, Graswirtschaft	_	_	Einzelhöfe	
CHI	Alpweide, Alpwiese	Alpweide, Alpwiese	_	-	Weiler	
DAV	Wald (Turm) / Waldlichtung Moor	_	_	_		
FUR	Alpweide	Alpweide, Schafe	130	Sommerpassstrasse	Einzelgebäude	
HÄG	Wiesen, Äcker	intensive Tierwirtschaft	_	_	Weiler	
HOL 00	Obstkultur, Wiese	Obstbau, intensive Tierwirtschaft		_	grosses Dorf	
HUD	Moor, Naturschutzgebiet	_		_		2001 um 180 m entfernt exponiert
JUS	Wiese, Feuchtbiotop	Graswirtschaft		_	Einzelgebäude	
KLE	Alpweide	Alpweide, Rinder	_	_	Einzelgebäude	
LAE F	Wiese, Waldrand	Wiese, Hirschzucht	_	_	Einzelhof	
LAU	Wiesen, Weide	Wiesen, Pferdeweide, landw. Betrieb		_	Einzelhof	
LEN	Moor, Naturschutzgebiet	_		_		2014 um 160 m verschoben
MAG	Ackerbau	Ackerbau		_	Einzelgebäude	neuer Stall?
MAU 00	Acker, Wiese	int. Landwirtschaft, Acker, Obstbau	150	3'000 (<5%)	Weiler	
MU 01	Baumschule	_	_	_	grosses Dorf	2002 (30m) & 2014 (8m) versch.
NAT	Wiese	_		_		
NE 01	Moorrand	Wiesen		_	Einzelgebäude	2014 verschoben
NENZ	Wiesen, Weiden	Weide, Rinder		_	kleines Dorf	
NOV	grosse Waldlichtung	Alpwiese, -weide		_	Einzelgebäude	
OTH	Waldlichtung	_	155	ungef. 10'000	kleines Dorf	
PAY	Grasland, Ackerbau	Grasland, Ackerbau		_	grosses Dorf	
RIG	Wiesen, Weiden	Wiesen, Weiden		_	Einzelhöfe	
ROH0	Hochmoor	_	_	_	_	
SARE	Trinkwasserfassung, Waldlichtung	_	_	_	Weiler	
SCH	grosse Waldlichtung, Weide	Weide, Schafe, seit 2013 Rinder		_	Einzelgebäude	
SOER	Weide neben Moorgebiet	beschränkte Alpweide		_		
TAE	Wiesen, Ackerbau	intensive Landwirtschaft		_	grosses Dorf	
TIE	Weide	Alpweide, Rinder	100	Sommerpassstrasse	Einzelgebäude	
VIS	Waldlichtung	_	30	ungef. 10'000 (?)	_	
VOR	Weisen, Äcker	Wiesen, Weiden, Ackerbau	_		Einzelhöfe	
WAU	Flachmoorrand, Wiese	in Umgebung intesive Landwirtschaft	_		_	2014 um 80 m verschoben
WIE	Stadtzentrum, Strassen, Parkplatz	_	5	27'000 (5.5%) (2012)	Stadt	mehrmals verschoben
ZB 01	Weide, Hochmoorrand	Weide, Rinder	_	_	Einzelhöfe	2008 wenige Meter verschoben

Tabelle 17

Ökosystemtypen und Depositionsgeschwindigkeiten an den Standorten Ökosystemtyp 1 direkt am Standort, Typ 2 innerhalb von 200 m um den Standort, standortspezifische Depositionsgeschwindigkeiten und ökosystemspezifische Bereiche der Critical Loads für Stickstoff

Code	Ökosystemtyp 1	Deposition	nsgeschwi	ndigkeit v _d	С	LN	Ökosystem-	Deposition	onsgeschwi	ndigkeit vd	CI	LN	V _d
		NO_2	NH_3	Aeros.	u	0	typ 2	NO ₂	NH3	Aeros.	u	0	HNO ₃
			mm s ⁻¹		kg	ha ⁻¹			mm s ⁻¹		kg l	ha ⁻¹	mm s ⁻¹
ANA B	Nadelwald	4	30	5	5	15	Flachmoor	2	19	2	10	15	15
APS	Wiese	1.5	10	2									15
ARD 02	Alpines/subalpines Grasland	1.5	9	2	5	10							15
ARD 06	Alpines/subalpines Grasland	1.5	10	2	5	10	Nadelwald	4	30	5	5	15	15
BA	Wiese	1.5	9	2			Mischwald	3.5	26	4	5	20	15
BEA	Alpines/subalpines Grasland	1.5	11	2	5	10	Nadelwald	4	30	5	5	15	15
BET	Alpines/subalpines Grasland	1.5	11	2	5	10	Mischwald	3.5	26	4	5	20	15
CEL	Hochmoor	2	18	2	5	10	Nadelwald	4	30	5	5	15	15
CHA	Wiese	1.5	10	2			Mischwald	3.5	26	4	5	20	15
CHI	Alpines/subalpines Grasland	1.5	11	2	5	10	Mischwald	3.5	26	4	5	20	15
DAV	Hochmoor	1.5	16	2	5	10	Nadelwald	4	30	5	5	15	15
FUR	Alpines/subalpines Grasland	1.5	8	2	5	10							15
HÄG	Wiese	1.5	10	1.4									15
HOL 00	Wiese	1.5	10	1.4			Mischwald	3.5	26	2.4	5	20	15
HUD	Hochmoor	2	20	1.25	5	10	Mischwald	3.5	26	2.5	5	20	15
JUS	Wiese	1.5	10	1.25			Laubwald	3	22	1.9	10	20	15
KLE	Alpines/subalpines Grasland	1.5	10	2	5	10	Nadelwald	4	30	5	5	15	15
LAE F	Wiese	1.5	10	1.25			Mischwald	3.5	26	2.5	5	20	15
LAU	Wiese	1.5	10	2			Laubwald	3	22	3	10	20	15
LEN	Flachmoor	2	20	1.25	10	15	Mischwald	3.5	26	2.5	5	20	15
MAG	Wiese	1.5	10	1			Flachmoor	2	20	2	10	15	15
MAU 00	Wiese	1.5	10	1.4									15
MU 01	Waldlichung	1.5	10	1.2			Mischwald	3.5	26	2.4	5	20	15
NAT	Alpines/subalpines Grasland	1.5	10	2	5	10	Nadelwald	4	30	5	5	15	15
NE 01	Hochmoor	2	18	2	5	10	Mischwald	3.5	26	4	5	20	15
NENZ	Alpines/subalpines Grasland	1.5	12	1.25	5	10	Mischwald	3.5	26	1.25	5	20	15
NOV	Alpines/subalpines Grasland	1.5	12	2	5	10	Mischwald	3.5	26	4	5	20	15
OTH	Waldlichung	1.5	12	1.2			Mischwald	3.5	26	2.3	5	20	15
PAY	Wiese	1.5	10	1.25									15
RIG	Wiese	1.5	9	2			Mischwald	3.5	26	4	5	20	15
ROHO	Hochmoor, Flachmoor	2	17	2	5	10							15
SARE	Waldlichung	1.5	12	2			Mischwald	3.5	26	4	5	20	15
SCH	Wiese	1.5	10	1.6			Nadelwald	4	30	4	5	15	15
SOER	Hochmoor, Flachmoor	2	15	2	5	10	Nadelwald	4	30	5	5	15	15
TAE	Wiese	1.5	10	1.4									15
TIE	Alpines/subalpines Grasland	1.5	10	2	5	10							15
VIS	Waldlichung	1.5	12	1.6			Nadelwald	4	30	4	5	15	15
VOR	Wiese	1.5	10	1.25			Mischwald	3.5	26	2.4	5	20	15
WAU	Flachmoor	2	20	1.25	10	15				-			15
WIE	Siedlung	1.5	8	1									15
ZB 01	Hochmoor	2	18	2	5	10	Nadelwald	4	30	5	5	15	15

Legende
An Dauer der Schneebedeckung angepasste Depositionsgeschwindigkeit (Kapitel 6.5.1 Tabelle 13)
CLN u = untere Grenze des Critical Loads für Stickstoff
CLN o = obere Grenze des Critical Loads für Stickstoff

Tabelle 18 Sammelmethoden
Sammelverfahren zur Erfassung der sieben Stickstoffkomponenten

Code			Sammelme	ethoden						
	Grav.	NH_3	NO ₂	HNO ₃	Aeros					
	NH ₄ ⁺ , NO ₃ ⁻				NH ₄ ⁺	NO ₃ ·				
ANA B	B/S	PS	PS	-	-	-				
APS	Bulk	PS	PS	D-F	SF	D-F				
ARD 02	Bulk	PS	PS	-	-	-				
ARD 06	Bulk	PS	PS	-	-	-				
ВА	Bulk	PS	PS	D-F	D-F	D-F				
BEA	B/S	PS	PS	-	-	-				
BET	B/S	PS	PS	-	-	-				
CEL	B/S	PS	PS	-	-	-				
CHA	Wet	PS	Chem	D-F	SF	D-F				
СНІ	B/S	PS	PS	-	-	_				
DAV	B/S	PS	PS	_	_	_				
FUR	Bulk	PS	PS	_	SF	SF				
HÄG	Bulk	PS	PS	_	-	-				
HOL 00	Bulk	PS	-		_	_				
HUD	Bulk	PS	PS			_				
JUS	B/S	PS	PS		<u> </u>					
KLE	Bulk	PS PS	PS PS		SF	SF				
LAE F		PS	PS		- SF	3F				
	B/S	PS PS	PS							
_AU	B/S				-					
LEN	Bulk	PS PS	PS		-	-				
MAG	Wet	PS	Chem	D-F	D-F	D-F				
MAU 00	Bulk	PS	-		-					
MU 01	Bulk	PS	PS		-					
NAT	B/S	PS	PS	-	-	-				
NE 01	Bulk	PS	PS		-					
NENZ	Bulk	PS	PS	-	-					
NOV	B/S	PS	PS		-					
ОТН	B/S	PS	PS	-	-	-				
PAY	Wet	PS	Chem	D-F	TF, D-F	D-F				
RIG	Wet	PS	Chem	D-F	TF, D-F	D-F				
ROHO	Bulk	PS	PS	-	-	-				
SARE	Bulk	PS	PS	PS	SF	SF				
SCH	Bulk	PS	PS	-	-	-				
SOER	Bulk	PS	PS	-	-	-				
TAE	Bulk	PS	Chem	D-F	D-F	D-F				
TIE	Bulk	PS	PS	-	SF	SF				
VIS	B/S	PS	PS	-	-	-				
/OR	B/S	PS	PS	_	-	_				
WAU	Bulk	PS	PS	-	-	-				
WIE	Bulk	PS	PS	-	-	-				
ZB 01	Bulk	PS	PS	-	_	-				
Legende	B/S		sammler (WSL-LWF)	D-F	= Minidenuder-Minifilter	(FUB)				
- 550.140	Wet	(Empa-NABEL)	TIMO (1.OL LIII)	D-F	= Minidenuder-Minifilter					
	Bulk	(FUB)	TID)	SF	= Summenfilter (FUB)	ארו				
	PS Chem.	= Passivsammler (F = Chemolumineszer		TF -	= Tagesfilter (Empa-NAI = Schätzwerte (Kap. 6.4	DEL)				

Tabelle 19 Jahres-Niederschlagsmengen und Jahresmittelwerte der Gas- und Aerosol-Konzentrationen

0 2011 2012 67 1533 1679 8 876 1278	218 147 75 69 9 1723 171 152 120	33	2.5 2.3 0.9 0.8	11.9	8.8 9.6 1.7 1.7	5 2006 NH 10.9	9.5 2.1	2008 20 n ⁻³ 8.7 9	1.4 8.	l 9.5	8.7	7.3
7 1533 1679	218 147 75 699 1723 171 152 120 92 3 1237 105 182 99 85	33 76 66 61 18 2.2 26 0.7 0.9 0.6 0.0 0.3 34 0.9 0.9	2.5 2.3	11.9	8.8 9.6 1.7 1.7	10.9	3 : μg m	1 ⁻³	1.4 8.	l 9.5	8.7	7.3
	147 75 69 1723 1712 152 120 92 3 1237 105 182 99 85	76 66 61 18 2.2 26 0.7 09 0.6 00 0.3 64 0.9 27 13 16 16 17 18 18 18 18 18 18 18 18 18 18		3 2.5	1.7 1.7							
	755 699 1723 1711 152 120 92 3 1237 105 182 999 85	66		3 2.5	1.7 1.7							
	699 1723 1711 1522 1207 923 1237 1053 1823 1939 985 900	11				7 2.5	2.1	1.7	2.3 2.	0 2.4	1 2.0	
	9 1723 1711 152 120 92 93 1237 105 182 99 85	2.2 2.6 0.7 0.9 0.6 0.0 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9				7 2.5	2.1	1.7	2.3 2	0 2.4	1 2.0	4.0
	152 120 92 3 1237 105 182 99 85	0.7 0.9 0.6 0.0 0.3 0.3 0.9 0.9				7 2.5	2.1	1.7	2.3 2.	0 2.4	1 2.0	
8 876 1278	120 92 3 1237 105 182 99 85	09 0.6 20 0.3 54 0.9 27	0.9 0.8	3 1.2	0.8 0.8							1.8
8 876 1278	92 3 1237 1053 182 99 85	0.3 0.9 0.9 0.9 0.9 0.9	0.9 0.8	3 1.2	0.8 0.8							
8 876 1278	3 1237 105 182 99 85	0.9 0.9 0.9 0.9 0.9	0.9 0.8	3 1.2	0.8 0.8							
8 876 1278	99 85 90	27 93 59	0.9 0.8	3 1.2	0.8 0.8							_
	99 85 90	93				3 0.8	0.9	0.8	1.1 1.	2 1.7	1.0	0.9
	90	59										
	90											
		na l										
	on	13		9.4	8.0 7.5	8.6	7.1	6.9	7.5 7.	0 7.9	7.0	5.5
	90	6.1										
	30	1.6	2.0									
	94	1.3										
	122	28										
	101	15										
	120	3.5										
	74	6 1.5										
5 1378 1736	1892 259		3.3 3.7	7 4.3	4.2 4.3	3 4.7	4.2	3.7	4.0 3.	5 5.6	5.4	4.7
		4.1										
	93											
	96											
	118											
	89											
	255											
	89											
1 613 1044			2.6 2.2		3.5 3.4				3.5 3.			2.5
9 1203 1398			1.1 1.0	1.6	1.3 1.3	3 1.4	1.3	1.3	1.5 1.	3 1.5	5 1.3	1.3
	163											
	190											
			2.1	1 3.3	2.2 1.8	3 1.9	1.9	1.8	2.1 1.	9 2.2	2 1.9	1.6
1 1715 2000	242											
1 1715 2000								5.2				
1 1715 2000	102	5/										
1 1715 2000	108											
1 1715 2000	108	56										
1 1715 2000	108 65 101	56 18 2.9										
1 1715 2000	108 65 101	56 18 2.9										_
1 1715 2000	108 65 101 88	56 18 2.9 34 4.7						5.6				
		108	656		656	656	656 1018 2.9	656 1018 2.9	656 1018 2.9 884 4.7	656 1018 2.9 884 4.7	656 1018 2.9	656 1018 2.9 884 4.7

							Kon	zentra	ition													Kon	zentra	tion						
Code						St	icksto	offdio	kid Ga	s											8	Salpete	ersäu	re Gas	S					
	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012	2013	2014
							NO.	₂: µg	m ⁻³													HNC)₃: µg	m ⁻³						
ANA B															2.8															0.8
APS				7.3					7.3						6.6				0.4					0.4						0.4
ARD 02															1.2															0.4
ARD 06															2.1															0.4
BA		5.1	4.2	5.3	5.2	5.1	5.5	5.3	5.5	5.1	5.6	5.3	4.9	5.3	5.1		0.4	0.4	0.9	0.9	0.9	0.9	0.9	1.0	0.9	0.9	1.0	0.9	0.9	0.8
BEA	2.6														2.1	0.4														0.4
BET	4.6														3.9	0.7														0.7
CEL	3.5														3.9	0.4														0.4
CHA	7.6	7.6	8.0	9.0	6.0	6.7	6.7	6.1	5.5	6.1	6.8	6.3	5.8	6.4	5.4	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
CHI															2.3															0.4
DAV															3.0															0.4
FUR															1.3				_											0.4
HÄG				10.6	9.6	10.0	11.3	9.6	10.5	10.5	10.8	10.3	9.8	10.3	9.5				1.1					1.1						1.1
HOL 00	10.0															1.1														
HUD	10.0	10.0													10.6	1.1													_	1.1
JUS	11.4														9.1	1.1														1.1
KLE															1.7															0.4
LAE F															10.1															1.1
LAU	12.7														9.9	1.1														1.1
LEN	11.0														10.7	1.1														1.1
MAG	23.7	22.5	22.4	23.9	23.5	24.1	25.8	22.4	21.9	20.9	21.4	20.7	19.7	18.9	17.9	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	1.6	2.2	2.4	2.3	2.2	2.0	1.7
MAU 00	18.0															1.1														
MU 01															12.0														_	1.1
NAT	2.2														2.4	0.4													_	0.4
NE 01															4.1														_	0.7
NENZ															8.0														_	1.1
NOV	5.3														3.5	0.4													_	0.4
OTH	18.5														14.4	1.1														1.1
PAY		14.1													12.4	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		1.3	1.2		1.0	0.9
RIG	8.0	9.6	8.6	7.7	7.3	7.5	7.5	7.4	7.1	6.7	8.2	7.1	6.6	7.6	6.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.8	0.8	0.9	0.6
ROHO															6.2															0.8
SARE	0.0		7.0	7.0	٥٢	0.0	7.4	0.0	0.0	0.0	0.0	0.7	٥٢	0.7	6.9	4.4		4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	1.4
SCH	6.8		7.2	7.0	6.5	6.3	7.4	6.6	6.9	6.9	6.9	6.7	6.5	6.7	5.8	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
SOER	14.0								111						1.9	1.0								0.0					_	0.4
TAE	14.8								14.1						12.1	1.0								0.9					_	0.9
TIE															1.6														-	0.4
VIS	14.0														14.7	1.1													-	1.1
VOR WAU	11.3														10.1	1.1													-	1.1
	10.0								52.2						10.1	1.1								1.1					_	1.1
ZB 01									JZ.Z						4.5									1.1						0.8
	D. 1		LADE															IADE:											_	0.0
Legende		n von N n von F															n von f n von F	NABEL FUB												
		tzwerte		unft si	iehe K	apitel 6	6.4, Ta	belle	11)									e (Herk	unft si	ehe K	apitel (6.4, Ta	belle '	11)						

							Kon	zentra	tion													Kon	zentra	tion						
Code						Ar	nmon	ium A	eroso	I												Nitra	t Aero	sol						
	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012	2013	2014
							NH₄	⁺: µg	m.s													NO:	∷ µg ı	m ^{-s}						
ANA B															1.2															2.4
APS				1.0					1.0						1.0				2.0					2.0						2.0
ARD 02															0.2															0.6
ARD 06															0.3															1.0
BA		1.7	1.7	1.8	1.2	1.3	1.5	1.3	1.1	1.2	1.2	1.3	1.2	1.2	0.9		3.0	2.9		2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.9	2.6	2.9	2.1
BEA	0.4														0.4	1.6													_	1.6
BET	0.6														0.6	2.1													_	2.1
CEL	0.3														0.3	1.0														1.0
CHA	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
CHI															0.8														_	1.2
DAV															0.3															1.0
FUR															0.2															0.6
HÄG				1.6					1.6						1.6				3.5					3.5					_	3.5
HOL 00	1.6															3.5														
HUD	1.6														1.6		3.5												-	3.5
JUS	1.6														1.6	3.5														3.5
KLE															0.4															1.6
LAE F	1.0														1.6	2.5													-	3.5
LAU	1.6														1.6	3.5													-	3.5
LEN MAG	1.6	1.5	1.5	1.5	1.5	1.5	1.5	1.5	16	1.2	1.4	1.9	2.0	12	0.9	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.3	2.8	3.0	3.5	2.2	2.8	3.5 2.2
MAU 00	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.4	1.3	2.0	1.2	0.3	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	2.0	3.0	0.0	J.Z	2.0	2.2
MU 01	1.0														1.6	0.0														3.5
NAT	0.3														0.3	1.0													П	1.0
NE 01	0.0														0.6	1.0														2.1
NENZ															1.6															3.5
NOV	0.8														0.8	1.2														1.2
OTH	1.6														1.6	3.5														3.5
PAY	1.6	1.6	1.6	1.6	1.6	1.9	2.2	1.7	1.7	1.6	1.6	1.8	1.2	1.5	0.9	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.1	3.2	4.2	3.9	4.2	3.5	4.1	2.7
RIG	0.8	1.0	1.2	1.3	0.9	1.4	1.3	1.3	1.1	1.2	1.4	1.3	1.0	1.2	1.0	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.3	2.0	2.9	2.7	2.7	2.1	2.6	1.9
ROHO															1.2															2.4
SARE															1.2															4.7
SCH	1.6		1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
SOER															0.4															1.6
TAE	1.5								1.4						1.2	3.3								3.3						2.7
TIE															0.3															1.0
VIS															1.6															3.5
VOR	1.6														1.6	3.5													_	3.5
WAU	1.6														1.6	3.5														3.5
WIE									1.9															3.5						_
ZB 01															1.2															2.4
Legende				ntratio	nen vo	n NAE	BEL									Nitrat-			onen v	on NA	BEL									
		von F zwerte	(Herk	unft sie	ehe Ka	apitel 6	6.4, Ta	belle 1	11)							Daten Schät			unft si	ehe K	apitel 6	6.4, Ta	belle 1	11)						
	'																													

Tabelle 20 Stickstofffrachten

Jahres-Stickstoffeinträge von Ammonium und Nitrat aus der Gravitationsfracht, Ammonium und Nitrat-Aerosolen, Ammoniak, Stickstoffdioxid und Salpetersäure sowie die N-Frachten der oxidierten und der reduzierten Stickstoffkomponenten und die Summe aller Frachten, berechnet für ein bis zwei Ökosysteme pro Standort.

						Ö	kosys	temtyp	1 & 2												Ö	kosys	temtyp	1 & 2						
Code						mfracl				-											acht ir			-						
	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005				2009	2010	2011	2012 2	2013	2014
							N: k	g ha ⁻¹	a ⁻¹													N: k	g ha ⁻¹	a ⁻¹						
ANA B															5.8															4.3
APS				8.8					8.3						11.5				4.5					4.3						4.4
ARD 02															1.5															1.7
ARD 06															2.7															1.5
BA		8.7	10.4	8.7	8.7	9.8	10.7	8.2	7.0	7.5	7.0	6.9	7.4	7.7	7.1		5.9	6.3	5.7	5.5	6.1	6.5	5.4	5.1	5.1	5.6	4.9	5.8	6.1	5.2
BEA	4.2														3.3	4.1														2.7
BET	3.9														2.3	4.4														2.5
CEL	2.0														1.0	2.9														1.4
CHA	4.2	3.1	3.5	3.3	3.7	3.2	5.0	3.5	3.3	3.6	2.7	2.6	3.0	3.0	2.9	3.2	3.0	3.4	2.6	3.0	2.8	3.5	3.1	2.8	3.1	2.5	2.0	2.7	2.7	2.4
CHI															4.1															3.8
DAV															1.2															1.7
FUR															1.6															1.9
HÄG				8.8					7.2						8.4				4.4					4.0						4.2
HOL 00	12.5															3.6														
HUD	5.7	4.9													6.6	3.8	3.1													3.5
JUS	3.6														1.9	4.0														2.1
KLE															4.6															3.4
LAE F															3.3															3.1
LAU	7.0														4.3	6.1														3.2
LEN	4.6														4.6	3.9														3.2
MAG	13.1	18.0	16.6	10.6	13.1	10.8	11.4	11.8	15.6	13.2	10.4	11.4	12.1	14.8	15.2	11.4	14.5	13.4	8.7	10.4	8.5	9.0	9.0	12.2	9.6	8.6	8.0	8.9	9.5	10.0
MAU 00	6.9															4.3														
MU 01															5.4															3.1
NAT	2.2														1.0	2.9														1.5
NE 01															3.7															2.7
NENZ															8.7															3.1
NOV	15.4														9.8	14.7														8.6
OTH	5.7														2.6	5.1														2.5
PAY	4.5	4.7	4.3	3.8	4.7	4.3	5.7	4.3	4.2	3.7	3.2	2.8	4.7	3.7	3.6	2.9	3.0	3.1	2.2	3.1	2.0	2.8	2.8	2.8	2.6	2.1	1.7	3.2	2.6	2.4
RIG	6.4	6.5	8.5	7.3	6.4	7.8	6.5	5.3	5.2	6.4	7.8	5.6	6.9	5.8	6.0	4.9	5.0	6.4	4.4	4.9	5.1	4.8	4.1	3.7	4.2	5.5	3.6	4.7	4.7	4.2
ROHO															5.7															4.0
SARE															10.7															7.0
SCH	11.3		10.5	7.9	11.2	10.2	9.6	7.7	7.9	7.9	8.6	8.2	8.4	9.1	7.2	10.0		7.8	6.6	8.5	8.1	7.0	5.9	6.1	5.5	6.7	4.9	5.9	7.0	5.5
SOER															6.2															5.4
TAE	4.8								6.9						6.2	3.6								4.0						3.5
TIE															2.0															2.0
VIS															1.1															1.4
VOR	6.4														3.6	4.7														2.8
WAU	15.1														8.7	3.4														3.0
WIE									6.6															4.1						
ZB 01															5.9															4.0
Legende	Wet-E	aten	von NA	ABEL,	auf "B	ulk" un	ngered	hnet (l	Кар. 6	.4.1)					Ī	Wet-D	aten v	on NA	BEL, a	auf "Bu	ılk" um	gerec	hnet (Kap. 6	.4.1)					
	Daten	von \	NSL													Daten	von V	VSL					,							
	Daten	von F	-OB													Daten	von F	UB												

,							Ökos															Ökos								
Code							nmonia															stoffdi								
	2000	2001	2002	2003	2004	2005		2007 g ha ⁻¹		2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 g ha ^{.1}		2009	2010	2011	2012	2013	2014
ANA B															2.9															1.1
APS				30.9					22.7						20.6				1.1					1.0						0.9
ARD 02															0.6															0.2
ARD 06															2.4															0.3
BA		5.8	5.4	5.8	3.9	4.0	5.9	5.0	4.0	5.3	4.7	5.5	4.7	4.2	5.5		0.7	0.6	0.8	0.7	0.7	0.8	0.8	0.8	0.7	0.8	0.8	0.7	0.8	0.7
BEA	2.0														1.8	0.4														0.3
BET	1.6														1.7	0.7														0.6
CEL	1.6														0.9	0.7														0.7
CHA	2.2	2.4	2.1	3.1	2.1	2.0	2.2	2.3	2.1	2.9	3.1	4.3	2.7	2.2	2.3	1.1	1.1	1.1	1.3	0.9	1.0	1.0	0.9	0.8	0.9	1.0	0.9	0.8	0.9	0.8
CHI															0.8															0.3
DAV															0.6															0.4
FUR															0.3															0.2
HÄG				24.4					17.8						16.8				1.5					1.5						1.4
HOL 00	15.8															1.4														
HUD	8.2	10.6													12.4	1.9	1.9													2.0
JUS	3.5														1.8	1.6														1.3
KLE															1.3															0.2
LAE F															3.7															1.5
LAU	9.2														11.2	1.8														1.4
LEN	8.0														10.6	2.1														2.1
MAG	9.0	8.6	9.6	11.1	10.8	11.1	12.2	11.0	9.6	10.4	9.0	14.6	14.1	12.1	11.1	3.4	3.2	3.2	3.4	3.4	3.5	3.7	3.2	3.1	3.0	3.1	3.0	2.8	2.7	2.6
MAU 00	10.6															2.6														
MU 01															6.1															1.7
NAT	0.9														0.4	0.3														0.3
NE 01															5.6															0.8
NENZ															3.9															1.2
NOV	2.2														1.8															0.5
OTH	4.2			0.5			0.0			0.4	0.0				3.4	2.7		0.4	0.4	0.4		2.4		0.4		0.0		4.0	0.0	2.1
PAY	8.9	6.8	5.8	8.5	9.0	8.8	8.6	7.8	7.5	9.1	8.6	9.8				2.4	2.0	2.1	2.4	2.1	2.2	2.4	2.0	2.1	2.2	2.2	2.2		2.0	1.8
RIG	3.0	2.5	2.3	3.8	3.1	3.0	3.3	3.0	3.1	3.5	3.1	3.5	3.1	3.0	3.1	1.2	1.4	1.2	1.1	1.0	1.1	1.1	1.1	1.0	1.0	1.2	1.0	1.0	1.1	0.9
ROHO															7.1 3.4															1.0
SARE	12		E E	0.4	E G	16	4.0	4.0	17	E A	4.0	E 7	4.0	11		1.0		1.0	1.0	0.0	0.0	11	0.0	1.0	1.0	1.0	1.0	0.0	1.0	
SCH SOER	4.3		5.5	0.4	5.6	4.6	4.9	4.9	4.7	5.4	4.9	5.1	4.9	4.1	4.5 1.7	1.0		1.0	1.0	0.9	0.9	1.1	0.9	1.0	1.0	1.0	1.0	0.9	1.0	0.8
TAE	10.1								13.6							2.1								2.0						
TIE	10.1								10.0						13.6	2.1								2.0						0.2
VIS															5.1															2.1
VOR	7.5														5.7	1.6														1.3
WAU	24.3														28.3															1.9
WIE	24.0								11.5						20.0	1.0								7.5						1.5
ZB 01									11.0						6.8									1.5						0.9
	Daten	von F	IIR														(onza	ntratio	nen vo	η ΝΔΕ	REI									0.0
Legende	Dateii	VOIT	OD													Daten			ICII VU	וווואיתנ	JLL									
																Schät	zwerte	e (Herk	cunft si	iehe K	apitel	6.4, Ta	belle 1	11)						

ANA B APS ARD 02 ARD 06 BA BEA 0. BET 0. CEL 0.).4	01 2	002 2		2004		etersä 2006 : N: kg	2007			2010	2011	2012	2012							Amm	onium	n Aero	sol Fr	acht					
ANA B APS ARD 02 ARD 06 BA BEA 0. BET 0. CEL 0.).4	01 2	002 2		2004	2005			2008	2009	2010	2011	2012	2012																
APS ARD 02 ARD 06 BA BEA 0. BET 0. CEL 0.).4							g na ·	a ⁻¹				2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 g ha ⁻¹		2009	2010	2011	2012	2013	2014
ARD 02 ARD 06 BA BEA 0. BET 0. CEL 0.).4														0.9															1.4
ARD 06 BA BEA 0. BET 0. CEL 0.).4			0.5					0.5						0.5				0.5					0.5						0.5
BA 0. BEA 0. CEL 0.).4														0.4															0.1
BEA 0. BET 0. CEL 0.).4														0.4															0.1
BET 0.).4	0.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9		0.8	0.8	0.9	0.6	0.7	0.7	0.7	0.5	0.6	0.6	0.6	0.6	0.6	0.4
CEL 0.															0.4	0.2														0.2
).7														0.7	0.3														0.3
CHA 0.).4														0.4	0.1														0.1
).7 ().7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
СНІ															0.4															0.4
DAV															0.4															0.1
FUR															0.4															0.1
HÄG				1.1					1.1						1.1				0.5					0.5						0.5
HOL 00 1.	1.1															0.5														
HUD 1.	1.1 1	1.1													1.1	0.5	0.5													0.5
JUS 1.	1.1														1.1	0.5														0.5
KLE															0.4															0.2
LAE F	_														1.1	_														0.5
LAU 1.	1.1														1.1	0.8														0.8
LEN 1.	1.1														1.1	0.5														0.5
MAG 2.	2.2 2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	1.7	2.3	2.5	2.5	2.4	2.1	1.8	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.5	0.5	0.3	0.2
MAU 00 1.	1.1															0.5														_
MU 01															1.1															0.5
).4														0.4	0.1														0.1
NE 01															0.7															0.3
NENZ															1.1															0.5
).4														0.4	0.4														0.4
OTH 1.	1.1														1.1	0.5														0.5
			1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.4	1.3	1.2	1.1	1.1	0.9	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.5	0.5	0.5	0.5	0.5	0.4	0.5	0.3
).9 ().9	0.9	0.9	0.9	0.9	0.9	0.9	8.0	0.9	0.9	0.9	0.9	0.9	0.7	0.4	0.5	0.6	0.6	0.4	0.7	0.7	0.6	0.5	0.6	0.7	0.6	0.5	0.6	0.5
ROHO															0.9															0.6
SARE	_	-													1.5															0.7
	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.6		0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
SOER															0.4															0.2
	1.0								1.0						0.9	0.5								0.5						0.4
TIE														-	0.4															0.1
VIS														-	1.1	0 =													-	0.6
	1.1														1.1	0.5													-	0.5
	1.1							_	4.4						1.1	0.5								0.5						0.5
WIE									1.1						0.0									0.5						0.0
ZB 01															0.9															0.6
Dat	NO₃-Ko aten vo hätzw	n FU	В				6.4, Tab	oelle 1	11)							Daten	von F	- <mark>Konze</mark> -UB e (Herk					belle 1	11)						

							Ökos	ystem	typ 1														ystem							_
Code							trat A															cht S								
	2000	2001	2002	2003	2004	2005		2007 k g ha -1		2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 g ha ⁻¹		2009	2010	2011	2012	2013	2014
ANA B															0.9															7.1
APS				0.3					0.3						0.3				6.3					6.0						6.1
ARD 02															0.1															2.4
ARD 06															0.1															2.4
BA		0.4	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3		7.5	7.7	8.0	7.6	8.2	8.7	7.5	7.3	7.2	7.8	7.1	7.8	8.2	7.1
BEA	0.2														0.2	5.1														3.6
BET	0.3														0.3	6.1														4.1
CEL	0.1														0.1	4.1														2.7
CHA	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	5.3	5.1	5.6	4.9	4.9	4.8	5.5	5.0	4.7	5.1	4.5	4.0	4.6	4.7	4.2
CHI															0.2															4.8
DAV															0.1															2.7
FUR															0.1															2.6
HÄG				0.3					0.3						0.3				7.4					7.0						7.1
HOL 00	0.3															6.5														
HUD	0.3	0.3													0.3	7.2	6.5													7.0
JUS	0.3														0.3	7.1														4.9
KLE															0.2															4.3
LAE F															0.3															6.0
LAU	0.5														0.5	9.6														6.2
LEN	0.3														0.3	7.5														6.7
MAG	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	17.2	20.1	19.0	14.5	16.2	14.3	15.1	14.6	17.2	15.1	14.4	13.7	14.3	14.5	14.5
MAU 00	0.3															8.4														
MU 01															0.3															6.2
NAT	0.1	_													0.1	3.8														2.4
NE 01															0.3															4.6
NENZ		_													0.3															5.7
NOV	0.2														0.2	16.1														9.7
OTH	0.3														0.3	9.2														6.0
PAY	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.3	0.4	0.2	6.8	6.5	6.7	6.1	6.6	5.7	6.7	6.2	6.3	6.5	6.0	5.5	6.6	6.1	5.4
RIG	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.4	0.3	7.2	7.6	8.8	6.7	7.1	7.4	7.1	6.4	5.8	6.4	8.0	5.8	6.8	7.0	6.0
ROHO															0.3															6.4
SARE		_													0.7															10.2
SCH	0.4		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	12.5		10.4	9.2	10.9	10.5	9.6	8.4	8.7	8.0	9.2	7.4	8.4	9.5	7.8
SOER		_													0.2															6.4
TAE	0.3								0.3						0.3	7.1								7.3						6.4
TIE															0.1															2.8
VIS		_													0.4															5.1
VOR	0.3														0.3	7.8														5.5
WAU	0.3														0.3	6.8														6.4
WIE									0.2															13.0						
ZB 01	1														0.3															6.0
Legende	Nitra	t-Konz	entrati	onen v	on NA	BEL																								

Daten von FUB
Schätzwerte (Herkunft siehe Kapitel 6.4, Tabelle 11)

							Ökos	system	ityp 1													Ökos	system	ntyp 1						
Code						Frac	cht Su	ımme	reduz	iert												Frac	ht Su	mme						
	2000	2001	2002	2003	2004	2005		2007 kg ha		2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 kg ha		2009	2010	2011	2012	2013	2014
ANA B															10.2															17.2
APS				40.2					31.5						32.7				46.5					37.6						38.7
ARD 02															2.2															4.6
ARD 06															5.2															7.6
BA		15.3	16.6	15.4	13.1	14.4	17.3	13.8	11.6	13.4	12.2	13.0	12.7	12.5	13.1		22.7	24.3	23.4	20.8	22.6	26.0	21.3	18.9	20.6	20.0	20.1	20.6	20.8	20.2
BEA	6.4														5.2	11.5														8.8
BET	5.8														4.3	11.9														8.4
CEL	3.7														2.1	7.8														4.8
CHA	6.7	5.8	5.9	6.7	6.1	5.5	7.5	6.1	5.6	6.9	6.1	7.2	6.0	5.6	5.5	12.0	10.9	11.5	11.6	11.1	10.3	13.0	11.1	10.3	11.9	10.6	11.2	10.6	10.2	9.7
CHI															5.3															10.0
DAV															1.9															4.6
FUR															2.0															4.6
HÄG				33.7					25.6						25.7				41.1					32.6						32.8
HOL 00	28.9															35.3														
HUD	14.4	16.0													19.5	21.6	22.5													26.5
JUS	7.6														4.1	14.7														9.0
KLE															6.2															10.4
LAE F															7.4															13.4
LAU	16.9														16.2	26.5														22.4
LEN	13.1														15.7	20.5														22.4
MAG	22.4	27.0	26.6	22.0	24.3	22.3	24.0	23.2	25.6	23.9	19.8	26.5	26.7	27.3	26.5	39.6	47.1	45.6	36.5	40.5	36.6	39.1	37.8	42.9	39.0	34.2	40.2	41.0	41.8	41.0
MAU 00	18.0															26.4														
MU 01															12.0															18.2
NAT	3.3														1.6	7.1														3.9
NE 01															9.6															14.1
NENZ															13.1															18.8
NOV	17.9															34.0														21.7
OTH	10.4														6.4	19.6														12.4
PAY			10.6							13.3			13.3		10.1													19.9		15.5
RIG	9.8	9.5	11.4	11.7	10.0	11.5	10.5	8.9	8.8	10.5	11.6	9.8	10.5	9.5		17.0	17.1	20.2	18.4	17.1	18.9	17.6	15.3	14.6	17.0	19.6	15.6	17.3	16.5	
ROHO															13.4															19.8
SARE	40.0		40.7	47.0				40.0	40.0	40.0			40.0	40.0	14.8	00 =						04.7	24.0	04.0	24.0		24.0			25.0
SCH	16.2		16.7	17.0	17.4	15.5	15.1	13.2	13.2	13.9	14.1	14.5	13.9	13.8		28.7		27.0	26.2	28.3	26.0	24.7	21.6	21.8	21.9	23.3	21.9	22.3	23.3	
SOER	45.4								04.0						8.0	00.5								00.0						14.5
TAE	15.4								21.0							22.5								28.3						26.6
TIE															2.7															5.5
VIS	14.4														6.8	22.2														11.9
VOR	14.4															22.2														15.3
WAU	39.8								10.5						37.5	46.6								24.0						43.9
WIE									18.5						40.0									31.6						40.2
ZB 01	<u> </u>														13.3															19.3

•								osyste													.	Ökos								
Code	0000	0004	0000	0000	0004			niak G				40 004	4 0040		0044	0000	0004	0000	0000	0004				Gas F		0040	0044	0040	0040	0044
	2000	2001	2002	2003	2004	2005		6 200 : kg h a		8 200	19 20	10 201	1 2012	2 2013	2014	2000	2001	2002	2003	2004	2005		2007 kg ha		2009	2010	2011	2012	2013	2014
ANA B															1.9															0.5
APS																														
ARD 02																														
ARD 06															7.2															0.8
BA		16.6	15.5	16.7	11.2	11.5	16.	9 14.4	4 11.0	6 15.	.4 13	3.4 15.	9 13.6	3 12.1	15.9		1.7	1.4	1.8	1.7	1.7	1.9	1.8	1.9	1.7	1.9	1.8	1.7	1.8	1.7
BEA	5.6														4.9	1.0														0.8
BET	3.8														4.1	1.5														1.3
CEL	2.7														1.6	1.3														1.5
CHA	5.8	6.2	5.3	8.0	5.6	5.2	5.	7 6.	1 5.	3 7.	.7 8	3.2 11.	3 7.0	5.8	6.0	2.5	2.6	2.7	3.0	2.0	2.2	2.2	2.0	1.9	2.0	2.3	2.1	2.0	2.1	1.8
CHI															1.8															0.8
DAV															1.1															1.2
FUR																														
HÄG																														
HOL 00	41.0															3.4														
HUD	10.7	13.8													16.1	3.4	3.4													3.6
JUS	7.6														3.9	3.3														2.6
KLE															4.0															0.6
LAE F															9.6															3.4
LAU	20.2														24.6	3.6														2.9
LEN	10.4														13.8	3.7														3.6
MAG	18.1	17.2	19.3	22.1	21.7	22.2	24.	4 22.0	19.	3 20.	.9 18	3.0 29.	3 28.2	2 24.3	22.2	4.6	4.3	4.3	4.6	4.5	4.6	5.0	4.3	4.2	4.0	4.1	4.0	3.8	3.6	3.4
MAU 00																														
MU 01															16.0															4.0
NAT	2.7														1.2	0.8														0.9
NE 01															8.1															1.4
NENZ															8.5															2.7
NOV	4.7														4.0	1.8														1.2
OTH	9.1														7.3	6.2														4.8
PAY																														
RIG	8.6	7.4	6.7	11.0	9.1	8.7	9.	5 8.	7 8.	8 10.	.1 9	9.1 10.	2 8.9	8.8	8.9	2.7	3.2	2.9	2.6	2.4	2.5	2.5	2.5	2.4	2.3	2.7	2.4	2.2	2.6	2.1
ROHO																														
SARE															7.4															2.3
SCH	12.9		16.5	25.3	16.8	13.8	14.	8 14.0	6 14.0	0 16.	.2 14	1.6 17.	0 14.7	12.2	13.4	2.6		2.8	2.7	2.5	2.4	2.8	2.5	2.6	2.6	2.7	2.6	2.5	2.6	2.2
SOER															3.3															0.7
TAE																														
TIE																														
VIS															12.6															5.7
VOR	19.5														14.9	3.8														3.0
WAU																														
WIE																														
ZB 01															11.3															1.7
Legende	Daten	von F	FUB													NO ₂ -h Daten	von F	-UB												
																Schät	zwerte	e (Herl	unft s	iehe K	apitel	6.4, Ta	belle	11)						

							Ökos																ystem							
Code							onium																	l Frac						
	2000	2001	2002 2	2003	2004	2005		2007 g ha ⁻¹		2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 kg ha		2009	2010	2011	2012	2013	2014
ANA B															0.6															0.3
APS																														
ARD 02																														
ARD 06															0.3															0.4
BA		1.7	1.7	1.8	1.2	1.3	1.4	1.3	1.1	1.2	1.2	1.3	1.2	1.2	0.8		0.9	0.8	1.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.7	0.8	0.6
BEA	0.4														0.4	0.6													_	0.6
BET	0.6														0.6	0.6														0.6
CEL	0.3														0.3	0.4														0.4
CHA	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
CHI															0.7														_	0.4
DAV															0.3															0.4
FUR																														
HÄG																														
HOL 00	0.9															0.6													_	
HUD	1.0	1.0													1.0	0.6													\dashv	0.6
JUS	0.7														0.7	0.5													_	0.5
KLE															0.4														_	0.6
LAE F	4.0														1.0	0.7													-	0.6
LAU	1.2														1.2	0.7													-	0.7
LEN	1.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.0	0.6	0.7	0.0	1.0	0.6	0.5	0.6		0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.5	0.5	0.4	0.6
MAG MAU 00	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	8.0	0.6	0.7	0.9	1.0	0.6	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.5	0.5	0.4	0.3
MU 01															0.9															0.6
NAT	0.3														0.3	0.4														0.4
NE 01	0.0														0.6	0.4													\neg	0.6
NENZ															0.5															0.3
NOV	0.7														0.7	0.4														0.4
OTH	0.9														0.9	0.6														0.6
PAY																														
RIG	0.8	0.9	1.2	1.3	0.9	1.3	1.3	1.3	1.1	1.2	1.3	1.3	1.0	1.2	0.9	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.8	0.8	0.8	0.6	0.7	0.5
ROHO																														
SARE															1.4															1.3
SCH	1.5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
SOER															0.4															0.6
TAE																														
TIE																														
VIS															1.5															1.0
VOR	0.9														0.9	0.6														0.6
WAU																														
WIE																														
ZB 01															1.4															0.9
Legende	Daten	von f	-Konzer FUB e (Herku					belle '	11)							Dater	von F	entration FUB e (Herk				ô.4, Ta	ibelle	11)						

							Ökos	ystem	typ 2													Öko	syster	ntyp 2	2					
Code						Fra	cht S	umme	oxid	ert											Fra	cht S	umme	redu	ıziert					
	2000	2001	2002	2003	2004	2005		2007 kg ha ⁻		2009	2010	2011	2012	2013	2014	2000	2001	2002	2003	2004	2005		2007 kg ha		8 200	9 201	0 2011	2012	2013	2014
ANA B															6.0															8.3
APS																														
ARD 02																														
ARD 06															3.1															10.2
BA		8.9	8.9	9.5	9.0	9.5	10.1	8.9	8.7	8.5	9.2	8.5	9.2	9.7	8.4		27.0	27.6	27.2	21.1	22.6	29.1	23.8	19.	7 24.	1 21.	6 24.	22.2	21.0	23.9
BEA	6.1														4.5	10.2														8.6
BET	7.3														5.1	8.3														7.0
CEL	5.0														3.7	5.0														2.9
CHA	7.0	6.9	7.5	7.0	6.4	6.4	7.1	6.5	6.0	6.5	6.1	5.5	6.0	6.2	5.5	10.6	9.9	9.4	11.9	9.9	9.0	11.3	10.1	9.	2 11.	9 11.	4 14.4	10.6	9.4	9.5
CHI															5.4															6.7
DAV															3.6															2.6
FUR																														
HÄG																														
HOL 00	8.7															54.5														
HUD	9.0	8.2														17.3	19.6													23.7
JUS	8.9														6.4	12.0														6.5
KLE															5.0															9.1
LAE F															8.2															13.8
LAU	11.7														7.9															30.0
LEN	9.4														8.6															19.3
MAG	18.5	21.4	20.3	15.8	17.6	15.7	16.5	15.9	18.5	16.3	15.6	14.9	15.5	15.6	15.5	31.8	36.0	36.6	33.4	35.5	33.7	36.5	34.5	35.	7 34.	7 29.	2 41.6	41.3	39.7	37.9
MAU 00																														
MU 01	4.5														8.9															22.2
NAT	4.5														3.1	5.3														2.5
NE 01															5.5 7.2															12.3
NENZ NOV	17.2														10.6	20.8														17.7 14.5
OTH	13.0														9.1	15.7														10.8
PAY	13.0														9.1	15.7														10.0
RIG	9.1	Q 7	10.8	8.5	8.9	9.2	8.9	8.2	7.5	8.1	9.9	7.6	8.4	8.8	7.5	15.8	14 P	16.3	10.5	16.4	17 º	17 2	15.2	15	1 17	7 12	2 17	16.9	15.8	15.9
ROHO	3.1	3.1	10.0	0.0	0.3	3.2	0.3	0.2	1.5	0.1	3.3	1.0	0.4	0.0	1.5	13.0	14.0	10.5	13.5	10.4	17.0	17.5	13.2	10.	1 17.	7 10.	2 17.	10.5	13.0	13.0
SARE															12.2															19.5
SCH	14.7		12 7	11 4	13 1	12 6	12 0	10.6	10.9	10.2	11.5	9.6	10.5	11 7	9.8	25.7		28.6	34.8	29.5	25.6	25 9	23.8	23	5 25	7 24	8 26 7	24.6		
SOER	14.7		14.1	and	.0.1	.2.0	.2.0	10.0	10.0	10.2	11.5	0.0	10.0	11.7	7.1	20.7		20.0	31.0	_0.0	_0.0	20.0	20.0	20.	. 20.	. 27.	U 20.1	2-1.0		10.0
TAE																														
TIE																														
VIS															9.2															15.3
VOR	10.3															26.8														19.5
WAU																														
WIE																														
ZB 01															7.4															18.6

								system							
Code								ht Su							
	2000	2001	2002	2003	2004	2005		2007 kg ha		2009	2010	2011	2012	2013	2014
							N; I	kg na	a						
ANA B															14.3
APS															
ARD 02															
ARD 06															13.3
BA		35.8	36.5	36.7	30.0	32.1	39.2	32.7	28.5	32.6	30.8	32.5	31.4	30.7	32.3
BEA	16.3														13.1
BET	15.5														12.1
CEL	9.9														6.6
CHA	17.6	16.7	16.9	18.9	16.2	15.4	18.4	16.6	15.2	18.4	17.5	19.9	16.5	15.6	15.0
CHI															12.1
DAV															6.3
FUR															
HÄG															
HOL 00	63.2														
HUD	26.3	27.9													32.5
JUS	20.9														12.9
KLE															14.1
LAE F															22.0
LAU	40.0														37.9
LEN	25.3														27.9
MAG	50.3	57.4	56.9	49.3	53.1	49.4	53.0	50.4	54.2	51.0	44.8	56.5	56.8	55.3	53.4
MAU 00															
MU 01															31.1
NAT	9.8														5.7
NE 01															17.8
NENZ															24.9
NOV	38.1														25.1
OTH	28.7														19.8
PAY															
RIG	24.9	24.6	27.2	28.0	25.2	27.0	26.2	23.4	22.6	25.9	28.1	24.7	25.2	24.7	23.3
ROHO	1														
SARE															31.7
SCH	40.4		41.3	46.2	42 6	38.3	37.9	34.4	34.4	35.9	36.2	36.4	35.2	34.6	
SOER	70.7		71.0	70.2	72.0	50.5	01.0	от.т	7.7	00.0	30.2	50.4	00.2	04.0	17.1
TAE															
TIE															
VIS															24.5
VOR	37.1														26.9
WAU	31.1														20.9
WIE															
															26.0
ZB 01	L														26.0

Tabelle 21 Modellierte N-Frachten und Emissionszahlen für Ammoniak Quelle: Meteotest, Bern

		mode	llierte	Frachte	en (Met	eotest)		ÖT 1		mode	llierte l	Frachte	n (Met	eotest))	ÖT 2	Emission	szahlen N	H ₃		GVE
Code	NH₃	$NH_4^{\scriptscriptstyle +}$	$NH_4^{\scriptscriptstyle +}$	NO_3	NO_3	NO_2	HNO ₃	BN24 MG	NH ₃	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^{+}$	NO_3	NO_3	NO_2	HNO ₃	BN24 MG	im 500 m-	Radius, 20	10		05
	Gas	WET	DRY	WET	DRY	Gas	Gas		Gas	WET	DRY	WET	DRY	Gas	Gas		LW	HI	VK	tot	2007
			N:	kg ha	¹ a ⁻¹						N:	kg ha	a ⁻¹				N:	kg ha ⁻¹ a ⁻¹			
ANA B	8.4	6.5	1.6	4.4	0.6	2.3	0.5	1	1 5.	6.5	0.6	4.4	0.3	0.9	0.5	14 () 2	0	0	2	0
APS	20.2	6.9	0.8	4.6	0.3	1.5	0.6	8	0								117	0	0	117	305
ARD 02	1.7	2.9	0.4	1.9	0.1	0.3	0.2	11	0								5	0	0	5	0
ARD 06	4.8	2.4	0.5	1.6	0.2	0.5	0.3	11	0 11.	9 2.4	0.5	1.6	0.2	1.4	0.3	1 () 22	0	0	22	106
BA	9.8	6.7	0.8	3 4.4	0.3	1.4	0.6	8	0 25.	5 6.7	1.6	4.4	0.6	2.8	0.6	1 3	3 44	0	0	44	118
BEA	2.8	5.3	0.6	3.5	0.2	0.6	0.4	11	0 7.	0 5.3	1.4	3.5	0.6	1.7	0.4	1 1	1 2	0	0	2	0
BET	3.3	6.5	0.8	4.3	0.3	1.0	0.6	11	0 7.	1 6.5	1.5	4.3	0.6	1.9	0.6	1 3	3 1	0	0	1	0
CEL	1.6	2.2	0.5	1.5	0.2	0.5	0.3	14	0 2.	4 2.2	1.3	1.5	0.5	1.4	0.3	1 1	1 0	0	0	0	0
CHA	3.6	4.5	0.7	3.0	0.3	1.0	0.6	8	0 9.	4 4.5	1.5	3.0	0.6	2.0	0.6	1 3	3 5	0	0	5	6
CHI	0.9	5.1	0.5	5.1	0.2	0.7	0.4	11	0 1.	9 5.1	1.0	5.1	0.4	1.4	0.4	1 3		0	0	2	0
DAV	2.7	3.1	0.5	2.1	0.2	0.6	0.4	14	0 4.	3.1	1.1	2.1	0.5	1.6	0.4	1 1	1 7	0	0	7	64
FUR	0.9	3.2	0.3	2.1	0.1	0.3	0.2	11	0								3	0	0	3	0
HÄG	17.7	4.8	0.6	3.2	0.3	1.9	0.7	8	0								86	1	0	86	132
HOL 00	16.4	5.1	0.7	3.4	0.3	2.0	0.7	8	0 42.	7 5.1	1.3	3.4	0.5	4.1	0.7	1 3	84	1	0	85	257
HUD	18.8	4.4	0.6	3.0	0.2	1.9	0.7	11	0 24.	5 4.4	1.2	3.0	0.5	3.8	0.7	1 3	3 10	0	0	10	0
JUS	1.5	4.2	0.7	2.8	0.3	1.9	0.7	8	0 3.	3 4.2	1.0	2.8	0.4	3.7	0.7	1 4	1 0	0	0	0	0
KLE	3.1	5.1	0.6	3.4	0.2	0.5	0.3	11	0 7.	7 5.1	1.4	3.4	0.6	1.4	0.3	1 1	1 5	0	0	5	0
LAE F	4.3	4.6	0.6	3.1	0.2	2.3	0.8	8	0 11.	1 4.6	1.2	3.1	0.5	4.5	0.8	1 3	3 7	0	0	7	26
LAU	11.1	4.8	0.8	3.2	0.3	2.2	0.8	8	0 24.	3 4.8	1.2	3.2	0.5	4.3	0.8	1 4		0	0	22	63
LEN	13.1	3.8					0.7		0 17.							1 4		0	0	22	48
MAG	4.4	9.1	0.5				0.9		0 8.	9.1	0.5	7.7	0.2	3.1	0.9	14 (0	0	27	163
MAU 00	11.3	4.2							0								47	1	1	49	62
MU 01	8.8	4.9					0.7		0 22.							1 3	_	1	0	21	71
NAT	0.6	2.4	0.4			0.4	0.2		0 1.				0.4			1		0	0	0	0
NE 01	11.6	5.2					0.6		0 15.									0	0	18	7
NENZ	5.0	4.5					0.8		0 13.0							1		0	0	18	98
NOV	1.4	8.8							0 3.				0.6					0	0	0	0
OTH	5.2	4.3					0.9		0 13.	5 4.3	1.2	2.9	0.5	6.1	0.9	1 3		0	3	9	5
PAY	6.0	3.3							0								10	1	1	12	11
RIG	5.3	6.9							0 13.	7 6.9	1.5	4.6	0.6	2.4	0.6	1 3	3 6	0	0	6	0
ROHO	11.3	7.3						 	0								17	0	0	17	0
SARE	2.2	10.6	1.1				0.8		0 5.				0.9			1 3	+	1	0	7	31
SCH	5.3	7.6					0.7		0 16.0							1 1		0	0	3	0
SOER	4.4	5.5					0.3		0 6.	5 5.5	1.4	3.6	0.6	1.5	0.3	1 1		0	0	3	0
TAE	25.6	5.0					0.8		0								49	1	1	51	161
TIE	1.0	4.0					0.2	H	0				• -			.	3	0	0	3	0
VIS	3.3	2.3					0.7		0 9.				0.7			1 1	+	0	3	17	96
VOR	6.5	4.5						-	0 16.	9 4.5	1.2	3.0	0.5	4.5	0.8	1 3		0	0	17	44
WAU	23.7	4.2						-	0							<u> </u>	21	0	0	21	0
WIE	5.0	4.8					1.0	··	0 04				• -			— —	0	3	17	20	0
ZB 01	14.3	6.8	0.8	4.5	0.3	1.3	0.6	14	0 21.	5 6.8	2.0	4.5	0.8	3.4	0.6	1 '	1 25	0	0	25	60

Legende
BN24 (Bodennutzung)

1 = Wald
8 = Acker/Wiesen, Annahme gedüngt
11 = Alp-/Juraweiden, Annahme ungedüngt
14 = Unproduktive Vegetation (Moore)
17 = Gebäudeumschwung (Siedlung)

MG (Mischungsgrad) 1 = Nadelwald 3 = Mischwald

4 = Laubwald

LW = Landwirtschaft
HI = Haushalt + Industrie
VK = Verkehr
tot = Summe der 3 Kategorien
GVE05 = Anzahl Grossvieheinheiten

7.1.2 Gesamtstickstoffeinträge als Kuchendiagramme

Abbildungen 48 bis 55 zeigen die Gesamtstickstoffeinträge als Kuchendiagramme nach Ökosystemtyp aufgeteilt. Die Diagrammfläche ist proportional zur Gesamtstickstofffracht. Der prozentuale Anteil der Komponenten, welche mit dem Niederschlag eingetragen wurden, sind dunkel, die Aerosol und Gasdeposition hell dargestellt. Rot steht für die reduzierten, meist von der Landwirtschaft emittierten, blau für die oxidierten, zum grossen Teil von Verkehr, Industrie und Haushalten stammenden Stickstoffverbindungen.

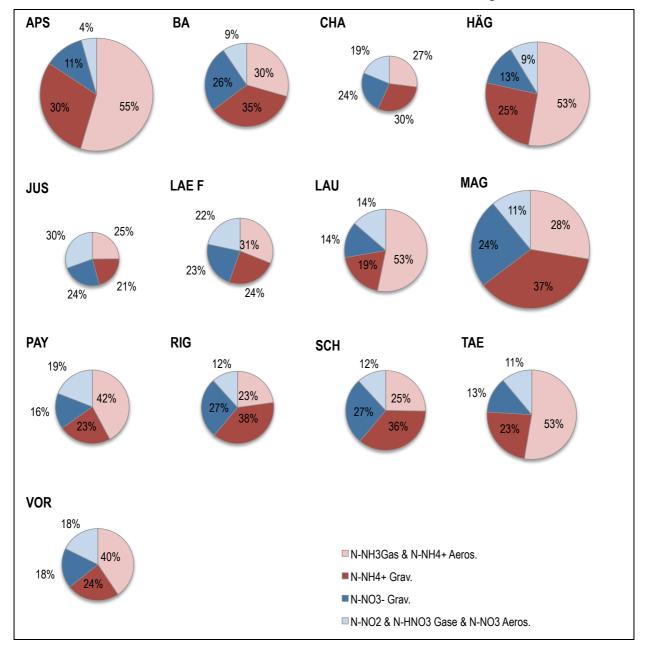


Abbildung 48 Ökosystemtyp Wiese: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

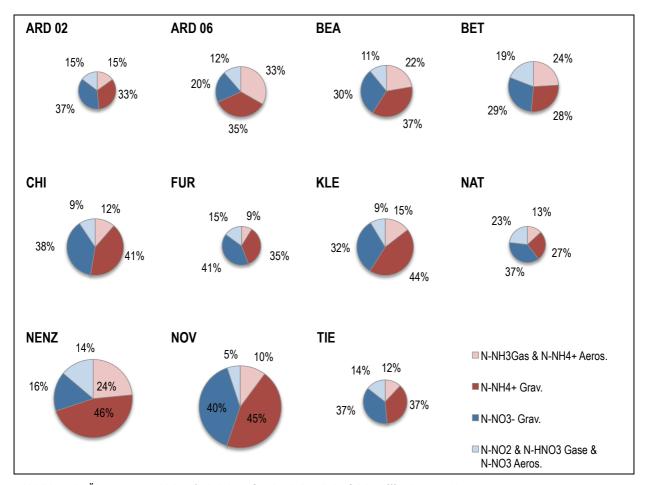


Abbildung 49 Ökosystemtyp Alpines/subalpines Grasland: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

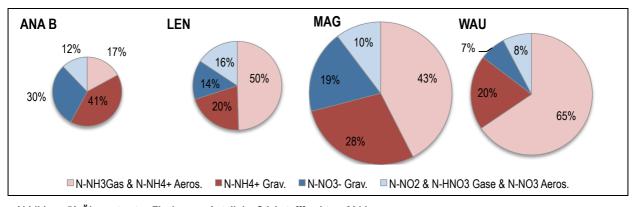


Abbildung 50 Ökosystemtyp Flachmoor: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

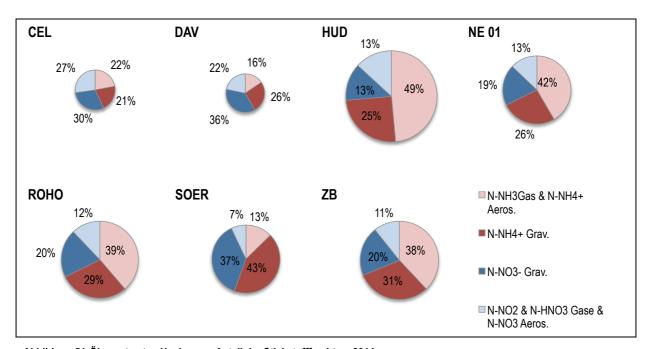


Abbildung 51 Ökosystemtyp Hochmoor: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

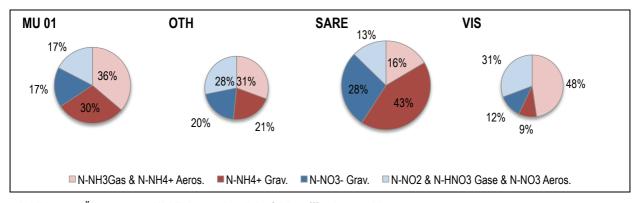


Abbildung 52 Ökosystemtyp Waldlichtung: Anteil der Stickstofffrachten, 2014
Rot: reduzierte, blau: oxidierte Komponenten, hell: eher quellennahe, dunkel: eher über Ferntransport eingetragene Deposi-

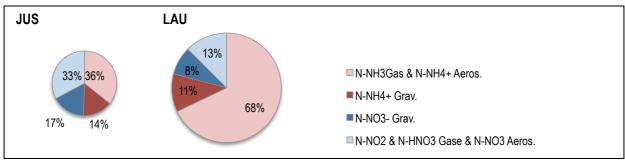


Abbildung 53 Ökosystemtyp Laubwald: Anteil der Stickstofffrachten, 2014

Rot: reduzierte, blau: oxidierte Komponenten, hell: eher quellennahe, dunkel: eher über Ferntransport eingetragene Deposition

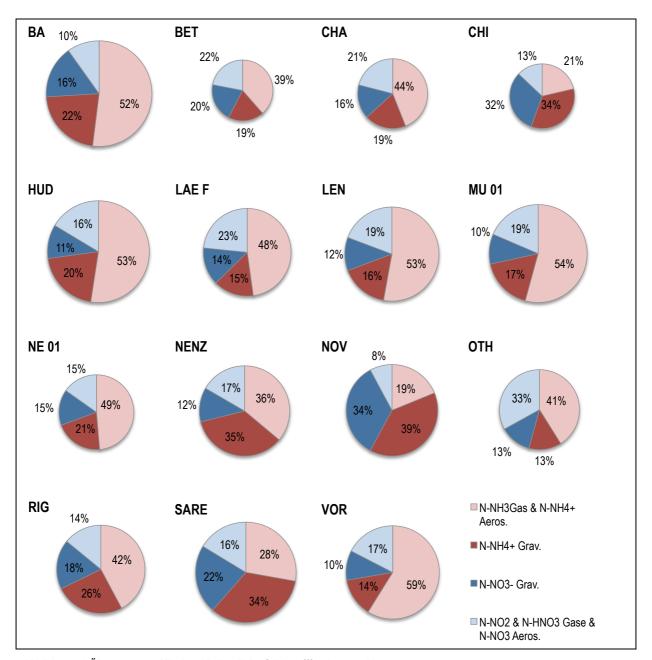


Abbildung 54 Ökosystemtyp Mischwald: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

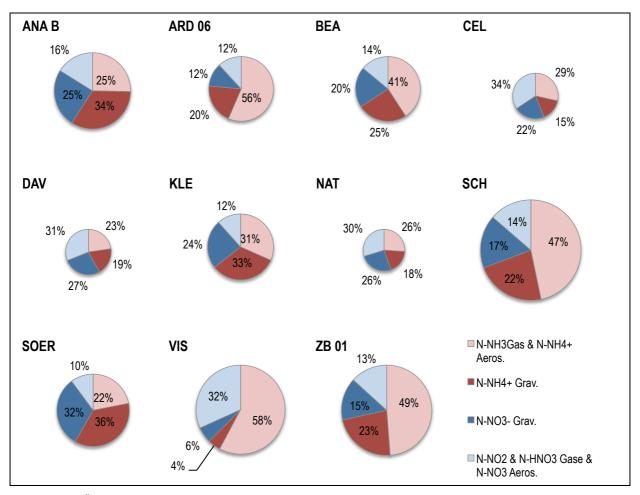


Abbildung 55 Ökosystemtyp Nadelwald: Anteil der Stickstofffrachten, 2014

Dunkel: über Gravitation, hell: über Aerosole und Gase eingetragene Deposition; Rot: reduzierte, blau: oxidierte Komponenten

7.1.3 Statistische Betrachtung der langjährigen Messreihen

Tabelle 22 Mittlere Veränderung langjähriger Messreihen und deren Signifikanz Einheiten slope: Gase $\mu g \ m^{-3} \ a^{-1}$; Frachten $kg \ ha^{-1} \ a^{-1}$

Komponente Standor	Standort	slope	Std. Error	P-Value fett = sign. 95 % Niveau
		berechnet mit "R"		
		(R Core Team 2013)		
Ammoniak	APS	-0.279	0.09	0.013
	BA	-0.012	0.02	0.43
Konzentration in Luft	CHA	0.007	0.01	0.28
	HÄG	-0.211	0.06	0.007
	MAG	0.084	0.03	0.018
	PAY	-0.011	0.04	0.79
	RIG	0.011	0.01	0.41
	SCH	-0.009	0.02	0.62
Stickstoffdioxid	ВА	0.004	0.02	0.78
	CHA	-0.146	0.03	0.0004
Konzentration in Luft	HÄG	-0.030	0.04	0.50
	MAG	-0.364	0.07	0.0001
	PAY	-0.145	0.07	0.054
	RIG	-0.113	0.04	0.020
	SCH	-0.037	0.02	0.17
Ammonium	ВА	-0.204	0.06	0.007
	СНА	-0.062	0.02	0.017
Fracht im	MAG	-0.061	0.17	0.73
Niederschlag	PAY	-0.074	0.03	0.014
rmodorosmag	RIG	-0.074	0.04	0.12
	SCH	-0.229	0.07	0.007
Nitrat	BA	-0.048	0.03	0.09
	CHA	-0.051	0.01	0.003
Fracht im	MAG	-0.197	0.18	0.29
Niederschlag	PAY	-0.036	0.02	0.10
	RIG	-0.060	0.03	0.10
	SCH	-0.242	0.07	0.006
oxidierte	ВА	-0.023	0.03	0.45
Komponenten	CHA	-0.071	0.02	0.0008
	MAG	-0.261	0.14	0.09
Fracht	PAY	-0.054	0.02	0.013
	RIG	-0.081	0.04	0.040
	SCH	-0.251	0.07	0.003
reduzierte	ВА	-0.251	0.07	0.0029
Komponenten	CHA	-0.025	0.03	0.45
1	MAG	0.239	0.16	0.16
Fracht	PAY	-0.108	0.09	0.25
Tradin	RIG	-0.051	0.05	0.28
	SCH	-0.292	0.05	0.0001
Summe aller	BA	-0.272	0.06	0.0011
berücksichtigten	CHA	-0.096	0.03	0.0040
Komponenten	MAG	-0.026	0.63	0.97
. tompononton	PAY	-0.158	0.00	0.13
Fracht	RIG	-0.137	0.10	0.73
	SCH	-0.551	0.06	0.000002

Literatur

- BAFU 2011: BDM-Facts Nr.3: Stickstoffeintrag aus der Luft verändert Vielfalt http://www.biodiversitymonitoring.ch/de/downloads/broschueren.html (Stand am 15.4.15)
- BAFU 2013: Auszug aus dem Emissionsinventar EMIS der Abt. Luftreinhaltung und Chemikalien.
- BAFU 2014: http://www.bafu.admin.ch/luft/luftbelastung/schadstoffkarten/stickstoffeintrag/index.html?lang=de (Stand am 15.4.15)
- BAFU 2015: http://www.bafu.admin.ch/umwelt/indikatoren/08588/08589/index.html?lang=de (Stand am 5.6.15)
- BAFU & BLW 2008: Umweltziele Landwirtschaft. Hergeleitet aus bestehenden rechtlichen Grundlagen, Umwelt-Wissen Nr. 0820. Bundesamt für Umwelt, Bern, 221 S.
- BAFU & BLW 2011: Baulicher Umweltschutz in der Landwirtschaft. Ein Modul der Vollzugshilfe Umweltschutz in der Landwirtschaft. Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1101, 122 S.
- Bobbink R., Hettelingh JP (eds.) 2011: Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. Coordination Centre for Effects, National Institute for Public Health and the Environment, http://wge-cce.org/Publications/Other_CCE_Reports (Stand am 15.4.15)
- CEC, bcr 1993:The certification of the contents (amount of substance contents) of ammonium, calcium, chloride, hydronium, magnesium, nitrate, potassium, sodium, and sulphate in simulated rainwater low content CRM 408. Report EUR 15024 EN
- Dämmgen U., Thöni L., Lumpp R., Gilke K., Seitler E., Bullinger M. 2010: Feldexperiment zum Methodenvergleich von Ammoniak- und Ammonium-Konzentrationsmessungen in der Umgebungsluft, 2005 2008 in Braunschweig. vTI Johann Heinrich von Thünen-Institut Braunschweig, Sonderheft 337 https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D1003809227
- EC, JRC, IRMM 2010: Certification of the mass concentration of ammonium, chloride, fluoride, magnesium, nitrate, orthophosphate, sulfate, and of pH and conductivity in simulated rainwater Certified Reference Material ERM®-CA408. EUR 24426 EN
- EKL 2005: Stickstoffhaltige Luftschadstoffe in der Schweiz. Status-Bericht der Eidg. Kommission für Lufthygiene (EKL), Bern, http://www.ekl.admin.ch/de/dokumentation/publikationen/index.html (Stand am 27.4.2015)
- EKL 2014: Ammoniak-Immissionen und Stickstoffeinträge. Eidgenössische Kommission für Lufthygiene (EKL), Bern, http://www.ekl.admin.ch/de/dokumentation/publikationen/index.html (Stand am 27.4.2015)
- Empa 2006: Chemische Zusammensetzung des Feinstaubs während der Smoglagen im Januar/Februar 2006. Abteilung Luftfremdstoffe/Umwelttechnik Empa Nr. 203'056/4
- Empa & BAFU 2015: Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL) 2015. http://www.empa.ch/plugin/template/empa/699/*/---/l=1 (Stand am 27.9.2015)
- Flechard C.R., Massad R.-S., Loubet B., Personne E., Simson D: Bash J.O., Cooter E.J., Nemitz E., Sutton M.A. 2013:
 Advances in Understanding, Models and Parameterizations of Biosphere-Atmosphere Ammonia Excange. Biogeosciences, 10, 5183–5225
- Ferm M. 1991: A sensitive diffusional sampler. Report L91-172. Göteborg, Swedish Environmental Research Institute IVL
- FOEN 2015: Switzerland's Informative Inventory Report 2015 (IIR). Submission under the UNECE Convention on Longrange Transboundary Air Pollution. Submission of March 2015 to the United Nations ECE Secretariat. Federal Office for the Environment FOEN, Air Pollution Control and Chemicals Division, Bern. http://www.ceip.at/ms/ceip_home1/ceip_home/status_reporting/2015_submissions/ (Stand am 15.4.15)
- FOEFL 1996: Critical Loads of Nitrogen and their Exceedances, Eutrophying Atmospheric Deposition. Environmental Series No. 275, Federal Office of Environment, Forests and Landscape (FOEFL.), Berne. 90pp. (Out of print, reprint with updates in prep.)

- Gonzàles Benìtez J.M., Cape J.N., Heal M.R., van Dijk N. Vidal Dìez A. 2009: Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment 43, 4087-4094
- Gutersohn H. 1973: Naturräumliche Gliederung. In: Atlas der Schweiz E. Imhof (Hrsg.), Taf. 23. Eidg. Landestopographie, Wabern-Bern
- Harmens H., Schnyder E., Thöni L., Cooper DM., Mills G., Leblond S., Mohr K., Poikolainen J., Santamaria J., Skudnik M., Zechmeister HG., Lindroos, A-J., Hanus-Illnar A. 2014: Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environmental Pollution 194, 50-59
- Marchetto A., Mosello R., Tartari G., Derome J., Derome K., König N., Clarke N., Kowalska A. 2011: Atmospheric Deposition and Soil Solution Working Ring Test 2009, Project FutMon, Verbania Pallanza, 41 pp.
- MeteoSchweiz 2015: Klimabulletin Jahr 2014. Zürich http://www.meteoschweiz.admin.ch/home/klima/gegenwart/klima-berichte.html (Stand am 1.9.2015)
- Palmes E.D., Gunnison A. F., DeMattio J., Tomczyk C. 1976: Personal Sampler for Nitrogen Dioxide. Am. Ind. Hyg. Assoc. J., 37, (10), 570-577
- PSI & uwe 2007: Verursacher von Feinstaub, Teilbericht 1 PSI: Januar Februar 2006, Teilbericht 2 uwe: Daten- analyse Reiden 2005/06, Paul Scherrer Institut / Umwelt und Energie Kanton Luzern
- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/ (Stand 3.9.15)
- Roth T., Kohli L., Rihm B., Achermann B., 2013: Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agriculture, Ecosystems and Environment 178: 121-126
- Roth T., Kohli L., Rihm B., Amrhein V., Achermann B. 2015: Nitrogen deposition and multi-dimensional plant diversity at the landscape scale. R. Soc. open sci. 2: 150017. http://dx.doi.org/10.1098/rsos.150017 (Stand 4.5.14)
- Schrader F, Brümmer C. 2014: Land use specific ammonia deposition velocities: a review of recent studies (2004-2013). Water Air Soil Pollut 2114, 2-12
- Seitler E., Thöni L., Schnyder R., Rihm B. 2015: Ammoniak-Immissionsmessungen in der Schweiz, Beschreibung der Standorte und Daten. Bezugsquelle: FUB, 8640 Rapperswil
- Seitler E., Thöni L. 2015: Ammoniak-Immissionsmessungen in der Schweiz 2000 bis 2014. Messbericht. Be-zugquelle: http://www.bafu.admin.ch/luft/00585/10770/index.html?lang=de (11.8.15)
- Spreafico M., Weingartner R. (eds.) 2005: Hydrologie der Schweiz, Ausgewählte Aspekte und Resultate. Berichte des BWG, Serie Wasser, Nr. 7 Bern
- Schmitt M., Thöni L., Thimonier A., Waldner P. 2005: Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots: comparison of the throughfall and the inferential method. Atmospheric Environment 39, 1079-1091
- Thimonier A., Schmitt M., Waldner P., Rihm B. 2005: Atmospheric deposition on Swiss Long-term Forest Ecosystem Research (LWF) plots. Environmental Monitoring and Assessment 104: 81-118
- Thöni L., Seitler E., Blatter A., Neftel A. 2003: A passive sampling method to determine ammonia in ambient air. J. Environ. Monit. 5, 96-99
- Thöni L., Brang P., Braun S., Seitler E., Rihm B. 2004: Ammonia monitoring in Switzerland with passive samplers: patterns, determinants and comparison with modelled concentrations. Environmental Monitoring & Assessment 98, 93-107
- Thöni L., Seitler E. 2010: Stickstoff- & Elementdeposition OSTLUFT 2000 bis 2008. Bericht an die OSTLUFT, Geschäftsleitung, Stampfenbachstr. 12, Postfach, 8090 Zürich. http://www.ostluft.ch/fileadmin/intern/LZ_Information/Publikationen/Fachberichte/BE_StickstoffElementdeposition20 00-2008_PT_201002.pdf (11.8.15)

- Turner H. 1985: Nebelniederschlag. In: SGTK (Schweizerische Geotechnische Kommission) & GK/SNG (Hydrologische Kommission der Schweizerischen Naturforschenden Gesellschaft): Der Niederschlag in der Schweiz (p. 159–164). Beiträge zur Geologie der Schweiz Hydrologie Nr. 31, Bern
- UNECE 2003: Expert workshop on empirical critical loads for nitrogen deposition on (semi-)natural ecosystems. Summary report prepared by the organizers. United Nations Economic Commission for Europe (UNECE), Executive Body for the Convention on Long-range Transboundary Air Pollution. Working Group on Effects. EB.AIR/WG.1/2003/14.
- UNECE 2010: Empirical critical loads and dose-response relationships. Workshop held from 23 to 25 June 2010 in Noord-wijkerhout, the Netherlands. Convention on Long-range Transboundary Air Pollution, Working Group on Effects, 13 July 2010, ECE/EB.AIR / WG.1 / 2010 / 14
- Uwe 2015: https://uwe.lu.ch/downloads/uwe/jahrbuch/Daten/Niederschlag/SMA6450Marbach/6450.PDF, 21.7.2015
- VDI 3869 Blatt 3 2010: Messen von Ammoniak in der Aussenluft; Probenahme mit beschichteten Diffusionsabscheidern (Denudern) ; Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin
- VDI 3869 Blatt 4 2012 : Messen von Ammoniak in der Aussenluft; Probenahme mit Passivsammlern; Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin
- VDI 4320 Blatt 4 (2015 im Gründruck): Messung athmosphärischer Deposition; Bestimmung der Deposition von wasserlöslichen Anionen und Kationen. Beuth Verlag GmbH, 10772 Berlin
- Waldner P., Schaub M., Graf Pannatier E., Schmitt M., Thimonier A., Walthert L. 2007. Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded? In: Paoletti E., Schaub M., Bytnerowicz A. (eds.). Air Pollution and Global Change: Key Studies of the Effects on Forest Vegetation. Environmental Monitoring and Assessment (Special Issue) 128:5-17
- Waldner P., Marchetto A., Thimonier A., Schmitt M., et al. (32 co-authors) 2014: Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmospheric Environment 95, 363-374

Abkürzungen und Definitionen

Aerosol	Heterogenes Gemisch aus festen und flüssigen Schwebeteilchen in einem Gas, hier in der Luft		
BAFU	Bundesamt für Umwelt		
CLe	Critical Level. Ökologisch kritische Konzentration eines Schadstoffes in der Luft gemäss UNECE. Belastungsgrenze zur Beurteilung der direkten Einwirkung von gasförmigen Luftschadstoffen auf empfindliche Rezeptoren.		
CLe-NH ₃	Critical Level von Ammoniak		
CLN	Critical Load für Stickstoff. Ökologisch kritische Eintragsrate für stickstoffhaltige Luftschadstoffe gemäss UNECE (empirische CLN). Belastungsgrenze zur Beurteilung des trockenen und nassen Eintrags von stickstoffhaltigen Luftschadstoffen in empfindliche Ökosysteme.		
Deposition	Flächenbezogener Stofffluss von der Atmosphäre in Ökosysteme. Einheit kg ha-1		
DON	Dissolved organic nitrogen, gelöster organischer Stickstoff im Niederschlag		
Eintrag	Gleichbedeutend wie Deposition		
Emission	Schadstoffausstoss an der Quelle		
Empa	Forschungsinstitut im ETH-Bereich; Materialien und Technologien		
Gesamtstickstoff- eintrag	In diesem Bericht: Summe der Stickstofffrachten von NO_{3} und NH_{4} (aus Gravitationsdeposition ur Aerosol), NO_{2} , NH_{3} und HNO_{3}		
Gravitations- deposition	Eintrag durch nassen Niederschlag (Regen, Schnee, Graupel ect.) plus sedimentierenden Staub		
HNO ₃	Salpetersäure (hier gasförmig)		
IAP	Institut für Angewandte Pflanzenbiologie		
Immissionen	Schadstoffe am Ort des Einwirkens		
Inferential technique	Bestimmung des N-Eintrags in Wälder durch Messung der Gas- und Aerosol-Komponenten im Freiland und multiplizieren mit einer spezifischen v _d		
Interzeption	Trägheitsabscheidung (Auskämmen), hier von Aerosolen		
J	Jura (Naturraum nach Gutersohn 1973)		
Konzentration	Schadstoffmenge pro Volumen (Luft oder Niederschlag)		
LANUV	Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (D)		
"Laubwald"	< 50 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog		
LfU	Bayerische Landesamt für Umwelt (D)		
LRV	Luftreinhalteverordnung (LRV) vom 16. Dezember 1985 https://www.admin.ch/opc/de/classified-compilation/19850321/201402040000/814.318.142.1.pdf		
LUBW	Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (D)		
LWF	Langfristige Waldökosystemforschung (der WSL)		
M	Mittelland (Naturraum nach Gutersohn 1973)		
Midefix	Minidenuder-Minifilter-Einheit		
"Mischwald"	Mischwald 50 – 65 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog		

N	Elementsymbol für Stickstoff		
"Nadelwald"	Nadelwald > 65 % Nadelholzanteil, nach map.geo.admin.ch, Geokatalog		
NH ₃	Ammoniak		
NH ₄ +	Ammonium (in Gravitationsdeposition und Aerosol)		
NO ₂	Stickstoffdioxid		
NO ₃ -	Nitrat (in Gravitationsdeposition und Aerosol)		
N-kkk	Stickstoffanteil in stickstoffhaltigen Komponenten		
NA	Nordalpen (Naturraum nach Gutersohn 1973)		
NABEL	Nationales Beobachtungsnetz für Luftfremdstoffe (BAFU und Empa)		
Ökosystemtyp	Zuordnung mit Hilfe von map.geo.admin.ch, Geokatalog		
SA	Südalpen (Naturraum nach Gutersohn 1973)		
SEn	Service de l'environnement, Ct. Fribourg		
SMUL	Sächsisches Staatsministerium für Umwelt und Landwirtschaft (D)		
Sufix	Summenfilter		
UGZ	Umwelt- und Gesundheitsschutz – Stadt Zürich		
Vd	Depositionsgeschwindigkeit		
vTi	Johann Heinrich von Thünen-Institut, Braunschweig (D)		
UNECE	United Nations Economic Commission for Europe		
"Wiese"	Dauergrünland, Kunstwiese		
WSL	Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft		
ZA	Zentralalpen (Naturraum nach Gutersohn 1973), in dieser Arbeit wird das Urserental dazugenommen		