Bewertung von Landschaftsattributen auf dem Schweizer Mietwohnungsmarkt

Hauptuntersuchung im Rahmen des Projekts "Landschaftsqualität als Standortfaktor erkennen und verbessern"

Schlussbericht zuhanden des Bundesamts für Umwelt BAFU

2014

Projektteam:

Fabian Waltert, WSL, Gruppe Regionalökonomie und –entwicklung Lorena Segura, WSL, Gruppe Landschaftsökologie Felix Schläpfer, Kalaidos Fachhochschule Schweiz Marco Pütz, WSL, Gruppe Regionalökonomie und –entwicklung Felix Kienast, WSL, Gruppe Landschaftsökologie

Begleitgruppe

Pia Kläy, BAFU, Sektion Ländlicher Raum Matthias Stremlow, BAFU, Sektion Ländlicher Raum Nicolas Merky, BAFU, Sektion Ökonomie Felix Walter, Ecoplan, Bern

Kontakt:

Eidg. Forschungsanstalt WSL Zürcherstrasse 111 8903 Birmensdorf www.wsl.ch

Marco Pütz
FE Wirtschafts- und Sozialwissenschaften
Gruppe Regionalökonomie und -entwicklung
Telefon +41 (0)44 739 26 98
marco.puetz@wsl.ch

Danksagung

Die AutorInnen bedanken sich bei Peter Meier und Marco Salvi (Zürcher Kantonalbank) für die Zurverfügungstellung von Immobiliendaten, sowie Stefan Riesen und Jonas Lichtenhahn für die Aufbereitung von Datenmaterial. Des Weiteren danken wir den Teilnehmern eines Expertenworkshops (4. September 2013 in Olten) für ihre wertvollen Vorschläge und Anmerkungen zu einer früheren Version dieser Studie.

Inhalt

Zι	ısamm	enfa	ssung	6
1	Einle	eitur	ng	9
	1.1	Kor	ntext und Ausgangslage	9
	1.2	Ziel	e und Fragestellungen der Studie	10
	1.3	Inha	alt des Berichts	11
2	Die	Schä	itzung ökonomischer Werte der Landschaft	12
	2.1		:hodendiskussion	
	2.1.	1	Bewertung von Landschaft	12
	2.1.	2	Ökonomische Werte der Landschaft	13
	2.1.	3	Ansätze zur Erfassung ökonomischer Werte der Landschaft	16
	2.1.	4	Vor- und Nachteile verschiedener Ansätze bei der Bewertung von Landschaft	19
	2.2	Die	Hedonic Pricing Methode	21
	2.2.	1	ldee	21
	2.2.	2	Eignung in Bezug auf die vorliegenden Forschungsfragen	22
	2.2.	3	Grenzen der Methode	22
3	Aus	wahl	der Daten für die empirische Untersuchung	25
	3.1		ersicht	
	3.2	lmn	nobiliendaten	25
	3.2.	1	Ausgangslage	25
	3.2.	2	Datenbeschreibung	27
	3.3	Nac	chbarschafts-, Umwelt-, und Landschaftsdaten (Umgebungsvariablen)	28
	3.3.	1	Ausgangslage	28
	3.3.	2	Landschaft	29
	3.3.	3	Erreichbarkeit	32
	3.3.	4	Immissionen	33
	3.3.	5	Kulturerbe	35
	3.3.	6	Mikroklima	35
	3.3.	7	Eigenschaften der Gemeinde	35
4	Sch	ätzuı	ng des empirischen Modells: Allgemeines Vorgehen	37
	4.1		erblick	
	4.2		wahl der Modellvariablen	
	4.3		chreibung der verwendeten Daten	

5	Res	ultat	e für die gesamte Stichprobe	.42
	5.1	Aus	gangslage	. 42
	5.2	Bas	ismodell	. 42
	5.2.	1	Modellbeschreibung	.42
	5.2.	2	Resultate	. 43
	5.2.	3	Vergleich von drei Modellvarianten	. 47
	5.3	Zwe	eistufiges Modell mit Berücksichtigung der Gemeindeebene	. 49
	5.3.	1	Modellbeschreibung	. 49
	5.3.	2	Resultate	. 49
	5.4	Effe	ektstärken der Landschafts- und Landnutzungsvariablen	. 52
6	Reg	gione	nspezifische Resultate	.54
	6.1	Aus	gangslage	. 54
	6.2	Res	ultate nach Gemeindetypen	. 55
7	Anv	vendu	ung der Resultate auf zwei Fallbeispiele	.58
	7.1	Aus	wahl der Fallbeispiele	. 58
	7.2	Einh	nausung der Autobahn A1 in Zürich-Schwamendingen	. 58
	7.2.		Zielsetzung und Vorgehen	
	7.2.	2	Auswirkung des Projekts auf relevante Umgebungsvariablen	. 60
	7.2.	3	Berechnung der Veränderung der Mieten	. 61
	7.2.	4	Schätzung der Wertzunahme des Immobilienbestands	. 62
	7.2.	5	Vergleich der Wertzunahme mit einer politischen Präferenzäusserung	. 62
	7.2.	6	Fazit Fallbeispiel 1	. 62
	7.3	Aus	zonung versus Überbauung einer Grünfläche in Küsnacht (ZH)	. 63
	7.3.	1	Zielsetzung und Vorgehen	. 63
	7.3.	2	Auswirkung der Überbauung auf den Anteil Freiflächen im Umkreis von 300m	. 63
	7.3.	3	Veränderung der Mietpreise	. 64
	7.3.	4	Hochrechnung der Wertveränderung des Immobilienbestands	. 64
	7.3.	5	Vergleich der Wertveränderung mit der politischen Zahlungsbereitschaft für die Freihaltung	
	7.3.	6	Fazit Fallbeispiel 2	. 65
8	Disl	kussi	on	.66
	8.1	Disk	kussion der Resultate	. 66
	8.1.	1	Interpretation der Resultate	. 66
	8.1.	2	Grenzen der verwendeten Methode	. 68
	8.1.	3	Berechnung der externen Kosten des Verkehrs	. 70
	8.1.	4	Vergleich mit früheren Studien	.71

8.2	Em	pfehlungen für Forschung und Praxis	75
8.2.	.1	Praxisempfehlungen	75
8.2.	.2	Forschungsbedarf	76
Literatui	r		78
Anhang	1: De	etaillierte Datenbeschreibung	83
A 1.1	Korr	elationsmatrizen	83
A 1.2	Varia	ablen: Deskriptive Statistiken	88
A 1.3	Varia	ance Inflation Factors VIF	92
A 1.4	Haup	otkomponenten ausgewählter korrelierter Landschaftsvariablen	93
Anhang	2: De	etaillierte Modellresultate: Gesamte Stichprobe	94
A 2.1	OLS	Regressionsmodelle 300m, 1500m und Distanz	94
A 2.2	Zwei	stufiges Random Intercept Modell, Landnutzungsvariablen 300m	101
Anhang	3: De	etaillierte Modellresultate: Regionenspezifisch	105
A 3.1	OLS-	Regressionsmodelle nach BFS-Gemeindetypologie (9), 300m	105
Anhang	4: De	etaillierte Modellresultate: Fallstudien	116
A 4.1	Einh	ausung der Autobahn A1 in Zürich-Schwamendingen	116
A 4.2	Ausz	onung versus Überbauung einer Grünfläche in Küsnacht (ZH)	121

Zusammenfassung

Weiche Standortfaktoren, welche sich auf die lokale Lebensqualität auswirken, gewinnen bei der Wahl von Wohnstandorten an Bedeutung. Haushalte werden von einer attraktiven Landschaft in der Wohnumgebung angezogen. Gleichzeitig wird die offene Landschaft durch Urbanisierungs- und Zersiedelungsprozesse zunehmend zum knappen Gut. Für eine nachhaltige Landschaftspolitik, die sowohl ökologische Faktoren wie auch die Präferenzen der Bevölkerung berücksichtigt, ist es nötig, das Bewusstsein über die Werte der Landschaft zu stärken.

In diesem Bericht werden diese Werte und verfügbare Methoden zu ihrer Quantifizierung diskutiert (Kapitel 2). Das Hauptziel der Studie besteht darin, mit der Methode der hedonischen Preise (Hedonic Pricing) den Einfluss von Landschaftsattributen auf Wohnungsmieten zu schätzen, sowie die Anwendungsmöglichkeiten und Grenzen solcher Modelle aufzuzeigen. Zu diesem Zweck konnte auf einen Datensatz von über 170'000 zur Neuvermietung angebotenen Mietwohnungen aus der ganzen Schweiz zurückgegriffen werden (s. Kapitel 3). Ausserdem wurde eine umfassende Datenbank aus Umgebungsvariablen aufgebaut, welche 47 Indikatoren zu Erreichbarkeit, Immissionen, Kulturgüter, Landschaft, Landnutzung, Erholungsmöglichkeiten und Mikroklima im Umfeld der Wohnungen enthält. Die geschätzten Modelle ermöglichen Aussagen zu Preiseffekten einzelner Landschaftsund Umgebungsvariablen unter der Annahme, dass die übrigen Einflussfaktoren konstant bleiben (z.B. Wegfall von Seesicht führt zu 2.5 Prozent tieferen Mieten). Während dabei die Effekte der Landschafts- und Landnutzungsindikatoren im Fokus des Interesses liegen, wurde für verschiedenste Einflussfaktoren wie Erreichbarkeit und geographische Lage, Steuerbelastung und Lärmbelastung kontrolliert.

Die Resultate der Modellschätzungen bestätigen die wichtige Rolle verschiedener landschaftsbezogener Standortfaktoren wie Aussicht, Seenähe, Seesicht und Flussnähe. Auch mit der Nähe zu Stadtpärken und anlagearmen Gebieten für die Erholung steigen die Wohnungsmieten. Einen preismindernden Effekt haben verschiedene Immissionen, welche die wahrgenommene Landschaftsqualität negativ beeinträchtigen: Strassen- und Eisenbahnlärm, Hochleistungsstrassen, Industrieflächen und Hochspannungsleitungen (vgl. Kapitel 5). Eine Analyse nach Gemeindetypen (Zentrale Gemeinden, suburbane Gemeinden, einkommensstarke Gemeinden, periurbane Gemeinden und ländliche Gemeinden) zeigt, dass sich diese Effekte in Abhängigkeit der geographischen Lage der Wohngemeinde (Kapitel 6) deutlich unterscheiden können. Tendenziell steigt die Bedeutung der Landschaft als Standortfaktor für das Wohnen mit zunehmender Urbanität und damit zunehmender Knappheit der offenen Landschaft.

Für einige Attribute der Landschaftsqualität und Landnutzung konnten keine mietpreissteigernden Effekte auf die Wohnungsmieten nachgewiesen werden. Für gewisse lässt sich dies damit erklären, dass die entsprechenden Indikatoren wenig geeignet sind, um die kulturellen Landschaftsleistungen im Siedlungsraum (Ästhetik, Naherholung, Identitätsstiftung), welche für Wohnungsmieter relevant sind, abzubilden. Weiter sind verschiedene

stark mit dem Stadt-Land- und dem Zentrums-Siedlungsrand-Gradienten korreliert, d.h. diese Landnutzungen treten verstärkt in peripheren Gemeinden und an dezentralen Lagen auf. Obwohl in den verschiedenen Modellen durch mehrere Variablen (z.B. Erreichbarkeit von zentralen Dienstleistungen, Lage in Altstadt, Distanz zu Gross- und Regionalzentren) versucht wurde, die Effekte der geographischen Lage aufzufangen, scheint es nicht vollständig gelungen zu sein, Effekte von Landschaftsvariablen von diesen Zentrum-Peripherie-Effekten zu isolieren.

Betreffend die Bewertung von Nutzungen der Landschaft (v.a. Freiflächen, Wald, Vielfalt der Landnutzungen) zeigt sich, dass einer Quantifizierung mit der verwendeten Hedonic Pricing-Methode enge Grenzen gesetzt sind. Wesentliche Teile der gesellschaftlichen Bewertung von Landschaften manifestieren sich prinzipiell nicht in Immobilienpreisen, da Landschaften auch ausserhalb des individuellen Wohnumfeldes wahrgenommen und bewertet werden. Für Kosten-Nutzenanalysen (bei staatlichen Projekten und Regulierungen) letztlich relevant sind aber umfassende gesellschaftliche Bewertungen, die auch die Präferenzen von Nicht-Anwohnern und Präferenzen für Landschaften ausserhalb von Wohnstandorten einschliessen. Während die verwendeten Hedonic Pricing Modelle wichtige Hinweise auf Landschaftspräferenzen liefern können und z.B. im Bereich der Schätzung vom Lärmkosten auch zur Bestimmung von Kosten negativer Externalitäten verwendet werden, müssen diese Modelle im Bereich der Schätzung von Werten der Landschaft mit anderen Ansätzen ergänzt werden. Als Ansätze eignen sich Analysen von Politik-Präferenzen, ökonomische Analysen politischer Entscheidungen und Zahlungsbereitschafts-Befragungen.

Der eiligen Leserin und dem eiligen Leser sei die Lektüre folgender Kapitel empfohlen:

- Detaillierte Resultate: Kap. 5 (insb. 5.2.2 und 5.3) und 6
- Zusammenfassung und Interpretation der Resultate: Kap. 8.1
- Empfehlungen für Politik und Forschung: Kap. 8.2

1 Einleitung

1.1 Kontext und Ausgangslage

Verschiedene internationale Studien zeigen, dass weiche Standortfaktoren, welche sich direkt auf die lokale Lebensqualität auswirken, in den letzten Jahrzehnten bei der Wahl von Wohnstandorten an Bedeutung gewonnen haben (vgl. Waltert und Schläpfer, 2010). Angetrieben wird diese Entwicklung hauptsächlich von sinkenden Mobilitätskosten durch technischen Fortschritt (Verkehrswesen, Informationstechnologie, Telekommunikation), durch ein steigendes Einkommens- und Vermögensniveau, sowie durch zunehmende Ortsunabhängigkeit bei der Einkommenserzielung (vgl. Cherry und Rickman, 2010). Ein solcher Standortfaktor ist eine attraktive lokale Landschaft. Diverse internationale und eine Schweizer Studie (Waltert et al., 2011) zeigen, dass Haushalte tendenziell von landschaftlich attraktiven Wohnstandorten angezogen werden, während die Beziehung zwischen Landschaft und Firmenansiedlungen/Beschäftigungswachstum weniger deutlich ist (s. auch B,S,S., 2012). Ebenfalls zu erkennen ist die Bedeutung verschiedener Landschaftsattribute als Standortfaktoren an einer erhöhten Zahlungsbereitschaft für Boden und Liegenschaften an landschaftlich attraktiven Standorten. 1 Gleichzeitig werden Landschaftsattribute wie Freiflächen, naturnahe Landschaften und Agrarland durch die fortschreitende Zersiedelung zunehmend zum knappen Gut. Dies hat dazu geführt, dass Politiken aus verschiedenen Sektoren darauf ausgerichtet werden, Landschaftsleistungen zu erhalten (z.B. multifunktionale Landwirtschaft) und zu nutzen (z.B. Parkpolitik, Regionalmanagement).

Für eine nachhaltige Ausrichtung dieser Politiken, die sowohl ökologische Faktoren wie auch die Präferenzen der Bevölkerung berücksichtigt, ist es nötig, das Bewusstsein über die Werte der Landschaft zu stärken. Dadurch erhält das öffentliche Gut Landschaft im politischen Prozess und im Standortmanagement mehr Gewicht und der Nutzen von Eingriffen in die Landschaft (z.B. verbesserte Erreichbarkeit durch Strassenbau) kann besser den durch die Beeinträchtigung der Landschaft entstehenden Kosten gegenübergestellt werden. Eine Quantifizierung dieser Landschaftswerte wird durch verschiedene ökonomische Bewertungsmethoden ermöglicht. Im Zusammenhang mit der ökonomischen Bedeutung der Landschaft als Standortfaktor im Bereich Wohnen hat sich die Methode der hedonischen Preise ("hedonic pricing") besonders bewährt. Diese Methode, welche seit über 30 Jahren erfolgreich in der Umweltbewertungsliteratur verwendet wird, ermöglicht es, die marginale Zahlungsbereitschaft für verschiedene Attribute von Liegenschaften/Wohnungen und deren Umgebung zu schätzen. Mehrere Studien aus der Schweiz haben diese verwendet und dabei teilweise auch Landschaftsattribute berücksichtigt (z.B. Baranzini und Schaerer, 2011; Schaerer et al., 2007; Stadelmann, 2010; Schulz und Waltert, 2011 und Leupp et al., 2011). Allerdings beschränken sich die meisten Studien auf einzelne Städte oder Regionen (z.B. Kanton Genf: Baranzini und Schaerer, 2011; Met-

-

¹ Eine Übersicht über Studien zum Einfluss der Landschaft auf Migration, Bevölkerungswachstum, Beschäftigungswachstum und Boden-/Liegenschaftspreise bieten Waltert und Schläpfer (2010).

ropolitanregion Zürich: Stadelmann, 2010) und verwenden eine begrenzte Anzahl Landschaftsindikatoren (z.B. See- und Bergsicht). Diese Arbeiten liefern daher nur begrenzte Informationen zum Wert der Landschaftsqualität am Wohnstandort und zu den relevanten Landschaftsattributen, welche diese Qualität ausmachen. Eine im Auftrag des BAFU durchgeführte Studie (B,S,S., 2012) zeigt auf, wie ein hedonisches Modell für eine umfassende Quantifizierung der Landschaftswerte in der Schweiz aussehen könnte. Auf der Grundlage dieser Vorstudie und der nationalen und internationalen Literatur wird in der vorliegenden Studie eine Anwendung für die Schweiz vorgestellt, deren Hauptziel darin besteht, die Bedeutung verschiedener Attribute der Landschaft und der Landschaftsqualität für die Wohnstandortwahl mittels eines umfassenden hedonischen Modells zu ermitteln.

1.2 Ziele und Fragestellungen der Studie

Das Hauptziel der Studie besteht darin, basierend auf einer Analyse des Wohnungsmarkts, den Nutzungswert verschiedener Landschaftsattribute zu quantifizieren. Zu diesem Zweck wird die Methode der hedonischen Preise ("hedonic pricing") verwendet. Die Datengrundlage bietet eine umfassende Datenbank mit Wohnungs- und Wohnumgebungsattributen von über 170'000 Mietwohnungen, welche über die ganze Schweiz verteilt sind.

In der Studie sollen die folgenden Hauptforschungsfragen beantwortet werden:

- F1 Welche Methoden eignen sich zur Bewertung ökonomischer Werte der Landschaft?
- F2 Welchen Einfluss haben die einzelnen Landschaftsvariablen und mögliche Landschaftsveränderungen auf die Wohnungs(miet-)preise?
- F3 Wo liegen die Grenzen in der Aussagekraft der Ergebnisse der Untersuchung?
- F4 Sind die Ergebnisse der Untersuchung plausibel? Wie stehen sie im Vergleich zu früheren Untersuchungen mit gleicher oder anderer Methodik?
- F5 Wie können die Ergebnisse in der Praxis eingesetzt werden (z.B. zur Abschätzung der externen Kosten des Verkehrs) und welche Empfehlungen lassen sich für die politische Umsetzung der Erkenntnisse und für die Schliessung des weiteren Forschungsbedarfs ableiten?

Die Quantifizierung soll dazu beitragen, die Entscheidungsgrundlagen der im politischen Prozess beteiligten Akteure zu verbessern und das Bewusstsein für den Standortfaktor Landschaft zu stärken. Ausserdem bietet die Analyse ein Testfeld für kürzlich entwickelte Landschaftsindikatoren (z.B. Landschaftsbeobachtung Schweiz LABES), indem die Resultate zeigen, ob diese Indikatoren im Stande sind, von der lokalen Bevölkerung als positiv bewertete Landschaftsleistungen abzubilden.

1.3 Inhalt des Berichts

Kapitel 2 beschäftigt sich mit Methoden zur Schätzung ökonomischer Werte der Landschaft. Dabei wird die Hedonic Pricing Methode vorgestellt, in einen breiteren Kontext eingebaut und hinsichtlich ihrer Eignung zur Quantifizierung des Werts von Landschaftsattributen für die Wahl von Wohnstandorten beschrieben. In Kapitel 3 werden die verwendeten Datensätze sowie die daraus generierten Variablen präsentiert. Zum einen handelt es sich dabei um Preise und Eigenschaften von ca. 170'000 Wohnungen, zum anderen um eine Vielzahl an Variablen, welche die Umgebung der Liegenschaft und insbesondere die Eigenschaften und Qualitäten der lokalen Landschaft beschreiben. In Kapitel 4 wird das allgemeine methodische Vorgehen bei der Schätzung des hedonischen Modells beschrieben. Im Kapitel 5 werden die Resultate der Modellschätzungen für den ganzen Datensatz präsentiert und anschliessend in Kapitel 6 regionenspezifisch analysiert. Die Resultate werden auf zwei Fallbeispiele übertragen (Kapitel 7), welche mögliche Anwendungen dieser Methode illustrieren sollen. Abschliessend werden in Kapitel 8 die Erkenntnisse der empirischen Analysen ausführlich diskutiert und Empfehlungen für Politik und Forschung abgeleitet. Der Anhang dieses Berichts liefert detaillierte Angaben zu den verwendeten Daten und die vollständigen Resultate der durchgeführten Modellanalysen.

2 Die Schätzung ökonomischer Werte der Landschaft

2.1 Methodendiskussion

2.1.1 Bewertung von Landschaft

In der vorliegenden Untersuchung wird unter der Landschaft die vom Menschen wahrnehmbare physische Gestalt und Ausstattung des Raumes verstanden, welche sich anhand von Merkmalen wie Topographie, Klima, Vegetation, Siedlungen und Verkehrsinfrastruktur beschreiben lässt.² "Landschaft" wird im Rahmen unterschiedlicher naturwissenschaftlicher und sozialwissenschaftlicher Ansätze untersucht. Die Auswahl von Bewertungskonzepten und

-verfahren hängt ab vom Untersuchungsziel und von den verfügbaren Informationen. In den Begriffen des Millennium Ecosystem Assessment (2005) werden Landschaften über die Ökosystemleistungen bewertet, die durch Strukturen und Prozesse der ökologischen Systeme bedingt sind. Landschaften sind hier die Grundlage für Erholungsmöglichkeiten, etwa für die Erfahrung von Landschaftsästhetik oder für spirituelle Erfahrungen, die insgesamt zur Kategorie der kulturellen Ökosystemleistungen gezählt werden (z.B. Daniel et al., 2012). In der detaillierten Klassifizierung von Indikatoren für Ökosystemleistungen des Bundesamtes für Umwelt, die an das Millennium Ecosystem Assessment anknüpft, erbringen Landschaften Leistungen für Gesundheit und Wohlbefinden, für die Existenz natürlicher Vielfalt und für die Wirtschaft (Staub et al., 2011: 11). ³

Eine Alternative zur Bewertung von Leistungen der Landschaft ist die Bewertung alternativer Charakteristika oder Nutzungen des Raumes. Die Leistungen der Landschaft werden demnach nicht aufgeschlüsselt und einzeln betrachtet. Sie tragen jeweils in nicht näher bestimmtem Ausmass zur Bewertung einer Landschaft bei, mit der sie assoziiert sind. Ein Vorteil dieses Ansatzes liegt darin, dass Ökosystemleistungen oft schwer abzugrenzen sind (z.B. Boyd und Banzhaf, 2007). Zudem sind alternative Raumausstattungen und Nutzungen oftmals direkter Gegenstand von Interessenabwägungen in Politikbereichen wie der Raumplanungs- und Verkehrspolitik. Die Bewertung alternativer Ausstattungen und Nutzungen des Raumes mit Landwirtschaftsflächen, Verkehrsinfrastruktur, Siedlungen oder Freizeiteinrichtungen liefert damit direkte Grundlagen für Entscheidungen über alternative Nutzungsoptionen.

Im Folgenden wird der ökonomische Ansatz in der Bewertung von Landschaft erläutert, und es wird dargelegt, welche grundlegenden Wertkategorien sich im Rahmen der ökonomischen Bewertung von Landschaft unterscheiden lassen.

² Dies entspricht dem Landschaftsbegriff des Bundesamtes für Umwelt (z.B. BAFU, 1998; BAFU, 2003; BAFU, 2011; vgl. Simmen et al., 2006: 22).

³ Ein Beispiel einer Studie, in der einzelne Nutzungen oder Leistungen explizit (als "ecosystem services") bewertet werden, ist Grêt-Regamey et al. (2008).

2.1.2 Ökonomische Werte der Landschaft

Ökonomischer Wertbegriff

Unter ökonomischen Werten werden maximale Zahlungsbereitschaften bzw. minimale Kompensationsforderungen (oder allgemeiner: Tauschwerte) in Transaktionen verstanden, in denen informierte Akteure in ihrem wohlverstandenen Eigeninteresse interagieren. Die Tauschwerte sind dabei Ausdruck von Vorlieben oder *Präferenzen* der Akteure, die jeweils annahmegemäss gewissen Gesetzmässigkeiten gehorchen. Unter diesen Annahmen können Tauschwerte von Gütern aus Entscheidungen von Akteuren auf Märkten oder auch in der Politik abgeleitet und zu aussagekräftigen gesellschaftlichen Zahlungsbereitschaften aggregiert werden. Im Rahmen von Kosten-Nutzen-Analysen lassen sich damit auch Projekte oder Politikmassnahmen beurteilen, indem die aggregierten Zahlungsbereitschaften für Projekte oder Massnahmen deren Kosten gegenübergestellt werden (z.B. Varian, 2011).

Landschaft ist in den Begriffen der Wirtschaftswissenschaft ein öffentliches Gut. Im Gegensatz zu anderen Gemeingütern oder Kollektivgütern ist es nicht möglich, Individuen von der Nutzniessung von Landschaften vollständig auszuschliessen.⁴ Als direkte Folge davon werden die Zahlungsbereitschaften für Landschaften oder für bestimmte Eigenschaften von Landschaften nicht oder nur teilweise auf Märkten geäussert und Landschaft hat keinen Marktpreis. Weiter ist das Gut Landschaft zu einem gewissen Grad "nicht-rival": Der Genuss einer Landschaft durch eine Person verunmöglicht oder vermindert nicht den Genuss der Landschaft durch eine weitere Person. Gleichzeitig gilt, dass z.B. die Pflege einer Kulturlandschaft oder der Schutz einer Naturlandschaft für eine einzige Person nicht mehr kostet als die Pflege oder der Schutz dieser Landschaft für viele Personen. Es ist auch aus diesem Grund schwierig, einer Person individuelle Kosten der Landschaftsnutzung anzulasten.

Die Eigenschaften des Gutes Landschaft haben insgesamt zur Folge, dass Eingriffe in die Landschaft normalerweise keinen Preis haben und dass niemand von sich aus bereit ist, die Kosten für den Schutz der Landschaft vor Beeinträchtigungen oder für eine erwünschte Entwicklung der Landschaft zu übernehmen. Dies gilt insbesondere auch dann, wenn die Summe der individuellen Zahlungsbereitschaften höher ist als die Kosten. Soll also eine Landschaft geschützt oder in gesellschaftlich erwünschter Form entwickelt werden, so muss eine zentrale – d. h. politische – Entscheidung über das öffentliche Gut Landschaft bzw. über die Regeln der Nutzung und Finanzierung getroffen werden. Die ökonomische Bewertung der Landschaft liefert eine Grundlage für solche Entscheidungen. Die monetäre Bewertung kann in der Politik ein Bewusstsein dafür schaffen, dass der Wert der Landschaft ebenso real ist, wie der handfeste wirtschaftliche Vorteil von Aktivitäten, die mit

⁴ Es wäre in bestimmten Fällen zwar möglich, Individuen den freien Zutritt zu einer Landschaft zu verwehren und einen "Eintrittspreis" zu verlangen. Wenn eine Landschaft Existenzwerte (s. Tabelle 2.1) aufweist, so verbleibt sie (bzw. ihre Eigenschaften) dennoch als Argument in der Nutzenfunktion der ausgeschlossenen Individuen. Die Landschaft bleibt somit ein öffentliches Gut.

Landschaftseingriffen verbunden sind (vgl. Einleitung). Darüber hinaus können ökonomische Bewertungen der Landschaft auch in formale Kosten-Nutzen-Analysen von Regeländerungen einfliessen, durch die Schutz- und Nutzungsinteressen möglichst umfassend gegeneinander abgewogen werden.

Der genaue Gegenstand der ökonomischen Bewertung von Landschaft ist jeweils ein bestimmter Landschaftszustand oder eine bestimmte Landschaftsentwicklung relativ zu einem Referenzzustand oder Referenzszenario. Es werden also nicht Werte von Landschaften "an sich" erfasst, sondern Zahlungsbereitschaften für bestimmte Alternativen zum Status quo bzw. zu einer Entwicklung, die eintreten würde, wenn nicht im Sinn der Alternative entschieden würde (s. z.B. Schmitt et al. 2005). Beispiele konkreter Bewertungsgegenstände sind etwa Verbesserungen der subjektiv empfundenen Landschaftsqualität durch extensivere landwirtschaftliche Nutzungen oder die Vermeidung von Verlusten an Landschaftsqualität durch raumplanerische Massnahmen. In Querschnittsanalysen werden anstelle von Veränderungen der Landschaft über die Zeit Unterschiede in der Landschaft über verschiedene Standorte betrachtet. Aus der Bewertung von Unterschieden in der Landschaft – etwa an verschiedenen Wohnstandorten – kann wiederum auf die Bewertung von Landschaftsentwicklungen geschlossen werden (vgl. Kapitel 2.2).

Welche Wertkategorien lassen sich unterscheiden?

Die praktischen Möglichkeiten für die Schätzung des ökonomischen Wertes der Landschaft stehen in einem engen Bezug zu den Wertkategorien, die erfasst werden sollen. Bevor einzelne Bewertungsmethoden vorgestellt werden, lohnt es sich deshalb, diese Wertkategorien näher zu betrachten (vgl. Tabelle 2.1). Die grundlegende Unterscheidung betrifft die Gebrauchswerte (*Use values*) und die Nichtgebrauchswerte oder Existenzwerte (*Non-use values*, *Existence values*).

Gebrauchswerte der Landschaft sind an eine direkte Nutzung geknüpft. Dazu zählt zum Beispiel der Wert der Landschaft für die Aussicht an einer guten Wohnlage oder für Erholungssuchende und Sportler, die sich in der Landschaft bewegen. Gebrauchswerte hinterlassen oft Spuren im Verhalten von Landschaftsnutzern, manchmal – im Fall von landschaftlich guten Wohnlagen – sogar auf Märkten. Diese Spuren im Verhalten machen sich die Bewertungsmethoden zunutze, um Zahlungsbereitschaften abzuleiten.

Nichtgebrauchs- oder *Existenzwerte* sind demgegenüber unabhängig von der Nutzung der Landschaft. Der Existenzwert einer Landschaft beruht darauf, dass Individuen *unabhängig* von einem Besuch oder einer anderen Nutzung eine Zahlungsbereitschaft dafür haben, eine Landschaft in ihrem gegenwärtigen Zustand zu erhalten – oder auch, sie in einer bestimmten Weise weiterzuentwickeln. Naturgemäss können solche nutzungsunabhängigen Zahlungsbereitschaften nicht aus dem Verhalten von Erholungssuchenden oder anhand von Immobilienpreisen in landschaftlich guten Lagen abgeleitet werden.

Tabelle 2.1: Gebrauchswerte und Existenzwerte der Landschaft

Wertkategorie	Art des Wertschätzung	Beispiele
Gebrauchswert (Use value)	Wertschätzung im Rahmen einer Nutzung	 Bevorzugung einer attraktiven lokalen Kulturlandschaft (gegenüber einer weniger attraktiven) durch Anwohner, Erholungssuchende, Touristen Wertschätzung für die Unversehrtheit einer Naturlandschaft im Himalaya im Rahmen einer Trekking-Expedition
Existenzwert (Non-use value)	Wertschätzung unabhängig von einer Nutzung	 Bevorzugung einer attraktiven lokalen Kulturlandschaft in einem bestimmten Raum (gegenüber einer weniger attraktiven) auch im sicheren Wissen, diesen Raum nie (oder nie mehr) zu sehen. Wertschätzung für die Unversehrtheit einer Naturlandschaft im Himalaya unabhängig von einem Besuch

Zuweilen werden ausserdem *Options- und Vermächtniswert*e unterschieden (z.B. Simmen et al., 2006).⁵ Optionswerte haben den Charakter von Versicherungsprämien. Sie liegen bei Unsicherheit über die zukünftige Nachfrage vor, wenn Individuen für eine Landschaft gegenwärtig keine Präferenz haben, aber einen bestimmten Zustand der Landschaft gegenüber einem andern bevorzugen, weil dieser die Möglichkeit für eine bestimmte künftige Nutzung offen lässt. Ein aktuelles Beispiel aus der Schweiz wäre eine Zahlungsbereitschaft für den Verzicht auf eine rasche bauliche Entwicklung des Flughafengeländes in Dübendorf und damit für die Erhaltung der Option, das Gelände in der Zukunft anderweitig zu nutzen (oder aber sich später gleichwohl noch für eine Überbauung entscheiden zu können)⁶. Vermächtniswerte bezeichnen Zahlungsbereitschaften für einen bevorzugten Zustand der Landschaft im Interesse von zukünftigen Generationen.

Diese zwei zusätzlichen Wertkategorien sind für die praktische Messung von Werten der Landschaft allerdings wenig relevant, da sie von der Erfassung von Gebrauchs- und Existenzwerten in den meisten Fällen ohnehin kaum separiert werden können (und müssen) und zudem schwierig zu erheben sind.

Der ökonomische Gesamtwert der Landschaft (*Total economic value*) ergibt sich aus der Summe aller Gebrauchswerte und Existenzwerte sowie allfälliger Options- und Vermächtniswerte (Peace und Moran, 1994).

⁵ Die Taxonomie der Wertkategorien ist in der Literatur nicht einheitlich. Z.B. unterscheiden Frey und Blöchliger (1991) oder Tietenberg und Lewis (2009) Erlebniswerte, Optionswerte und Existenzwerte.

⁶ In der Literatur wird das Konzept des Optionswerts nicht einheitlich verwendet, und oftmals werden vorschnell positive Optionswerte postuliert (vgl. Cory und Colby Saliba, 1987). Zu beachten ist im vorliegenden Beispiel, dass die Überbauung des Flughafengeländes – etwa mit einem Innovationspark – *andere, neue* Optionen entstehen lassen kann, die ohne die Überbauung nicht entstanden wären. Ein positiver Optionswert setzt also eine Asymmetrie voraus: Die Optionen bei Nichtüberbauung müssen wertvoller sein als die neu entstehenden Optionen bei Überbauung.

2.1.3 Ansätze zur Erfassung ökonomischer Werte der Landschaft

Übersicht

Wie bei den Wertkategorien sind auch unterschiedliche Klassifizierungen der Bewertungsmethoden gebräuchlich. Die Klassifizierung in Tabelle 2.2 lehnt sich an Pommerehne (1987) an.⁷ Grundsätzlich kann unterschieden werden zwischen Ansätzen, die Bewertungen aus beobachteten Entscheidungen ableiten (offenbarte Präferenzen) und Ansätzen, die auf Entscheidungen in Befragungen beruhen (geäusserte Präferenzen). Weiter kann unterschieden werden zwischen Ansätzen, die Präferenzen auf Märkten oder in marktähnlichen Situationen (wie bei der Wahl eines Ausflugsziels) untersuchen und Ansätzen, die Präferenzen im politischen Bereich erfassen.

Tabelle 2.2: Ansätze für die Erfassung ökonomischer Werte der Landschaft

	Grundlage der Methode: Beobachtete Entscheidungen	Grundlage der Methode: Befragungen
Präferenzen auf Märkten oder in markt- ähnlichen Situ- ationen	 Hedonic Pricing-Methode (Marktpreismethode) Ersatz-, Reparatur- und Vermeidungskostenansatz Reisekostenansatz Produktionsfunktionen Wanderungsanalyse Experimente 	- Befragungen zur Zahlungsbereitschaft (Contingent Valuation, Choice Experiments)
Präferenzen für Politik- Alternativen	Analyse von VolksabstimmungenMedianwählermodell	 Befragungen zur Zahlungsbereitschaft (Contingent Valuation, Choice Experiments) Befragungen zu präferierten öffentlichen Budgets

Bewertung von Landschaft aufgrund von beobachteten Entscheidungen

Präferenzen auf *Märkten oder in marktähnlichen Situationen* lassen sich mithilfe folgender Methoden durch beobachtete Entscheidungen erfassen:

- Mit der Hedonic-Pricing-Methode (Marktpreismethode) können Landschaftszustände oder -ausstattungen bewertet werden, die sich in Marktpreisen widerspiegeln. Dies können Immobilienpreise oder Mietpreise sein, oder in selteneren Fällen auch Löhne auf Arbeitsmärkten. Dieser Ansatz wird im Kapitel 2.2 ausführlicher dargestellt.
- Bei den Vermeidungs-, Ersatz- und Reparaturkosten-Ansätzen wird der Bezeichnung entsprechend untersucht, welche Ausgaben getätigt werden, um Landschaftsverluste zu vermeiden bzw. Landschaften zu ersetzen oder wiederherzustellen. Die Grundlage für diesen Ansatz können nicht nur Entscheide auf Märkten sein, sondern auch politi-

⁷ Die Diskussion lehnt sich an die umfassende Arbeit von Pommerehne (1987) an, da diese neben den gebräuchlichsten Ansätzen auch Ansätze aufführt, die für die institutionellen Verhältnisse der Schweiz (ausgeprägter Föderalismus und direktdemokratische Institutionen) besonders relevant sind.

sche Entscheidungen, die Ausdruck von individuellen Präferenzen sind. Ein Beispiel wären Entscheide in einer Volksabstimmung über eine (kostspieligere) Tunnelvariante einer Schnellstrasse durch ein Erholungsgebiet oder über eine (entschädigungspflichtige) Umzonung einer Bauparzelle. Manchmal werden – in Abweichung vom ökonomischen Wertbegriff – auch hypothetische Reparatur- oder Ersatzkosten als Grundlage für die Bewertung herangezogen, also unabhängig davon, ob tatsächlich eine Reparatur oder ein Ersatz stattfindet.

- Beim Reisekostenansatz werden anhand von Reisekosten und Besucherfrequenzen Nachfragefunktionen für den Besuch von Landschaften geschätzt. Aus den Nachfragekurven für verschiedene Landschaften oder Landschaftszustände werden anhand der Konsumentenrenten Landschaftsbewertungen abgeleitet. Zuweilen wird unter dem Begriff auch eine Bewertung des Landschaftsbesuchs selbst durchgeführt, was einfacher zu bewerkstelligen ist, aber nicht mit Landschaftsbewertung gleichgesetzt werden kann.
- Auch anhand von Produktionsfunktionen von Unternehmen und Branchen, welche Landschaft als Input ihrer Produktion einsetzen, können Bewertungen der Landschaft abgeleitet werden. Bewertungen der Landschaft widerspiegeln sich etwa in Veränderungen von Wertschöpfung und Gewinn in der Tourismusbranche. Allerdings muss eine solche Analyse viele potenzielle Störfaktoren kontrollieren.
- Mit Migrationsmodellen kann untersucht werden, wie sich Landschaftsunterschiede auch im Vergleich zu anderen Faktoren wie Steuerlasten – auf den Zu- und Wegzug von Personen auswirken. Der Ansatz beruht darauf, dass Veränderungen von Erwerbsmöglichkeiten und öffentlichen Gütern zu Anpassungsvorgängen in Richtung neuer Gleichgewichte führen.
- Grundsätzlich lassen sich auch reale Entscheidungsexperimente durchführen, in denen Landschaften nach einer experimentellen Anordnung verändert, unterschiedlich gestaltet oder gepflegt und anschliessend z. B. die Zu- und Wegzüge oder Besucherströme in diesen Landschaften analysiert werden.

Im *politischen Bereich* können Entscheidungen in Volksabstimmungen – insbesondere über Finanzierungsvorlagen – analysiert werden, und es können verschiedene Varianten des Medianwählermodells angewendet werden.

• Die Analyse von Volksabstimmungen ermöglicht ökonomische Bewertungen, wenn in einer Vorlage möglichst klar definierte erwartete Kosten ebensolchen Auswirkungen auf die Landschaft oder die Landschaftsentwicklung gegenüberstehen. Dabei ist es wichtig, dass nicht nur die Gesamtkosten, sondern auch die Finanzierung und damit die ungefähre Verteilung der Kosten bekannt sind. In diesem Fall können auf Ebene der Individuen aus erwarteten Kosten und Stimmentscheid Ober- bzw. Untergrenzen der Zahlungsbereitschaft abgeleitet werden. Der Ansatz setzt dabei nicht voraus, dass dieses Kosten-Nutzenkalkül strengen Rationalitätsannahmen folgt, da Wähler (wie Marktteilnehmer) oft nicht im engen Sinn rational, sondern anhand von vereinfachenden Heuristiken erfolgreich im Sinn ihrer wohlverstandenen Interessen entscheiden.

Im Medianwählermodell werden (relativ starke) Annahmen über den politischen Prozess getroffen, die es erlauben, öffentliche Ausgabenniveaus und Regulierungen als Ausdruck der Nachfrage des Medianwählers nach Ausgaben für öffentliche Güter – in diesem Fall Landschaftspflege oder Landschaftsschutz – zu interpretieren.

Bewertung der Landschaft anhand von Befragungen

Die folgenden Methoden ermöglichen die Erfassung von Präferenzen auf Grundlage von Befragungen:

- In Befragungen zur Zahlungsbereitschaft (Contingent Valuation-Methode) werden Personen direkt nach ihrer Zahlungsbereitschaft für Landschaftsveränderungen befragt. Gegenstand der Bewertung ist idealerweise ein Politikvorschlag mit klar definierter Finanzierung, analog zur Situation in einer Volksabstimmung. Die Bewertungsfrage wird mit Vorteil dichotom gestellt, d.h. mit den Optionen Annahme oder Ablehnung der Vorlage bei gegebenen individuellen Kosten, da eine offene Frage nach der Zahlungsbereitschaft zu strategischen Antworten einlädt.
- Eine Spielart der Contingent Valuation sind attributbasierte Befragungen, die heute meistens als Choice-Experiment bezeichnet werden. Hier werden zuerst zahlreiche hypothetische Politik-Alternativen generiert, indem die relevanten (zu bewertenden) Politik-Merkmale, inkl. Politik-Kosten, nach einem experimentellen Design variiert und kombiniert werden. Anschliessend werden die Politik-Alternativen zusammen mit der Status-Quo-Politik zu Choice Sets zusammengefügt, und jede/r Befragungsteilnehmer/in beantwortet eine ganze Reihe solcher Choice Sets. Aus den Entscheiden zwischen den Politik-Alternativen werden sodann Zahlungsbereitschaften für einzelne Politik-Merkmale sowie für ganze Politik-Alternativen abgeleitet.
- Eine Erweiterung der Contingent Valuation-Methode auf psychologischer und politikwissenschaftlicher Grundlage sind Befragungen, in denen nicht nur Politik-Alternativen vorgelegt, sondern als Entscheidungshilfen zusätzliche Information zu Expertenmeinungen oder Politiker-Empfehlungen angeboten werden. Damit wird ein Informationskontext angestrebt, der ähnlich wie in politischen Entscheidungen auch einfache heuristische Antwortstrategien unterstützt.
- Manchmal werden Ansätze, die in Tabelle 2.2 im Quadranten links oben eingetragen sind, auch im Befragungsmodus durchgeführt. So können Individuen analog zum Ansatz der Hedonic-Pricing-Methode auch befragt werden, ob sie bereit wären, für eine Wohnung in besserer Landschaftslage (z.B. mit Grünlandanstoss) SFR x mehr zu bezahlen.

2.1.4 Vor- und Nachteile verschiedener Ansätze bei der Bewertung von Landschaft

Eine Übersicht über spezifische Vor- und Nachteile der Bewertungsansätze gibt die Tabelle 2.3. Zusätzlich zu diesen Vor- und Nachteilen lassen sich auch einige übergeordnete Bemerkungen zu Stärken und Schwächen der verschiedenen Ansätze anführen:

- Ansätze, die von beobachteten Entscheidungen auf Märkten oder in marktähnlichen Situationen ausgehen (vgl. Tab. 2.2) können jeweils nur Teile des Gesamtwerts einer Landschaftsveränderung erfassen, da sie keinerlei Existenzwerte und nur einen Teil der Gebrauchswerte erfassen.
- Entgegen einer verbreiteten Annahme sind offenbarte Präferenzen (Bewertungen aufgrund beobachteter Entscheidungen) nicht grundsätzlich zuverlässiger als geäusserte Präferenzen (z.B. Manski, 2000). Je nach Gegenstand und Kontext können Entscheidungen in Befragungen valide Wertschätzungen liefern und beobachtete Entscheidungen wenig valide. Als besonders unzuverlässig erweisen sich jedoch geäusserte Präferenzen in konventionellen Contingent Valuation-Befragungen und Choice Experiments in denen die Befragten auf keinerlei Entscheidungshilfen (wie z. B. Expertenmeinungen) zurückgreifen können, sondern "aus dem hohlen Bauch" antworten (z.B. Ariely et al., 2003; Sunstein und Thaler, 2003).
- Veränderungen, die überall in einem betrachteten Raum parallel ablaufen, wie etwa Landschaftsveränderungen aufgrund agrartechnologischer Entwicklungen, können mit verschiedenen Methoden, die auf räumlicher Variation beruhen, nicht erfasst werden. Zu diesen Methoden gehören die Hedonic-Pricing-Methode, Migrationsmodelle, Medianwählermodelle und die Reisekosten-Methode.

Tabelle 2.3: Vor- und Nachteile der Bewertungsansätze und Anwendungsbeispiele aus der Schweiz

Bewertungsan- satz	Vor- (+) und Nachteile (-)	Anwendungsbereich	Beispiele aus der Landschaftsbewer- tung in der Schweiz
Hedonic-Pricing- Methode	+ gut informierte Entscheidungen- begrenzter Anwendungsbereich- setzt lokale Variation voraus	Landschaften in Sied- lungsnähe	Baranzini und Schaerer, 2011 (s. Kapitel 2.2)
Vermeidungs-, Ersatz-, Repara- turkosten	+ gut informierte Entscheidungen - begrenzter Anwendungsbereich	Landschaften entlang von Verkehrsachsen (Tunnelbauten)	Schläpfer, 2012 (kombiniert mit polit. Entscheidungen)
Reisekosten	 gut informierte Entscheidungen begrenzter Anwendungsbereich Bewertung von Landschaft schwierig Berücksichtigung von Substituten schwierig Bewertung der Zeitkosten schwierig 	Landschaften an Aus- flugszielen (bisher selten konse- quent angewendet)	Ott und Baur, 2005
Migrations- modelle	 + gut informierte Entscheidungen - begrenzter Anwendungsbereich - Ableitungen von Zahlungsbereitschaften schwierig 	Landschaften in Sied- lungsnähe (lokal bis regional)	Waltert et al., 2011
Experimente	+ gut informierte Entscheidungen- begrenzter Anwendungsbereich- schwer durchführbar	Landschaften in Erho- lungsgebieten (bisher nicht angewendet)	-
Analyse von Volksabstim- mungen	+ auch Existenzwerte+ gut informierte Entscheidungen- begrenzter Anwendungsbereich	Finanzierung von Landschaftsschutz- Massnahmen	Schläpfer und Hanley, 2003
Medianwähler- ansatz	+ starke Annahmen bzgl. politischem Prozess- begrenzter Anwendungsbereich	Öffentliche Finanzie- rung von Landschafts- schutz	Schläpfer, 2007
Contingent Valuation (politischer Bereich)	 + auch Existenzwerte + unbegrenzter Anwendungsbereich (im Prinzip) - Unsicherheit über Projekt - Unsichere Präferenzen - strategische Antworten 	Bewertung von Land- schaftsveränderungen	Roschewitz, 1999
Contingent Valuation mit politischen Entscheidungs- hilfen	 + auch Existenzwerte + unbegrenzter Anwendungsbereich (im Prinzip) - s. Contingent Valuation (in reduziertem Mass) 	Bewertung von Land- schaftsveränderungen	Schmitt et al., 2005
Contingent valuation (marktlicher Bereich)	 relativ gut informierte Entscheidungen bei marktgängigen Gütern begrenzter Anwendungsbereich nur Gebrauchswerte 	Landschaften in Sied- lungsnähe, Land- schaften an Ausflugs- zielen	-

2.2 Die Hedonic Pricing Methode

2.2.1 Idee

Die Hedonic Pricing Methode ("Methode der hedonischen Preise"; Rosen, 1974) ist eine ökonomische Methode, welche in der umweltökonomischen Literatur zur Bewertung von nichtmarktlichen Gütern wie Luftqualität, Lärmbelastung oder auch Landschaft herangezogen wird.⁸ Die Grundidee ist dabei, dass sich der Preis eines Gutes (z.B. "Wohnung") aus den Werten der verschiedenen Charakteristika (z.B. Wohnfläche, Erreichbarkeit, Aussicht) dieses Gutes zusammensetzt. Die Werte der einzelnen Attribute (Eigenschaften der Wohnung und der Wohnungsumgebung) können dann mittels statistischer Schätzverfahren (Regressionsanalyse) bestimmt werden. Die Zahlungsbereitschaften für die verschiedenen Attribute werden folglich indirekt (in Abgrenzung zur direkten Befragung) aus beobachtbaren Entscheidungen auf Märkten hergeleitet (vgl. Tabelle 2.2.). Die Hedonic Pricing Methode wurde in zahlreichen internationalen Studien zur Quantifizierung des ökonomischen Werts von Landschaftsattributen verwendet (z. B. Cho et al., 2008, Geoghegan et al., 1997, Tyrväinen und Miettinen, 2000).⁹

Die Hedonic Pricing Methode geht von einigen Grundannahmen aus. In Bezug auf ihre Anwendung auf den Wohnungs- oder Liegenschaftsmarkt stehen dabei die folgenden Annahmen im Zentrum: (1) Haushalte und Firmen sind mobil und wählen ihren Standort so, dass dabei ihr Nutzen beziehungsweise ihr Gewinn maximiert wird. (2) Auf dem Wohnungsmarkt herrscht vollständiger Wettbewerb, d.h. es gibt viele kleine Anbieter und Nachfrager, von denen niemand isoliert den Marktpreis beeinflussen kann (keine Marktmacht). (3) Der Wohnungsmarkt befindet sich im Gleichgewicht. (4) Anbieter und Nachfrager einer Wohnung sind vollständig über deren Eigenschaften informiert.

Das Grundgleichung des Hedonic Pricing Modells lässt sich wie folgt darstellen:

(1)
$$p_i = f(s_i, n_i, e_i)$$

Dabei entspricht p_i dem Marktpreis der Liegenschaft i, \mathbf{s}_i ist ein Vektor bestehend aus den strukturellen Eigenschaften der Liegenschaft (Alter, Grösse,...), \mathbf{n}_i ist ein Vektor bestehend aus den Nachbarschaftsattributen (Erreichbarkeit, Steuerbelastung,...) und \mathbf{e}_i entspricht Umweltattributen (Landschaft, Klima,...). Mithilfe einer Regressionsanalyse kann diese Gleichung schliesslich anhand eines Datensatzes, welcher die entsprechenden Informationen zur Liegenschaft und ihrer Umgebung enthält, geschätzt werden. Durch Regressionsanalyse werden die marginalen Preise der einzelnen Eigenschaften der Liegenschaft und ihrer Umgebung aus dem Gesamtpreis der Liegenschaften extrahiert. Diese marginalen Preise entsprechen (bei geeigneter Transformation) den geschätzten Koeffizienten der einzelnen Variablen. Die Koeffizienten beziffern folglich den Preis einer zusätzlichen Ein-

⁸ Der Anwendungsbereich der Hedonic Pricing Methode beschränkt sich nicht auf die Bewertung von öffentlichen Gütern. Die Methode eignet sich auch zur Bewertung von heterogenen privaten Gütern (z.B. Gebrauchtwagen) und zur Konstruktion von Preisindizes, welche qualitative Veränderungen miteinbeziehen.

⁹ Eine Übersicht und eine kritische Diskussion solcher Studien bietet Waltert und Schläpfer (2010).

heit der entsprechenden Variablen (z.B. zusätzliches Zimmer oder zusätzlicher Quadratmeter Grünfläche).

2.2.2 Eignung in Bezug auf die vorliegenden Forschungsfragen

Gegenstand der vorliegenden Untersuchung ist der Einfluss von einzelnen Landschaftsvariablen und möglichen Landschaftsveränderungen auf Wohnungs(miet-)preise. Werte der Landschaftsqualität, die sich nicht auf Immobilien- oder Bodenmärkten äussern, sind aufgrund der gewählten Fragestellung nicht Gegenstand der Untersuchung. Die Hedonic-Pricing-Methode wurde genau dafür entwickelt, die Bewertung von Umgebungsvariablen anhand von Wohnungs(miet-)preise zu erfassen. Aus räumlichen Zusammenhängen zwischen Wohnungspreisen und Merkmalen der umgebenden Landschaft lassen sich monetäre Bewertungen der Landschaft ableiten. Die Methode ist daher gewissermassen zugeschnitten auf die Beantwortung der Forschungsfragen. Ausserdem kann die Datenlage für die Anwendung der Methode in der Schweiz als hervorragend bezeichnet werden, insbesondere was die Qualität der Landschaftsvariablen betrifft (z.B. Arealstatistik, Landschaftsund Biotopinventare, topographisches Landesmodell TLM).

Als Alternative oder Ergänzung des Ansatzes wäre am ehesten eine Befragung zur Zahlungsbereitschaft für Wohnungen in unterschiedlichen landschaftlichen Umgebungen von Interesse (z.B. Earnhart 2002). Der Vorteil dieses Ansatzes besteht darin, dass die Bewertungen von einzelnen Landschaftsmerkmalen, die in der Natur oftmals stark korreliert sind, im Rahmen einer geeigneten Befragung isoliert werden könnten (vgl. folgender Kapitel). So liesse sich etwa die Bewertung von landschaftlichen (d. h. visuellen oder ästhetischen) Auswirkungen des Strassenverkehrs von der Bewertung von Lärm- und Trennwirkungen trennen, was anhand der Hedonic-Pricing-Methode kaum möglich ist. Ein gewichtiger Nachteil dieser Befragungsmethode sind allerdings – neben höheren Kosten – weniger gut informierte Entscheidungen. Fragen nach der (hypothetischen) Zahlungsbereitschaft für eine schönere Aussicht oder für ein näher gelegenes Naherholungsgebiet stellen relativ hohe kognitive Anforderungen an die Befragten. Gleichzeitig besteht wenig Anreiz für eine ernsthafte Auseinandersetzung mit der gestellten Bewertungsfrage, da die Antworten für die Teilnehmer keine Konsequenzen haben.

2.2.3 Grenzen der Methode

Im Rahmen einer nachhaltigen Ausrichtung von Politiken, die Landschaften und Landschaftsleistungen tangieren (vgl. Kapitel 1.1), sind neben den Gebrauchswerten, die sich auf Immobilienpreise auswirken, auch Gebrauchswerte, die sich *nicht* auf Immobilienpreise auswirken sowie Existenzwerte relevant (Tabelle 2.4). Diese Wertkategorien werden mit der Hedonic-Pricing-Methode nicht erfasst. Dazu gehören etwa Bewertungen von ländlichen Landschaften durch entfernt wohnende städtische Bevölkerungen (auch unabhängig von einer touristischen Nutzung), Bewertungen von Landschaften durch Durchreisende entlang von Verkehrsachsen oder Bewertungen der Landschaft durch Tagesausflügler und

andere Gruppen von Touristen. Ebenfalls nicht oder nur teilweise erfasst werden Bewertungen von Stadt-Landschaften durch Pendler aus der Agglomeration oder Bewohner anderer Stadtquartiere. Anhand der Hedonic-Pricing-Methode allein kann somit noch wenig über den ökonomischen (Gesamt-)wert einer Landschaftsveränderung ausgesagt werden (vgl. 2.1.2). Für umfassende Kosten-Nutzen Überlegungen müssten die weiteren Werte der Landschaft separat und zusätzlich geschätzt werden (vgl. 8.2.3).

Tabelle 2.4: In Hedonic Pricing-Modellen erfasste und nicht erfasste Bewertungen

Bewertete Stand- ortmerkmale	Relevante Variablengruppen in Hedonic-Pricing-Modellen	Erfasste Werte	Nicht erfasste Werte
Merkmale der Landschaft oder des Raumes	-Landnutzungskategorien -Kulturelle Objekte -Immissionen -Erschliessung der Landschaft für Erholungssuchende -Klimavariablen	Nutzung der Landschaft als Wohnumfeld durch Anwohner (soweit lokale Variation der Variablen vor- handen ist)	-Nutzung durch Tourismus -Nutzung als (u.a. visuelle) Umwelt des Arbeitsplatzes -Nutzung als (u.a visuelle) Umwelt der Verkehrsteil- nehmer (Bahn und Strasse) -Existenzwerte (s. Tab. 2.1) Für Wohnumfeld relevante Landschaftsaspekte ohne lokale Variation ^a
Weitere Standort- merkmale (ohne Landschaftsbezug)	-Erreichbarkeit von Zentren und Dienstleistungen -Demographische Merkmale -Steuerbelastung	Bewertung durch Anwohner	Bewertung durch nicht lokale Bevölkerung

^a Grossflächige Veränderungen der Landschaftsqualität, z.B. durch Agrarpolitik oder Gewässerschutzgesetzgebung auf nationaler Ebene.

Neben dem begrenzten Anwendungsbereich unterliegt die Hedonic-Pricing-Methode auch einigen eher technischen Grenzen. Das wichtigste Problem ist dabei die starke Korrelation zwischen interessierenden Landschaftsmerkmalen und zwischen Landschaftsmerkmalen und weiteren Attributen im Raum. Beispielsweise ist der Anteil offener Landschaft in der Umgebung eines Wohnstandorts typischerweise korreliert mit der Qualität der Verkehrsanbindung. Es ist in solchen Fällen schwierig, Zahlungsbereitschaften für einzelne Landschaftsmerkmale und andere Standortmerkmale in statistischen Modellen zu identifizieren und zu isolieren. Mit diesem Problem verwandt ist die Gefahr "vergessener Variablen". Falls wichtige Variablen – Landschaftsvariablen oder andere – in einem Hedonic-Pricing-Modell fehlen, so resultieren verzerrte Schätzungen, weil Variablen, die mit den vergessenen Variablen korreliert sind, die Effekte der vergessenen Variablen "übernehmen". Die Effekte werden also bei der Interpretation der Resultate den falschen Variablen zugeordnet.

Darüber hinaus hat die Methode weitere potenzielle Probleme, die im Einzelfall beurteilt und gelöst oder zumindest minimiert werden müssen (z.B. Freeman, 2003): Zahlungsbereitschaften für Wohnstandorte können möglicherweise nicht unabhängig von Nachfragefunktionen für andere Güter geschätzt werden (Annahme der Separierbarkeit von Nutzenfunktionen), Effekte der Landschaft auf Wohnungspreise können durch Effekte auf Löhne oder fiskalische Variablen überlagert werden, Akteure auf Wohnungsmärkten sind nicht immer ausreichend informiert (vgl. Kapitel 2.2.1), und hohe Transaktionskosten und Regu-

lierungen des Marktes haben zur Folge, dass die Preise nur bedingt die Präferenzen der Individuen widerspiegeln. Probleme statistischer Art betreffen die Stichprobengrösse, Verzerrungen durch die Wahl der Stichprobe sowie die Wahl der funktionellen Form des geschätzten Modells und räumliche Spillover-Effekte.

Dem Problem der Korrelation zwischen Variablen wird in der vorliegenden Studie begegnet, indem aggregierte (und daher weniger korrelierte) Landschaftsvariablen verwendet oder Variablen in Modellen ausgeschlossen werden. Dem Problem der vergessenen Variablen wird vorgebeugt, indem ein sehr umfangreicher Datensatz von erklärenden Variablen aufbereitet wird, welcher auch zahlreiche Einflussfaktoren ausserhalb des Bereichs Landschaft berücksichtigt. Ausserdem werden Einflussfaktoren auf der Ebene Gemeinde separat berücksichtigt. Weiteren statistischen Herausforderungen wird dadurch begegnet, dass die Robustheit der Resultate im Rahmen verschiedener Modell-Spezifikationen überprüft wird.¹⁰

-

¹⁰ In Kapitel 8 werden die Resultate dieser Studie im Lichte der genannten Grenzen und Herausforderungen detaillierter diskutiert.

3 Auswahl der Daten für die empirische Untersuchung

3.1 Übersicht

Als Basis für die empirische Untersuchung wurde eine umfangreiche Datenbank aufgebaut. Diese Datenbank enthält Informationen zu rund 170'000 Wohnungen sowie zur näheren Wohnumgebung und den dazugehörigen Wohngemeinden. Das Ziel besteht darin, die Datenbasis für eine möglichst vollständige Beschreibung derjenigen Faktoren zu liefern, welche die Wohnungspreise beeinflussen. Da das Hauptaugenmerk der empirischen Studie auf der Erfassung der Werte von Landschaftsattributen liegt, wird insbesondere versucht, die Bodenbedeckung und Bodennutzung im Wohnungsumfeld präzise und umfassend abzubilden. Berücksichtigt werden aber auch Faktoren wie visuelle und akustische Immissionen, Erreichbarkeit und Infrastruktur. Dadurch sollen bei den hedonischen Modellen, welche mithilfe dieser Datenbasis geschätzt werden, Verzerrungen durch "vergessene Variablen" (vgl. Kapitel 2.2.3) soweit wie möglich verhindert werden.

Im Folgenden werden die den Analysen zugrunde liegenden Daten detailliert beschrieben. Wichtig ist dabei, dass die genaue Auswahl der Variablen erst im Modellierungsprozess (s. Kapitel 4 und 5) bestimmt wird. Dadurch soll erreicht werden, dass die Modelle einen möglichst hohen Erklärungsgrad aufweisen und Probleme durch untereinander korrelierte Variablen (vgl. Kapitel 2.2.3) möglichst vermieden werden.

3.2 Immobiliendaten

3.2.1 Ausgangslage

Als zu erklärende (abhängige) Variable kommen in hedonischen Modellen der Umwelt- und Landschaftsbewertung grundsätzlich drei Varianten¹¹ in Frage: Erstens, Preise von unbebautem Bauland (z. B. Kubli et al., 2008), zweitens, Preise von Liegenschaften oder Wohnungen (z. B. Stadelmann, 2010) und drittens, Mieten von Mietwohnungen (z. B. Schaerer et al., 2007; Schulz und Waltert, 2011; Leupp et al., 2011). Während die drei Varianten aus theoretischer Sicht alle über gewisse Vor- und Nachteile verfügen, ist in der Praxis sehr oft die Verfügbarkeit der wichtigste Faktor für die Datenentscheidung.

B,S,S. (2012) schlagen vor, für eine hedonische Bewertung von Landschaftsattributen Baulandpreise zu verwenden. Sie argumentieren, dass der Baulandpreis "ein beinahe rei-

¹¹ Eine weitere Variante, welche sich allerdings nicht zur Beantwortung der hier vorliegenden Fragestellung eignet, ist der Preis von Agrarland (z.B. Bastian et al., 2002). Ausserdem sind Umweltbewertungsanalysen grundsätzlich auch anhand von Lohn- anstelle von Land- oder Immobilienpreisen möglich (z.B. Hoehn et al.,1987), meist sind aber die erforderlichen Lohndaten und Kontrollvariablen nicht oder nur auf einer aggregierten Ebene verfügbar.

nes Standortmass" (S. 38) darstellt, welches von weniger Faktoren beeinflusst wird als Mieten oder Liegenschaftspreise. Tatsächlich ist das Gut "Bauland" im Vergleich zum Gut "Wohnung" homogener und der Baulandpreis wird von einer geringeren Anzahl Faktoren beeinflusst als der Wohnungspreis oder die Wohnungsmiete. Trotzdem spricht im vorliegenden Kontext einiges gegen die Baulandpreise: Erstens dürfte bei den Baulandpreisen die Erwartungen über die zukünftige Marktentwicklung eine wichtige Rolle spielen (s. oben). Zweitens sind diese nur für wenige Gebiete (z.B. Kanton Zürich und Kanton Basel-Landschaft) verfügbar, die Anzahl Beobachtungen ist ausserdem relativ klein (Kubli et al., 2008: 7'000 Beobachtungen). Drittens erschweren es die kantonal und kommunal sehr unterschiedlichen Zonen- und Bauvorschriften, den Einfluss dieser Regelungen durch entsprechende Kontrollvariablen zu separieren.

Modelle mit *Markt- oder Angebotspreisen von Liegenschaften oder Wohnungen* sind in der internationalen Literatur mit Abstand am häufigsten zu beobachten. Dies liegt vor allem daran, dass für Liegenschaftstransaktionen in vielen Ländern die Datenlage am besten ist und der Mietwohnungsmarkt weniger bedeutend ist als in der Schweiz. Weiter sind Märkte für Eigentümerwohnungen oft weniger stark reguliert als Mietmärkte, die Marktpreise widerspiegeln folglich Angebot und Nachfrage. In der Praxis wird jedoch aufgrund fehlender Transaktionsdaten gelegentlich auf Angebotspreise (inserierte Preise) ausgewichen.

In der Schweiz mit ihrem hohen Mieteranteil von ca. 65 Prozent¹² (VZ 2000) wird für hedonische Analysen meist auf *Mietwohnungsdaten* zurückgegriffen. Der Markt weist sowohl in urbanen als auch in ländlichen Gebieten eine hohe Liquidität auf und die Anzahl verfügbarer Beobachtungen ist hoch. Doch auch aus theoretischer Sicht spricht einiges dafür, *Mietpreise* zu verwenden. Kürzlich veröffentlichte Studien (Banzhaf und Farooque, 2012; Winters, 2012) zeigen, dass diese die aktuellen Marktverhältnisse gut reflektieren, während bei der Bildung der Liegenschaftspreise (und wohl auch Baulandpreise) die Erwartungen über zukünftige Veränderungen des Ertrags eine wichtige Rolle spielen. Gleichzeitig sind die mit Mietwohnungsdaten ermittelten impliziten Preise von Umweltattributen stabiler über die Zeit, da Wohnungsmieten weniger stark auf eine Überhitzung der Märkte (Blasenbildung) reagieren. Ein Nachteil von Mietwohnungsdaten ist das oftmals hohe Regulierungsniveau der Mietmärkte. In der Schweiz gilt dies insbesondere für die Bestandesmieten, welche an einen Referenzzinssatz gebunden sind. Werden nur Neuvermietungen betrachtet, spielen die Marktkräfte in der Schweiz aber vergleichsweise stark.

Zusammenfassend lässt es sich festhalten, dass keine der drei Varianten generell zu bevorzugen ist. Die Entscheidung für eine Variante sollte von der der jeweiligen Analyse zu Grunde liegenden Fragestellung und von den lokalen Boden- und Immobilienmarktverhältnissen abhängig gemacht werden. Das gewichtigste Kriterium ist in der Praxis jedoch oft die Datenverfügbarkeit.

26/125

-

¹² In urbanen Kantonen wie Zürich (75%), Basel-Stadt (87%) oder Genf (84%) liegt der Anteil der Mietwohnungen noch höher. Selbst in den Kantonen mit dem höchsten Anteil an selbstbewohntem Wohneigentum spielt der Mietmarkt noch eine wesentliche Rolle (Wallis: 39%, Appenzell-Innerrhoden: 42%).

3.2.2 Datenbeschreibung

Während grundsätzlich also auch die Verwendung von Bodenpreisen oder Liegenschaftspreisen denkbar wäre, werden in der vorliegenden Studie aus oben genannten Gründen in der empirischen Analyse Mietwohnungsdaten verwendet. Die Basis für die Schätzung des hedonischen Modells bietet eine Datenbank mit ca. 170'000 Mietwohnungen, welche im Zeitraum 2001-2007 auf dem Immobilienportal homegate.ch angeboten wurden. Der Datensatz wurde von der Zürcher Kantonalbank ZKB zur Verfügung gestellt. Er enthält nebst den Variablen Netto- und Bruttomietzins (erklärte Variable im hedonischen Modell) auch Angaben zu den strukturellen Merkmalen der Wohnung (z.B. Baujahr, Anz. Zimmer, Wohnfläche, Etage). Die für die Modellierung relevanten Variablen zu den Preisen und strukturellen Eigenschaften der Wohnungen sind der Tabelle 3.1 zu entnehmen.

Tabelle 3.1: Strukturelle Eigenschaften der Wohnungen

Indikator	Operationalisierung (Variable)	Räumliche Definition Variable	Einheit	Erhebung
W1: Mietpreis brutto	Bruttomietpreis (inkl. Nebenkosten)	Wohnung	CHF pro Monat	Homegate/ZKB
W2: Mietpreis nettoa	Nettomietpreis (exkl. Nebenkosten)	Wohnung	CHF pro Monat	Homegate/ZKB
W3: Stockwerke	Stockwerk der Wohnung	Wohnung	Anzahl	Homegate/ZKB
W4: Lift ^a	Liegenschaft mit Lift (ja/nein)	Wohnung	0/1	Homegate/ZKB
W5: Wohnfläche	Wohnfläche in Quadratmeter	Wohnung	km²	Homegate/ZKB
W6: Anz. Zimmer	Anzahl Zimmer	Wohnung	Anzahl	Homegate/ZKB
W7: Balkona	Wohnung mit Balkon (ja/nein)	Wohnung	0/1	Homegate/ZKB
W8: Parkplatza	Wohnung mit Parkplatz (ja/nein)	Wohnung	0/1	Homegate/ZKB
W9: Garagea	Wohnung mit Garage (ja/nein)	Wohnung	0/1	Homegate/ZKB
W10: Wohnungstyp	Wohnungstyp: Etagenwohnung, Maiso- nette, Attika, Dach, Studio, Einzelzim- mer, möbelierte Wohnung, Terrassen- wohnung, Einlegerwohnung, Loft, sons- tige Wohnung	Wohnung	Kategorie [0, 10]	Homegate/ZKB
W11: Baujahr	Baujahr der Liegenschaft	Wohnung	Jahr	Homegate/ZKB
W12: Angebotsjahr	Jahr zum Zeitpunkt des Angebots	Wohnung	Jahr	Homegate/ZKB

^a Diese Variablen sind nicht für alle Wohnungen verfügbar, daher werden sie in der empirischen Analyse ev. nicht oder nur teilweise berücksichtigt.

Ebenfalls in der Wohnungsdatenbank enthalten sind die genauen Adressen der einzelnen zur Neuvermietung ausgeschriebenen Wohnungen. Diese Information ermöglicht eine Georeferenzierung der Daten, d.h. mittels der Adressen können für die einzelnen Wohnungen die entsprechenden geografischen Koordinaten ermittelt werden. Nun lassen sich mittels GIS-Software Landschaftsvariablen, welche ebenfalls georeferenziert sind, mit den Standorten der Liegenschaften verschneiden.

Die 170'000 angebotenen Mietwohnungen sind über die ganze Schweiz verteilt. Am meisten Beobachtungen liegen für die Regionen der Nordschweiz vor (insbesondere für den Kanton Zürich), während die meisten Gebirgskantone, einige Zentralschweizer Kantone und Teile der Westschweiz schwächer vertreten sind. Einen Überblick über die Verteilung der Wohnungsdaten innerhalb der Schweiz bietet Abbildung 2.

¹³ Homegate-Daten wurden bereits in den hedonischen Studien von Schulz und Waltert (2011) und Leupp et al. (2011) verwendet.

Abbildung 3.1: Räumliche Verteilung der Wohnungen

Quelle: BFS GEOSTAT, eigene Darstellung.

3.3 Nachbarschafts-, Umwelt-, und Landschaftsdaten (Umgebungsvariablen)

3.3.1 Ausgangslage

Im hedonischen Modell hängt die Höhe der Monatsmiete von den Eigenschaften der Wohnung und von den Eigenschaften der Umgebung der Wohnliegenschaft ab. Diese beiden Variablenkategorien bilden die unabhängigen (erklärenden) Variablen des Modells. Die unabhängigen Variablen des hedonischen Modells sind folglich jene Faktoren, für die vermutet wird, dass sie einen Einfluss auf die Höhe der Wohnungsmiete ausüben. Die strukturellen Merkmale der Wohnung sind in der in Kapitel 3.2.2 beschriebenen Wohnungsdatenbank enthalten. Die Variablen zur Beschreibung der Umgebung bestehen aus Indikatoren zur Erreichbarkeit der Liegenschaft (z. B. Distanz zu den urbanen Zentren und zu zentralen Dienstleistungen), zu Eigenschaften der Gemeinde (z. B. Steuerbelastung) und zu verschiedenen Umwelt- (z. B. Lärmbelastung) und Landschaftseigenschaften. Zur Bildung dieser Umgebungsvariablen müssen Daten aus diversen Quellen zusammengetragen werden (s. auch Schulz und Waltert, 2011). Die Variablen sollten dabei die folgenden technischen Anforderungen möglichst erfüllen:

- (1) Die Operationalisierbarkeit der verwendeten Indikatoren und die Verfügbarkeit der dazu benötigten Daten muss gewährleistet sein;
- (2) Die Variablen dürfen nicht zu stark untereinander korreliert sein, d.h. jede Variable sollte andere Landschaftsattribute oder andere Aspekte der lokalen Landschaftsqualität abdecken (vgl. Kapitel 2.2.3);
- (3) Die Operationalisierbarkeit muss gewährleistet sein, d.h. ein Landschaftsindikator muss mit den vorhandenen Daten gemessen werden können;

- (4) Die räumliche Auflösung der Daten sollte möglichst hoch sein, so dass eine Messung auf der Ebene Liegenschaft möglich und sinnvoll ist (z.B. Freiflächen im Umkreis von 300 m um die Liegenschaft);
- (5) Die Variablen sollten dabei nach Möglichkeit den Zustand zu Beginn der Untersuchungsperiode (Jahr 2001) oder kurz zuvor messen, um eine kausale Interpretation der Zusammenhänge zu erleichtern¹⁴.

Ausgehend von diesen Kriterien wurden Indikatoren konstruiert, welche sich in sieben Kategorien unterteilen lassen:

- (1) Landschaftsqualität und Landnutzung (L): 13 Indikatoren/30 Variablen,
- (2) Landschaft und Erholung (R): 7 Indikatoren/24 Variablen,
- (3) Erreichbarkeit (E): 6 Indikatoren/24 Variablen,
- (4) Immissionen (I): 9 Indikatoren/19 Variablen,
- (5) Kulturerbe (K): 3 Indikatoren/5 Variablen,
- (6) Mikroklima (C): 1 Indikator/1 Variable,
- (7) Eigenschaften der Gemeinde (G): 10 Indikatoren/10 Variablen.

Für einen Indikator wurden teilweise mehrere Variablen für verschiedene räumliche Definitionen konstruiert. So existieren etwa für viele Landschaftsindikatoren (z.B. Freiflächen) jeweils Variablen für die Distanz zur nächsten entsprechenden Landnutzung, sowie für den Anteil der Landnutzung an der Gesamtfläche im Umkreis von 300 und 1'500 Metern, und an der Gemeindefläche. Insgesamt enthält die Datenbank, welche für die Analysen aufgebaut wurde, 113 Variablen, welche sich 49 Indikatoren zuteilen lassen (ohne Immobiliendaten).

Im Zentrum des Interesses der Analyse stehen die Effekte der Landschaftsattribute (L und R) auf die Mietpreise. Dazu werden verschiedene Indikatoren verwendet, welche unterschiedliche Attribute und Qualitäten der Landschaft abbilden. Einen Ausgangspunkt für die Erstellung des Variablenkatalogs bildete die Vorstudie (B,S,S., 2012: 40–42). Im Folgenden werden die Variablen sämtlicher Kategorien detailliert beschrieben.

3.3.2 Landschaft

Die Landschaftsvariablen wurden in enger Zusammenarbeit zwischen den beteiligten Landschaftsökologen, GIS-Spezialisten und Ökonomen definiert. Dabei waren (zusätzlich zu den technischen Anforderungen, s. Kapitel 3.3.1) folgende *Kriterien* für die *Auswahl* der Variablen massgeblich:

¹⁴ Dies gilt insbesondere für Variablen, welche sich über die Zeit stark verändern. Leider liegen für viele Variablen im Bereich Landnutzung und Landbedeckung nur einer oder wenige Beobachtungszeitpunkte vor (z.B. Arealstatistik).

- (1) Die Landschaftsvariablen sollen möglichst gut die relevanten Faktoren der Landschaftsqualität im Wohnumfeld abbilden (ästhetischer Nutzen der Landschaft, Erholungsnutzen der Landschaft, Identität)
- (2) Die landschaftsökologische Literatur (insb. Literatur zu Landschaftsindikatoren und Landschaftsleistungen) und die ökonomische Literatur zur Landschaftsbewertung sollen berücksichtigt werden
- (3) Die Variablen sollen hauptsächlich den Zustand (S) oder die Belastung (P) der Landschaft darstellen (vgl. DPSIR-Modell, z. B. Roth et al., 2010:25)
- (4) Es sollen auch Variablen, welche durch politische und planerische Entscheide und Anreize beeinflusst werden können (in Abgrenzung zu festen Attributen wie Hügel und Seen), berücksichtigt werden

Die wichtigsten Primärquellen als Basis zur Konstruktion der Variablen mittels GIS-Software sind die Arealstatistik und das Topografische Landschaftsmodell TLM. Ausserdem werden LABES-Indikatoren (Roth et al., 2010) genutzt, welche wiederum teilweise auf oben genannten Quellen basieren.

Ein besonderes Augenmerk gilt der räumlichen Definition der Landschaftsvariablen. Landschaftsvariablen werden in hedonischen Studien üblicherweise als Distanzvariablen (z.B. Distanz von der Liegenschaft zum nächstgelegenen Wald) oder als Flächenanteile innerhalb eines bestimmten Radius um die Liegenschaft (z.B. Anteil Grünflächen im Umkreis von 300 Metern) definiert. Verschiedene Studien verwenden dabei zwei oder mehrere Radien, um distanzabhängigen Effekten Rechnung zu tragen (Geoghegan et al., 1997; Ready und Abdalla, 2005). Der Fokus der vorliegenden Studie liegt auf der Quantifizierung des Werts von Landschafts- und Landnutzungsattributen am Wohnstandort. Bei diesen Werten handelt es sich hauptsächlich um den ästhetischen Wert und den Erholungswert¹⁵ der Landschaft. Daher werden nebst Distanzvariablen – wo möglich – Anteilsvariablen mit zwei unterschiedlichen Radien definiert. Mit einem Radius von 300 Metern soll die Landschaft in der unmittelbaren Umgebung der Wohnung beschrieben werden. Um zusätzlich die Qualität des Naherholungsraums zu erfassen, wird ein zweiter Radius von 1'500 Meter verwendet. Wenn dies sinnvoller ist oder die Daten keine höhere räumliche Auflösung zulassen, werden Variablen auf Gemeindeebene definiert (z.B. Zersiedelung einer Gemeinde).

Im Folgenden werden die für die empirische Untersuchung vorgeschlagenen Landschaftsvariablen beschrieben. Es werden dabei zwei Kategorien von Landschaftsvariablen unterschieden: Landschaftsqualität und Landnutzung (L) und Landschaft und Erholung (R).

Landschaftsqualität und Landnutzung

Die Variablen der Kategorie Landschaftsqualität und Landnutzung (Tabelle 3.2) stehen im Zentrum der empirischen Analyse. Diese Kategorie umfasst 13 Indikatoren zur Beschrei-

¹⁵ Vgl. Millennium Ecosystem Assessment, 2005. Die verschiedenen Werte, die kulturelle Ökosystemleistungen generieren, lassen sich in der Praxis nicht scharf voneinander trennen.

bung der Landschaft in der näheren (300m) und weiteren Umgebung (1500m/Gemeinde) der Wohnungen. Die Variablen basieren auf der Arealstatistik, dem Topographischen Landesmodell TLM und der Landschaftsbeobachtung Schweiz LABES. Zusätzlich zu den Indikatoren von Tabelle 3.3 wurde ein Indikator für Einzelbäume (z.B. Donovan und Butry, 2010) geprüft. Die Datengrundlage stellte sich hierfür aber als unzureichend heraus.

Tabelle 3.2: Variablenkategorie Landschaftsqualität und Landnutzung

Indikator	Operationalisierung (Variable)	Räumliche Definition Variable ^a	Einheit	Erhebung
L1: Gebäudeumschwung	Anteil unversiegelte Flächen (=Gesamtfläche minus Gebäudeflächen und Strassenflächen) (Datenstand: 2008)	Gemeinde, r=300 m, 1500 m	Prozent	swisstopo: TLM 1.0
L2: Landwirtschaft	Euklidische Distanz zum nächstgelegenen Agrarland (Arealstatistik Aggregation NOAS92_74: Kat. 71-73, 75-78, 81-84) und Anteil Agrarland (Datenstand: 1992-1997)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m, 1500 m	Meter, Prozent	BFS: Arealstatistik
L3: Freiflächen ("open space")	Euklidische Distanz zur nächstgelegenen unbebauten und unbewaldeten Fläche > 5 ha (Arealstatistik Aggregation NOAS92_74: Kat 15-19, 23, 51-54, 56, 59, 69, 71-73, 75-78, 81-89, 91-93, 95-98) und Anteil unbebaute Fläche an der unbewaldeten Fläche (Bufferfläche minus Arealstatistik Aggregation NOAS92_74: Kat. 9-14) in der Umgebung der Liegenschaft (Datenstand: 1992-1997)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m, 1500 m	Meter, Prozent	BFS: Arealstatistik
L4: Naturnahe Freiflächen	Anteil Land in naturnahem Zustand (Arealstatistik Aggregation NOAS97_74: Kat. 13-14, 17-18, 73, 76-77, 82-87, 89, 95-96) an der unbewaldeten Fläche in der Umgebung der Liegenschaft (Datenstand: 1992-1997))	Gemeinde, r=300 m, 1500 m	Prozent	BFS: Arealstatistik
L5: Wald	Euklidische Distanz zum nächstgelegenen geschlossenen Wald und Anteil Wald (Min- destwaldgrösse 10 ha) (Datenstand: 2008)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m, 1500 m	Meter, Prozent	swisstopo: TLM 1.0
L6: Vielfalt Landnutzung	Anzahl verschiedene Landnutzungen im Umfeld der Liegenschaft (LABES 26) (Datenstand: 1992-1997)	Gemeinde, r=300 m, 1500 m	Anzahl	BFS: Arealstatistik
L7: Zersiedelung	Landschaftszersiedelung (LABES 36): Zer- siedlungsgrad pro Gemeinde (Datenstand: 2002)	Gemeinde	Index	BAFU: LABES
L8: Zerschneidung	Landschaftszerschneidungsgrad (LABES 9): Fläche des unzerschnittenen Polygons, in welchem die Wohnung liegt (Datenstand: 2007)	Liegenschaft	Quadrat- Meter	BAFU: LABES
L9: Potenzielle Aussicht	Aussichtspotenzial der Wohnung: Distanz zur nächstgelegenen Hügellage	Liegenschaft	Meter	swisstopo: DHM25
L10: Seedistanz	Euklidische Distanz zum nächstgelegenen grösseren See (>100 ha)	Distanz ab Lie- genschaft	Meter	swisstopo: TLM
L11: Seesicht	Sicht auf grösseren See (>100 ha): Anzahl Sichtbare Rasterpunkte ab Liegenschaft	Liegenschaft	Anzahl	swisstopo: TLM, DHM25
L12: Flussdistanz	Euklidische Distanz zum nächstgelegenen Fluss	Distanz ab Lie- genschaft	Meter	swisstopo: TLM 1.0
L13: Naturnahe Fliessgewässer	Anteil natürliche und naturnahe Fliessgewässer (Ökomorphologie Stufe F) in der Umgebung der Liegenschaft (LABES 11)	Gemeinde, r=300 m, 1500 m	Prozent	BAFU

^a Für einige Indikatoren wurden mehrere Variablen definiert. Distanz-Variablen messen die Distanz zwischen der Wohnung und der nächstgelegenen Fläche der jeweiligen Landbedeckung (z.B. Freifläche) in Metern. Dazu kommen bei gewissen Indikatoren zwei Variablen, die den prozentualen Anteil der gleichen Landbedeckung an der Gesamtfläche in den Umkreisen von 300 und 1'500 Meter um die Wohnung messen. Eine vierte Variable misst für gewisse Indikatoren den prozentualen Anteil der jeweiligen Landbedeckung an der gesamten Gemeindefläche.

Landschaft und Erholung

Weitere sieben Indikatoren repräsentieren die Erholungsqualität der lokalen Landschaft (Tabelle 3.3). Berücksichtigt werden dabei öffentliche Parkanlagen (R1), verschiedene Freiflächen innerhalb des Siedlungsraums wie Golfplätze, offene Sportanlagen, Schrebergärten und Campingplätze (R2), sowie Anlagefreie Gebiete (LABES-Indikator 32b, R3). Ausserdem wurde ein Indikator konstruiert, welcher zugängliche Gewässer (Uferabschnitte, welche öffentlich zugänglich sind) wiederspiegelt (LABES-Indikator 31a, R4). Verschiedene Studien (z.B. Arnold et al., 2009; Power, 2005) zeigen, dass die Wertschätzung für Landschaft stark von bestimmten Infrastrukturen wie beispielsweise Fusswegen (built amenities) abhängt. Diese Infrastruktur wird anhand von Indikatoren für Wanderwege (R5), Radwege (R6) und Bergbahnen (R7) berücksichtigt.

Tabelle 3.3: Variablenkategorie Landschaft und Erholung

Indikator	Operationalisierung (Variable)	Räumliche Definition Variable ^a	Einheit	Erhebung
R1: Stadtpärke	Euklidische Distanz zur nächstgelegenen öffentlichen Parkanlage (Arealstatistik Aggregation NOAS92_74: Kat. 59) und Anteil Stadtpärke (Datenstand: 1992-1997)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m, 1500 m	Meter, Prozent	BFS: Arealsta- tistik
R2: Erholungsflächen	Euklidische Distanz zur nächstgelegenen Erholungsfläche (Arealstatistik Aggregati- on NOASO4_17: Kat. 5) und Anteil Erho- lungsflächen (Datenstand: 1992-1997)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m, 1500 m	Meter, Prozent	BFS: Arealsta- tistik
R3: Anlagearme Gebiete für Erho- lung	Euklidische Distanz zum nächstgelegenen anlagearmen Gebiet (LABES 32b) und Anteil anlagearme Gebiete (Datenstand: 2009)	Distanz: ab Liegenschaft, Anteile: Gemein- de, r=300 m,	Meter, Prozent	BAFU: LABES
R4: Zugängliche Gewässer	Länge der zugänglichen Bach-, Fluss- und Seeufer (LABES 31a) (Datenstand: 2007)	r=300 m, r=1500 m, Gemeinde	Meter	Wanderland Schweiz, ARE: Bauzonen
R5: Wanderwege	Anzahl Wanderwegmeter in Umgebung der Wohnliegenschaft (Datenstand 2011)	r=300 m r=1500m Gemeinde	Meter	SchweizMobil, swisstopo: Vector 25
R6: Radwege	Anzahl Radwegmeter in Umgebung der Wohnliegenschaft (Datenstand 2011)	r=300 m r=1500m Gemeinde	Meter	SchweizMobil, swisstopo: Vector 25
R7: Bergbahnen/Skilifte	Anzahl Bergbahnen/Skilifte in Umgebung der Wohnliegenschaft (Datenstand 2007)	r=300 m r=1500m Gemeinde	Anzahl	swisstopo: Vector 25

^a Vgl. Fussnote a, Tabelle 3.2.

3.3.3 Erreichbarkeit

Die geographische Lage und verkehrstechnische Erreichbarkeit (s. Tabelle 3.4) ist für den Preis von grosser Bedeutung. Drei Indikatoren repräsentieren die Makrolage der Gemeinde, in der eine Wohnung liegt. Davon misst der erste (E1) die Erreichbarkeit des nächstgelegenen Gross- und der zweite (E2) die Erreichbarkeit des nächstgelegenen Regionalzentrums. Ein weiterer Indikator auf Gemeindeebene ist die Verfügbarkeit eines Anschlusses an das Eisenbahnnetz (E3). Die Indikatoren E4 bis E6 wiederspiegeln die Erreichbarkeit und Lage auf der Ebene der Wohnung. Zwei Indikatoren (E4 und E5) repräsentieren die

zeitliche Erreichbarkeit diverser Dienstleistungen per motorisiertem Individualverkehr (MIV) und öffentlichem Verkehr (ÖV). Die Hauptindikatoren messen dabei jeweils die durchschnittliche zeitliche Distanz verschiedenster Dienstleistungen ab Wohnliegenschaft. Je neun Subindikatoren (Variablen) für MIV und ÖV messen die zeitliche Distanz zu folgenden neun Dienstleistungsgruppen: (1) Automobildienstleistungen (Tankstellen, Garagen), (2) Geschäfte, (3) Gesundheitsinfrastruktur, (4) Detailhandel, (5) Gastronomie, (6) öffentliche Dienste, (7) Banken, (8) Bildungsinstitutionen sowie (9) Freizeit und Kultur. Ein sechster Indikator (E6) identifiziert Wohnungen, welche in der Innen- oder Altstadt einer der grössten acht Schweizer Städte liegt. Dieser Indikator steht für preisrelevante Annehmlichkeiten, welche diese Stadtzentren bieten und diese von weniger zentralen Quartieren mit gutem Infrastruktur- und Dienstleistungsangebot unterscheiden.

Tabelle 3.4: Variablenkategorie Erreichbarkeit

Indikator	Operationalisierung (Variable)	Räumliche Definition Vari- able	Einheit	Erhebung
E1: Erreichbarkeit der Grosszentren: MIV	Strassendistanz zum nächstgelegenen Grosszentrum (Zürich, Basel, Genf, Bern, Lausanne): MIV, ab Gemeindemitte	Gemeinde	Meter	ETH: Inst. für Verkehrsplanung und Transport- systeme
E2: Erreichbarkeit von Regionalzentren MIV	Strassendistanz zum nächstgelegenen Regionalzentrum, ab Gemeindemitte	Gemeinde	Meter	ETH: Inst. für Verkehrsplanung und Transport- systeme
E3: Bahnhof	Präsenz eines Bahnhofs in der Gemeinde (ja/nein)	Gemeinde	0/1	swisstopo: TLM
E4: Erreichbarkeit von Dienstleistungen: MIV	Abstand zu zentralen Dienstleistungen (LABES 20): MIV (Durchschnitt und einzelne Kategorien, z.B. Gastronomie, Gesund- heit,, Total 10 Var.) (Datenstand: 2005)	Liegenschaft	Minuten	BAFU: unpublizierte Studie WSL in LABES
E5: Erreichbarkeit von Dienstleistungen: ÖV	Abstand zu zentralen Dienstleistungen (LABES 20): ÖV (Durchschnitt und einzelne Kategorien, z.B. Gastronomie, Gesund- heit,, Total 10 Var.) (Datenstand: 2005)	Liegenschaft	Minuten	BAFU: unpublizierte Studie WSL in LABES
E6: Lage in Innen-/Altstadt	Wohnung in zentraler Innen- oder Altstadt der Städte Zürich, Genf, Basel, Lausanne, Bern, Winterthur, Luzern oder St. Gallen	Liegenschaft	0/1	BFS: Quartiere der Gross- und Mittelstädte

3.3.4 Immissionen

Die Variablen dieser Kategorie (Tabelle 3.5) messen verschiedene visuelle und akustische Immissionen, welche sich potenziell negativ auf die Wohnqualität auswirken können. Nebst Variablen, welche Verkehrslärm repräsentieren (I1, I2), sind auch ästhetische Effekte von Strassen (I3, I4) sowie Immissionen, welche von Grossgebäuden und Industriebetrieben ausgehen können, berücksichtigt (I6, I7). Ein weiterer Indikator identifiziert Gebiete, für welche das Risiko von Überschwemmungen mit einer Wiederkehrperiode von 100 Jahren besteht (I5). Weiter wurden Indikatoren für Hochspannungsleitungen (I8) und Antennen (I9) im Wohnumfeld konstruiert. Weitere Immissionen, welche in der Umweltbewertungsliteratur Beachtung finden, sind Fluglärm (z.B. Salvi, 2008), Luftqualität (z.B. Harrison Jr und Rubinfeld, 1978) und Deponien (z.B. Hite et al., 2001). Es existiert eine Vielzahl von

hedonischen Studien, die sich gänzlich auf diese Aspekte konzentrieren. In der vorliegenden Studie liegen diese Immissionsarten nicht im Brennpunkt des Interesses und die vorhandenen Datengrundlagen erlauben deren Mitberücksichtigung nicht.

Tabelle 3.5: Variablenkategorie Immissionen

Indikator	Operationalisierung (Variable)	Räumliche Defi- nition Variable ^a	Einheit	Erhebung
I1: Strassenlärm	Lärmbelastung durch Strassenverkehr (Nacht) (Datenstand: 2009)	Liegenschaft	dB(A)	BAFU: sonbase
I2: Eisenbahnlärm	Lärmbelastung durch Eisenbahnverkehr (Nacht) (Datenstand 2009)	Liegenschaft	dB(A)	BAFU: sonbase
I3: Strassen	Euklidische Distanz zu nächstgelegener Strasse (Datenstand 2008-2012)	Liegenschaft	Meter	swisstopo: TLM 1.0
I4: Hochleistungsstrassen	Euklidische Distanz zu nächstgelegener Hochleistungsstrasse (Datenstand 2008-2012)	Liegenschaft	Meter	swisstopo: TLM 1.0
I5: Gefährdungspotenzial durch Hochwasser	Liegenschaft innerhalb Aquaprotect 100 Gebiet (Datenstand 2008)	Liegenschaft	0/1	BAFU: Aquaprotect
16: Grosse Gebäude	Euklidische Distanz zum nächstgelege- nen Grossgebäude (Fläche > 5000 m2) und Anteil Grossgebäude (Datenstand 2008-2012)	Distanz: ab Liegenschaft, Anteile: Gemeinde, r=300 m, 1500 m	Meter, Prozent	Swisstopo: TLM 1.0
17: Industrie	Euklidische Distanz zum nächstgelege- nen Industrieareal und Anteil Industrie- areal (Radius zu bestimmen) (Datenstand 1992-1997)	Distanz: ab Liegenschaft, Anteile: Gemeinde, r=300 m, 1500 m	Meter, Prozent	BFS: Arealstatistik
18: Hochspannungsleitungen	Länge Hochspannungsleitung im Umfeld der Wohnliegenschaft (Datenstand: 2007)	r=300 m, r=1500 m, Gemeinde	Meter	swisstopo: Vector 25
19: Antennen	Anzahl Antennenanlagen (Mobilfunk) im Umfeld der Wohnliegenschaft (Datenstand: 2007-2009)	r=300 m, r=1500 m, Gemeinde	Anzahl	swisstopo: Vector 25, UVEK: Mobil- funkantennen

 $^{^{\}rm a}$ Vgl. Fuss note a, Tabelle 3.2.

3.3.5 Kulturerbe

Kulturelle und historische Objekte von globaler (K2), nationaler (K1) und lokaler (K3) Bedeutung werden anhand von drei Indikatoren berücksichtigt (Tabelle 3.6). Davon wird einer auf Liegenschaftsebene gemessen: Der Indikator K3 repräsentiert die Anzahl kultureller Objekte (z.B. Ruine, Brunnen etc.) in der Umgebung der Wohnliegenschaft.

Tabelle 3.6: Variablenkategorie Kulturerbe

Indikator	Operationalisierung (Variable)	Räumliche Definition Vari- able ^a	Einheit	Erhebung
K1: Schützenswerte Ortsbilder	Liegenschaft in einer Gemeinde mit ISOS- Objekten	Gemeinde	0/1	BAK: ISOS
K2: UNESCO	Liegenschaft in einer Gemeinde mit UNESCO- Objekten (Datenstand: 2007)	Gemeinde	0/1	BAFU
K3: Kulturelle Objekte	Anzahl kultureller Objekte (Bildstock, Brun- nen, Denkmal, Ruine, Turm, Aussichtsturm, Kirche, Schloss, Kirchturm, Kapelle) in der Umgebung der Liegenschaft (Datenstand: 2007)	r=300 m r= 1500 m Gemeinde	Anzahl	swisstopo: Vector 25

^a Vgl. Fussnote a, Tabelle 3.2.

3.3.6 Mikroklima

Während die Schweiz klein und dadurch durch ein relativ homogenes Klima geprägt ist, variiert die Besonnung der Liegenschaften deutlich (u.a. in Abhängigkeit der Exposition und Hanglage). Dem wird mit Variable C1 Rechnung getragen. Variablen für Niederschlagsmenge und Durchschnittstemperaturen wurden ebenfalls in Betracht gezogen. Die Datenlage ist hier aber nicht ausreichend, um sinnvolle Indikatoren mit genügend Varianz und genügender räumlicher Auflösung zu generieren.

Tabelle 3.7: Variablenkategorie Mikroklima

Indikator	Operationalisierung (Variable)	Räumliche Definition Varable	Einheit	Erhebung
C1: Besonnung	Potenzielle Sonnenstrahlung im März (Datenstand: 1961-1990)	Liegenschaft	KJoule/Quad- ratmeter	WSL/Meteo- schweiz: Bioklimatische Karten

3.3.7 Eigenschaften der Gemeinde

Einen wichtigen Einfluss auf die Attraktivität eines Wohnstandortes haben gemeindespezifische fiskalische und sozioökonomische Faktoren (Tabelle 3.8). Die fiskalische Belastung durch Einkommenssteuer (G1) variiert regional erheblich und ist typischerweise weitgehend in den Liegenschaftspreisen kapitalisiert. Zwei Variablen, Ausländeranteil (G2) und Einkommen (G3), beschreiben das sozioökonomische Umfeld einer Gemeinde. Zwei weite-

re Indikatoren (G4 und G5) beschreiben das Potenzial zur Ausweitung des Wohnungsangebots und den Grad der Urbanität. Die Variable G6 repräsentiert die Erreichbarkeit von potenziellen Arbeitsplätzen. Weiter wird eine Variable für die Zugehörigkeit der Gemeinden zu den MS-Regionen (G7) verwendet, um die Einflüsse struktureller Unterschiede zwischen verschiedenen regionalen Wohnungsmärkten zu kontrollieren. Die Variablen G8, G9 und G10 beziehen sich auf die Zugehörigkeit der Gemeinden zu verschiedenen Raumgliederungen (Sprachregionen, Kantone, Gemeindetypen). Mit diesen Variablen kann getestet werden, ob die Effekte gewisser Indikatoren (z.B. Landschaftsvariablen) zwischen verschiedenen geografischen Regionen oder Raumtypen variieren.

Tabelle 3.8: Variablenkategorie Gemeinde

Indikator	Operationalisierung (Variable)	Räumliche Definition Variable	Einheit	Erhebung
G1: Steuerbelastung	Steuerliche Belastung eines Bruttoein- kommens von CHF 70'000 (unverhei- ratete ohne Kinder) durch kommunale und kantonale Einkommenssteuer (Datenstand: 2002)	Gemeinde	%	ESTV
G2: Ausländeranteil	Anteil Ausländer an der ständigen Wohnbevölkerung (Datenstand: 2002)	Gemeinde	%	BFS
G3: Einkommen	Pro Kopf Nettoeinkommen (Datenstand: 2003)	Gemeinde	CHF/Jahr	ESTV
G4: Bauzonenreserven	Anteil unbebaute Bauzonen an der gesamten Bauzonenfläche (Datenstand: 2007)	Gemeinde	%	ARE: Bauzonen- statistik
G5: Bevölkerungsdichte	Anzahl Einwohner pro Quadratkilome- ter Gemeindefläche (Datenstand: 2002)	Gemeinde	Einwohner/Quadrat- kilometer	BFS
G6: Arbeitsplatzdichte	Anzahl Arbeitsplätze pro Quadratkilo- meter Gemeindefläche	Gemeinde	Arbeitsplätze/ Quadratkilometer	BFS
G7: MS-Region	MS-Region der Gemeinde	Gemeinde	Kategorie [0, 106]	BFS
G8: Sprachregion	Der Gemeinde zugeordnete Sprachregion	Gemeinde	Kategorie [1, 4]	BFS
G9: Kanton	Der Gemeinde zugeordneter Kanton	Gemeinde	Kategorie [1, 26]	BFS
G10: Gemeindetyp	Der Gemeinde zugeordneter Gemeindetyp (9-er Nomenklatur)	Gemeinde	Kategorie [1, 9]	BFS

4 Schätzung des empirischen Modells: Allgemeines Vorgehen

4.1 Überblick

In den folgenden Kapiteln 5 und 6 dieser Studie werden hedonische Modelle (vgl. Kapitel 2.2.1) zwecks Berechnung der ökonomischen Werte verschiedener Landschaftsattribute in der Schweiz geschätzt. In einem ersten Schritt muss das Modell spezifiziert werden. Zur empirischen Schätzung der Modellgleichung können verschiedene Methoden aus der Familie der Regressionsanalyse verwendet werden. Die traditionelle Methode ist dabei das klassische multiple OLS-Regressionsmodell in Kombination mit semi-logarithmischen, loglinearen oder flexiblen Funktionsformen. Seit einigen Jahren vermehrt zum Einsatz kommen auch räumliche Regressionsmodelle ("spatial regression", z.B. Anselin, 1988, 2002), welche den Vorteil haben, dass sie räumliche Effekte (z.B. Spillover-Effekte zwischen benachbarten Liegenschaften oder Quartieren) explizit berücksichtigen können, während in den traditionellen hedonischen Modellen die einzelnen Beobachtungen (Liegenschaften) als unabhängig voneinander betrachtet werden.

Eine Besonderheit der vorliegenden Studie ist die grosse geographische Abdeckung des zu analysierenden Datensatzes. Während die meisten hedonischen Studien Daten für ein Quartier, eine Stadt oder allenfalls eine Region verwenden, wird hier versucht, einen schweizweiten Datensatz zu verwenden. Dies führt erstens dazu, dass verschiedene Einflüsse von einer höheren geographischen Ebene auf die beobachteten Wohnungspreise wirken und die Annahme der voneinander unabhängigen Beobachtungen kaum mehr haltbar ist. Zweitens muss angesichts der grossen Heterogenität des Untersuchungsgebiets davon ausgegangen werden, dass die Effekte verschiedener Variablen zwischen den Regionen variieren können. Diesen Umständen wird mit folgenden Modellierungsstrategien begegnet: Zum einen wird ein zweistufiges Modell verwendet ("multilevel model"), welches die Gemeindeebene und mit ihr assoziierte Einflussfaktoren (z.B. Steuerbelastung) explizit berücksichtigt (Kapitel 5.3). Die vorhandenen Abhängigkeiten zwischen Beobachtungen werden damit ins Modell aufgenommen. Zum anderen werden in Kapitel 6 Modelle mit Teilstichproben geschätzt, um die Effekte von Landschaftsattributen auf Wohnungsmieten zwischen verschiedenen Regionen vergleichen zu können. Ein weiterer Grund für die Analyse solcher Teilstichproben ist die Eigenschaft des verwendeten Samples. Der Wohnungsdatensatz mit rund 170'000 Beobachtungen, welcher für diese Studie zur Verfügung steht, deckt grundsätzlich die ganze Schweiz ab. Allerdings sind die Beobachtungen räumlich sehr ungleich verteilt (vgl. Kapitel 3.1, Abbildung 2).

Das Resultat der Analysen in Kapitel 5 und 6 sind Informationen zur Signifikanz und zur Richtung und Stärke der einzelnen Variablen auf die Höhe des Mietpreises (z.B.: "1% zusätzliche Grünfläche im Wohnungsumfeld führt zu x% höherem Mietpreis"). Dabei ist zu beachten, dass es sich um "ceteris paribus" Aussagen handelt, d.h. die ermittelten Preiseffekte einzelner Variablen gelten bei gleich bleibenden Werten für alle anderen Variablen.

Verändern sich z.B. durch ein Strassenbauprojekt mehrere Variablen gleichzeitig (z.B. Lärmbelastung, Zerschneidung und Nähe zu Hochleistungsstrassen) müssen die einzelnen Effekte dieser Variablen addiert werden, damit der Gesamtpreiseffekt ermittelt werden kann.

4.2 Auswahl der Modellvariablen

Im ersten Schritt der empirischen Analyse wird ein Modell für den gesamten Untersuchungsraum geschätzt (Kapitel 5). Von diesem Basismodell ausgehend werden schliesslich alternative Modelle spezifiziert und geschätzt. Es gilt zu beachten, dass die im finalen hedonischen Modell verwendeten Landschaftsvariablen vom vorbestimmten Variablenkatalog (s. Kapitel 3) abweichen können. Es werden verschiedene Spezifikationstests durchgeführt, um eine sinnvolle Variablenauswahl zu erhalten.

Bei der Auswahl der unabhängigen Variablen standen für das Basismodell zwei Kriterien im Vordergrund:

- (1) Es werden nur Variablen berücksichtigt, welche über relativ wenige fehlende Werte verfügen, um die Stichprobe gross zu halten.
- (2) Es wurde darauf geachtet, dass die Auswahl so getroffen wird, dass keine stark korrelierten Variablen im Modell sind.

Starke Korrelation zwischen verschiedenen unabhängigen Variablen kann zu Multikollinearität führen, einer Missspezifikation des Modells, welche zu verzerrten Schätzresultaten führen kann (vgl. Kapitel 2.2.3). Dies ist insbesondere dann von Relevanz, wenn von der Multikollinearität Koeffizienten betroffen sind, deren Höhe in der entsprechenden Anwendung analysiert werden soll. Im Folgenden wird der Vorgang der Variablenselektion detaillierter beschrieben.

Als Entscheidungsgrundlage für die Auswahl der Variablen der in Kapitel 5 und 6 beschriebenen Modelle dienten folgende Elemente¹⁶:

- die Korrelationsmatrizen (s. Anhang 1, A1.1), welche die Korrelationskoeffizienten zwischen allen Variablen einer Variablenkategorie enthalten.¹⁷
- die so genannten *Variance Inflation Factors (VIF); ein* statistischer Indikator, welcher Hinweise auf vorliegende Multikollinearität liefert
- Hauptkomponentenanalysen

¹⁶ Ein zur Reduktion der Variablenzahl ebenfalls gängiges Verfahren sind so genannte stepwise regression Methoden (z.B. backwards selection). Für die vorliegende Studien erwiesen sich diese Verfahren aber als ungeeignet, da sie bei starker Korrelation unter den Variablen zu unplausiblen Resultaten führen.

¹⁷ Auch die Korrelation zwischen Variablen unterschiedlicher Gruppen muss beachtet werden. Aus Platzgründen wurde aber darauf verzichtet, die vollständige Korrelationsmatrix im Anhang zu publizieren.

Nebst rein technischen Kriterien wie den VIFs wurden im Falle von stark korrelierten Variablen folgende Entscheidungskriterien für den Ausschluss einzelner Variablen verwendet:

- (1) Variablen, die aus der Hedonic Pricing Literatur als starke Prädiktoren des Wohnungspreises bekannt sind, sollten möglichst nicht ausgeschlossen werden
- (2) Variablen, welche bezüglich der Fragestellung in dieser Studie von hoher Bedeutung sind, sollten möglichst nicht ausgeschlossen werden

Anstelle des Ausschlusses von Variablen bietet es sich in gewissen Fällen an, mehrere Variablen zu einer zusammenzufassen (s. Kapitel 4.3).

Bei der Analyse der Korrelationsmatrizen (s. Anhang A1.1.) zeigt sich, dass verschiedenste Variablen hohe Korrelationskoeffizienten aufweisen. Zum einen ist das innerhalb gewisser Indikatorenkategorien der Fall, insbesondere bei den Variablen für Erreichbarkeit (E), Landschaftsqualität und Landnutzung (L) und Eigenschaften der Gemeinde (G). Zum anderen sind auch Variablen unterschiedlicher Indikatorengruppen untereinander korreliert (wiederum hauptsächlich im Falle der Kategorien E, L und G).

Ausgangspunkt für die Variablenauswahl in dieser Studie war ein einfaches Regressionsmodell mit sämtlichen in Kapitel 3 beschriebenen Indikatoren als unabhängige Variablen. Für diese Variablen wurden anschliessend die Variance Inflation Factors (VIF) berechnet (vgl. Anhang A1.3)¹⁸. Hohe Werte bei den VIF bedeuten, dass die Berücksichtigung der betroffenen Variablen zu Multikollinearität im Modell führt. Falls dies mit den anderen oben genannten Kriterien vereinbar war, wurden solche Variablen ausgeschlossen. Anschliessend wurde ein neues Modell ohne die entsprechende Variable geschätzt und wiederum die VIF berechnet. Dieses Vorgehen wurde wiederholt, bis die Höhe der VIF nicht mehr auf ein fehlspezifiziertes Modell schliessen lässt. ¹⁹

Auf Grund der Resultate der Analysen der VIF, Korrelationsmatrizen und Hauptkomponenten wurden folgende Indikatoren generell von den Analysen in den Kapiteln 5 und 6 ausgeschlossen:

- E5 Erreichbarkeit von Dienstleistungen (ÖV)
- 16 Grosse Gebäude
- R2 Erholungsflächen
- G3 Einkommen
- G5 Bevölkerungsdichte
- G6 Arbeitsplatzdichte

Besonders heikel ist Multikollinearität im Falle der mit Landschaft und Landnutzung assoziierten Variablen, da diese im Zentrum des Interesses dieser Studie stehen und daher

¹⁸ Bei kategoriellen Variablen (z.B. W11 Baujahr und W12 Angebotsjahr) sind die einzelnen Kategorien naturgemäss korreliert und die VIF daher nicht von Relevanz.

¹⁹ Es besteht kein generell gültiger Konsens über einen Schwellenwert für die *variance inflation factors* VIF. Als Obergrenze werden aber meist Werte zwischen 3 und 5 genannt.

möglichst genaue Schätzungen erreicht werden sollen. Von den stark korrelierten Variablen L1 Gebäudeumschwung, L2 Landwirtschaft, L4 Naturnahe Freiflächen und L3 Freiflächen wurde daher nur letztere berücksichtigt. Eine Hauptkomponentenanalyse bestätigt, dass dieses Vorgehen zu keinem grossen Informationsverlust führt. Betrachtet man die ersten zwei Hauptkomponenten der mit Frei- und Grünflächen assoziierten Variablen (vgl. Anhang A1.4), wird deutlich, dass diese vier Variablen stark assoziiert sind und in etwa das gleiche messen. Ebenfalls verzichtet wurde in den Modellen in den folgenden Kapiteln auf den Miteinbezug der beiden Kulturvariablen K1 Schützenswerte Ortsbilder und K2 UNE-SCO Welterbe. Die schützenswerten Ortsbilder werden auf Gemeindeebene gemessen, wobei fast die Hälfte (47 Prozent) der Gemeinden in der Stichprobe im ISOS-Inventar enthalten sind. Dabei wird nicht unterschieden, ob die Gemeinde eine grosse schützenswerte Altstadt oder bloss einzelne schützenswerte Gebäude und Kulturdenkmäler besitzt. Deutlich präziser ist die Variable K3 Kulturelle Objekte, welche die Anzahl Kulturdenkmäler (Kirchen, Ruinen, Burgen etc.) im unmittelbaren Umfeld der Wohnung misst. Die Variable K2 UNESCO Welterbe erwies sich schliesslich als ungeeignet, da nur wenige Gemeinden mit Welterbe in der Stichprobe enthalten sind und von 7'700 Wohnungen in diesen Gemeinden mehr als ein Drittel in der Stadt Bern liegen.

4.3 Beschreibung der verwendeten Daten

Als Vorbereitung für die Modellschätzungen wurde die Datenbank auf unplausible Werte (z.B. Preis oder Wohnfläche von Null) überprüft. Beobachtungen mit unplausiblen Werten wurden ausgeschlossen. Ebenfalls ausgeschlossen wurden Wohnungen mit fehlenden oder lückenhaften Adressangaben, da diese nicht georeferenziert werden konnten. Es verbleiben 164'438 Beobachtungen (Wohnungen), welche für die Modellschätzung zur Verfügung stehen. Da für gewisse Variablen für einige Beobachtungen fehlende Werte vorliegen, kann sich die Anzahl Beobachtungen in Abhängigkeit der im Modell berücksichtigten Variablen nochmals leicht reduzieren. Deskriptive Statistiken (Mittelwerte, Standardabweichungen, Maxima und Minima) der verschiedenen Variablen, welche in den Modellen verwendet wurden, können Anhang A 1.2 entnommen werden. Die vollständige Korrelationsmatrix der im Modell verwendeten Variablen ist in Anhang A 1.1 (letzte Tabelle) enthalten.

Weiter wurden für die Analysen in den Kapiteln 5 und 6 verschiedene Variablen zusammengefasst oder umcodiert. Bei den Variablen zu den Wohnungseigenschaften (W) sind Wohnfläche und Anzahl Zimmer erwartungsgemäss stark korreliert. Die Variable Wohnfläche (W5) wurde durch eine Variable für die durchschnittliche Zimmergrösse ersetzt (W5-2). Weiter wurden die Wohnungseigenschaften W11 Baujahr und W12 Angebotsjahr jeweils als kategorielle Variablen spezifiziert, da bei diesen Variablen nicht von linearen Effekten ausgegangen werden kann. Die 11 Wohnungstypen (Variable W10) wurden zu 4 Typen zusammengefasst. Die definierten Kategorien für das Baujahr und die Wohnungstypen können den deskriptiven Statistiken (Anhang A 1.2) entnommen werden.

Bei den Variablen I1 Strassenlärm und I2 Bahnlärm haben Tests ergeben, dass die Lärmbelastung bereitsab zirka 40 dB(A) relevant wird. Der Miteinbezug von Wohnungen mit geringerer Lärmbelastung führt jedoch zu einer Unterschätzung des Preiseffekts von Strassen- und Bahnlärm. Diesem Problem wurde mit dem Ansatz der so genannten *piecewise linear regression* begegnet. Dabei werden jeweils zwei seperate Koeffizienten geschätzt. Der erste Koeffizient (i01_laerm_strasse, i02_laerm_bahn) repräsentiert jeweils den Effekt der Lärmbelastung bei weniger als 40 dB(A). Der Effekt für eine Lärmbelastung ab 40 dB(A) ergibt sich aus der Summe des ersten und des zweiten Koeffizienten (i01int_laerm_strasse, i02int_laerm_bahn). Vergleichbare Studien aus der Schweiz ermitteln die Effekte von Strassen- oder Bahnlärm ebenfalls ab einer Untergrenze von 40 oder 50 dB(A) (z.B. Leupp et al., 2011).

Ebenfalls umkodiert wurde die Variable L11 Seesicht. Die Originalvariable misst hier die sichtbare Seefläche. Daraus wurde eine binäre Variable abgeleitet, welche den Wert "1" für Lagen mit Seesicht und den Wert "0" für Lagen ohne Seesicht annimmt. Durch diese Umkodierung wird eine bessere Vergleichbarkeit mit früheren Studien angestrebt.

5 Resultate für die gesamte Stichprobe

5.1 Ausgangslage

Als Einstieg in die empirische Analyse soll ein Basismodell geschätzt werden. Dabei wird ein statistisches Standardmodell verwendet, die klassische lineare multiple Regressionsanalyse, und es wird von der Gesamtstichprobe (164'438 Wohnungen) ausgegangen. Für viele Umgebungsvariablen (insbesondere Landnutzungsindikatoren) aus der in Kapitel 3 beschriebenen Datenbank wurde die räumliche Beziehung zu den Immobilien auf verschiedene Arten definiert: Distanz zu einer Landnutzung (z.B. Stadtpark) sowie Anteil der Landnutzung in einem Radius von 300 Meter und 1'500 Meter. Diese verschiedenen Varianten des gleichen Indikators sind untereinander oft stark korreliert. Im Basismodell wird daher jeweils nur eine Variante des selben Indikators verwendet. Das Basismodell wird zunächst für die 300 Meter-Variablen geschätzt (Modell A1, Kapitel 5.22), die Ergebnisse werden anschliessend mit den Modellversionen für die 1'500 Meter und die Distanzdefinition verglichen (Modelle A2 und A3, Kapitel 5.2.3). Die angewendete Prozedur zur Auswahl der unabhängigen Variablen ist in Kapitel 4.2 beschrieben. Die Variable L3 Freiflächen wurde in allen drei Modellen in der Version L3-1 Distanz zur nächstgelegenen Freifläche verwendet, da sie als Anteilsvariable spezifiziert zu stark mit anderen Landnutzungsvariablen korreliert.

5.2 Basismodell

5.2.1 Modellbeschreibung

Das geschätzte Basismodell lässt sich folgendermassen darstellen:

$$MIETPREIS = \alpha + \beta_W W + \beta_E E + \beta_I I + \beta_K K + \beta_L L + \beta_R R + \beta_C C + \gamma G_N + \varepsilon$$

Dabei ist MIETPREIS ein Vektor, welcher aus den Bruttopreisen der Wohnungen besteht, W, E, I, K, L, R und C sind die Vektoren der Variablen aus den Kategorien Wohnungseigenschaften (W), Erreichbarkeit (E), Immissionen (I), Kulturerbe (K), Landschaftsqualität und Landnutzung (L), Landschaft und Erholung (R) und Mikroklima (C) und G ist ein Vektor aus Gemeindedummies. Die zu schätzenden Parameter sind der Achsenabschnitt G sowie die Regressionskoeffizienten (Vektoren) G und G0. G1.

Um das Basismodell möglichst einfach zu halten, wird auf die Berücksichtigung von Variablen auf Stufe Gemeinde (Steuerbelastung, Ausländeranteil etc.) vorerst verzichtet. Um trotzdem für gemeindespezifische Einflüsse zu kontrollieren, wurde die Gemeindezugehörigkeit der Wohnungen als so genannte *fixed effects* in das Modell aufgenommen, d.h. durch gemeindespezifische binäre Variablen, welche Effekte auf Gemeindeebene auffan-

gen sollen. In einem ersten Schritt wurde nach einer geeigneten Funktionsform für die Regressionsgleichung gesucht, wobei sich die in hedonischen Regressionsmodellen weit verbreitete semilogarithmische Form als gut passend erwiesen hat. Die abhängige Variable des Modells wird folglich zu log(MIETPREIS) transformiert.

5.2.2 Resultate

Vom oben beschriebenen Basismodell wurde als Einstieg eine Variante geschätzt, in welcher die Umgebungsvariablen – wo verfügbar und sinnvoll - jeweils den prozentualen Anteil einer bestimmten Landnutzung oder Landbedeckung an der Fläche in einem Umkreis von 300 Metern um die jeweilige Wohnimmobilie repräsentieren. Die in diesem Basismodell verwendeten Variablen sind mit deskriptiven Statistiken im Anhang (A1.2) beschrieben. Die detaillierten Resultate der Regressionsanalyse können dem Anhang A2.1 entnommen werden (Modell A1). Das geschätzte Modell weisst eine Stichprobengrösse von n=162'589 Beobachtungen (Wohnungen) auf. Das Bestimmtheitsmass des Modells (R²) beträgt 0.85. Es werden folglich 85% der Preisunterschiede zwischen den Wohnungen erklärt.

Tabelle 5.1 fasst die Resultate der Modellschätzung zusammen. Dabei ist es sinnvoll, sich vorläufig auf die Richtung der Effekte (negativ/positiv/nicht signifikant) der unabhängigen Variablen auf die Wohnungspreise zu beschränken²⁰. Die Bezeichnungen "positiv" und "negativ" beziehen sich dabei einzig auf die Richtung der Effekte (positiv = assoziiert mit höheren Wohnungspreisen, negativ = assoziiert mit tieferen Wohnungspreisen) und sind in keiner Weise wertend zu verstehen. Ebenfalls in Tabelle 5.1 enthalten sind hochgestellte Indizes, welche Variablen kennzeichnen, die mit der Bevölkerungsdichte korreliert sind. Diese Korrelation dient als Mass der im Modell nicht berücksichtigten Aspekte der Zentralität der Lage, welche mit höheren Mieten assoziiert ist (vgl. Kapitel 8.1.1). Effekte von Variablen, für welche diese Korrelation ausgeprägt ist, müssen vorsichtig interpretiert werden. Die "wahren" kausalen Effekte sind tendenziell stärker positiv (+) oder stärker negativ (-) als die berechneten Koeffizienten.

Die Wohnungseigenschaften (W) sind alle signifikant und haben die erwarteten Vorzeichen. Die verschiedenen Wohnungstypen wurden in der Analyse zu 4 Kategorien zusammengefasst, wobei Etagenwohnungen die Vergleichsbasis bilden. Im Vergleich zu diesen sind Spezialwohnungen (Lofts, Attika, Maisonette, Dachwohnungen und Terrassenwohnungen) und möblierte Wohnungen teurer, Einzelzimmer/Studios hingegen günstiger (bei jeweils identischen übrigen Wohnungsparametern).

Die *Erreichbarkeit* von zentralen Dienstleistungen per Individualverkehr hat erwartungsgemäss einen positiven Einfluss auf den Mietpreis. Wohnungen, welche in Zentrumslagen der grossen Städte liegen, erfahren ausserdem einen signifikanten Preisaufschlag.

_

²⁰ Eine Diskussion der Effektstärken folgt in Kapitel 5.4.

Tabelle 5.1: Zusammenfassung Resultate Basismodell (A1): Effekte auf Wohnungspreise1

Positiv-signifikante Effekte	Nichtsignifikante Effekte	Negativ-signifikante Effekte
(Signifikanzniveau: 95%)	Trioritoigriimarite Eriorito	(Signifikanzniveau: 95%)
Wohnungseigenschaften (W)		(-8
W5-2 Zimmergrösse	W12 Angebotsjahr: 2002- 2003 ³	W10-2 Einzelzimmer
W6 Anzahl Zimmer		W11 Baujahr²: 1800-1989
W10-1 Spezialwohnungen		
W10-3 Möblierte Wohnungen		
W11 Baujahr ² : ab 1990		
W12 Angebotsjahr³: 2004-07		
Erreichbarkeit (E)		
E4 Erreichbarkeit MIV		
E6: Lage in Innenstadt		
Immissionen (I)		
I3 Strassennähe	I9 Antennen	I1 Strassenlärm
I5 Hochwasserpotenzial		I2 Eisenbahnlärm I4 Hochleistungsstrassennähe I7 Industrie I8 Hochspannungsleitungen
Kulturerbe (K)		
K3 Kulturelle Objekte		
Landschaftsqualität/Landnutzung (L)		
L9 Aussicht ⁽⁺⁾	L7 Zerschneidung	L3: Nähe zu Freiflächen ⁽⁺⁾
L10 Seenähe		L5 Wald
L11 Seesicht(+)		L6 Vielfalt(+)
L12 Flussnähe ⁽⁻⁾		L13 Naturnahe Fliessgewäs-
		ser
Landschaft und Erholung (R)		
R1 Stadtpärke ⁽⁻⁾	R6 Radwege	R4 Zugängliche Gewässer
R3 Anlagearme Gebiete	R7 Bergbahnen	
R5 Wanderwege		
Mikroklima (C)		
C1 Besonnung		

¹ Lesebeispiel: Hochspannungsleitungen haben einen signifikant negativen Effekt auf den Wohnungspreis, Antennen haben keinen signifikanten Effekt. Die Erreichbarkeit mit dem motorisierten Individualverkehr hat einen positiven Effekt (=negativer Effekt der Fahrzeit).

Anmerkung: Die detaillierten Schätzresultate können Anhang A2.1 entnommen werden (Modell A1).

Für die Variablen der Kategorie *Immissionen* wurde ein jeweils Mietpreis senkender Einfluss vermutet:

- Dies trifft tatsächlich zu für die Indikatoren Strassenlärm, Eisenbahnlärm, Nähe zu Hochleistungsstrassen sowie Anteil Industrieflächen und Länge von Hochspannungsleitungen in der Umgebung von 300 Metern.
- Für die Anzahl **Mobilfunkantennen** wurde kein signifikanter Effekt gefunden, die Analyse nach Gemeindetyp (Kapitel 6) wird aber zeigen, dass dies nicht für alle Raumtypen zutrifft.

² Referenzkategorie sind die Wohnungen, welche vor dem Jahr 1800 erstellt wurden.

³ Referenzjahr ist 2001.

^{(+), (-)} Die Variable ist mit dem Zentrum/Peripherie-Gradienten korreliert (vgl. Tabelle 8.1). Der kausale Effekt ist deshalb tendenziell stärker positiv (+) bzw. negativ (-) als der geschätzte Effekt.

- Wohnungen in Gebieten mit Hochwasserpotenzial (gemäss dem Modell Aquaprotekt 100²¹ des Bundesamts für Umwelt) sind teuer. Dies dürfte daran liegen, dass an vielen Standorten die mit der Nähe zu Gewässern verbundenen Annehmlichkeiten im Markt stärker gewichtet werden als das Hochwasserrisiko. Zum Hochwasserpotenzial muss hinzugefügt werden, dass es sich hierbei um modellierte und nicht um beobachtete Daten handelt. Für die betroffenen Gebiete besteht eine Erwartung von mindestens einem Hochwasserereignis pro 100 Jahre. Ein Grossteil der Wohnungen, für welche gemäss diesem Indikator ein solches Hochwasserpotenzial besteht, dürften noch nie von einem solchen Ereignis betroffen gewesen sein. Folglich wird das Hochwasserrisiko oft nicht wahrgenommen.
- Ebenfalls Mietpreis steigernd ist der Effekt von **Nähe zu Strassen** auf die Miete. Dies gilt aber nur für kleinere Strassen (keine Hochleistungsstrassen) und nur nach Kontrolle für Strassenlärm (welcher wie oben erwähnt einen negativen Einfluss hat).

Kulturelle Objekte (Kirchen, Brunnen, Denkmäler etc.) im Umfeld der Liegenschaft (300 Meter) sind mit höheren Mietpreisen assoziiert.

Zu den Variablen für Landschaftsqualität und Landnutzung (L): Hier haben diejenigen einen Mietpreis steigernden Effekt, bei denen es am meisten zu erwarten ist:

- Aussicht, Seenähe, Seesicht: Die Bedeutung dieser Variablen als Prädiktoren von Immobilienpreisen und Mieten ist in der Literatur gut dokumentiert und die Variablen werden auch in hedonischen Modellen von Immobilienfirmen und Banken verwendet.
- Ebenfalls positiv ist der Preiseffekt der **Nähe zu Flüssen.** Dieser Effekt könnte durch das Modell aber tendenziell überschätzt werden, da Lagen in Flussnähe eine überdurchschnittlich zentrale Lage aufweisen.
- Eine weitere Variable mit Bezug zu Gewässern ist die Variable Naturnahe Fliessgewässer, welche den Anteil natürlicher und naturnaher Fliessgewässer in Liegenschaftsnähe beziffert und im Gegensatz zu den anderen Gewässervariablen negativ signifikant ist. Eine genauere Analyse dieses Indikators zeigt, dass es sich hierbei nicht um einen kausalen Effekt handelt. Erstens sind in diesem Indikator auch kleinste Fliessgewässer berücksichtigt, welche kaum wahrgenommen werden dürften (insgesamt sind Fliessgewässerabschnitte mit einer Länge von mehr als 35'000 Kilometer als natürlich oder naturnah klassifiziert, vgl. Zeh Weissmann et al., 2009). Trotzdem konnten "nur" 37 Prozent der in den Landeskarten eingetragenen Fliessgewässer einer ökomorphologischen Klasse zugeordnet werden, die Mehrheit der Fliessgewässer ist folglich nicht erfasst. Zweitens sind grössere Fliessgewässer bereits durch die Variable L12 Flussnähe erfasst. Drittens befindet sich der Grossteil dieser Fliessgewässer im Alpenraum (28'000 Kilometer). Im Siedlungsbereich liegen gerade mal 151 Kilometer. Folglich ist die Wahrscheinlichkeit sehr hoch,

_

²¹ http://www.bafu.admin.ch/naturgefahren/01916/06598/index.html?lang=de

dass Wohnungen mit hohen Werten für den Indikator naturnahe Fliessgewässer an dezentralen Lagen am Siedlungsrand liegen²². Viertens werden auch wenig naturnahe, beeinträchtigte Gewässer häufig als attraktives Landschaftselement wahrgenommen (vgl. Roth et al., 2010, S. 46).

- Der Effekt eines tiefen **Zerschneidungsgrads** (bzw. einer hohen "effektiven Maschenweite") ist positiv, allerdings nur schwach signifikant (p<0.1).
- Auffällig sind die Mietpreis senkenden Effekte der Landnutzungsvariablen Nähe zu Freiflächen (L3), Vielfalt (L6) und Anteil Wald (L5). Ähnlich wie die naturnahen Fliessgewässer werden diese Landnutzungen tendenziell mit zunehmender Ländlichkeit häufiger.
 - Für die Freiflächen (r=-0.39) und Vielfalt (r=-0.48) ist die Korrelation mit der Zentralität der Lage sehr ausgeprägt (vgl. Tabelle 8.1), d.h. die Effekte dieser Variablen dürften teilweise die generell tieferen Wohnungspreise an dezentralen Lagen widerspiegeln. Der kausale Effekt dieser Variablen dürfte zumindest weniger stark ausgeprägt sein.
 - Intrakommunal betrachtet sind Wälder und Freiflächen ausserdem an den Siedlungsrändern – und damit an dezentralen Lagen – besonders stark vertreten.
 Letzteres gilt auch für die Variable Vielfalt (L6), welche die Anzahl unterschiedlicher Landnutzungen in der Liegenschaftsumgebung misst.
 - Beim Wald kommt dazu, dass dieser vor allem für die Naherholung geschätzt wird, wozu er aber kaum zwingend in unmittelbarer Nähe der Wohnungen sein muss. Lagen direkt am Waldrand (gemessen wird hier der Waldanteil in einem Umkreis von 300 Meter) können aber mit Nachteilen wie Schattenwurf oder einer Empfindung von Unbehagen verbunden sein. In Kapitel 5.2.3 wird sich zeigen, dass der Effekt von Wald in einer grösseren Umgebung von 1'500 Metern nicht mehr signifikant ist. Mit der expliziten Modellierung der Gemeindeebene (5.3) verschwindet der Mietpreis senkende Effekt für die Umgebung von 300 Meter. Folglich ist der Schluss, dass Wälder von den Anwohnern negativ bewertet werden, nicht zulässig.

Unter den Variablen der Kategorie Landschaft und Erholung (R)

- hat die N\u00e4he zu Stadtp\u00e4rken erwartungsgem\u00e4ss einen positiven Einfluss auf den Mietpreis. Dieser wird tendenziell im Modell aber \u00fcbersch\u00e4tzt, da Stadtp\u00e4rke positiv mit der Zentralit\u00e4t der Lage korreliert sind.
- Auch mit der Verfügbarkeit von anlagearmen Gebieten für die Erholung steigt der Mietpreis. Es handelt sich hierbei um Gebiete, welche arm an Siedlungs- und Infra-

-

²² Die Korrelation zwischen der zeitlichen Erreichbarkeit zentraler Dienstleistungen (Indikator E4) und den naturnahen Fliessgewässern in der Stichprobe beträgt 0.22. Eine Diskussion, inwiefern die Korrelation gewisser Variablen mit dem Stadt-Land Gradienten einen Einfluss auf die Resultate hat, findet sich im Kapitel 8.1.

strukturelementen sind, jedoch Elemente enthalten, die von Erholungssuchenden geschätzt werden (z.B.Kapellen, Landgasthöfe und Wanderwege). Da hier keine nennenswerte Korrelation mit der Zentralität vorliegt, kann von einem kausalen Effekt ausgegangen werden.

- Zugängliche Gewässer (vgl. LABES Indikator 31a) haben einen Mietpreis senkenden Effekt im näheren (300 m) Wohnungsumfeld. Da die Nähe zu Gewässern (Variablen Fluss- und Seenähe) im Modell ebenfalls kontrolliert wurde, könnte das Ergebnis damit zu erklären sein, dass private Zugänge zu den Gewässern durch die Mieter in Objekten an See- und Flussufern bevorzugt werden.
- Bei den Freizeitinfrastrukturen im näheren Wohnungsumfeld (300 m) sind Wanderwege mit höheren Mietpreisen assoziiert, während für Radwege und Bergbahnen/Skilifte keine signifikanten Effekte gefunden wurden.

Hochsignifikant und positiv ist die Besonnung, die einzige Variable der Kategorie *Mikroklima* (C).

5.2.3 Vergleich von drei Modellvarianten

Vom oben diskutierten Basismodell wurden zwei zusätzliche Varianten mit alternativen Variablendefinitionen geschätzt: Das erste (Modell A2) verwendet Umgebungsvariablen für einen Umkreis von 1'500 statt 300 Metern, im zweiten (Modell A3) wurden diese Variablen – wo möglich und sinnvoll – als Distanzen definiert (z.B. Distanz zum nächstgelegenen Wald). Ansonsten ist die Auswahl der verwendeten Indikatoren zwischen den drei Modellen identisch.

Die Resultate des Vergleiches zwischen den drei Modellvarianten sind in Tabelle 5.2 zusammengefasst. Die Effektrichtungen und Signifikanzen der Variablen der Kategorie *Immissionen (I)* bleiben bei alternativer Definition der zugehörigen Variablen (Industrie, Hochspannungsleitungen und Antennen) gleich. Industrielle Flächennutzungen haben einen über die Distanz und verschiedene Radien konstant senkenden Einfluss auf die Wohnungsmieten. Dasselbe gilt für Hochspannungsleitungen, während für die Antennen im Basismodell keine signifikanten Effekte gefunden wurden.

Von den drei Indikatoren der Kategorie Landschaftsqualität und Landnutzung (L) ändern die Effekte zwischen den Modellen in zwei Fällen. Die Nähe zum Wald hat für den Radius von 1'500 Meter keinen signifikanten Effekt auf die Mietpreise mehr. Mögliche Mietpreis senkende Effekte der unmittelbaren Nähe zum Wald (vgl. 5.2.2) fallen bei Betrachtung einer grösseren Umgebung nicht mehr ins Gewicht. Die Vielfalt der Landnutzungen (L6) hat im Modell mit dem grösseren Radius einen positiven Koeffizienten.

Tabelle 5.2: Vergleich der Resultate der Umgebungsvariablen für 300m, 1'500m und die Distanz1

	Effektrichtung und Signifikanz (+/0/-) ²		
Variable	Umkreis 300 (Modell A1) R ² =0.849	Umkreis 1'500m (Modell A2) R ² = 0.850	Nähe (Modell A3) R ² =0.850
Immissionen (I)			
17 Industrie	-	-	-
I8 Hochspannungsleitungen	-	-	NA
19 Antennen	0	0	NA
Kulturerbe (K)			
K3 Kulturelle Objekte	+	-	NA
Landschaftsqualität und Landnutzung (L)			
L5 Wald	-	0	-
L6 Vielfalt	-	+	NA
L13 Naturnahe Fliessgewässer	-	-	NA
Landschaft und Erholung (R)			
R1 Stadtpärke ⁽⁻⁾	+	+	+
R3 Anlagearme Gebiete	+	+	+
R4 Zugängliche Gewässer	-	-	NA
R5 Wanderwege	+	+	NA
R6 Radwege	0	-	NA
R7 Bergbahnen und Skilifte	0	0	NA

¹ Lesebeispiel: Der Anteil Industriefläche im Umkreis von 300m und 1'500m hat einen negativen Effekt auf die Wohnungsmiete. Die Miete steigt mit zunehmender Nähe zu Stadtpärken.

Anmerkung: In der Tabelle sind nur diejenigen Variablen enthalten, deren Definitionen zwischen den drei verwendeten Modellen variieren. Die detaillierten Schätzresultate können dem Anhang A2.1 (Modelle A1, A2 und A3).

Die Effekte der Indikatoren für Landschaft und Erholung (R) verhalten sich zwischen den verschiedenen Umgebungsdefinitionen sehr stabil. Für die Stadtpärke, die anlagearmen Gebiete und die Wanderwege wurden in allen Modellen positive Effekte gefunden. Die einzige Veränderung ist der negative Effekt der Länge der Radwege im Umkreis von 1'500 Meter.

Insgesamt sind die Resultate über die drei Modelle relativ robust. Für die in Tabelle 5.2 nicht enthaltenen weiteren Modellvariablen, für welche keine alternativen Definitionen vorliegen, gibt es keine Änderungen in Richtung oder Signifikanz zu verzeichnen.

² (+) positiv-signifikanter Effekt, (-) negativ-signifikanter Effekt, (0) kein signifikanter Effekt, (NA) Variable nicht in Modell (bzw. als Anteilsvariable 300m statt Distanzvariable).

⁽⁻⁾ S. Tabelle 5.1.

5.3 Zweistufiges Modell mit Berücksichtigung der Gemeindeebene

5.3.1 Modellbeschreibung

Die gut 160'000 Wohnungen, die in den hedonischen Modellen analysiert werden, sind geographisch über die ganze Schweiz verteilt und entstammen daher nicht einem gemeinsamen Markt. Viel mehr ist dieser Markt in zahlreiche geographische und sachliche Segmente unterteilt. Insbesondere verteilen sich die Wohnungen auf über 1'100 verschiedene Gemeinden mit unterschiedlichen geographischen, institutionellen, ökonomischen und sozialen Rahmenbedingungen und unterschiedlichen Wohnungsmärkten. Dem soll mit der im Folgenden vorgestellten Erweiterung des Basismodells aus Kapitel 5.2 Rechnung getragen werden. Dazu wird ein zweistufiges Modell verwendet, ein so genanntes Multilevel Modell (z.B. Rabe-Hesketh und Skrondal, 2008). Alternative Bezeichnungen für diese Klasse von Modellen sind hierarchisches Modell oder auch Random Effects Model. Ziel dieser alternativen Modellierung ist es, die Gemeindeebene explizit mit zu berücksichtigen, indem die hierarchische Struktur der Daten - die Gemeinden bilden Gruppen, welche jeweils mehrere Objekte (Wohnungen) enthalten - modelliert wird. Dieses Modell erlaubt es, auch Variablen auf Gemeindeebene (s. Kapitel 3.3.7) aufzunehmen und deren Effekte zu schätzen. Im Anschluss kann ermittelt werden, ob diese Art der Berücksichtigung der Ebene Gemeinde auch Auswirkungen auf die Schätzungen der Effekte von Variablen der Ebene Wohnung (z.B. Landschaftsvariablen) hat.

Die detaillierten Resultate dieser Modellierung sind in Anhang A2.2 enthalten. Zusammenfassend lässt sich das Vorgehen folgendermassen beschreiben: In einem ersten Schritt wurde im so genannten *Null-Modell* untersucht, wie stark die Varianz in den Wohnungspreisen innerhalb der Gemeinden und zwischen den Gemeinden ist. Anschliessend wurde ein so genanntes *Random Intercept Modell ohne Level 2 Kovariate* geschätzt, welches den Gemeindeeffekt als Zufallsvariable berücksichtigt. In der finalen Spezifikationen des Modells (*Random Intercept Modell mit Level 2 Kovariaten*) werden schliesslich die Level 2 Kovariate, d.h. die Gemeindevariablen, mit einbezogen. Die berücksichtigten Gemeindevariablen wurden im Rahmen der in Kapitel 4.2 beschriebenen Prozedur zur Auswahl der Modellvariablen bestimmt.

5.3.2 Resultate

Im Folgenden werden die Resultate des zweistufigen Modells (B1c) beschrieben. Von Interesse sind dabei hauptsächlich zwei Fragen: Welche Effekte gehen von den Gemeindevariablen aus? Und wie verändern sich die Resultate für die Variablen der Ebene Wohnung durch die Berücksichtigung der gemeindespezifischen Effekte und Variablen? Antworten auf diese Fragen gibt die Zusammenfassung der Resultate in Tabelle 5.3.

Tabelle 5.3: Zusammenfassung Resultate zweistufiges Modell, 300m (B1c): Effekte auf Wohnungspreise1

Positiv-signifikante Effekte (Signifikanzniveau: 95%)	Nichtsignifikante Effekte	Negativ-signifikante Effekte (Signifikanzniveau: 95%)
Wohnungseigenschaften (W)		(Signifikanzifiveau. 95%)
W5-2 Zimmergrösse W6 Anzahl Zimmer W10-1 Spezialwohnungen W10-3 Möblierte Wohnungen W11 Baujahr: ab 1990 W12: Angebotsjahr: 2004-07	W12 Angebotsjahr: 2002-03	W10-2 Einzelzimmer W11 Baujahr: 1800-1989
Erreichbarkeit (E)		
E1 Erreichbarkeit Grosszentren E4 Erreichbarkeit Dienstleist. MIV E6: Lage in Innenstadt		E2 Erreichbarkeit Regionalzentren E3 Bahnhof
Immissionen (I)		
I3 Strassennähe I5 Hochwasserpotenzial	19 Antennen	I1 Strassenlärm I2 Eisenbahnlärm I4 Hochleistungsstrassennähe I7 Industrie I8 Hochspannungsleitungen
Kulturerbe (K)		2 2 2 4 2 4 2 2 2 2 2 2
K3 Kulturelle Objekte		
Landschaftsqualität/Landnutzung (L)		
L9 Aussicht ⁽⁺⁾ L10 Seenähe ⁽⁺⁾ L11 Seesicht L12 Flussnähe ⁽⁻⁾	L5 Wald	L7 Zerschneidung L3 Nähe zu Freiflächen ⁽⁺⁾ L6 Vielfalt ⁽⁺⁾ L8 Zersiedelung ⁽⁺⁾ L13 Naturnahe Fliessgewässer
Landschaft und Erholung (R)		
R1 Stadtpärke ⁽⁻⁾ R3 Anlagearme Gebiete R5 Wanderwege	R6 Radwege R7 Bergbahnen	R4 Zugängliche Gewässer
Mikroklima (C)		
C1 Besonnung		
Eigenschaften Gemeinde		
G2 Ausländeranteil		G1 Steuerbelastung G4 Bauzonenreserven

¹ Rot hervorgehoben sind Variablen, welche auf Gemeindeebene gemessen werden. Bei den kursiv dargestellten Variablen haben sich Richtung oder Signifikanz der Effekt im Vergleich zum einstufigen Modell (A1) geändert.

Anmerkung: Die detaillierten Schätzresultate können Anhang A2.2 entnommen werden (Modell B1c)

In der Indikatorenkategorie *Erreichbarkeit (E)* kommen zu den bestehenden drei Variablen, welche auf der Ebene der Wohnimmobilie gemessen werden, drei zusätzliche auf Gemeindeebene dazu. Die Variable E1 Erreichbarkeit Grosszentren misst die Distanz zur nächstgelegenen Grossstadt (Zürich, Basel, Genf, Lausanne und Bern) ab Gemeindemittelpunkt. Sie ist erwartungsgemäss negativ und signifikant, oder anders ausgedrückt, Nähe zu den Grosszentren hat einen positiven Effekt auf die Wohnungspreise einer Gemeinde. Die Variable E2 misst äquivalent zur Variable E1 die Distanz zu den regionalen Zentren. Etwas unerwartet wurde ein negativer Effekt für die Nähe zu diesen Zentren gefunden. Dieses Resultat wird aber dadurch relativiert, dass E2 stark mit der Erreichbarkeit von zentralen

^{(+), (-)} Siehe Tabelle 5.1.

Dienstleistung (E4) korreliert ist (r=0.65) und das die Schätzung beeinflussen dürfte. Das gleiche gilt für die Variable E3 Bahnhof.

In der Kategorie Landschaftsqualität und Landnutzung (L) wird eine Variable für die Zersiedelung der Gemeinde (L8) eingefügt. Diese ist signifikant und zeigt an, dass mit wachsendem Zersiedlungsgrad einer Gemeinde die Wohnungsmieten sinken. Die Kausalität bleibt hier aber unklar: Einerseits beeinflusst die Zersiedelung die Landschaftsqualität negativ, was die Zahlungsbereitschaft für Wohnungen an stark zersiedelten Standorten senken könnte. Andererseits senken tiefe Bodenpreise den Anreiz zu einer verdichteten Bauweise, was die Zersiedelung wiederum fördert. Ausserdem muss festgehalten werden, dass die Zersiedelung negativ mit der Zentralität korreliert ist, d.h. zentrale Lagen sind dichter bevölkert und weniger zersiedelt, weisen aber gleichzeitig höhere Mieten auf. Dadurch muss der Effekt der Zersiedelung mit Vorsicht interpretiert werden (vgl. Kapitel 8.1.1).

Schliesslich werden noch 3 Variablen, welche die sozioökonomischen, demographischen und raumplanerischen Verhältnisse in den *Gemeinden (G)* widerspiegeln eingeführt. Die Steuerbelastung durch die Einkommenssteuer von Gemeinde und Kanton (G1) hat den erwarteten negativ-signifikanten Effekt. Gemeinden mit hohen Bauzonenreserven (G4) haben tiefere Wohnungsmieten. Hier könnte das hohe Angebot an Bauland sich auf die Preise niederschlagen, andererseits könnte auch eine tiefe Nachfrage dazu führen, dass das Land nicht schneller bebaut wird. Der Ausländeranteil (G2) schliesslich ist positiv mit den Wohnungsmieten assoziiert. Hierbei dürfte es sich teilweise um einen Zentrumseffekt handeln: Die Zentren mit ihren typischerweise hohen Mieten haben einen überdurchschnittlichen Ausländeranteil. Aber auch steuergünstige, reiche Gemeinden ausserhalb der Zentren haben in den letzten Jahren viele Zuwanderer angezogen, insbesondere solche aus den Nachbarländern.

Bei den Variablen auf der Ebene Wohnung hat sich im Vergleich zum Basismodell A1 (Kapitel 5.2) bezüglich Effektrichtung und Signifikanz relativ wenig verändert. Negativsignifikant statt nur schwach negativ signifikant ist die Variable Zerschneidung und der Waldanteil hat keinen Einfluss mehr (statt einen negativen Einfluss).

5.4 Effektstärken der Landschafts- und Landnutzungsvariablen

Bisher wurden in dieser Studie Effekte von Landschafts- und anderen Variablen nach der Signifikanz und der Richtung, nicht aber nach der Effektstärke analysiert. Die Effektstärken lassen sich aus den Koeffizienten (Coef.) in den Resultatetabellen der einzelnen Modelle (s. Anhang A2) errechnen.²³ In den Tabellen 5.4 und 5.5 sind die berechneten Effekte, welche auf dem zweistufigen Modell aus Kapitel 5.3 basieren, zusammengefasst.

Tabelle 5.4: Effektstärken der Umgebungsvariablen für Landnutzungsanteile im Umkreis von 300m

Variable	Beschreibung Einheit	Preiseffekt eines Anstiegs um 1 Prozent	Vertrauensintervall
17 Industrie	Prozent in Radius 300m	-0.13%	[-0.15, -0.12]
L5 Wald	Prozent in Radius 300m	n. sig.	
L13 Naturnahe Fliessgewässer	Prozent in Radius 300m	-0.24%	[-0.30, -0.19]
R1 Stadtpärke ⁽⁻⁾	Prozent in Radius 300m	+0.09%	[0.07, 0.12]
R3 Anlagearme Gebiete	Prozent in Radius 300m	+0.25%	[0.15, 0.35]

⁽⁻⁾ Siehe Tabelle 5.1.

Anmerkung: Die Effektstärken wurden auf Grundlage des Modells B1c (s. Anhang 2.2) berechnet.

Es ist zu beachten, dass diese Effekte aufgrund der unterschiedlichen Masseinheiten der Variablen nur sehr beschränkt vergleichbar sind. Vergleichen lassen sich aber die Effekte der Umgebungsvariablen für einen Radius von 300 Meter um die Wohnimmobilien (Tab. 5). Die Einheit dieser Variablen ist der Prozentsatz der jeweiligen Flächennutzung an der Gesamtfläche im Umkreis von 300 Metern. Der negative Effekt der naturnahen Fliessgewässer darf nicht kausal interpretiert werden. Vielmehr zeigt er, dass dieser Indikator wenig geeignet ist, um die Qualität der für die Naherholung relevanten siedlungsnahen Fliessgewässer zu messen (vgl. 5.2.2). Ein negativer Effekt geht von den Industrieflächen aus: Mit einem zusätzlichen Prozent Industriefläche sinkt die Wohnungsmiete um 0.13 Prozent. Der am stärksten positive Effekt wurde für die anlagearmen Gebiete gefunden (+0.23%). Auch Stadtpärke haben einen deutlich mietpreissteigernden Effekt (+0.09%).

Die Preiseffekte der übrigen Variablen sind in Tabelle 5.5 dargestellt. Zu beachten ist, dass die Effekte zwischen Variablen mit unterschiedlichen Einheiten nicht sinnvoll verglichen werden können. Auch bei einheitlichen Einheiten ist dann Vorsicht angebracht, wenn die Werte der Variablen sehr ungleich verteilt sind. So werden etwa sowohl die Strassennähe (I3) als auch die Distanz zu den Grosszentren (E1) in Metern gemessen. Bei der Strassennähe variieren die Werte aber deutlich weniger stark als bei der Distanz zu den Grosszentren, die mehr als 100 Kilometer betragen kann. Um diesen Unterschieden wenigstens zu einem kleinen Teil gerecht zu werden, wurden die Effekte teilweise für grössere Veränderungen als eine Basiseinheit angegeben (z.B. 100 Meter oder 1 Kilometer statt 1 Meter).

²³ Da es sich um semi-logarithmische Modell handelt entspricht der Koeffizient von nichtkategoriellen Variablen multipliziert mit 100 näherungsweise der prozentualen Preisveränderung, welche ein Anstieg dieser unabhängigen Variable um eine Einheit bewirkt. Die Formel zur genauen Berechnung lautet %ΔPreis = $(\exp(\Delta x_i \beta)_i-1)*100$, wobei β_i der Koeffizient der unabhängigen Variable x_i ist.

Tabelle 5.5: Effektstärken der übrigen Variablen*

Variable	Beschreibung Einheit	Preiseffekt bei Anstieg um 1 Einheit	Vertrauens- intervall 95%
Wohnungseigenschaften (W)			
W5 Zimmergrösse	Quadratmeter	+1.18%	[1.17, 1.20]
W6 Anzahl Zimmer	Anzahl	+29.47%	[29.36,-29.57]
W10 Wohnungstyp	Etagenwohnung (Ref.)	0%	_
	andere Wohnungstypen	-15.92 bis +14.73%	
W11 Baujahr	Vor 1800 (Referenz)	0%	
	andere Jahre	-14.91 bis +9.33%	-
W12 Angebotsjahr	2001 (Referenz)	0%	-
	andere Jahre	-0.50 bis +3.74%	-
Erreichbarkeit (E)			
E1 Erreichbarkeit Grosszentrum	Kilometer	+0.12%	[0.08, 0.15]
E2 Erreichbarkeit Regionalzentrum	Kilometer	-0.50%	[-0.69, -0.30]
E3 Bahnhof	ja/nein	-3.27%	[-6.09, -0.37]
E4 Erreichbarkeit Dienstleist. MIV	Zeitindexeinheit	+2.23%	[2.09, 2.37]
E6 Lage in Innenstadt	ja/nein	+11.17%	[10.22, 12.13]
Immissionen (I)			
I1 Strassenlärm ¹	dB(A)	-0.16%	[-0.18, -0.13]
I2 Eisenbahnlärm ¹	dB(A)	-0.11%	[-0.16, -0.06]
I3 Strassennähe	100m näher	+0.50%	[0.16, 0.83]
I4 Hochleistungsstrassennähe	100m näher	-0.27%	[-0.29, -0.25]
I5 Hochwasserpotenzial	ja/nein	+1.48%	[1.16, 1.80]
l8 Hochspannungsleitungen	100m	-0.14%	[-0.23, -0.06]
I9 Antennen	Anzahl	n. sig.	_
Kulturerbe (K)			
K3 Kulturelle Objekte	Anzahl	+0.20%	[0.08, 0.31]
Landschaftsqualität/Landnutzung (L)			
L3 Nähe zu Freiflächen ⁽⁺⁾	100m näher	-0.16%	[-0.10, -0.22]
L6 Vielfalt ⁽⁺⁾	Anzahl	-0.12%	[-0.20, -0.03]
L7 Zerschneidung (Maschengrösse) ²	Quadratkilometer	+0.03%	[0.01, 0.05]
L8 Zersiedelung ⁽⁺⁾	Indexzahl	-0.91%	[-0.97, -0.85]
L9 Aussicht ⁽⁺⁾	100m näher	+0.28%	[0.25, 0.31]
L10 Seenähe ⁽⁺⁾	100m näher	+0.14%	[0.13, 0.15]
L11 Seesicht	ja/nein	+2.54%	[2.14, 2.94]
L12 Flussnähe ⁽⁻⁾	100m näher	+0.11%	[0.09, 0.12]
Landschaft und Erholung (R)			
R4 Zugängliche Gewässer	100m	-0.24%	[-0.29, -0.20]
R5 Wanderwege	100m	+0.15%	[0.12, 0.19]
R6 Radwege	100m	n. sig	-
R7 Bergbahnen	100m	n. sig.	
Mikroklima (K)			
Besonnung	100 KJoule/km2	+0.66%	[0.61, 0.71]
Eigenschaften der Gemeinde (G)			
G1 Steuerbelastung	Prozent	-2.46%	[-3.14, -1.78]
G2 Ausländeranteil	Prozent	+0.49%	[0.32, 0.65]
G4 Bauzonenreserven	Prozent	-0.27%	[-0.08, -0.46]

¹ Gilt für Belastungen von mindestens 40 dB(A). S. auch Kapitel 4.3.

Anmerkung: Die Effektstärken wurden auf Grundlage des Modells B1c (s. Anhang 2.2) berechnet.

² Der Zerschneidungsgrad wird anhand der effektiven Maschengrösse gemessen. Je höher die effektive Maschengrösse, desto kleiner der Zerschneidungsgrad.

 $^{^{(+)}}$, $^{(-)}$ Siehe Tabelle 5.1.

^{*} Lesebeispiel: Eine Reduktion der Distanz zu Hochleistungsstrassen um 100m bewirkt eine Mietpreisreduktion von 0.27%. Seesicht bewirkt einen Mietpreisanstieg von 2.54%.

6 Regionenspezifische Resultate

6.1 Ausgangslage

Im Kapitel 5 wurden die Effekte von Landschaftsattributen und verschiedener anderer Variablen auf Mietpreise von Wohnungen geschätzt und analysiert. Dabei wurde die gesamte verfügbare Datensatz von gut 160'000 Wohnungen aus über 1'100 verschiedenen Gemeinden verwendet. Im Folgenden soll nun untersucht werden, wie diese Effekte zwischen verschiedenen Regionen variieren. Zu diesem Zweck wird der Datensatz in verschiedene Teildatensätze aufgeteilt. Dabei wird von der Gemeindetypologie-9 des BFS ausgegangen, welche die Gemeinden der Schweiz neun verschiedenen Gemeindetypen zuordnet: (1) Zentren, (2) suburbane Gemeinden, (3) einkommensstarke Gemeinden, (4) periurbane Gemeinden, (5) industrielle und tertiäre Gemeinden, (6) ländliche Pendlergemeinden, (7) agrar-gemischte Gemeinden, (8) agrarische Gemeinden und (9) touristische Gemeinden (vgl. Abbildung 6.1). Wegen der kleinen Anzahl Beobachtungen wurden die Typen (5) bis (8) zu einer Kategorie "ländliche Gemeinden" zusammengefasst. Auf die Analyse der touristischen Gemeinden wurde verzichtet, da für diese nur ca. 600 Beobachtungen vorliegen.

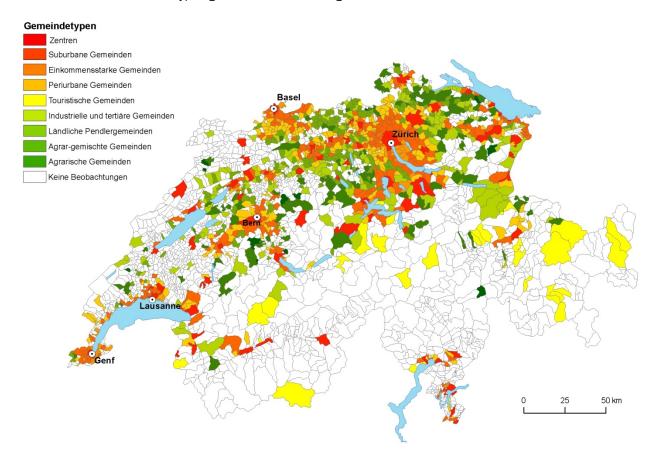


Abb. 6.1: Die 9er-Gemeindetypologie des BFS: Zuordnung der Gemeinden

Quelle: BFS GEOSTAT, eigene Darstellung.

6.2 Resultate nach Gemeindetypen

Die Resultate für die Modelle nach Gemeindetyp (Modelle C1 bis C5) sind in Tabelle 6.1 zusammengefasst. Ausgangspunkt für die Modelle ist das Basismodell A1 für die 300 Meter Umgebungsvariablen aus Kapitel 5.2. Auf die Schätzung von zweistufigen Modellen wurde hier verzichtet, da sie bei kleinen Fallzahlen instabil sein können.

Die *Erreichbarkeit (E)* ist über die verschiedenen Gemeindetypen relativ stabil. Eine gute Erreichbarkeit zentraler Dienstleistungen hat innerhalb der Zentren den stärksten Effekt (vgl. Anhang 3, Modelle C1 bis C5). Unter den verschiedenen *Immissions-Variablen (I)* fällt der Strassenlärm auf, der sich in fast allen Gemeindetypen negativ auf die Mieten auswirkt, einzig in den ländlichen Gemeinden ist der Effekt nicht signifikant. Die Effektstärke einer Lärmzunahme von 1 dB(A) variiert dabei zwischen 0.10% (Zentren) und 0.64% (Einkommensstarke Gemeinden).²⁴ Auch Industrieflächen wirken sich in vier der fünf untersuchten Gemeindetypen negativ aus – die Ausnahme bilden die ländlichen Gemeinden. Dieser Effekt ist in den suburbanen Gemeinden etwas schwächer als in den übrigen Gemeindetypen. Vor allem in den urbaneren Gemeindetypen können Mietpreis senkende Effekte von Hochleistungsstrassen und Hochspannungsleitungen beobachtet werden. Antennen haben einen Mietpreis senkenden Effekt im suburbanen Raum und in den einkommensstarken Gemeinden.

Die Effekte der Nähe zu Freiflächen in der Kategorie *Landschaftsqualität und Landnutzung* (*L*) sind über alle Gemeindetypen hinweg Mietpreis mindernd oder insignifikant. Der Wald ist in vier von fünf Teilstichproben insignifikant und für die Vielfalt der Landnutzung wurde ausschliesslich in den periurbanen Gemeinden ein schwach positiver Effekt gefunden. Während die nichtsignifikanten Koeffizienten für den Wald (Anteil um Umkreis von 300 Meter) mit den nachteiligen Aspekten von Wohnlagen am Waldrand (vgl. 5.2.2) erklärt werden können, erstaunen vor allem die in den Zentren, suburbanen und periurbanen Gebieten Mietpreis senkenden Effekte der Nähe zu Freiflächen, d.h. Flächen, welche weder bebaut noch bewaldet sind. Insbesondere in urbanen Gebieten könnte vermutet werden, dass Grünflächen und die offene Landschaft sich Mietpreis steigend auswirken. Die Präferenz für Wohnstandorte mit Nähe zu Grünflächen wird auch in diversen Umfragen bestätigt (z.B. NZZ 2012). Dass diese Hypothese in dieser Studie nicht bestätigt werden kann, dürfte mehrere Gründe haben, welche gemeinsam zu diesem Resultat beitragen:

Freiflächen befinden sich besonders häufig in peripheren Regionen und – innerhalb des urbanen Raums – an den Siedlungsrändern. Diese Gebiete weisen oft unterdurchschnittliche Mietpreise auf. Auch wenn prinzipiell in den verwendeten Modellen für die geographische Lage und Erreichbarkeit kontrolliert wurde, könnte es sein, dass ein Teil der Koeffizienten für die Variable Freiflächen diese Dezentralität wiederspiegelt. Die negative Korrelation der Näher zu Freiflächen mit der Zentralität der Lage (vgl. 5.2.2 und 8.1.1) lässt den Schluss zu, dass der Effekt der Freiflächen in Wirklichkeit zumindest weniger ausgeprägt ist als im Modell.

55/125

²⁴ Siehe auch Kap. 8.1.3 und 8.1.4.

- Ausserhalb der urbanen Zentren ist das Angebot an Freiflächen teilweise noch gross, so dass sich hier die Unterschiede in der Verfügbarkeit und Zugänglichkeit von Freiflächen nicht auf dem Mietmarkt manifestieren.
- Da für "unerwünschte" Landnutzungen (Industrie, Verkehrsimmissionen etc.) kontrolliert wurde, ist der immissionsmindernde Effekt von Freiflächen bereits berücksichtigt und kommt bei den Freiflächenanteilen nicht "nochmals" vor.
- Der Indikator Freiflächen ist zu wenig genau. Er basiert auf der Arealstatistik, welche auf einer Auflösung von einer Hektare basiert. Freiflächen, welche deutlich kleiner sind, werden folglich nicht berücksichtigt. Dabei kann vermutet werden, dass kleine Grünflächen mit einigen Bäumen in Gebäudezwischenräumen oder Höfen oft bedeutender sind, als beispielsweise weiter entfernte Landwirtschaftsflächen. Dies gilt insbesondere auch für urbane Räume.

Aussicht, Seenähe und Seesicht sind für die Zentren, die suburbanen Regionen und die einkommensstarken Gemeinden wichtig. Von der Flussnähe gehen nur in den Zentren Mietpreis steigernde Effekte aus, ansonsten ist ihr Effekt insignifikant oder Mietpreis senkend (suburbane Gemeinden). Naturnahe Fliessgewässer haben selbst in den urbaneren Gemeindetypen einen Mietpreis senkenden Effekt oder sind insignifikant. Das bestätigt den Befund, dass dieser Indikator zur Messung von siedlungsnahen Fliessgewässer-Annehmlichkeiten wenig geeignet ist (vgl. Kapitel 5.2.2).

Die Variablen der Kategorie Landschaft und Erholung (R) sind vor allem im urbanen Raum (Zentren, suburbane Gemeinden) von Bedeutung auf dem Wohnungsmarkt (Stadtpärke, anlagearme Gebiete, teilweise Wanderwege und urbane Bergbahnen wie z.B. die Üetlibergbahn). Der Preiseffekt eines zusätzlichen Prozents anlagearme Gebiete ist dabei mit 0.73% in den einkommensstarken Gemeinden am grössten. Über alle Gemeindetypen hinweg von Bedeutung ist der Effekt, der von einem angenehmen Mikroklima (C) beziehungsweise von einer starken Besonnung ausgeht.

Tabelle 6.1: Vergleich der Ergebnisse für verschiedene Gemeindetypen (Modelle C1-C5)1

	Gemeindetyp (BFS 9er Nomenklatur)				
Variable	Zentren (Modell C1)	Suburbane Gemeinden (Modell C2)	Reiche Ge- meinden (Modell C3)	Periurbane Gemeinden (Modell C4)	Ländliche Gemeinden (Modell C5)
Erreichbarkeit (E)					
E4 Erreichbarkeit MIV	+	+	+	0	(+)
E6: Lage in Innenstadt	+	NA	NA	NA	NA
Immissionen (I)					
I1 Strassenlärm	-	-	-	-	0
I2 Bahnlärm	0	-	0	0	-
I3 Strassennähe	+	0	-	+	0
I4 Hochleistungsstrassennähe	-	-	0	0	0
I5 Hochwasser	+	0	0	+	0
17 Industrie	-	-	-	-	0
I8 Hochspannungsleitungen	0	0	-	+	0
19 Antennen	0	-	-	0	+
Kulturerbe (K)					
K3 Kulturelle Objekte	0	+	-	0	+
Landschaftsqualität/-nutzung (L)					
L3 Nähe zu Freiflächen ⁽⁺⁾	-	0	0	-	0
L5 Wald	0	0	0	(-)	-
L6 Vielfalt ⁽⁺⁾	0	-	-	+	0
L7 Zerschneidung	0	0	-	0	0
L9 Aussicht ⁽⁺⁾	+	+	+	0	0
L10 Seenähe ⁽⁺⁾	+	+	+	-	+
L11 Seesicht	+	+	+	0	0
L12 Flussnähe ⁽⁻⁾	+	-	0	(-)	0
L13 Naturnahe Fliessgewässer	-	0	0	(-)	-
Landschaft und Erholung (R)					
R1 Stadtpärke ⁽⁻⁾	+	+	0	0	-
R3 Anlagearme Gebiete	+	+	+	0	0
R4 Zugängliche Gewässer	-	-	-	-	0
R5 Wanderwege	+	0	(-)	-	0
R6 Radwege	-	+	0	0	+
R7 Bergbahnen und Skilifte	+	0	NA	-	-
Mikroklima (C)					
C1 Besonnung	+	+	+	+	+
Anzahl Beobachtungen	71'625	65'636	8'335	9'666	6'975
Anzahl Gemeinden	62	282	56	239	473
R ²	0.85	0.85	0.82	0.84	0.88

¹ + positiv-signifikanter Effekt (p<0.05), - negativ-signifikanter Effekt, 0 kein signifikanter Effekt, (NA) Variable nicht in Modell, () schwach signifikanter Effekt (p<0.1).

Anmerkung: Die detaillierten Schätzresultate können Anhang A3.1 entnommen werden (Modelle C1-C5).

^{(+), (-)} Die Variable ist mit dem Zentrum/Peripherie-Gradienten korreliert (vgl. Tabelle 8.1). Der kausale Effekt ist deshalb tendenziell stärker positiv (+) bzw. negativ (-) als der geschätzte Effekt.

7 Anwendung der Resultate auf zwei Fallbeispiele

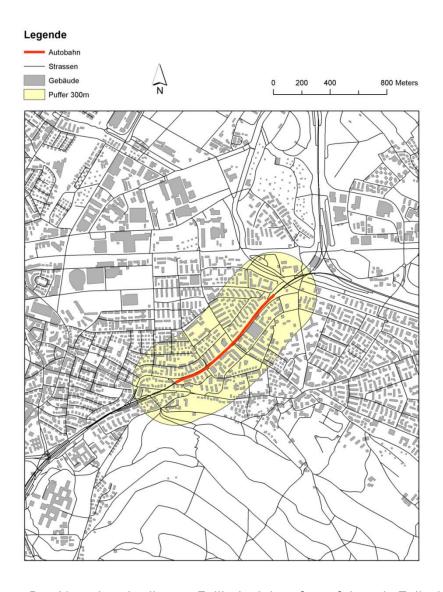
7.1 Auswahl der Fallbeispiele

Im diesem Kapitel werden anhand der Modellergebnisse Auswirkungen von umwelt- und landschaftswirksamen politischen Entscheidungen auf den Wert von Wohnstandorten abgeschätzt. Die Fallbeispiele, die betrachtet werden, wurden nach folgenden Kriterien ausgewählt:

- (1) Die Fälle sollen sich hinsichtlich der relevanten Umgebungsvariablen unterscheiden.
- (2) Mindestens in einer Anwendung sollen *mehrere* Umgebungsvariablen der Wohnstandorte eine Rolle spielen.
- (3) Neben der Bewertung anhand der Mietpreise soll eine Bewertung im Rahmen eines politischen Entscheidungsprozesses vorliegen, mit der sich die hedonische Bewertung wenigstens ansatzweise vergleichen lässt. Damit wird nicht eine Validierung sondern eine Einordnung der hedonischen Bewertung in Rahmen von umfassenderen politischen Bewertungen angestrebt.

Fallbeispiel 1 untersucht die Auswirkungen einer Autobahn-Einhausung auf den Wert der Umgebung als Wohnstandort. Im Fallbeispiel 2 werden mögliche Auswirkungen einer kommunalen raumplanerischen Entscheidung auf den Immobilienmarkt analysiert und diskutiert.

Bei den beiden Anwendungen muss beachtet werden, dass es sich um illustrative Fallbeispiele handelt, bei denen zum Teil grobe Annahmen getroffen wurden. Für detaillierte Kosten-Nutzen Analysen wären teilweise zusätzliche Recherchen nötig, welche mit einem grossen Aufwand verbunden sind.


7.2 Einhausung der Autobahn A1 in Zürich-Schwamendingen

7.2.1 Zielsetzung und Vorgehen

In diesem Fallbeispiel werden die Parameter der geschätzten Modelle verwendet, um die Auswirkungen eines Infrastrukturprojekts auf Miet- und Immobilienpreise abzuschätzen. Das betrachtete Projekt ist die Einhausung eines rund 1 Kilometer langen Abschnitts der Autobahn A1 in Zürich-Schwamendingen (vgl. Abb. 7.1). Durch die Einhausung werden

zahlreiche Wohnungen von Verkehrslärm entlastet. Zusätzlich entsteht auf dem Dach des Bauwerks ein begrünter, begehbarer Freiraum.²⁵

Abbildung 7.1: Projekt Einhausung Autobahn Zürich-Schwamendingen

Das Vorgehen in diesem Fallbeispiel umfasst folgende Teilschritte:

- Schätzung der Auswirkung des Projekts auf relevante, d.h. durch die Einhausung beeinflusste, Umgebungsvariablen von Immobilien im Siedlungsband beidseits der Einhausung
- Berechnung der Veränderung der Mieten aufgrund der geschätzten Modell-Koeffizienten für die betreffenden Umgebungsvariablen

²⁵ Weitere Details zum Projekt und zum politischen Entscheidungsprozess können der gemeinsamen Webseite von Bund (ASTRA), Kanton Zürich und Stadt Zürich entnommen werden (ASTRA 2013).

- Schätzung der Wertzunahme des Immobilienbestands beidseits der Einhausung
- Vergleich der Wertzunahme mit der politisch geäusserten Zahlungsbereitschaft für die Einhausung (Volksabstimmung über Finanzierung der Einhausung in der Stadt Zürich)

7.2.2 Auswirkung des Projekts auf relevante Umgebungsvariablen

Die in den Modellschätzungen berücksichtigten Umgebungsvariablen, die vom Einhausungsprojekt beeinflusst werden, sind: Strassenlärm (iO1), Distanz zu Hochleistungsstrasse (iO4) sowie Anteil Parkflächen im Umkreis von 300m (rO12). Die Schätzung der Auswirkungen auf diese Variablen ist in Tabelle 7.1 beschrieben.

Tabelle 7.1: Auswirkungen des Projekts auf relevante Umgebungsvariablen

Variable	Vorgehen	Auswirkungen
		des Projekts
Strassenlärm (i01)	-Analyse der funktionellen Form des Lärmeffekts mit Dummy-	- 11.4 dB(A)
	Variablen für Lärmintervalle ergibt linearen Effekt auf log-Preis	
	im relevanten Bereich 40-59 dB(A).	
	-Die Lärmdaten zeigen, dass der Strassenlärm durch die Auto-	
	bahn bis auf eine Distanz von rund 300m erhöht ist (GIS-	
	Daten des BAFU, Ebene "Strassenlärm Lr_Nacht") ²⁶ :.	
	-Berechnung des durchschnittlichen Strassenlärms (Nacht-	
	lärm) in Dezibel innerhalb eines Bands von 300m beidseits	
	des Strassenabschnitts:	
	-vorher: 51.4 dB(A)	
	-nachher (anhand vergleichbarer Quartiere): 40 dB(A)	
Distanz zu Hochleis-	Schätzung der durchschnittlichen Distanz der Wohnbauten	+450m
tungsstrassen (i04)	innerhalb von 300m beidseits des Strassenabschnitts:	
	-vorher: 150m	
	-nachher: 600m	
Anteil Parkflächen im	Schätzung der durchschn. Veränderung der Variable "Anteil	+7%
Umkreis von 300m	Parkfläche im Umkreis von 300 m" für die Immobilien inner-	
(r012)	halb von 300m beidseits des Strassenabschnitts. (Annahme	
	eines Zugewinns von 400 m x 50m Parkfläche, entsprechend	
	einem Anteil von 7%)	

²⁶ http://map.bafu.admin.ch/?Y=685307.25&X=251369.5&zoom=8&bgLayer=ch.swisstopo.pixelkarte-grau&layers=ch.bafu.laerm-strassenlaerm_nacht&layers_opacity=0.7&layers_visibility=true&lang=de (Zugriff am 8.8.2013)

7.2.3 Berechnung der Veränderung der Mieten

Für die Berechnung werden die Parameter der hedonischen Modelle für die Teilstichproben "Zentren", "suburbane Gemeinden" und "Stadt Zürich" verwendet. Das Modell für suburbane Gemeinden ist aufgrund der peripheren Lage Schwamendingens innerhalb der grossen städtischen Gemeinde Zürich von Interesse.

Tabelle 7.2: Geschätzte Veränderung der Mietpreise durch die Einhausung

Teilstichprobe	Variable	Modell-	Veränderung	Veränderung
(Modell)		koeffizient ¹	Mietpreise	Mietpreise
			in Prozent	95%-V.i. ²
Zentren	Strassenlärm ³	-0.000984	1.12	+/- 0.41
(Modell C1)	Distanz zu Hochleistungsstrassen	0.000038	1.69	+/- 0.15
	Anteil Parkflächen (r=300m) 4	0.000744	0.52	+/- 0.26
	Summe		3.33	
Suburbane	Strassenlärm	-0.001387	1.58	+/- 0.42
Gemeinden	Distanz zu Hochleistungsstrassen	0.000016	0.70	+/- 0.18
(Modell C2)	Anteil Parkflächen (r=300m) 4	0.001316	0.92	+/- 0.47
	Summe		3.20	
Stadt Zürich	Strassenlärm	-0.000845	0.96	+/- 0.83
(Modell D1)	Distanz zu Hochleistungsstrassen	0.000041	1.85	+/- 0.30
	Anteil Parkflächen (r=300m) 4	0.000129 (ns)	0.09	+/- 0.35
	Summe		2.90	

¹ Anteilmässige Veränderung des Mietpreises bei Veränderung des Werts der Umgebungsvariable um eine Einheit bei Immobilien mit einer Belastung ab 40 dB(A). (ns): geschätzter Koeffizient ist nicht statistisch signifikant (p=0.05).

In den geschätzten semi-logarithmischen Modellen entspricht der Modell-Koeffizient b_x einer unabhängigen Variable x multipliziert mit 100 der prozentualen Veränderung des Mietpreises bei einer Erhöhung des Werts der unabhängigen Variable um eine Einheit. Die prozentuale Veränderung des Mietpreises bei einer Veränderung der unabhängigen Variable um a Einheiten beträgt also $100ab_x$ (Tabelle 7.2).²⁷ Den stärksten Effekt auf die Mietpreise hat in den vorliegenden Modellen die Distanz zu Hochleistungsstrassen. Je näher ein Mietobjekt bei einer Hochleistungsstrasse liegt, desto geringer ist der Immobilienwert. Neben der Lärmbelastung spielen hier vermutlich auch Trennwirkungen und Abgasimmissionen eine Rolle (vgl. Kapitel 8.2.2). Die Gesamtveränderung der Mietpreise ist die Summe der Auswirkungen von Strassenlärm, Distanz zu Hochleistungsstrassen und Anteil Parkflächen. Aufgrund der Modellkoeffizienten der geschätzten Modelle ergibt sich eine Veränderung der Mietpreise um rund 3 Prozent.

² Vertrauensintervall

³ Im Modell ohne "Distanz zu Hochleistungsstrassen" (Modell D2) beträgt der Modellkoeffizient -0.001215, der Preiseffekt 1.39 Prozent.

⁴ Die Variable ist mit dem Zentrum/Peripherie-Gradienten korreliert (vgl. Tabelle 8.1). Der kausale Effekt wird dadurch tendenziell überschätzt (vgl. Tabelle 8.1).

²⁷ Exakt stimmt die Berechnung anhand dieser Formel für sehr kleine Veränderungen in der unabhängigen Variablen.

7.2.4 Schätzung der Wertzunahme des Immobilienbestands

Unter der Annahme, dass sich Umgebungsvariablen ähnlich auf Immobilienpreise auswirken wie auf Mietpreise, lassen sich aus den Schätzungen auch Veränderungen des Immobilienwerts berechnen. Ausgehend von der betrachteten Umgebungsfläche von rund 800'000 Quadratmetern, einem grob geschätzten Immobilienwert von 2500 Franken pro Quadratmeter und einer Erhöhung der Mietpreise um 3 Prozent ergibt sich eine Wertzunahme von rund 60 Millionen Franken.

7.2.5 Vergleich der Wertzunahme mit einer politischen Präferenzäusserung

Wie hoch ist diese Bewertung im Vergleich mit den Präferenzäusserungen im politischen Entscheidungsprozess? Die voraussichtlichen Projektkosten der Einhausung belaufen sich auf 298 Mio. Fr., wovon der Bund 167 Mio., der Kanton Zürich 73 Mio. und die Stadt Zürich 58 Mio. tragen sollen. Ein städtischer Beitrag von 40 Mio. Fr. wurde 2006 in einer Volksabstimmung sehr deutlich bewilligt (83% Ja). Die Erhöhung auf 58 Mio. wurde 2011 durch den Gemeinderat gutgeheissen. Die anhand des Modells prognostizierte Wertsteigerung von 60 Millionen Franken entspricht in der Grössenordnung den bewilligten Baukosten zulasten der Stadt Zürich, ist aber deutlich geringer als die erwarteten Projektkosten.

7.2.6 Fazit Fallbeispiel 1

Die Berechnungen deuten darauf hin, dass Einhausungen von Strassenabschnitten substanzielle Auswirkungen auf Immobilienwerte haben. Je nach Topographie und Immobilienbestand sind unterschiedliche Auswirkungen zu erwarten. Eine politische Zahlungsbereitschaft für die Einhausung ist weit über den Kreis der direkten Nutzniesser des Projekts hinaus vorhanden. Die Summe der bewilligten Beiträge von Stadt, Kanton und Bund übersteigt den Wertgewinn der betroffenen Immobilien durch die im Modell abgebildeten Veränderungen der Umgebung um ein Mehrfaches. Dieses Resultat deutet darauf hin, dass in den politischen Bewertungen neben den Gebrauchswerten, die sich direkt im Immobilienmarkt manifestieren, weitere Aspekte relevant sind (vgl. Kapitel 2.2.3 und 8.1.2). Aus ökonomischer Sicht wäre bei vergleichbaren Projekten auch eine Finanzierung über eine Mehrwertabschöpfung prüfenswert. Je nach aktueller Belastung und erwarteten zusätzlichen Wertsteigerungen durch weitere induzierte Aufwertungen wäre allenfalls sogar eine Realisierung durch private Trägerschaften nicht auszuschliessen.²⁸

²⁸ Allerdings ist hier auch zu berücksichtigen, dass die Erhöhung der Lagequalität im Fall von Mietwohnungen auch sozialpolitisch unerwünschte Auswirkungen haben kann.

7.3 Auszonung versus Überbauung einer Grünfläche in Küsnacht (ZH)

7.3.1 Zielsetzung und Vorgehen

In diesem Fallbeispiel werden die geschätzten Parameter verwendet, um die Auswirkungen der Überbauung einer Grünfläche auf Miet- und Immobilienpreise in der Umgebung abzuschätzen. Die im Beispiel betrachtete Fläche ist eine 6240 Quadratmeter grosse Parzelle in der Bauzone der Gemeinde Küsnacht an der Grenze zur Gemeinde Erlenbach (Gemeinderat Küsnacht 2010). Das Vorgehen bei diesem Fallbeispiel umfasst folgende Schritte:

- Schätzung der Auswirkung der Überbauung auf die Umgebungsvariable "Anteil Freiflächen im Umkreis von 300m" für die Liegenschaften im Umkreis der betrachteten Parzelle
- Berechnung der Veränderung der Mieten aufgrund der geschätzten Modell-Koeffizienten der Variable "Anteil Freiflächen im Umkreis von 300m"
- Grobschätzung der Wertzunahme des Immobilienbestands im Umkreis der Parzelle.
- Vergleich der Wertzunahme mit politisch geäusserten Zahlungsbereitschaften (Volksabstimmung über die Auszonung der Fläche in der Gemeinde Küsnacht im Jahr 2010).

7.3.2 Auswirkung der Überbauung auf den Anteil Freiflächen im Umkreis von 300m

Die Berechnung der Auswirkung auf den Anteil Freiflächen ist in Tabelle 7.3 erläutert

Tabelle 7.3: Auswirkung der Überbauung auf die Variable auf den "Anteil Freiflächen"

Variable	Annahmen und Vorgehen	Auswirkungen der Überbauung
Anteil Freiflächen im	Berechnung der Veränderung des Anteils Freiflächen f	- 2.2 %
Umkreis von 300m	durch die Überbauung von 6240m² innerhalb eines	
(1032)	Radius von 300m: $f=(6240/300^2 \pi)$	

7.3.3 Veränderung der Mietpreise

Die Veränderung der Mietpreise ergibt sich anlog zu Kapitel 7.2.3 aus dem Koeffizienten des entsprechenden semi-logarithmischen Modells und der prozentualen Veränderung der Freiflächen (Tabelle 7.4).

Tabelle 7.4: Veränderung der Mietpreise durch die Überbauung der Grünfläche

Teilstichprobe (Modell)	Variable: Freiflächen innerhalb r=300m ²			
	Modell-Koeffizient ¹	Veränderung Miet- preise in Prozent	Veränderung Miet- preise 95%-V.i. ³	
Einkommensstarke Gemeinden (Modell C3)	0.000252 (ns)	-0.056	+/- 0.075	
Bezirk Meilen (Modell D4)	0.000066 (ns)	-0.015	+/- 0.090	
Gemeinde Küsnacht (Modell D3)	0.003453	-0.760	+/- 0.457	

¹ (ns): geschätzter Koeffizient ist nicht statistisch signifikant (p=0.01).

Der Koeffizient für den Anteil Freiflächen innerhalb von 300m um die Mietobjekte ist über die verschiedenen Modelle sehr instabil.²⁹ Ein signifikanter Effekt mit dem erwarteten Vorzeichen liegt für die Teilstichprobe "Gemeinde Küsnacht" vor. Die Teilstichprobe umfasst allerdings nur 611 Beobachtungen, so dass dieses Ergebnis kaum belastbar ist. Stattdessen wird hier der Effekt in der umfassenderen Teilstichprobe "Einkommensstarke Gemeinden" (n=8335) verwendet, um eine Grössenordnung für die absolute Veränderung der Immobilienwerte zu schätzen.

7.3.4 Hochrechnung der Wertveränderung des Immobilienbestands

Um die Veränderung des Immobilienwerts zu schätzen, wurde die Zonenfläche mit Wohnnutzung innerhalb eines 300 Meter breiten Bandes um die betroffene Parzelle berechnet. Aus der Bauzonenstatistik ergibt sich eine Zonenfläche von 314'000 Quadratmeter. Unter der Annahme eines Immobilienwerts von Fr. 5000.- pro Quadratmeter Zonenfläche ergibt sich ein Immobilienwert innerhalb des 300 Meter-Bandes von 1'570 Millionen Franken. Ein Effekt auf den Immobilienwert in der Höhe des geschätzten Mietpreiseffekts (0.056 Prozent) ergibt somit einem Immobilienwertverlust von 0,9 Millionen Franken durch die Überbauung der Parzelle. Die Grenzen des 95%-Vertrauensintervall liegen bei -2.0 und +0.3 Millionen Franken und zeigen, dass auf den geschätzten Wert kein grosses Gewicht gelegt werden kann.

² Die Variable ist mit dem Zentrum/Peripherie-Gradienten korreliert (vgl. Tabelle 8.1). Der kausale Effekt wird dadurch tendenziell zu negativ eingeschätzt (vgl. Tabelle 8.1).

³ Vertrauensintervall

 $^{^{29}}$ Dasselbe gilt für den Anteil Freiflächen innerhalb von 1500m um die Mietobjekte.

7.3.5 Vergleich der Wertveränderung mit der politischen Zahlungsbereitschaft für die Freihaltung

Entspricht die Bewertung anhand des Hedonic Pricing-Modells ungefähr der Zahlungsbereitschaft, die im politischen Entscheidungsprozess artikuliert wurde? Im Jahr 2010 wurde in der Gemeinde Küsnacht über eine entschädigungspflichtige Umzonung mit Kostenfolgen von 7 Mio. Fr. abgestimmt. Die Umzonung wurde mit 51,1 Prozent der Stimmen knapp abgelehnt. Die geltende einfache Mehrheitsregel impliziert eine politische Zahlungsbereitschaft von über 7 Mio. Fr., wenn die Mehrheit die Kreditvorlage annimmt, und eine politische Zahlungsbereitschaft unter 7 Mio. Franken, wenn die Mehrheit die Vorlage ablehnt. Entsprechend der knappen Ablehnung beträgt die politische Zahlungsbereitschaft für die Freihaltung der Grünfläche in diesem Fall rund 7 Millionen Franken. 30 Anzumerken ist dabei, dass selbst diese politische Bewertung nicht umfassend ist. Bewertungen von Personen, die ausserhalb von Küsnacht wohnen, u.a. auch in der direkt angrenzenden Gemeinde Erlenbach, kommen in der kommunalen Volksabstimmung naturgemäss nicht zum Ausdruck. Die Gegenüberstellung der politisch geäusserten Zahlungsbereitschaft von rund 7 Millionen mit der wenig robusten und daher kaum quantifizierbaren Auswirkung auf die Immobilienpreise deutet darauf hin, dass sich in Mietpreisen bzw. Mietpreismodellen nur ein geringer Teil der gesellschaftlichen Bewertung von Grünflächen manifestiert.

7.3.6 Fazit Fallbeispiel 2

Während politische Entscheidungen auf substanzielle Zahlungsbereitschaften für die Erhaltung von Grünräumen schliessen lassen, konnten in der vorliegenden Studie keine robusten Präferenzen für Freiflächen im Wohnumfeld nachgewiesen werden. Dieses Resultat weist darauf hin, dass in der politischen Bewertung von Freiflächen auch Aspekte berücksichtigt werden, die in Bewertungen auf Immobilienmärkten nicht zum Tragen kommen (vgl. Kapitel 2.2.3 und 8.1.2). Zahlungsbereitschaften für die Erhaltung von Grünflächen müssen daher vermutlich eher mit anderen Ansätzen als der Hedonic-Pricing-Methode erfasst werden (vgl. Tab. 2.3).

.

³⁰ Eine weitergehende Interpretation, dass die Summe der individuellen Zahlungsbereitschaften 7 Millionen Franken beträgt, benötigt spezifische Annahmen über die Verteilung der Netto-Zahlungsbereitschaft – der Differenz von Zahlungsbereitschaften und Steuerkosten – unter den Ja-Stimmenden, Nein-Stimmenden und Abstinenten (s. Schläpfer, 2012; Pommerehne, 1987).

8 Diskussion

8.1 Diskussion der Resultate

In dieser Studie wurden Effekte verschiedener Landschaftsattribute auf Wohnungspreise modelliert, geschätzt und auf zwei Fallbeispiele angewendet. Die Besonderheit der Studie, liegt dabei in folgenden zwei Punkten:

- Im Vergleich zu den meisten früheren Studien wurde ein sehr umfangreicher interregionaler Datensatz verwendet, der weite Teile der Schweiz abdeckt. Dies ermöglicht, die Effekte von Landschaftsattributen zwischen verschiedenen Regionen zu vergleichen und führt zu viel Varianz in den Landschaftsvariablen. Der Preis dafür sind die erhöhten Anforderungen an die Modellierung durch die Schwierigkeiten, die sich aus der grossen Heterogenität des Raumes ergeben (z.B. Stadt-Land-Unterschiede).
- Im Vergleich zu den meisten früheren Studien, welche mit hedonischen Modellen Umweltattribute bewertet haben, wurde in der vorliegenden Studie ein äusserst umfangreiches Set von Variablen verwendet, welches einen Grossteil der verfügbaren (und in diesem Kontext potenziell relevanten) Landschaftsdaten umfasst.

Im Folgenden werden die Resultate dieser Studie diskutiert und mit früheren Studien verglichen. Ausgehend von der theoretischen Diskussion in Kapitel 2 wird ausserdem auf die Grenzen dieser Resultate eingegangen.

8.1.1 Interpretation der Resultate

Die Resultate der verschiedenen Modellschätzungen bestätigen die hohe Bedeutung der "klassischen natürlichen Standortfaktoren": Mieter bevorzugen Lagen mit Seesicht, Seenähe, viel Sonnenschein und guter Aussicht. Alle diese Effekte sind in der Literatur gut dokumentiert und die entsprechenden Variablen sind oft in hedonischen Modellen von Banken oder Immobilienberatungsfirmen vorhanden. Für die Raumentwicklungs- und Landschaftspolitik spielen diese Landschaftsattribute eine wichtige Rolle, weil aufgrund des Siedlungsdrucks eine grosse Nachfrage nach den entsprechenden Flächen besteht und somit auch ein sorgfältiger planerischer und gestalterischer Umgang mit diesen Flächen geboten ist.

Interessante Ergebnisse liegen für die Stadtpärke und die anlagearmen Gebiete vor, welche sich in urbanen und suburbanen Regionen deutlich Mietpreis fördernd auswirken. Mit jedem zusätzlichen Prozent Stadtpark im Liegenschaftsumkreis von 300 Meter steigen die Wohnungsmieten um 0.09 Prozent, im suburbanen Raum um 0.13 Prozent. Dieses Resultat bestätigt den Stellenwert urbaner Grünflächen als wichtiger Bestimmungsfaktor der lokalen Wohn- und Lebensqualität. Mit einem zusätzlichen Prozent anlagearmer Gebiete

steigen die Mieten durchschnittlich um 0.25 Prozent, in einkommensstarken Gemeinden sogar um 0.73 Prozent. Im Mittelland besteht durch Urbanisierung und Zersiedelung ein starker Druck auf diese Gebiete, die dort noch knapp 6 Prozent der Gesamtfläche ausmachen. Die Resultate zeigen, dass diese Gebiete nicht nur aus ökologischer Sicht von hoher Bedeutung sind (z.B. aufgrund ihres relativ tiefen Zerschneidungsgrads und vieler Biotopschutzflächen). Vielmehr haben sie die Funktion von wichtigen Erholungsgebieten für die lokale Bevölkerung – insbesondere im urbanen und suburbanen Raum.

Ebenfalls teilweise starke und relativ robuste Effekte wurden für mehrere Variablen gefunden, welche die Landschaftsqualität nicht direkt messen, diese aber negativ beeinträchtigen. Es handelt sich dabei um Industrieflächen, Strassenlärm, Hochspannungsleitungen und Hochleistungsstrassen. Diese Immissionen wirken sich insbesondere in urbanen, suburbanen und einkommensstarken Gemeinden markant auf die Wohnungsmieten aus. Ein stark Mietpreis senkender Effekt wurde ausserdem für die Zersiedelung der Landschaft gefunden. Hier ist allerdings nicht klar, was Ursache und was Wirkung ist; es dürfte eine beidseitige Kausalität vorliegen. Zum einen beeinträchtigt die Zersiedelung die Landschaftsqualität negativ, zum anderen wird die Zersiedelung durch tiefe Baulandpreise oft verstärkt (vgl. 5.3.2).

Für einige Attribute der Landschaftsqualität und Landnutzung wurden kontraintuitive oder insignifikante Effekte gefunden. Für gewisse Variablen (insbesondere naturnahe Fliessgewässer und zugängliche Gewässer, teilweise auch Freiflächen, vgl. 5.2.2 und 6.2) lässt sich dies damit erklären, dass die entsprechenden Indikatoren wenig geeignet sind, um die kulturellen Landschaftsleistungen im Siedlungsraum (Ästhetik, Naherholung, Identitätsstiftung), welche für Wohnungsmieter relevant sind, abzubilden. Weiter sind verschiedene Landschaftsvariablen (z.B. Freiflächen, Vielfalt der Landnutzungen, Wald) stark mit dem Stadt-Land- und dem Zentrums-Siedlungsrand-Gradienten korreliert, d.h. diese Landnutzungen treten verstärkt in peripheren Gemeinden und an dezentralen Lagen auf. Obwohl in den verschiedenen Modellen durch mehrere Variablen (z.B. Erreichbarkeit von zentralen Dienstleistungen, Lage in Altstadt, Distanz zu Gross- und Regionalzentren) versucht wurde, die Effekte der geographischen Lage aufzufangen, scheint es nicht vollständig gelungen zu sein, Effekte von Landschaftsvariablen von diesen Zentrum-Peripherie-Effekten zu isolieren.

Andererseits wäre eine vollständige statistische Kontrolle der Zentralität der Lage, z. B. durch eine Variable für die umliegende Bevölkerungsdichte, auch nicht wünschbar. Denn die Kontrolle würde gleichzeitig auch einen Teil der interessierenden Effekte von Umgebungsvariablen eliminieren. Soweit die interessierenden Variablen mit dem Zentrum-Peripherie-Gradient korreliert sind, lässt sich der "gemeinsame" Effekt nicht eindeutig der betreffenden Variable oder der Zentralität zuordnen. Diesem Problem muss im Rahmen der Interpretation der Resultate Rechnung getragen werden. So sind die Effektstärken der Variablen, die mit im Modell nicht erfassten Aspekten der Zentralität korreliert sind, vorsichtig zu interpretieren (vgl. Tabellen in den Kapiteln 5, 6 und 7). Tabelle 8.1 zeigt die Korrelation der Variablen mit der Bevölkerungsdichte als Mass für die im Modell nicht erfass-

ten Aspekte der Zentralität. Wo die Korrelation gering ist, ist die Interpretation unproblematisch. Verzerrungen entstehen, wenn das Modell für "vergessene" Aspekte der Zentralität "kompensiert", d.h. wenn die Zentralitätseffekte den mit der Zentralität korrelierten Faktoren (z.B. Freiflächen) zugeschrieben werden. Bei einer positiven Korrelation der interessierenden Variable mit der Zentralität wird der kausale Effekt der Variable überschätzt, bei einer negativen Korrelation unterschätzt (sog. omitted variable bias).

Tabelle 8.1: Korrelation der in den Modellen verwendeten Umgebungsvariablen mit der Bevölkerungsdichte (Variable G5) als Näherungsmass für im Modell nicht berücksichtigte Aspekte der Zentralität der Lage

	Korrelations-		Korrelations-
Variable	koeffizient1	Variable	koeffizient1
I1 Strassenlärm	0.1540	L8 Zersiedlung	-0.3705
I2 Eisenbahnlärm	0.0605	L9 Aussicht (Nähe)	-0.2231
I3 Strassennähe	0.1553	L10 See (Nähe)	-0.3727
I4 Hochleistungsstrassennähe	0.1904	L11 Seesicht (ja/nein)	0.0037
I5 Hochwasserpotenzial	-0.0091	L12 Fluss (Nähe)	0.2603
17 Industrie (300m)	-0.0462	L13 Naturnahe Gewäss. (300m)	-0.1814
I8 Hochspannungsleitungen (300m)	-0.0448	R1 Stadtpärke (300m)	0.2864
I9 Antennen (300m)	0.0002	R3 Anlagearme Gebiete (300m)	-0.0295
K3 Kulturelle Objekte (300m)	0.1318	R4 Zugängliche Gewäss. (300m)	-0.1427
L3 Freiflächen (Nähe)	-0.3864	R5 Wanderwege (300m)	0.0406
L5 Wald (300m)	-0.1110	R6 Radwege (300m)	0.0938
L6 Vielfalt (300m)	-0.4778	R7 Bergbahnen (300m)	-0.0172
L7 Zerschneidung	-0.0084		

¹ Grau hinterlegt sind relativ starke Korrelationen (>0.2), die bei der Interpretation der Effektstärken berücksichtigt werden sollten.

8.1.2 Grenzen der verwendeten Methode

Die Konstruktion von Modellen, die der grossen räumlichen Heterogenität gerecht werden, hat sich als grosse Herausforderung herausgestellt. Da viele preisrelevanten Attribute des Wohnungsstandorts nicht auf der Ebene Wohnungen, sondern auf einer höheren räumlichen Ebene variieren, wurde versucht, Effekte auf Gemeindeebene zu isolieren oder in einem zweistufigen Modell explizit mitzuberücksichtigen. Diese Gemeindeeffekte können aber auch einen Teil der Landschaftseffekte absorbieren, z.B. einen Teil des Effekts für Seesicht in Gemeinden, in denen ein Grossteil der Liegenschaften Seesicht hat. Ausserdem muss davon ausgegangen werden, dass sich Landschaftsvariablen wie Seesicht auch indirekt und damit "unsichtbar" auswirken – über den Wohnungsmarkt auf die Steuerlast oder andere Gemeindevariablen und über diese wiederum auf die Wohnungspreise.

Ebenfalls hingewiesen werden muss auf Grenzen der Daten, auf die die hedonischen Modelle in dieser Studie angewendet wurden. Zum einen ist die Analyse beschränkt auf den Mietmarkt. Es muss damit gerechnet werden, dass die Effekte von Landschafts- und Landnutzungsvariablen im Wohneigentumsmarkt teilweise von den hier berechneten Effekten abweichen können (vgl. Rappl und Bröhl, 2012). Des Weiteren sind Mietwoh-

nungsmärkte zum Teil stark reguliert und entsprechen daher nicht dem modelltechnischen Ideal des vollständigen Wettbewerbs. Die mit den hedonischen Modellen ermittelten impliziten Preise können daher teilweise Verzerrungen unterliegen, wenn die Mietpreise Angebot und Nachfrage nur unvollständig widerspiegeln.

Betreffend die Bewertung von Nutzungen der offenen Landschaft (v.a. Variablen für Freiflächen, Wald, Vielfalt der Landnutzungen) zeigt sich, dass einer Quantifizierung mit der Hedonic-Pricing-Methode enge Grenzen gesetzt sind. Wie schon in Kapitel 2 ausgeführt, können sich wesentliche Teile der gesellschaftlichen Bewertung von Landschaften prinzipiell nicht in Immobilienpreisen manifestieren, da Landschaften auch ausserhalb des individuellen Wohnumfeldes wahrgenommen und bewertet werden. Der Versuch, die Wertschätzung für die Landschaft anhand von Marktdaten zu belegen, stösst hier an natürliche Grenzen. Neben Immobilienmärkten gibt es andere Institutionen, in denen Landschaftsattribute nicht nur als Komplemente von Marktgütern nachgefragt, sondern auch als öffentliche Güter verhandelt werden. Der Vergleich der hedonischen Bewertungen mit politischen Präferenzen in den Fallbeispielen (Kapitel 7) deutet darauf hin, dass sich nur ein Bruchteil der Wertschätzung für attraktive Landschaften in Mietbzw. Immobilienpreisen niederschlägt. Der Befund trägt zur bestehenden Literatur bei, in der üblicherweise keine quantitative Einordnung von hedonischen Bewertungen in umfassenderen Bewertungen möglich ist (vgl. Waltert und Schläpfer 2010).

Die prinzipiellen Grenzen des Ansatzes sind auch für die Kommunikation der Resultate wichtig. Ohne eine angemessene Erwähnung dieser Grenzen könnten die Ergebnisse fälschlicherweise dahingehend verstanden werden, dass der ökonomische Wert vieler Landschaftsattribute unbedeutend sei. Korrekt wäre vielmehr der Befund, dass...

- … einige Landschaftsattribute durchaus einen nachweisbaren Einfluss auf die Mieten haben, besonders Seen, Aussicht, Stadtpärke, anlagearme Gebiete sowie Beeinträchtigungen der Landschaft durch Strassen, Industrie und Hochspannungsleitungen.
- ... der Wert vieler Landschaftsattribute auf dem Wohnungsmarkt aber im Vergleich zu anderen Effekten wie z.B. Wohnungsgrösse, Erreichbarkeit und Steuerbelastung wie erwartet von untergeordneter Bedeutung ist, und...
- ... dass sich dieser Wert mit der verwendeten Methode nicht vollständig von korrelierten Faktoren (wie der Einordnung auf dem Zentrum-Peripherie Gradienten) trennen lässt, und...
- dass sich die relevanten Landschaftsattribute nicht ausreichend gut messen lassen.

8.1.3 Berechnung der externen Kosten des Verkehrs

Eine wichtige Anwendung von hedonischen Modellen in der Schweiz ist die Berechnung der externen Kosten des Verkehrs, unter anderem für die Bemessung der Schwerverkehrsabgabe. Bei der Bewertung des Strassenlärms geht ARE/BAFU (2008) aufgrund von verschiedenen Studien davon aus, dass die Mietpreise ab einem Wert von 55 dB(A) Tageslärm um 0.6% pro dB(A) abnehmen (S. 128, 313). In der vorliegenden Studie wurde der Einfluss von Nachtlärm untersucht, wobei folgende Resultate gefunden wurden. Bis zum Wert von 39 dB(A) ist der Einfluss auf die Mieten unklar. Von 40 dB(A) bis 59 dB(A) sinken die Mietpreise linear um rund 0.16% pro dB(A).31 Über 59 dB(A) sind nur noch wenige Beobachtungen verfügbar. Die Effekte in anderen Studien für Schweizer Städte bewegen sich in der Grössenordnung von -0.2 bis -0.5% pro dB(A) Tageslärm, wobei jeweils Belastungen ab 50 oder 55 dB(A) betrachtet wurden und für weitere negative Effekte der Nähe zu Strassen und Autobahnen teilweise nicht kontrolliert wird. Banfi et al. (2007), die auch den Einfluss von Nachtlärm untersuchten, finden für Zürich einen Wert von -0.31%. Zwei neuere Studie der ZKB in Zusammenarbeit mit dem BAFU untersuchten den Einfluss des Nachtlärms ab 40dB(A) bzw. des Taglärms ab 50dB(A) in Fällen, in denen der Nachtlärm unter 40 dB(A) vorliegt (Leupp et al. 2011 und Rappl und Bröhl 2012). Anhand von Homegate-Daten aus der gesamten Schweiz wie in der vorliegenden Studie wurde ein - linear modellierter - Einfluss von -0.19 bis -0.21% pro dB(A) auf Mieten und von 0.59% auf Stockwerkeigentum geschätzt.³² In der vorliegenden Studie lag der Fokus nicht auf Lärm. Es lassen sich daher keine Folgerungen über die Höhe der Lärmeffekte ziehen. Jedoch kann festgehalten werden, dass Lärmkostenschätzungen tiefer ausfallen, wenn andere Effekte, die damit korreliert sind, separat bewertet werden.

Unter "Zusatzkosten in städtischen Räumen" erfasst ARE/BAFU (2008) räumliche Trenneffekte von Verkehrsachsen und Raumknappheitseffekte bezüglich Raumverfügbarkeit für Fahrräder (S. 259). Weitere Opportunitätskosten des Raumbedarfs durch den Verkehr werden nicht ermittelt. Das Fallbeispiel der Einhausung der A1 in Schwamendingen (Kapitel 7.2) weist darauf hin, dass oberirdische Strassenflächen in städtischen Gebieten nicht nur Lärm verursachen, sondern auch potenzielle Erholungsflächen beanspruchen. Die Bewertung von Parkflächen könnte herangezogen werden, um weitere Zusatzkosten in städtischen Räumen zu berechnen. Weiter weist der starke Effekt der Variable "Distanz zu Hochleistungsstrassen" im Fallbeispiel 1 darauf hin, dass sich die Nähe von Autobahnen nicht nur über den Strassenlärm auf Mietpreise auswirkt. Zumindest in den Zentren ist der Effekt in der Grössenordnung vergleichbar mit dem Effekt des Strassenlärms (s. Tab. 7.2). Es stellt sich die Frage, ob die Kosten der Nähe von Hochleistungsstrassen als zusätzlicher externer Effekt des Strassenverkehrs zu erfassen wären.

³¹ Dieser lineare Verlauf des Lärmeffekts ergibt sich aus einem Modell mit Dummy-Variablen für Lärmintervalle von 5dB(A).

³² Anders als in der vorliegenden Studie wurden dabei keine regionenspezifischen Modelle geschätzt, d.h. es wurde davon ausgegangen, dass der prozentuale Effekt eines zusätzlichen Dezibels Lärmbelastung zwischen unterschiedlichen Gemeindetypen nicht variiert. Siehe auch Kap. 8.1.4.

8.1.4 Vergleich mit früheren Studien

Zahlreiche internationale Studien haben mittels hedonischer Modelle implizite Preise verschiedener Umwelt- und Landschaftsvariablen untersucht. Zum grossen Teil sind diese Studien geographisch jedoch auf ein Quartier, eine Stadt oder eine Region begrenzt und sie benutzen eine im Vergleich zur vorliegenden Studie eingeschränkte Auswahl von Umwelt- und Landschaftsvariablen. In einer umfassenden Literaturanalyse haben Waltert und Schläpfer (2010) 46 solche Studien untersucht. Das sich dabei ergebene Bild ist uneinheitlich. Für eine erhöhte Präsenz von Freiflächen und Wald etwa wurden nur in rund der Hälfte der untersuchten Fälle positive Effekte auf Immobilienpreise gefunden. Solche Effekte variieren geographisch stark und sie sind natürlicherweise von den Präferenzen der lokalen Bevölkerung abhängig. In Übereinstimmung mit der vorliegenden Studie schliessen Waltert und Schläpfer (2010) ausserdem, dass der in hedonischen Modellen ermittelte implizite Wert von Landschaftsattributen mit zunehmender Urbanität (und damit mit zunehmender Knappheit) tendenziell ansteigt.

Zur Validierung und Einschätzung der Resultate der vorliegenden Studie lohnt es sich, die Resultate vergleichbarer Studien aus der Schweiz zu betrachten. In Tabelle 8.2 sind sechs neuere Studien beschrieben, welche hedonische Modelle auf den Schweizer Mietmarkt angewendet und dabei ähnlich definierte Immissions- (I), Landschafts- (L) oder Erholungsvariabeln (R) verwendet haben. Nicht berücksichtigt wurden Studien, welche die Auswirkungen solcher Umgebungsvariablen auf die Preise von Boden- oder Eigentümerwohnungen untersucht haben³³ und Studien, in denen die Definitionen der Umgebungsvariablen von den in der vorliegenden Studie verwendeten Definitionen stark abweichen³⁴. Von den sechs Studien in Tabelle 8.2 verwenden drei einen gesamtschweizerischen Datensatz, drei weitere konzentrieren sich auf Genf und/oder Zürich. Gemessen am Bestimmtheitsmass (R²) hat die hier präsentierte Studie einen höheren Erklärungsgehalt als die sechs Vergleichsstudien, 85% der Varianz zwischen den Mietpreisen werden durch das Modell erklärt. Nur eine Studie (Leupp et al. 2011) hat eine noch grössere Stichprobe (635'504 Wohnungen) analysiert.

Die Effekte der sechs Studien, welche mit der vorliegenden Studie vergleichbar sind, können Tabelle 8.3 entnommen werden. Für den Effekt des Strassenlärms kommen zwei Studien, welche die Zürcher Kantonalbank in Zusammenarbeit mit dem Bundesamt für Umwelt erarbeitet hat (Leupp et al., 2011 und Rappl und Bröhl, 2012) zu vergleichbaren Ergebnissen. In diesen Studien liegt der Effekt eines zusätzlichen Dezibels Strassenlärm mit -0.19 bzw. -0.21% leicht über den -0.16% aus der vorliegenden Studie. Die Differenz lässt sich teilweise damit erklären, dass in den beiden Studien der Zürcher Kantonalbank zusätzlich zur Lärmbelastung in der Nacht auch der Taglärm berücksichtigt wird. Die vorliegende Studie zeigt ausserdem, dass die Effektstärke stark von der gewählten Stichprobe

³³ Z. B. Kubli et al. (2008), Salvi (2008), Stadelmann (2010). Es muss davon ausgegangen werden, dass die Effekte von Landschaftsattributen im Wohneigentumsmarkt sich teilweise vom Mietwohnungsmarkt unterscheiden (vgl. Rappl und Bröhl, 2012).

³⁴ Z. B. Crespo und Grêt-Regamey (2012), Crespo und Grêt-Regamey (2013).

abhängt.³⁵ In einkommensstarken Gemeinden sinken die Wohnungsmieten mit einem zusätzlichen Dezibel Strassenlärm um 0.64%. Ähnlich verhält es sich mit dem *Eisenbahnlärm*: Auch hier liegen die Schätzungen der vorliegenden Studie tiefer, jedoch wurde wiederum nur der Nachtlärm berücksichtigt und die Effektstärke variiert stark zwischen den Gemeindetypen (vgl. Kapitel 6.2). Weiter ist zu beachten, dass die vorliegende Studie für zahlreiche Einflussfaktoren kontrolliert, welche mit der Lärmbelastung korreliert sind (z.B. Nähe zu Hochleistungsstrassen). Die Nichtberücksichtigung solcher Effekte kann zu überhöhten Schätzresultaten für den Lärmeinfluss führen (vgl. Kapitel 8.1.3).

Tabelle 8.2: Vergleichbare Hedonic-Pricing-Studien für den Schweizer Mietmarkt: Übersicht

Studie	Untersu- chungs-gebiet	Anzahl Beobachtungen	Erklärungsgehalt (R²)
Waltert et al. 2014	ganze CH	162'532	0.85
Baranzini et al. 2010	Genf	2'840	0.66
Baranzini und Schaerer 2011	Genf	12'932	0.64
Rieder 2006	ganze CH	ca. 50'000	-
Schaerer et al. 2007	Genf, Zürich	3'327 (GE), 3'194 (ZH)	0.65 (GE), 0.60 (ZH)
Leupp et al. 2011	ganze CH	635'504	0.82
Rappl und Bröhl 2012	ganze CH		0.83

Auch für den Effekt der Seenähe gibt es Studien, die einen Vergleich zulassen. Hier liegen die berechneten Effekte in der vorliegenden Studie etwas höher als in den drei vergleichbaren Studien. Umgekehrt verhält es sich mit der Seesicht: Hier ist der geschätzte Effekt der Seesicht mit 2.5% eher tief. Dies dürfte damit zusammenhängen, dass in der vorliegenden Studie die Variable Seesicht grosszügig definiert wurde, d.h. auch Lagen mit geringer aber vorhandener Seesicht berücksichtigt wurden. Entsprechend erstaunen auch die eher hohen Effekte der Seenähe nicht, da diese Variable die mit Seen verbundenen Annehmlichkeiten einzelner Wohnungen differenzierter wiedergibt.

Ähnlich wie in der vorliegenden Studie untersuchen Schaerer et al. (2007) den Einfluss des Waldanteils in der Wohnungsumgebung auf die Mietpreise. In Genf wurde kein Effekt gefunden, in Zürich ist der Effekt mit +0.15% praktisch identisch mit den hier präsentierten Schätzungen. Der positive Effekt von Stadtpärken wird in zwei Studien höher geschätzt, diese Ergebnisse beschränken sich allerdings auf die Stadt Genf und sind somit beschränkt mit den Ergebnissen der hier vorliegenden gesamtschweizerischen Analyse vergleichbar. Das gleiche gilt für den von Baranzini und Schaerer (2011) für die Stadt Genf untersuchten Effekt des Anteils an Industrieflächen, dessen negativer Effekt auch stärker ausfällt als im hier diskutierten gesamtschweizerischen Modell.

72/125

³⁵ Im Unterschied zur vorliegenden Studie haben Leupp et al. (2011) und Rappl und Bröhl (2012) keine regionenspezifischen hedonischen Modelle geschätzt. Vielmehr wird dort davon ausgegangen, dass der prozentuale Preiseffekt eines zusätzlichen Dezibels Strassen- oder Bahnlärm über die ganze Schweiz weg konstant ist. Folglich lässt sich nur die Schätzung für die gesamte Schweiz (Preiseffekt von 0.16%/db(A) direkt mit den genannten Studien vergleichen.

Insgesamt kann geschlossen werden, dass die Effekte der in Tabelle 8.3 dargestellten Variablen mit früheren Studien vergleichbar sind. Wo grössere Abweichungen vorhanden sind, können diese durch abweichende Definitionen der Variablen oder unterschiedliche Stichproben begründet werden.

Zur weiteren Frage der ökonomischen Präferenzen für die Landschaft liegen auch verschiedene Schweizer Studien vor, die andere Ansätze als die Hedonic Pricing-Methode verwendet haben (vgl. Tab. 2.3). Allerdings untersucht keine dieser Studien (nur) Effekte auf Mietpreise, so dass ein sinnvoller Vergleich von Resultaten kaum möglich ist.

Tabelle 8.3: Vergleichbare Hedonic-Pricing-Studien für den Schweizer Mietmarkt: Effektstärken für Immissions- Landschafts- und Erholungsvariablen

Variable/ Studie	Einheit	Effekt einer Zunahme um 1 Einheit (in % des Mietpreises)	Bemerkungen
Strassenlärm			
Waltert et al. 2014	1 dB(A) Nachtlärm	-0.16% (ganze CH), bis -0.64% (einkommensstarke Gde.)	Belastung ab 40 dB(A)
Leupp et al. 2011	1 dB(A) Nachtlärm oder Taglärm	-0.19% (ganze CH)	Belastung ab 40 dB(A) Nachtlärm resp. 50 dB(A) Taglärm
Rappl und Bröhl 2012	1 dB(A) Nachtlärm oder Taglärm	-0.21% (ganze CH)	s. oben
Eisenbahnlärm			
Waltert et al. 2014	1 dB(A) Nachtlärm	-0.11% (ganze CH), bis -0.75% (ländliche Gde.)	Belastung ab 40 dB(A)
Leupp et al. 2011	1 dB(A) Nachtlärm oder Taglärm	-0.26% (ganze CH)	Belastung ab 40 dB(A) Nachtlärm resp. 50 dB(A) Taglärm
Rappl und Bröhl 2012	1 dB(A) Nachtlärm oder Taglärm	-0.24% (ganze CH)	s. oben
Seenähe			
Waltert et al. 2014	1 km	-1.4% (ganze CH), bis -3.6% (einkommensstarke Gde.), -2.6% (Zürich)	
Schaerer et al. 2007	1 km	-1.4% (Genf), -1.6% (Zürich)	
Leupp et al. 2011	1 km	-0.7% (ganze CH)	
Rappl und Bröhl 2012 Seesicht	1 km	-0.8% (ganze CH)	
Waltert et al. 2013	ja	2.5% (ganze CH), bis 3.2% (Zentren)	geringe bis sehr gute Seesicht
Rieder 2006	ja	+2.9% (ganze CH)	
Schaerer et al. 2007	ja	+6.5% (Genf), +7.0% (Zürich)	
Baranzini et al. 2010	ja	+9.3% (Genf)	
Leupp et al. 2011	ja	mittel: 3.3% (ganze CH) gut-sehr gut: 5.0% (ganze CH)	
Rappl und Bröhl 2012	ja	mittel: +3.7% (ganze CH); gut-sehr gut: +5.3% (ganze CH)	
Anteil Wald			
Waltert et al. 2014	1%	n. sig. (ganze CH), +0.16% (Zürich)	Anteil Wald im Umkreis von 300m
Schaerer et al. 2007	1%	n. sig. (Genf), +0.15% (Zürich)	Anteil Wald im Quartier
Anteil Stadtpärke			
Waltert et al. 2014	1%	+0.09% (ganze CH), bis 0.13% (suburbane Gde.), n. sig. (Zürich)	Anteil Stadtpärke im Umkreis von 300m
Schaerer et al. 2007	1%	+0.56% (Genf), n. sig. (Zürich)	Anteil Stadtpärke im Quartier
Baranzini und Schae- rer 2011 Anteil Industriefläche	1%	+0.19% (Genf)	Anteil Stadtpärke im Umkreis von 1'000m
Waltert et al. 2014	1%	-0.13% (ganze CH), bis -0.27% (einkommensstarke Gde.)	Anteil Industriefläche im Umkreis von 300m
Baranzini und Schaerer 2011	1%	-0.55% (Genf)	Anteil Industriefläche im Umkreis von 1'000m

8.2.1 Praxisempfehlungen

Für die Politik relevant sind robuste Effekte bei Landschaftsvariablen, die durch die Politik beeinflussbar sind. Dazu gehören Distanz zu Hochleistungsstrassen, Stadtpärke, Industrie, Hochspannungsleitungen und anlagearme Gebiete. Diese Effekte sind für Fragen der Raumentwicklung potenziell relevant. Allerdings ist davon auszugehen, dass die geschätzten Auswirkungen auf Immobilienpreise nur einen Bruchteil der gesellschaftlichen Bewertungen ausmachen, die für politische Entscheide relevant sind. Die Landschaft wird nicht nur von der lokalen Bevölkerung sondern auch von anderen Nutzern (z.B. Tagesausflügler) wertgeschätzt und sie hat auch Werte, die nicht direkt von einer Nutzung abhängen (Existenzwert, vgl. Kap. 2.1.2.). Somit bleibt die Frage nach der Bewertung der Zahlungsbereitschaft letztlich doch unbeantwortet, oder es besteht die Gefahr, dass die Teilbewertungen (für den lokalen Mietmarkt) mit umfassenden Bewertungen (der Gesamtbevölkerung des Landes) verwechselt werden.

In den Modellen ebenfalls teilweise signifikant sind Variablen, welche die Erschliessung der Landschaft betreffen (Radwege, Wanderwege, Bergbahnen). Bei diesen Variablen ist die Kausalität der Effekte allerdings fraglich. Es ist zu erwarten, dass der Erschliessungsgrad in erster Linie eine Folge von anderen touristischen Vorzügen der Wohnstandorte ist. Für zahlreiche weitere Landschaftsattribute, die für die Nachfrage nach Wohnungen weniger wichtig und/oder räumlich stark korreliert sind, lassen sich keine robusten Bewertungen isolieren. Dazu gehören die Variablen Freiflächen, Wald und Vielfalt der Landnutzung. Obwohl die vorliegende Untersuchung von sehr detaillierten Landnutzungsvariablen ausgeht, konnte kein Effekt von alternativen Nutzungen der offenen Landschaft auf Mietpreise isoliert werden. Selbst der Anteil von Freiflächen in der Umgebung eines Mietobjekts hatte keinen robusten Effekt auf den Mietpreis. Hinsichtlich Entscheidungsgrundlagen für die Entwicklung der offenen Landschaft liefert die vorliegende Studie daher kaum neue Grundlagen (vgl. Kapitel 8.1.). Vielmehr scheint in diesem Bereich ein weiterer Forschungsbedarf im Bereich der Analyse politischer Präferenzen zu bestehen (Kapitel 8.2.3).

Die Resultate der vorliegenden Studie zeigen, dass Standorte mit gewissen landschaftlichen Vorzügen höhere Mieten aufweisen und immissionsexponierte Wohnungen billiger sind. In diesem Zusammenhang wird bei der Diskussion der Resultate von positiven oder negativen Effekten von Landschafts- oder Landnutzungsvariablen gesprochen. "Positiv" und "negativ" bezieht sich dabei einzig auf die Richtung der Effekte und beinhaltet kein Werturteil. Die Resultate der Studie bedeuten aber auch, dass politische Massnahmen, welche lokale Landschaftsaufwertungen bewirken, langfristig zu höheren Mietpreisen in den betroffenen Räumen führen können. Diese erhöhten Mietpreise widerspiegeln einen Teil des ökonomischen Werts dieser Aufwertungen, der sich in erhöhten Zahlungsbereitschaften manifestiert. Dennoch könnten Befürchtungen geäussert werden, wonach Massnahmen, welche die Landschaftsqualität erhöhen und Immissionen verringern, Vertei-

lungsfolgen haben und die Gentrifizierung begünstigen. Die Beurteilung von Auswirkungen des Landschaftsmanagements auf andere Politikbereiche sowie etwaige Verteilungsfolgen waren nicht Gegenstand dieser Studie. Grundsätzlich wäre aus ökonomischer Sicht eine finanzielle Beteiligung von Grundeigentümern an den Kosten von Aufwertungsprojekten (z.B. Einhausung eines Autobahnabschnittes) mit hohen privaten Nutzen in Betracht zu ziehen (z.B. im Sinne einer Mehrwertabgabe, vgl. 7.2.6). Für die effektive Erreichung sozialund verteilungspolitischer Ziele (z.B. Verhinderung von Gentrifizierung) sollten aber sozialpolitische Instrumente und Instrumente der Wohnraumförderung herangezogen werden; diese Ziele können und sollen nicht vorrangiges Ziel der Landschaftspolitik und des Landschaftsschutzes sein.

8.2.2 Forschungsbedarf

Ein kritischer Punkt bei der Anwendung der Hedonic Pricing-Methode auf die ökonomische Bewertung der Landschaft ist die Verfügbarkeit von geeigneten Landschafts- und Landnutzungsdaten. In der vorliegenden Studie wurden erstmals Indikatoren aus dem Indikatorensystem Landschaftsbeobachtung Schweiz LABES (Roth et al., 2010) für ein hedonisches Modell verwendet. Als besonders gut geeignet für die vorliegende Fragestellung erwiesen haben sich dabei die Indikatoren "Erreichbarkeit zentraler Dienstleistung" (LABES-Indikator 20) und "Anlagearme Gebiete für die Erholung" (LABES-Indikator 32b). Diese Indikatoren repräsentieren Annehmlichkeiten im siedlungsnahen Raum, die für die lokalen Bewohner von Bedeutung sind. Andere Indikatoren sind weniger relevant für die Alltagserholung im siedlungsnahen Raum (Ökomorphologie der Gewässer, LABES-Indikator 11) oder ihre Effekte lassen sich aufgrund einer Korrelation mit der Zentralität schlecht isolieren (z.B. Vielfalt der Landnutzung, Indikator 26). Klar ist, dass Landschaftsindikatorensysteme wie LABES nicht nur ein besseres Monitoring der Entwicklung der Landschaftsqualität ermöglichen, sie sind auch von hohem Wert für die Forschung zu Landschaftswerten und Landschaftspräferenzen, da diese auf möglichst umfassende Landschaftsdaten angewiesen ist.

Das der Anwendung der Hedonic Pricing-Methode im öffentlichen Sektor zugrunde liegende Paradigma ist die Kosten-Nutzen-Analyse. Das Interesse an den Bewertungen liegt darin, dass diese in monetäre Kosten-Nutzen-Überlegungen einfliessen können. In Immobilienpreisen äussern sich allerdings nur Teile der gesellschaftlichen Bewertung von "Landschaft" und anderen öffentlichen Gütern (vgl. Kapitel 2.2.3 und 8.1.2). Die Fallbeispiele in Kapitel 7 deuten darauf hin, dass es je nach Landschaftsaspekt nur Bruchteile sind, die sich in den Preisen manifestieren. Für Kosten-Nutzen-Analysen letztlich relevant sind aber umfassende gesellschaftliche Bewertungen, die auch die Präferenzen von Nicht-Anwohnern und Präferenzen für Landschaften ausserhalb von Wohnstandorten einschliessen. Einigermassen umfassende ökonomische Bewertungen von alternativen Landschaftsentwicklungen sind heute kaum verfügbar. Damit angesprochen ist ein Bedarf an Information über die individuelle und kollektive Bewertung von landschaftswirksamen staatlichen Projekten und Regulierungen in zahlreichen Politikbereichen wie Raumentwicklung, Verkehrs-, Landwirtschafts- und Regionalpolitik. Als Ansätze für deren Erfassung eig-

nen sich Analysen von Politik-Präferenzen, ökonomische Analysen politischer Entscheidungen und Zahlungsbereitschafts-Befragungen (vgl. Kapitel 2.1.4). Für den ersten Ansatz von Interesse sind insbesondere direktdemokratische Finanzierungsentscheide mit klar umrissenen physischen Auswirkungen auf Landschaftsmerkmale sowie einer klar definierten Verteilung der Kosten (vgl. Schläpfer 2012). Im Fall von Befragungen wäre ein Vorgehen mit realistischen Politikalternativen, sorgfältig überlegten Frageformaten, einer geeigneten Informationsvermittlung und einer aussagekräftigen Validierung erforderlich (vgl. Schmitt et al. 2005, Schläpfer 2008). Durch eine systematische Erfassung solcher Präferenzinformation kann das Wissen über die nichtmarktlichen Werte der Landschaft laufend erhöht werden. Damit können Kosten-Nutzenabwägungen von Projekten und Regulierungen, welche die Landschaft tangieren, in Zukunft besser auf die Präferenzen der Bevölkerung abgestimmt und abgestützt werden.

Literatur

- Anselin, L. 1988. Spatial econometrics: Methods and models. Dordrecht (NL): Kluwer Academic Publishers.
- Anselin, L. 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agricultural Economics 27(3), 247–267.
- ARE/BAFU, 2008. Externe Kosten des Verkehrs in der Schweiz. Aktualisierung für das Jahr 2005 mit Bandbreiten. Bundesamt für Raumentwicklung und Bundesamt für Umwelt, Bern.
- Ariely, D., Loewenstein, G., Prelec, D., 2003. "Coherent arbitrariness": stable demand curves without stable preferences. Quarterly Journal of Economics, 118(1), 73-105.
- Arnold, M., Schwarzwälder, B., Beer-Tóth, K., Zbinden, M., Baumgart, K. 2009. Mehrwert naturnaher Wasserläufe. Untersuchung zur Zahlungsbereitschaft mit besonderer Berücksichtigung der Erschliessung für den Langsamverkehr. Umwelt-Wissen Nr. 0912. Bundesamt für Umwelt, Bern.
- ASTRA, 2013. Einhausung Schwamendingen. Gemeinsame Webseite von Bund (ASTRA), Kanton Zürich und Stadt Zürich. http://www.einhausung.ch (Zugriff am 6.8.2013).
- BAFU, 1998. Landschaftskonzept Schweiz. Reihe Vollzug Umwelt, Bundesamt für Umwelt, Bern.
- BAFU, 2003. Landschaft 2020. Leitbild sowie Erläuterungen und Programm. Bundesamt für Umwelt, Bern.
- BAFU, 2011. Landschaftsstrategie BAFU. Bundesamt für Umwelt, Bern.
- Banfi S., Filippini M., Horehájová A., Pióro D., 2007. Zahlungsbereitschaft für eine verbesserte Umweltqualität am Wohnort. Schätzungen für die Städte Zürich und Lugano für die Bereiche Luftverschmutzung, Lärmbelastung und Elektrosmog von Mobilfunkantennen. Umwelt-Wissen Nr. 0717. Bundesamt für Umwelt, Bern.
- Bastian, C.T., McLeod, D.M., Germino, M.J., Reiners, W.A., Blasko, B.J., 2002. Environmental amenities and agricultural land values: A hedonic model using geographic information systems data. Ecological Economics 40(3), 337–349.
- B,S,S. Volkswirtschaftliche Beratung, 2012. Landschaftsqualität als Standortfaktor: Stand des Wissens und Forschungsempfehlung. Schlussbericht zuhanden Bundesamt für Umwelt BAFU. Basel.
- Banzhaf, H.S., Farooque, O., 2012. Interjurisdictional housing prices and spatial amenities: Which measures of housing reflect local public goods?" SSRN Electronic Journal. http://www.ssrn.com/abstract=2062536.
- Baranzini, A., Schaerer, C., 2011. A sight for sore eyes: Assessing the value of view and land use in the housing market. Journal of Housing Economics 20(3), 191–199.

- Baranzini, A., Schaerer, C., Thalmann, P., 2010. Using measured instead of perceived noise in hedonic models. Transportation Research Part D: Transport and Environment 15(8), 473–482.
- Boyd, J., Banzhaf, S., 2007. What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics 63, 616-626.
- Cherry, T.L., Rickman D.S., 2010. Environmental Amenities and Regional Economic Development. Routledge/Taylor & Francis, New York.
- Cho, S.H., Poudyal, N.C., Roberts, R.K., 2008. Spatial analysis of the amenity value of green open space. Ecological Economics 66(2-3), 403–416.
- Cory, D.C., Colby Saliba, B., 1987. Requiem for option value. Land Economics 63(1), 1-10.
- Crespo, R., Grêt-Regamey, A., 2012. Spatially explicit inverse modeling for urban planning. Applied Geography 34(2012), 47–56
- Crespo, R., Grêt-Regamey, A., 2013. Local hedonic house-price modelling for urban planners: Advantages of using local regression techniques. Environment and Planning B: Planning and Design 40(4), 664-682.
- Daniel, T.C., Muhar, A., Arnberger, A., et al. 2012. Contributions of cultural services to the ecosystem services agenda. Proceedings of the National Academy of Sciences of the United States of America 109(23), 8812–8819.
- Donovan, G.H, Butry, D.T., 2010. Trees in the city: Valuing street trees in portland, oregon. Landscape and Urban Planning 94(2), 77–83.
- Earnhart, D., 2002. Combining revealed and stated data to examine housing decisions using discrete choice analysis. Journal of Urban Economics, 51(1), 143-169.
- Freeman III, A.M., 2003. The measurements of environmental and resource values: theory and methods. Washington, D.C.: Resources for the Future.
- Frey, R.L., Blöchliger, H., 1991. Schützen oder Nutzen. Ausgleichszahlungen im Natur- und Landschaftsschutz. Verlag Rüegger, Chur.
- Gemeinderat Küsnacht, 2010. Abstimmungsinformation zur Volksabstimmung vom 7. März. http://www.kuesnacht.ch/documents/2010_03_07_Kommunale_Vorlagen_Urnenab stimmung.pdf (Zugriff am 8.8.2013).
- Geoghegan, J., Wainger, L.A., Bockstael, N.E., 1997. Spatial landscape indices in a hedonic framework: An ecological economics analysis using GIS. Ecological Economics 23(3), 251–264.
- Grêt-Regamey, A., Walz, A., Bebi, P., 2008. Valuing ecosystem services for sustainable landscape planning in Alpine regions. Mountain Research and Development 28(2), 156-165.
- Harrison Jr., D., Rubinfeld, D.L., 1978. Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management 5(1), 81–102.

- Hite, D., Chern, W., Hitzhusen, F., Randall, A., 2001. Property-Value Impacts of an Environmental Disamenity: The Case of Landfills. Journal of Real Estate Finance and Economics 22(2-3), 185–202.
- Hoehn, J.P., Berger, M.C., Blomquist, G.C., 1987. A hedonic model of interregional wages, rents, and amenity values. Journal of Regional Science 27(4), 605–620.
- Kubli, U., Lüscher, A., Salvi, M., Schellenbauer, P., Schellenberg, J., Moser, P., Rey, U., Bischoff, C., 2008. Wertvoller Boden: Die Funktionsweise des Bodenmarktes im Kanton Zürich. Zürcher Kantonalbank, Statistisches Amt des Kantons Zürich, Zürich.
- Leupp, R., Rappl, I., Bröhl, A, Walker, U., Fischer, F., Ingold, K., 2011. Ruhe bitte! Wie Lage und Umweltqualität die Schweizer Mieten bestimmen. Zürcher Kantonalbank, Zürich.
- Manski, C. F., 2000. Economic analysis of social interactions. Journal of Economic Perspectives, 14(3), 115-136.
- Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Synthesis. Washington: Island Press.
- NZZ, 2012. Immo-Barometer 2012. Die Forschungsreihe der «Neuen Zürcher Zeitung» zum Thema «Wohnen in der Schweiz», Ausgabe Nr. 15. Neue Zürcher Zeitung/Wüest & Partner, Zürich.
- Ott, W., Baur, M., 2005. Der monetäre Erholungswert des Waldes. Umwelt- Materialien Nr. 193. Bundesamt für. Umwelt, Wald und Landschaft, Bern.
- Pommerehne, W., 1987., Präferenzen für öffentliche Güter. Ansätze zu ihrer Erfassung. J.C.B Mohr, Tübingen.
- Power, T.M., 2005. The supply and demand for natural amenities: an overview of theory and concepts. In: Amenities and rural development: Theory, methods and public policy, eds. G.P. Green, S.C. Deller, D.W. Marcouiller. Cheltenham: Edward Elgar, p. 63–77.
- Rabe-Hesketh, S., Skrondal, A., 2008. Multilevel and Longitudinal Modeling Using Stata. Stata Press, College Station, 2 edition.
- Rappl, I., Bröhl, A., 2012. Wie Lage und Umweltqualität die Eigenheimpreise bestimmen: Hedonisches Modell für Stockwerkeigentum. Zürcher Kantonalbank, Zürich.
- Ready, R.C., Abdalla, C.W., 2005. The amenity and disamenity impacts of agriculture: Estimates from a hedonic pricing model. American Journal of Agricultural Economics 87(2), 314–326.
- Rieder, T., 2006. Die Mieten in der Schweiz. Swiss Issues Immobilien Juni 2006. Credit Suisse, Zürich.
- Roschewitz, A., 1999. Der monetäre Wert der Kulturlandschaft. Wissenschaftsverlag Vauk, Kiel.

- Rosen, S., 1974. Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy 82(1), 34–55.
- Roth, U., Schwick, Ch., Spichtig, F., 2010. Zustand der Landschaft in der Schweiz: Zwischenbericht Landschaftsbeobachtung Schweiz (LABES). Bern: Bundesamt für Umwelt.
- Salvi, M., 2008. Spatial Estimation of the Impact of Airport Noise on Residential Housing Prices. Swiss Journal of Economics and Statistics 144(4), 577–606.
- Schaerer, C., Baranzini, A., Ramirez, J.V., Thalmann, P., 2007. Using the hedonic approach to value natural land uses in an urban area: An application to Geneva and Zurich. Économie publique/Public economics 20(1), 147–167.
- Schläpfer, F., 2007. Demand for public landscape management services: collective choice based evidence from Swiss cantons. Land Use Policy 24, 425–433.
- Schläpfer, F., 2012. Analyse von politischen Entscheidungen als Ansatz für die Bewertung externer Effekte im Bereich Raum und Landschaft: Eine Methodenstudie auf der Basis von Infrastruktur- und Raumplanungsentscheiden in der Schweiz. Zürich.
- Schläpfer, F., Hanley, N., 2003. Do local landscape patterns affect the demand for landscape amenities protection? Journal of Agricultural Economics, 54(1), 21–34.
- Schulz, T., Waltert, F., 2011. How local landscape resources affect apartment prices: Evidence from a hedonic pricing model. In: Waltert, F. 2011. Landscape Amenities and Local Development. Dissertation for the Faculty of Economics, Business Administration and Information Technology of the University of Zurich, p. 93–122.
- Simmen, H., Walter, F., Marti, M., 2006. Den Wert der Alpenlandschaften nutzen. Thematische Synthese zum Forschungsschwerpunkt IV "Raumnutzung und Wertschöpfung" des Nationalen Forschungsprogrammes "Landschaften und Lebensräume der Alpen" des Schweizerischen Nationalfonds SNF. Vdf-Hochschulverlag, Zürich.
- Stadelmann, D., 2010. Which factors capitalize into house prices? A Bayesian averaging approach. Journal of Housing Economics 19(3), 180–204.
- Staub, C., Ott, W., Heusi, F., Klingler, G., Jenny, A., Häcki, M., Hauser, A., 2011. Indikatoren für Ökosystemleistungen: Systematik, Methodik und Umsetzungsempfehlungen für eine wohlfahrtsbezogene Umweltberichterstattung. Bern: Bundesamt für Umwelt.
- Sunstein, C. R., Thaler, R. H., 2003. Libertarian paternalism is not an oxymoron. University of Chicago Law Review, 70(4), 1159–1202.
- Tietenberg, T., Lewis, L., 2009. Environmental and Resource Economics. 8th Edition, Peason International, Boston.
- Tyrväinen, L., Miettinen, A., 2000. Property prices and urban forest amenities. Journal of Environmental Economics and Management 39(2), 205–223.
- Varian, H., 2011. Grundzüge der Mikroökonomik. 8. Auflage, Oldenbourg Verlag, München.

- Waltert, F., Schläpfer, F., 2010. Landscape amenities and local development: A review of migration, regional economic and hedonic pricing studies. Ecological Economics 70(2), 141–152.
- Waltert, F., Schulz, T., Schläpfer, F., 2011. The role of landscape amenities in regional development: Evidence from Swiss municipality data. *Land Use Policy* 28(4): 748–761.
- Winters, J.V., 2012. Differences in quality of life estimates using rents and home values. IZA Discussion Paper Series No. 6703. Bonn: Institute for the Study of Labor IZA.
- Zeh Weissmann, H., Könitzer, C., Bertiller, A., 2009. Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie). Ergebnisse der ökomorphologischen Kartierung. Stand: April 2009. Umwelt-Zustand Nr. 0926. Bundesamt für Umwelt, Bern.

Anhang 1: Detaillierte Datenbeschreibung

A 1.1 Korrelationsmatrizen

Wohnungseigenschaften (W)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
W3_Stockwerk (1)	1.00										
W4_Lift (2)	0.21	1.00					Korre	lation	von +/	- 0.25-	0.49
W5_Wohnfläche (3)	-0.02	0.13	1.00				Korre	lation	von +/	- 0.50-	0.74
W5-2_Zimmergrösse (4)	0.02	0.11	0.26	1.00			Korre	lation	von +/	- 0.75-	0.99
W6_Anzahl Zimmer (5)	-0.04	0.06	0.85	-0.21	1.00						
W7_Balkon (6)	-0.07	0.19	0.23	0.02	0.22	1.00					
W8_Parkplätze (7)	-0.03	0.01	0.11	0.00	0.11	0.14	1.00				
W9_Garage (8)	-0.05	0.25	0.30	0.05	0.27	0.29	0.24	1.00			
W10_Wohnungstyp (9)	0.09	-0.01	0.16	0.20	0.04	0.01	0.05	0.04	1.00		
W11_Baujahr (10)	-0.05	0.22	0.23	0.05	0.21	0.16	0.06	0.30	0.02	1.00	
W12_Angebotsjahr (11)	0.02	0.01	0.09	0.03	0.07	-0.11	0.05	0.03	0.02	0.03	1.00

n = 121'597

Beispiel Interpretation: Der Korrelationskoeffizient zwischen W6_Anzahl Zimmer (Reihe 5) und Wohnfläche Spalte (3) beträgt r=0.85.

Erreichbarkeit (E)

	(1)	(2)	(3)	
E4 Erreichbarkeit Dienstleist. MIV (1)	1.00			Korrelation von +/- 0.25-0.49
E5_Erreichbarkeit Dienstleist. ÖV (2)	0.67	1.00		Korrelation von +/- 0.50-0.74
E6_Lage in Innenstadt (3)	-0.12	-0.11	1.00	Korrelation von +/- 0.75-0.99

n = 164'360

Immissionen (I)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
I1_Strassenlärm (1)	1.00														
I2_Eisenbahnlärm (2)	0.13	1.00							Korre	lation	von +	/- 0.25-0	.49		
I5_Hochwasser (3)	0.04	0.05	1.00						Korre	lation	von +	/- 0.50-0	.74		
I3-1_Strasse_dist (4)	-0.28	0.00	-0.01	1.00					Korre	lation	von +	/- 0.75-0	.99		
I4-1_Hochleistungsstrasse_dist (5)	-0.20	-0.18	-0.03	0.04	1.00										
I6-1_Grossbebäude_dist (6)	-0.14	-0.22	-0.06	0.07	0.29	1.00									
I7-1_Industrie_dist (7)	-0.05	-0.28	-0.09	-0.03	0.20	0.25	1.00								
I6-2_Grossgebäude_300 (8)	0.13	0.09	0.04	-0.13	-0.16	-0.32	-0.03	1.00							
17-2_Industrie_300 (9)	0.02	0.19	0.09	0.02	-0.04	-0.19	-0.46	0.18	1.00						
18-1_Hochspannung_300 (10)	0.06	0.02	0.00	0.09	-0.03	0.01	-0.01	-0.06	-0.02	1.00					
19-1_Antennen_300 (11)	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	0.00	0.01	0.01	1.00				
I6-3_Grossgebäude_1500 (12)	0.17	0.11	0.03	-0.17	-0.23	-0.37	0.03	0.73	0.01	-0.07	0.00	1.00			
17-3_Industrie_1500 (13)	0.10	0.27	0.10	-0.04	-0.27	-0.36	-0.38	0.27	0.34	-0.04	0.03	0.42	1.00		
18-2_Hochspannung_1500 (14)	0.00	-0.02	0.01	0.08	0.01	0.11	-0.02	-0.19	0.02	0.39	0.00	-0.25	-0.09	1.00	
19-2_Antennen_1500 (15)	0.00	0.01	0.00	-0.01	-0.01	-0.03	-0.01	0.00	0.02	0.00	0.77	0.01	0.04	-0.01	1.00

n = 162'701

Landschaftsqualität/Landnutzung (L)

(3) (4) (5) (6) (7)
1.00
0.21 0.08 0.44 1.00
0.32 0.15 0.32 0.22 1.00
-0.23 -0.16 -0.08 -0.08 -0.20 1.00
-0.67 -0.58 -0.51 -0.22 <mark>-0.30</mark> 0.24
-0.56 -0.60 <mark>-0.30</mark> -0.13 -0.16 <mark>0.28</mark>
-0.42 -0.73 -0.22 -0.11 -0.13 0.23
37 -0.26 -0.15 0.23
-0.12 -0.01 <mark>-0.38</mark> -0.24 -0.06 0.01
-0.59 -0.52 -0.45 -0.30 -0.18 0.16
-0.20 -0.18 -0.21 -0.12 -0.11 0.18
-0.79 -0.52 -0.63 <mark>-0.25 -0.41 0.32</mark>
<mark>-0.65 -0.52 -0.36</mark> -0.12 -0.20 <mark>0.33</mark>
-0.62 -0.57 -0.35 -0.14 -0.29 0.39
-0.57 -0.42 -0.46 -0.29 -0.18 0.23
-0.38 -0.18 -0.68 -0.36 -0.13 0.04
<mark>-0.63</mark> -0.27 -0.42 -0.20 <mark>-0.37</mark> 0.07
L13-2_Naturgewässer_1500 (20) -0.38 -0.25 -0.39 -0.19 -0.26 0.20
-0.01 -0.01 -0.01 0.00 0.00 0.00
-0.03 -0.03 0.06 0.01 -0.16 0.18

Landschaft und Erholung (R)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
R1-1_Stadtpärke_dist (1)	1.00																
R2-1_Erholungsflächen_dist (2)	0.38	1.00															
R3-1 Anlagearme Gebiete_dist (3)	-0.20	-0.10	1.00														
R1-2_Stadtpärke_300 (4)	-0.33	-0.30	0.14	1.00													
R2-2_Erholungsflächen_300 (5)	-0.27	-0.51	0.09	0.58	1.00												
R3-2_Anlagearme Gebiete_300 (6)	0.02	0.05	-0.08	-0.01	-0.02	1.00						Korre	lation	von +	/- 0.25	-0.49	
R4-1_Zugängliche Gewässer_300 (7)	0.04	0.00	-0.12	0.00	0.01	0.02	1.00					Korre	lation	von +	/- 0.50	-0.74	
R5-1_Wanderwege_300 (8)	-0.05	-0.04	0.11	0.09	0.01	0.00	0.20	1.00				Korre	lation	von +	/- 0.75	-0.99	
R6-1_Radwege_300 (9)	-0.04	-0.01	0.09	0.06	0.01	-0.01	-0.01	0.12	1.00								
R7-1_Bergbahnen/Skilifte (10)	0.00	0.00	0.00	0.00	-0.01	0.00	0.04	0.00	0.01	1.00							
R1-3_Stadtpärke_1500 (11)	-0.43	-0.20	0.42	0.45	0.22	-0.04	-0.15	0.02	0.10	-0.02	1.00						
R2-3_Erholungsflächen_1500 (12)	-0.45	-0.28	0.44	0.30	0.30	-0.05	-0.14	-0.03	0.05	-0.02	0.74	1.00					
R3-3_Anlagearme Gebiete_1500 (13)	-0.02	0.07	-0.42	0.02	-0.04	0.14	0.04	0.04	-0.03	0.00	-0.12	-0.23	1.00				
R4-2_Zugängliche Gewässer_1500 (14)	0.01	-0.04	-0.10	-0.10	-0.03	-0.02	0.39	0.03	-0.02	0.04	-0.25	-0.12	-0.08	1.00			
R5-2_Wanderwege_1500 (15)	-0.20	-0.09	0.37	0.13	0.02	0.02	-0.01	0.50	0.14	0.04	0.26	0.10	-0.03	-0.01	1.00		
R6-2_Radwege_1500 (16)	-0.10	-0.01	0.12	0.12	0.02	0.00	-0.05	0.10	0.56	0.05	0.22	0.14	-0.04	-0.04	0.19	1.00	
R7-2_Bergbahnen/Skilifte (17)	0.01	0.02	-0.03	-0.02	-0.02	0.00	0.08	0.13	0.09	0.29	-0.05	-0.05	-0.01	0.11	0.15	0.20	1.00

n = 164'432

Eigenschaften der Gemeinde (G) und weitere Variablen auf Gemeindeebene

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
E1 Erreichbarkeit Grosszentren (1)	1.00											
E2 Erreichbarkeit Regionalzentren (2)	0.06	1.00										
E3 Bahnhof (3)	-0.05	-0.29	1.00					Korre	lation	von +	/- 0.25	-0.49
K1_Schützenswerte Ortsbilder (4)	0.23	-0.14	0.22	1.00				Korre	lation	von +,	/- 0.50	-0.74
K2_UNESCO (5)	0.22	-0.17	0.11	0.23	1.00			Korre	lation	von +	/- 0.75	-0.99
L8_Zersiedelung (6)	0.14	0.16	-0.18	-0.15	-0.16	1.00						
G1_Steuerbelastung (7)	0.20	-0.24	0.11	0.49	0.20	-0.16	1.00					
G2_Ausländeranteil (8)	-0.10	-0.40	0.40	0.00	0.03	-0.12	0.23	1.00				
G3_Einkommen (9)	-0.26	0.01	-0.08	-0.19	-0.10	0.18	-0.48	-0.28	1.00			
G4_Bauzonenreserven (10)	0.20	0.46	-0.30	-0.16	-0.15	0.32	-0.33	-0.24	0.03	1.00		
G5_Bevölkerungsdichte (11)	-0.36	-0.54	0.30	0.16	-0.04	-0.37	0.43	0.52	-0.01	-0.60	1.00	
G6_Beschäftigungsdichte (12)	-0.33	-0.56	0.37	0.15	0.02	-0.48	0.41	0.53	-0.03	-0.62	0.96	1.00

n = 164'381

Alle in den Modellen von Kapitel 5 und 6 verwendeten Variablen

•	(T) (Z) (H) (D)	(OT) (6) (7) (6)	(-1) (-1) (-1) (-1) (-1) (-1) (-1)	(55) (50) (51) (50) (51) (50) (51)		
w652_zimmergroesse (1)	1.00					
moc_anz_zimmer (2)	-0.21 1.00					
(10-typ4 (3)	0.21 0.07 1.00					
が打_baujahr7 (4)	0.16 0.32 0.14 1.00					
10 angebotsjahr (5)	0.03 0.08 0.03 0.07 1.00					
e01_grosszentren_dist (6)	-0.04 0.09 -0.01 0.11 -0.02	1.00				
e02_regionalzentren_dist (7)	-0.03 0.21 0.05 0.24 0.02	0.05 1.00				
e03_bahnhof (8)	0.03 -0.16 -0.03 -0.17 -0.02	-0.05 -0.29 1.00				
e04_miv_erreich_mean (9)	-0.03 0.24 0.05 0.28 0.01	0.23 0.65 -0.33 1.00				
e06_lage_innenstadt (10)	0.04 -0.07 0.02 -0.07 0.01	0.01 -0.09 0.06 -0.12 1.00				
i01_laerm_strasse (11)	0.03 -0.11 -0.01 -0.09 -0.01	-0.07 -0.14 0.10 -0.20 0.08	1.00			
i01int_laerm_strasse (12)	0.05 -0.10 0.01 -0.07 -0.01	-0.06 -0.13 0.09 -0.18 0.10	0.88 1.00			
i02_laerm_bahn (13)	-0.02 -0.07 -0.05 -0.05 0.01					
iO2int_laerm_bahn (14)	0.00 -0.01 -0.01 0.00 0.00	-0.01 0.04 0.04 -0.01 -0.01	0.06 0.06 0.045 1.00			
i03_strasse_dist (15)	0.01 0.12 0.01 0.16 0.02		-0.28 -0.20 0.00 0.02 1.00			
i04_hochleistungsstrasse_dist (16)	0.03 0.11 0.06 0.10 0.02		-0.20 -0.16 -0.18 -0.04 0.04 1.00			
i05_hochwasser (17)	0.00 -0.02 -0.01 -0.01 0.00	0.04 0.00 0.00 0.02 0.02	0.03 0.04 0.05 0.00 -0.02 -0.03 1.00			
i072_industrie_300 (18)	-0.01 0.02 -0.02 0.09 0.01					
i081_hochspannung_300 (19)	0.00 0.02 0.00 0.06 0.00					
i091_antennen_300 (20)	0.00 0.00 0.00 0.01 0.00	0.01 0.00 0.01 -0.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01			
k031_kult_objekte_300 (21)	0.07 -0.08 0.02 -0.09 0.00	0.07 -0.11 0.06 -0.13 0.33	0.09 0.10 -0.03 -0.03 -0.09 -0.02 0.03 -0.07 -0.08 0.00 1.00			
1031_freiflaechen_dist (22)	0.00 -0.20 -0.04 -0.25 -0.02	-0.10 -0.35 0.24 -0.41 0.09	0.14 0.14 0.14 0.00 -0.16 -0.16 -0.03 0.05 -0.09 0.01 0.13	1.00		
1052_wald_300 (23)	0.00 0.04 0.01 0.02 -0.01		-0.04 -0.03 -0.08 0.00 0.05 0.05 -0.06 -0.05 0.02 -0.01 -0.09	-0.01 1.00		
1061_vielfalt_300 (24)	-0.01 0.23 0.06 0.26 0.02	0.23 0.39 -0.23 0.45 -0.09	-0.13 -0.12 -0.14 0.01 0.16 0.20 -0.03 -0.06 0.09 0.00 -0.13	-0.51 0.22 1.00		
107_zerschneidung (25)	0.00 0.00 0.01 0.01 0.01	0.02 0.01 0.00 0.02 0.00	0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00	-0.01 0.01 0.01 1.00		
108_zersiedelung_gem (26)	-0.06 0.15 -0.02 0.13 0.02	0.13 0.15 -0.17 0.11 -0.08	-0.08 -0.10 0.09 0.04 0.09 0.02 0.00 0.06 0.00 0.01 -0.09	-0.15 0.05 0.22 -0.01 1.00		
109_aussicht_dist (27)	-0.02 -0.07 -0.03 -0.05 0.00	-0.05 -0.11 0.08 -0.08 -0.03	0.05 0.04 0.08 0.00 -0.05 -0.11 0.15 0.09 0.00 0.00 0.01	0.08 -0.24 -0.30 0.00 -0.04 1.00		
110_see_dist (28)	0.02 -0.10 -0.04 -0.10 -0.06	-0.13 -0.04 0.02 -0.14 0.00	0.03 0.04 0.00 0.01 -0.07 -0.18 0.06 0.01 -0.05 -0.01 0.05	0.15 -0.06 -0.18 -0.01 -0.02 0.22 1.00		
1112_seesicht_yes (29)	0.00 0.00 -0.02 -0.04 0.02		-0.06 -0.04 0.03 0.02 0.02 0.10 -0.04 -0.04 0.00 0.01 0.00	-0.02 -0.03 0.05 0.00 0.05 0.01 -0.23 1.00		
112_fluss_dist (30)	0.00 0.12 0.03 0.14 0.04		-0.14 -0.12 -0.12 -0.03 0.07 0.34 -0.08 -0.04 0.00 0.00 -0.06	-0.16 0.01 0.16 0.00 -0.02 -0.08 -0.20 0.18 1.00		
1131_naturgewaesser_300 (31)	0.00 0.09 0.02 0.10 0.01	0.03 0.15 -0.12 0.22 -0.05	-0.10 -0.09 -0.14 0.00 0.09 0.21 0.00 -0.07 0.07 0.00 -0.09	-0.18 0.19 0.35 0.00 0.06 -0.12 -0.11 0.02 0.18 1.00		
r012_stadtpaerke_300 (32)	0.04 -0.14 0.00 -0.18 0.00	-0.08 -0.23 0.15 -0.28 0.11	0.10 0.10 0.03 -0.01 -0.08 -0.10 0.05 -0.10 -0.04 0.00 0.15	0.07 -0.05 -0.25 0.00 -0.18 0.04 0.05 0.05 -0.08 -0.11	1.00	
r032_anlagearme_gebiete_300 (33)	0.00 0.01 0.00 0.01 0.01	0.01 0.00 -0.01 0.01 -0.01	0.00 0.00 0.01 0.00 0.02 0.02 0.02 0.01 0.01	-0.02 0.10 0.03 0.00 0.02 -0.02 -0.03 0.02 0.03 0.02	-0.01 1.00	
r041_zugaengliche_gewaesser_300 (34 0.00 0.05 0.02 0.05 0.01	34 0.00 0.05 0.02 0.05 0.01	0.01 0.12 -0.06 0.10 -0.03	0.01 0.02 0.01 0.02 0.04 0.04 0.23 0.00 0.03 0.00 0.00	-0.18 0.06 0.29 0.00 0.06 -0.03 -0.06 -0.01 -0.07 0.26	0.00 0.02 1.00	
r051_wanderwege_300 (35)	0.01 -0.03 0.00 -0.03 -0.01	0.11 0.01 0.08 -0.05 0.10	0.09 0.09 0.05 0.04 -0.04 -0.06 0.06 0.01 -0.01 0.00 0.19	0.01 0.05 0.07 0.00 -0.01 -0.02 0.12 0.00 -0.08 0.02	0.09 0.00 0.20 1.00	
r061_radwege_300 (36)	0.02 -0.06 0.00 -0.04 0.00	0.08 -0.06 0.04 -0.08 0.10	0.03 0.03 0.03 -0.01 -0.05 -0.06 0.04 0.00 -0.03 0.00 0.06	0.03 -0.03 -0.04 0.02 -0.07 -0.06 0.09 -0.02 -0.05 -0.07	0.06 -0.01 -0.01 0.12 1.00	
r071_bergbahnen_300 (37)	0.00 -0.01 0.01 0.00 0.00	0.03 0.01 -0.03 0.02 0.00	-0.02 -0.02 -0.04 -0.01 0.00 0.01 -0.01 -0.01 -0.01 -0.01 0.01	-0.03 0.00 0.04 0.00 0.01 -0.02 -0.02 -0.01 0.00 0.05	0.00 0.00 0.04 0.00 0.01 1.00	
c01_besonnung (38)	0.03 0.03 0.04 0.04 0.00	0.14 -0.02 -0.04 0.09 0.01	-0.06 -0.04 -0.22 -0.06 0.03 0.12 -0.10 -0.05 0.02 0.00 0.04	-0.07 0.06 0.08 0.02 -0.11 -0.22 -0.18 0.00 0.18 0.05	0.01 0.02 -0.04 0.03 0.01 0.04 1.00	
g012_tax_70_2002 (39)	-0.02 -0.16 -0.09 -0.17 -0.05	0.21 -0.23 0.11 -0.19 0.08	0.06 0.07 -0.01 -0.02 -0.08 -0.19 0.03 0.04 -0.07 0.00 0.16	0.20 -0.04 -0.20 -0.01 -0.16 0.16 0.57 -0.07 -0.15 -0.14	0.16 -0.02 -0.10 0.20 0.17 -0.01 0.07 1.00	
g02_auslaenderanteil (40)	-0.02 -0.22 -0.07 -0.23 -0.03		0.18 0.16 0.25 0.04 -0.08 <mark>-0.27</mark> 0.01 0.07 0.01 0.01 0.08	-0.06 <mark>-0.32</mark> -0.01 -0.12 0.13 0.04 0.02 <mark>-0.26</mark>	0.19 -0.02 -0.10 0.04 0.04 -0.02 -0.18 0.23	8
d04 harraconnent(41)	-004 024 004 024 004	000 000 000 000	040 040 000 040 040 040 000			

A 1.2 Variablen: Deskriptive Statistiken

Wohnungseigenschaften (W)

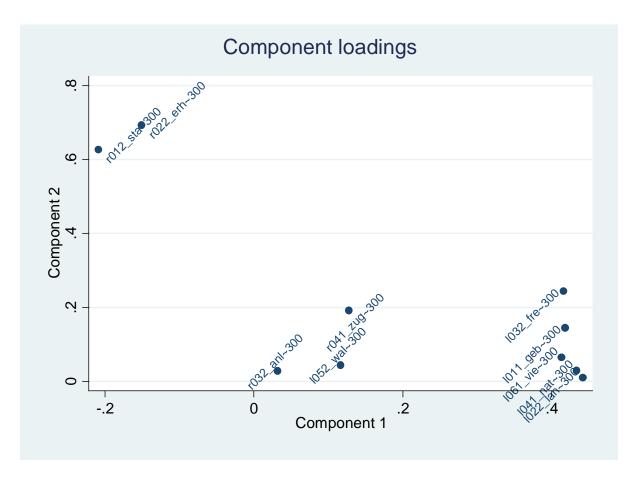
			Standard-		
Variable	N	Mittelwert	abweichung	Min	Max
log_w01_preis (log CHF)	164438	7.3	0.44	5.72	9.19
w052_zimmergroesse (m2)	164412	24.93	6.63	3.78	345
w06_anz_zimmer	164412	3.34	1.25	1	11
w10_typ4 (Wohnungstyp)	164438	0.16	0.45	0	3
O Etagenwohnungen, Diverse (%)	141669	86.15			
1 Spezialwohnungen: Attika, Loft etc. (%)	20178	12.27			
2 Studios/Einzelzimmer (%)	1283	0.78			
3 Möblierte Wohnung (%)	1308	0.8			
w11_baujahr7	164438	4.73	1.26	1	7
1 bis 1799 (%)	720	0.44			
2 1800-1899 (%)	3123	1.9			
3 1900-1949 (%)	14349	8.73			
4 1950-1979 (%)	71471	43.46			
5 1980-1989 (%)	26825	16.31			
6 1990-1999 (%)	28450	17.3			
7 2000-2007 (%)	19500	11.86			
w12_angebotsjahr	164438	2004.53	1.5	2001	2007
2001 (%)	2125	1.29			
2002 (%)	19799	12.04			
2003 (%)	22208	13.51			
2004 (%)	27523	16.74			
2005 (%)	38898	23.66			
2006 (%)	45233	27.51			
2007 (%)	8652	5.26			

Erreichbarkeit (E), Immissionen (I), Kulturerbe (K)

Variable	N	Mittelwert	Standard- abweichung	Min	Max
Ebene Wohnung					
e04_miv_erreich_mean (Zeitindex)	164367	3.83	2.49	0.35	47.11
e05_ov_erreich_mean (Zeitindex)	164375	22.87	16.59	0.74	148.24
e06_lage_innenstadt	164431	0.01	0.11	0	1
O nein (%)	162484	98.82			
1 ja (%)	1947	1.18			
iO1_laerm_strasse (dBA)	162714	40.93	6.63	9	74
i02_laerm_bahn (dBA)	164438	13.59	13.54	0	81
i03_strasse_dist (m)	164438	16.48	28.17	0	1650.76
i04_hochleistungsstrasse_dist (m)	164438	947.45	1122.88	0	14484.82
i05_hochwasser	164438	0.12	0.32	0	1
0 nein (%)	144863	88.1			
1 ja (%)	19575	11.9			
i061_grosse_gebaeude_dist (m)	164438	569.89	696.43	0	25340.28
i062_grosse_gebaeude_300 (%)	164438	2.56	5.29	0	41.59
i063_grosse_gebaude_1500 (%)	164438	2.17	2.8	0	14.68
i071_industrie_dist (m)	164434	464.81	388.45	0	9347.73
i072_industrie_300 (%)	164438	4.1	7.33	0	79.31
i073_industrie_1500 (%)	164438	4.2	3.33	0	22.14
i081_hochspannung_300 (m)	164438	20.15	114.82	0	2300
i082_hochspannung_1500 (m)	164437	1099.96	1874.45	0	16750
i091_antennen_300 (Anzahl)	164429	2.32	3.44	0	38
i092_antennen_1500 (Anzahl)	164429	42.49	54.28	0	293
k031_kult_objekte_300 (Anzahl)	164438	0.44	0.87	0	17
k032_kult_objekte_1500 (Anzahl)	164438	7.06	6.63	0	74
Ebene Gemeinde					
e01_grosszentren_dist (m)	164438	20744.98	28075.66	0	2.20E+05
e02_regionalzentren_dist (m)	164438	4896.91	5820.45	0	60160
e03_bahnhof	164438	0.79	0.41	0	1
0 nein (%)	34928	21.24			
1 ja (%)	129510	78.76			
k01_isos_gem	164438	0.47	0.5	0	1
0 nein (%)	86585	52.66			
1 ja (%)	77853	47.34			
k02_unesco_gem	164438	0.05	0.21	0	1
0 nein (%)	156719	95.31			
1 ja (%)	7719	4.69			

Landschaftsqualität und Landnutzung (L)

			Standard-		
Variable	N	Mittelwert	abweichung	Min	Max
Ebene Wohnung					
IO11_gebaudeumschwung_300 (%)	164438	61.23	13.78	13.27	100
IO12_gebaudeumschwung_1500 (%)	164438	74.62	12.54	39.7	98.69
I021_landwirtschaft_dist (m)	164438	319.68	357.78	0	2109.5
I022_landwirtschaft_300 (%)	164436	16.57	18.75	0	96.55
I023_landwirtschaft_1500 (%)	164436	25.73	18.86	0	87.17
I031_freiflaechen_dist (m)	164438	227.38	197.84	0	1320.04
I032_freiflaechen_300 (%)	164438	19.63	21.02	0	100
1033_freiflaechen_1500 (%)	164422	40.62	22.06	0	96.21
I041_naturflaechen_300 (%)	164438	11.12	12.31	0	109.52
1042_naturflaechen_1500 (%)	164422	15.08	11.23	0	90.21
I051_wald_dist (m)	164438	799.32	554.91	0	5080.35
I052_wald_300 (%)	164438	2.4	7.46	0	72.41
I053_wald_1500 (%)	164438	13.71	11.63	0	79.83
I061_vielfalt_300 (Anzahl)	164438	3.06	1.52	1	10
I062_vielfalt_1500 (Anzahl)	164434	8.6	1.68	2	14
IO7_zerschneidung (m2)	164420	1.11E+05	7.91E+06	44.13	2.48E+09
I09_aussicht_dist (m)	164432	658.04	486.58	0	6209.87
I10_see_dist (m)	164432	13092.69	15181.02	0	50000
I112_seesicht_yes	164432	0.07	0.26	0	1
0 nein (%)	152334	92.64			
1 ja (%)	12098	7.36			
I12_fluss_dist (m)	164432	1730.03	1730.9	0	15105.05
l131_naturgewaesser_300 (%)	164438	0.9	2.04	0	16.81
I132_naturgewaesser_1500 (%)	164434	1.39	1.39	0	10.79
Ebene Gemeinde					
I08_zersiedelung_gem (Index)	164381	8.13	6.96	0.01	44.83


Landschaft und Erholung (R), Mikroklima (C), Eigenschaften Gemeinde

			Standard-		
Variable	N	Mittelwert	abweichung	Min	Max
Ebene Wohnung					
r011_stadtpaerke_dist (m)	164438	887.93	1003.69	0	12149.49
r012_stadtpaerke_300 (%)	164438	1.63	3.51	0	44.83
r013_stadtpaerke_1500 (%)	164438	1.55	1.9	0	11.99
rO21_erholungsflaechen_dist (m)	164438	304.3	225.48	0	5629.39
r022_erholungsflaechen_300 (%)	164438	4.84	6.29	0	68.97
r023_erholungsflaechen_1500 (%)	164438	4.84	3.7	0	20.59
r031_anlagearme_gebiete_dist (m)	164432	2439.47	1742.69	100	10845.28
r032_anlagearme_gebiete_300 (%)	164438	0.06	0.93	0	37.93
r033_anlagearme_gebiete_1500 (%)	164438	2.48	5.74	0	65.16
r041_zugaengliche_gewaesser_300 (%)	164438	121.78	245.76	0	1800
r042_zugaengliche_gewaesser_1500 (%)	164438	3208.73	2440.65	0	14400
r051_wanderwege_300 (m)	164438	127.27	310.81	0	2400
r052_wanderwege_1500 (m)	164438	3126.37	3390.33	0	20600
r061_radwege_300 (m)	164438	33.28	185.34	0	2900
r062_radwege_1500 (m)	164438	632.95	1687.13	0	34200
r071_bergbahnen_300 (m)	164438	1.13	30.08	0	1600
r072_bergbahnen_1500 (m)	164438	53.12	376.7	0	12400
c01_besonnung (KJoule/m2)	164432	2656.36	274.99	868	6655
Ebene Gemeinde					
g012_tax_70_2002 (Steuerbelastung) (%)	164438	11.56	2.48	3.78	17.88
g02_auslaenderanteil (%)	164438	24.17	8	0	52.53
g03_einkommen (CHF/Kopf)	164438	36747.56	7849.81	16896.12	90409.38
g04_bauzonenreserven (%)	164438	13.92	6.23	0.65	53.68
g05_bevoelkerungsdichte (Anzahl/km2)	164438	2239.59	1960.42	5.24	11158.34
g06_arbeitsplatzdichte (Anzahl/km2)	164438	1479.31	1600.25	1.39	7290.88

A 1.3 Variance Inflation Factors VIF

Variable	VIF	1/VIF
w052_zimmergroesse	1.27	0.784981
w06 anz zimmer	1.46	0.683288
w10_typ4	yes	
w11 baujahr7	yes	
w12_angebotsjahr	yes	
e01_grosszentren_dist	1.75	0.57018
e02_regionalzentren_dist	2.38	0.420495
e03 bahnhof	1.54	0.647296
e04_miv_erreich_mean	3.15	0.317064
e05_ov_erreich_mean	2.58	0.38788
e06_lage_innenstadt	1.21	0.827481
i01 laerm strasse	1.2	0.833058
iO2 laerm bahn	1.31	0.762457
i03 strasse dist	1.17	0.854848
i04_hochleistungsstrasse_dist	1.42	0.702306
i05 hochwasser	1.14	0.879089
i062 grosse gebaeude 300	2.14	0.466788
i072_industrie_300	1.21	0.400788
i081_hochspannung_300	1.06	0.942147
i091 antennen 300	1.00	0.998095
k01_isos_gem	1.7	0.589443
k02_unesco_gem	1.42	0.706515
k031_kult_objekte_300	1.29	0.773912
l011_gebaudeumschwung_300	3.85	0.259963
l022_landwirtschaft_300	7.48	0.133745
l032_freiflaechen_300	5.78	0.172908
l041_naturflaechen_300	3.1	0.322768
1052_wald_300	1.35	0.74226
l061_vielfalt_300	2.83	0.353479
107_zerschneidung	1	0.995511
l08_zersiedelung_gem	2.14	0.466979
I09_aussicht_dist	1.32	0.759727
l10_see_dist	2.47	0.404397
l112_seesicht_yes	1.23	0.810792
l12_fluss_dist	1.42	0.705812
l131_naturgewaesser_300	1.31	0.764316
r012_stadtpaerke_300	1.75	0.570373
r022_erholungsflaechen_300	2.04	0.489193
r032_anlagearme_gebiete_300	1.04	0.964089
r041_zugaengliche_gewaesser_300	1.35	0.740289
r051_wanderwege_300	1.22	0.820332
r061_radwege_300	1.09	0.914183
c01_besonnung	1.35	0.742091
r071_bergbahnen_300	1.01	0.986141
g012_tax_70_2002	3.83	0.261433
g02_auslaenderanteil	2.35	0.425301
g03_einkommen	2.05	0.487936
g04_bauzonenreserven	1.99	0.502272
g05_bevoelkerungsdichte	20.75	0.048198
g06_arbeitsplatzdichte	24.51	0.040805
Mean VIF	6.22	

A 1.4 Hauptkomponenten ausgewählter korrelierter Landschaftsvariablen

Anmerkung: Dargestellt sind die ersten 2 Hauptkomponenten, welche gemeinsam 53% der Varianz erklären.

Variablen: r012: Stadtpärke, r022: Erholungsflächen, r032: Anlagearme Gebiete, r041: Zugängliche Gewässer, l011: Gebäudeumschwung, l022: Landwirtschaftsland, l032: Freiflächen, l041: Naturnahe Freiflächen, l052: Wald, l061: Vielfalt (jeweils Anteil der Landnutzung im Umkreis von 300m).

Anhang 2: Detaillierte Modellresultate: Gesamte Stichprobe

A 2.1 OLS Regressionsmodelle 300m, 1500m und Distanz

Modell A1: OLS Regressionsmodell, Landnutzungsvariablen 300m

Linear regression, absorbing indicators

Number of obs = 162589 F(45, 161397) = ...Prob > F = ... R-squared = 0.8499 Adj R-squared = 0.8488 Root MSE = 0.1688

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0118751	.0003978	29.85	0.000	.0110955	.0126548
w06_anz_zimmer	.2583516	.0007891	327.38	0.000	.2568049	.2598983
.v10 +rm4						
w10_typ4 1	.0863397	.0021614	39.95	0.000	.0821034	.090576
2	1723796	.0021014	-19.91	0.000	1893525	1554067
3	.135401	.0092279	14.67	0.000	.1173145	.1534876
w11_baujahr7	0550564	0.1.1.1.0.0	4 00		0	
2	0553561	.0114498	-4.83	0.000	0777975	0329146
3	0938757	.0107068	-8.77	0.000	1148608	0728906
4	1560827	.0105453	-14.80	0.000	1767513	1354141
5	0560837	.0106872	-5.25	0.000	0770304	0351369
6 7	.021781	.0107373	2.03	0.043	.0007362	.0428258
,	.094965	.0110226	8.62	0.000	.0733609	.1165691
w12_angebotsjahr						
2002	005309	.0038645	-1.37	0.170	0128833	.0022653
2003	.0063558	.0038522	1.65	0.099	0011944	.013906
2004	.0139639	.0038307	3.65	0.000	.0064559	.021472
2005	.019419	.0037803	5.14	0.000	.0120097	.0268283
2006	.02611	.0037739	6.92	0.000	.0187132	.0335068
2007	.0364398	.0041285	8.83	0.000	.028348	.0445315
e04_miv_erreich_mean	0192362	.0008104	-23.74	0.000	0208245	0176479
1.e06_lage_innenstadt	.1037463	.0057534	18.03	0.000	.0924698	.1150228
i01_laerm_strasse	.0004412	.0001479	2.98	0.003	.0001513	.0007311
i01int_laerm_strasse	0019692	.0002291	-8.60	0.000	0024182	0015202
i02_laerm_bahn	0004416	.0000525	-8.41	0.000	0005446	0003387
i02int_laerm_bahn	0008583	.0002813	-3.05	0.002	0014097	000307
i03_strasse_dist	0000566	.0000191	-2.96	0.003	000094	0000191
i04_hochleistungsstrasse_dist	.0000284	1.19e-06	23.89	0.000	.0000261	.0000308
1.i05_hochwasser	.0148562	.0016551	8.98	0.000	.0116124	.0181001
i072_industrie_300	0013481	.0000633	-21.28	0.000	0014722	0012239
i081_hochspannung_300	0000127	4.06e-06	-3.14	0.002	0000207	-4.78e-06
i091_antennen_300	0000532	.0001232	-0.43	0.666	0002947	.0001883
k031_kult_objekte_300	.0031517	.0006952	4.53	0.000	.0017892	.0045142
1031_freiflaechen_dist	.0000134	3.14e-06	4.26	0.000	7.22e-06	.0000195
1052_wald_300	000219	.000073	-3.00	0.003	000362	0000759
1061_vielfalt_300	0020553	.000459	-4.48	0.000	002955	0011556
107_zerschneidung	2.74e-10	1.58e-10	1.74	0.083	-3.53e-11	5.83e-10
109_aussicht_dist	0000323	1.58e-06	-20.46	0.000	0000354	0000292
110_see_dist	0000211	5.54e-07	-38.04	0.000	0000222	00002
1.1112_seesicht_yes	.0236241	.0023428	10.08	0.000	.0190323	.0282159
112_fluss_dist	-9.46e-06	8.23e-07	-11.49	0.000	0000111	-7.85e-06
1131_naturgewaesser_300	0024605	.0002902	-8.48	0.000	0030292	0018918
r012_stadtpaerke_300	.0008464	.0001686	5.02	0.000	.000516	.0011767
r032_anlagearme_gebiete_300	.0025931	.0006747	3.84	0.000	.0012707	.0039154
r041_zugaengliche_gewaesser_300	0000235	2.32e-06	-10.13	0.000	000028	0000189
r051_wanderwege_300	.0000165	1.83e-06	9.01	0.000	.0000129	.00002
r061_radwege_300	4.10e-07	2.82e-06	0.15	0.884	-5.12e-06	5.94e-06
r071_bergbahnen_300	.0000252	.0000167	1.51	0.132	-7.60e-06	.0000579
c01_besonnung	.0000739	2.84e-06	26.06	0.000	.0000684	.0000795
_cons	6.34839	.0188385	336.99	0.000	6.311467	6.385313

(1) i01_laerm_strasse + i01int_laerm_strasse = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	001528	.0001305	-11.71	0.000	0017837	0012722

(1) i02_laerm_bahn + i02int_laerm_bahn = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0013	.0002617	-4.97	0.000	0018129	000787

Modell A2: OLS Regressionsmodell, Landnutzungsvariablen 1'500m

162589 Linear regression, absorbing indicators Number of obs =

F(45, 161397) = .

Prob > F = .

R-squared = 0.8513

Adj R-squared = 0.8502

Root MSE = 0.1680

P> t	[95% Conf.	Interval]
0.000	.010946	.0124898
0.000	.2566859	.2597578
0.000	.0823849	.0907867
0.000	1899749	1560245
0.000	.1100765	.146009
	0050040	
0.000	0860248	0412614
0.000	1227916	0809435
0.000	17816	1369379
0.000	0787632	0370063
0.061	0009358	.0410338
0.000	.0696855	.1127404
0.209	012318	.0026911
0.097	0011387	.0138167
0.000	.0065178	.021389
0.000	.0126251	.0273026
0.000	.0192571	.0339085
0.000	.0281057	.0441425
0.000	0122203	008755
0.000	.0935701	.1160306
0.000	.0002697	.0008481
0.000	002674	0017781
0.000	0007786	0005656
0.163	0009466	.0001591
0.002	0000967	0000229
0.000	.0000237	.0000284
0.000	.0084325	.0146994
0.000	0043669	0034814
0.000	-2.47e-06	-6.96e-07
0.302	0000241	7.47e-06
0.015	0006981	0000757
0.000	.000012	.0000237
0.563	0001095	.0002011
0.000	.0036443	.0056988
0.202	-1.07e-10	5.03e-10
0.000	0000229	0000164
0.000	0000169	0000148
0.000	.0139938	.0231223
0.000	-7.28e-06	-3.90e-06
0.000	0116402	0085605
0.000	.016027	.0187465
0.000	.0008591	.0015191
0.000	-4.51e-06	-3.09e-06
0.000	3.20e-06	4.49e-06
		-1.26e-06
		6.48e-06
		.0000814
0.000	6.150093	6.225991
	0.000 0.305 0.000 0.000	0.305 -2.02e-06 0.000 .0000702

(1) i01_laerm_strasse + i01int_laerm_strasse = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0016671	.0001301	-12.81	0.000	0019221	0014121

(1) i02_laerm_bahn + i02int_laerm_bahn = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0010659	.0002616	-4.07	0.000	0015786	0005531

Modell A3: OLS Regressionsmodell, Landnutzungsvariablen Distanz

F(45, 161397) = .

Prob > F = .

R-squared = 0.8514

Adj R-squared = 0.8503

Root MSE = 0.1680

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0117829	.0003947	29.85	0.000	.0110094	.0125565
w06_anz_zimmer	.2578124	.0007857	328.15	0.000	.2562725	.2593522
10						
w10_typ4	0050001	0001406	40.00	0 000	0017700	0000010
1 2	.0859901 1747324	.0021486	40.02 -20.20	0.000	.0817789 191683	.0902012
3	.1280973	.0091083	14.06	0.000	.1102452	.1459493
w11_baujahr7						
2	0544838	.0115059	-4.74	0.000	0770352	0319325
3	0885765	.0107838	-8.21	0.000	1097126	0674404
4	1511961	.0106222	-14.23	0.000	1720155	1303768
5	0514215	.0107668	-4.78	0.000	0725243	0303188
6	.0271909	.0108193	2.51	0.012	.0059852	.0483965
7	.0995781	.0111038	8.97	0.000	.077815	.1213412
w12_angebotsjahr						
2002	0049412	.0038474	-1.28	0.199	012482	.0025996
2003	.0069282	.0038337	1.81	0.071	0005858	.0144422
2004	.0144893	.0038122	3.80	0.000	.0070174	.0219611
2005	.0202313	.0037627	5.38	0.000	.0128564	.0276062
2006	.0266274	.0037561	7.09	0.000	.0192656	.0339892
2007	.0367792	.0041088	8.95	0.000	.0287261	.0448322
e04_miv_erreich_mean	0169777	.0008481	-20.02	0.000	0186401	0153154
1.e06_lage_innenstadt	.092314	.0056855	16.24	0.000	.0811705	.1034576
i01_laerm_strasse	.0004566	.0001479	3.09	0.002	.0001667	.0007466
i01int_laerm_strasse	0020582	.0002286	-9.00	0.000	0025064	0016101
i02_laerm_bahn	0000653	.000054	-1.21	0.227	0001712	.0000406
i02int_laerm_bahn	0016388	.0002813	-5.83	0.000	0021902	0010874
i03_strasse_dist	0000624	.0000192	-3.25	0.001	0000999	0000248
i04_hochleistungsstrasse_dist	.0000163	1.18e-06	13.84	0.000	.000014	.0000186
1.i05_hochwasser	.013485	.0016459	8.19	0.000	.0102592	.0167109
i071_industrie_dist	.000069	1.87e-06	36.97	0.000	.0000654	.0000727
i081_hochspannung_300	0000152	4.03e-06	-3.78	0.000	0000231	-7.33e-06
i091_antennen_300	0000383	.0001223	-0.31	0.754	000278	.0002013
k031_kult_objekte_300	.0031976	.0006871	4.65	0.000	.0018509	.0045442
1031_freiflaechen_dist	.0000113	3.08e-06	3.65	0.000	5.22e-06	.0000173
1051_wald_dist	.0000126	1.53e-06	8.18	0.000	9.54e-06	.0000156
1061_vielfalt_300	0023026	.0004561	-5.05	0.000	0031966	0014086
107_zerschneidung	3.17e-10	1.60e-10	1.98	0.048	3.01e-12	6.30e-10
109_aussicht_dist	000031	1.65e-06	-18.82	0.000	0000343	0000278
110_see_dist	0000187	5.34e-07	-35.06	0.000	0000198	0000177
1.1112_seesicht_yes	.0185568	.0023318	7.96	0.000	.0139866	.0231271
l12_fluss_dist	0000102	8.38e-07	-12.18	0.000	0000119	-8.57e-06
1131_naturgewaesser_300	0021636	.0002873	-7.53	0.000	0027267	0016004
r011_stadtpaerke_dist	-6.50e-06	1.38e-06	-4.71	0.000	-9.21e-06	-3.80e-06
r031_anlagearme_gebiete_dist	-3.19e-06	7.77e-07	-4.10	0.000	-4.71e-06	-1.67e-06
r041_zugaengliche_gewaesser_300	000021	2.31e-06	-9.07	0.000	0000255	0000164
r051_wanderwege_300	.0000172	1.84e-06	9.35	0.000	.0000136	.0000208
r061_radwege_300	3.30e-06	2.81e-06	1.17	0.241	-2.21e-06	8.81e-06
r071_bergbahnen_300	.0000346	.000017	2.03	0.042	1.24e-06	.0000679
c01_besonnung	.0000665	2.79e-06	23.84	0.000	.000061	.0000719
	6.302367	.0187676	335.81	0.000	6.265583	6.339151
_cons				 	 	

(1) i01_laerm_strasse + i01int_laerm_strasse = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0016016	.0001299	-12.33	0.000	0018561	0013471

(1) i02_laerm_bahn + i02int_laerm_bahn = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0017041	.000261	-6.53	0.000	0022157	0011925

A 2.2 Zweistufiges Random Intercept Modell, Landnutzungsvariablen 300m

Modell B1a: Null-Modell

Random-effects Group variable	_	1		Number of Number of		164438 1152
Random effects	an		Obs per gr	roup: min = avg = max =	1 142.7 23204	
Log likelihood	= -76294.267	7		Wald chi2(Prob > chi		0.00
log_w01_preis	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_cons	7.299581	.008368	872.32	0.000	7.28318	7.315982
/sigma_u /sigma_e rho	.2467023 .3817279 .2946197	.0064064 .0006677 .0108262			.2344602 .3804215 .2737624	.2595836 .3830389 .3161814

Likelihood-ratio test of $sigma_u=0$: $\underline{chibar2(01)} = 4.0e+04 \text{ Prob}=chibar2 = 0.000$

Modell B1b: Random Intercept Modell ohne Level 2 Kovariate

Random-effects ML regression
Group variable: a01_gdecode

Number of obs = 162589
Number of groups = 1146

Random effects u_i ~ Gaussian

Obs per group: min = 1
avg = 141.9
max = 22706

LR chi2(45) = 262721.48
Log likelihood = 56433.636

Prob > chi2 = 0.0000

log_w01_preis	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
w052_zimmergroesse	.0118978	.0000732	162.50	0.000	.0117543	.0120413
w06_anz_zimmer	.2584723	.0004151	622.69	0.000	.2576588	.2592859
w10_typ4						
1	.0863241	.0014106	61.20	0.000	.0835594	.0890888
2	1719704	.0050074	-34.34	0.000	1817847	1621562
3	.1385757	.0048093	28.81	0.000	.1291497	.1480018
w11_baujahr7						
2	0548972	.0073356	-7.48	0.000	0692747	0405197
3	0947147	.0068513	-13.82	0.000	108143	0812864
4	1590593	.0067345	-23.62	0.000	1722588	1458599
5	0593624	.0067922	-8.74	0.000	0726749	04605
6	.0188778	.0067816	2.78	0.005	.0055861	.0321695
7	.0917636	.0068275	13.44	0.000	.0783819	.1051452
w12_angebotsjahr						
2002	0053438	.0039288	-1.36	0.174	013044	.0023565
2003	.0063926	.0039169	1.63	0.103	0012843	.0140696
2004	.0139693	.0038909	3.59	0.000	.0063432	.0215953
2005	.0193208	.0038536	5.01	0.000	.0117678	.0268738
2006	.026103	.0038413	6.80	0.000	.0185742	.0336318
2007	.0362597	.0041823	8.67	0.000	.0280626	.0444568
e04_miv_erreich_mean	0212482	.0007078	-30.02	0.000	0226355	0198609
1.e06_lage_innenstadt	.1057183	.0044013	24.02	0.000	.097092	.1143446
i01_laerm_strasse	.000487	.0001467	3.32	0.001	.0001995	.0007744
i01int_laerm_strasse	0019541	.0002237	-8.74	0.000	0023924	0015157
i02_laerm_bahn	0004641	.0000504	-9.21	0.000	0005628	0003653
i02int_laerm_bahn	000666	.0002806	-2.37	0.018	0012159	0001161
i03_strasse_dist	0000542	.0000174	-3.12	0.002	0000882	0000201
i04_hochleistungsstrasse_dist	.0000284	1.01e-06	28.13	0.000	.0000265	.0000304
1.i05_hochwasser	.0148153	.0015934	9.30	0.000	.0116923	.0179384
i072_industrie_300	0013977	.0000655	-21.32	0.000	0015262	0012692
i081_hochspannung_300	0000158	4.30e-06	-3.68	0.000	0000243	-7.39e-06
i091_antennen_300	00007	.0001234	-0.57	0.570	0003118	.0001718
k031_kult_objekte_300	.0028078	.0005787	4.85	0.000	.0016735	.0039421
1031_freiflaechen_dist	.0000174	2.94e-06	5.91	0.000	.0000116	.0000231
1052_wald_300	0001512	.0000671	-2.25	0.024	0002828	0000196
1061_vielfalt_300	0018877	.0004449	-4.24	0.000	0027596	0010157
107_zerschneidung	2.74e-10	9.42e-11	2.91	0.004	8.97e-11	4.59e-10
109_aussicht_dist	0000319	1.48e-06	-21.62	0.000	0000348	000029
110_see_dist	0000149	4.11e-07	-36.33	0.000	0000157	0000141
1.1112_seesicht_yes	.0269457	.0019762	13.63	0.000	.0230724	.030819
112_fluss_dist	-9.85e-06	7.66e-07	-12.87	0.000	0000113	-8.35e-06
1131_naturgewaesser_300	0024584	.00028	-8.78	0.000	0030071	0019096
r012_stadtpaerke_300	.0010309	.0001415	7.29	0.000	.0007536	.0013081
r032_anlagearme_gebiete_300	.0024907	.0005171	4.82	0.000	.0014773	.0035041
041_zugaengliche_gewaesser_300	0000247	2.26e-06	-10.96	0.000	0000291	0000203
r051_wanderwege_300	.0000162	1.72e-06	9.41	0.000	.0000128	.0000196
r061_radwege_300	2.10e-10	2.67e-06	0.00	1.000	-5.23e-06	5.23e-06
r071_bergbahnen_300	.0000255	.0000152	1.68	0.092	-4.19e-06	.0000553
c01_besonnung	.0000719	2.37e-06	30.28	0.000	.0000672	.0000765
_cons	6.168776	.0150409	410.13	0.000	6.139297	6.198256
/sigma_u	.2250754	.0060373			.2135483	.2372248
	1					.1694846
/sigma_e	.1689003	.0002976			.168318	.1054040

Likelihood-ratio test of $sigma_u=0$: $\underline{chibar2(01)} = 7.4e+04 \text{ Prob}=chibar2 = 0.000$

Modell B1c: Random Intercept Modell mit Level 2 Kovariaten

Number of obs = 162532 Number of groups = 1142 Random-effects ML regression Group variable: a01_gdecode Obs per group: min = 1 avg = 142.3 max = 22706 Random effects u_i ~ Gaussian

LR chi2(52) = 263566.37 Prob > chi2 = 0.0000 Log likelihood = 56887.241

log_w01_preis	Coef.	Std. Err.	z	P> z	[95% Conf	Interval]
w052_zimmergroesse w06_anz_zimmer	.011842	.0000731	162.11 623.55	0.000	.0116988	.0119851
w10_typ4	.0862429	.0014073	61.28	0.000	.0834845	.0890012
2	1734297	.0014073	-34.73	0.000	1832175	1636419
3	.1374045	.0047973	28.64	0.000	.1280021	.146807
w11 baujahr7						
wii_baujanr/ 2	0569756	.0073523	-7.75	0.000	0713859	0425653
3	0980776	.0068725	-14.27	0.000	1115474	0846077
4	1614963	.0067577	-23.90	0.000	1747411	1482515
5	0623187	.0068147	-9.14	0.000	0756753	0489622
6	.0172235	.0068046	2.53	0.011	.0038868	.0305603
7	.0892053	.006849	13.02	0.000	.0757814	.1026291
w12_angebotsjahr						
2002	0050415	.0039191	-1.29	0.198	0127227	.0026398
2003	.006559	.0039072	1.68	0.093	0010989	.014217
2004	.0142202	.0038813	3.66	0.000	.0066129	.0218275
2005	.0197796	.0038441	5.15	0.000	.0122453	.027314
2006 2007	.026627	.0038318	6.95 8.80	0.000	.0191167 .0285277	.0341372
2007	.0307040	.004172	0.00	0.000	.0265277	.0440010
e01_grosszentren_dist	-1.18e-06	1.77e-07	-6.65	0.000	-1.52e-06	-8.30e-07
e02_regionalzentren_dist	4.95e-06	1.01e-06	4.89	0.000	2.97e-06	6.94e-06
1.e03_bahnhof	0332827	.0150773	-2.21	0.027	0628337	0037316
e04_miv_erreich_mean	0225724	.0007313	-30.86	0.000	0240058	021139
1.e06_lage_innenstadt	.1059225	.0043905	24.13 2.77	0.000	.0973173	.1145277
i01_laerm_strasse i01int_laerm_strasse	001961	.0001403	-8.79	0.000	0023983	0015238
i02_laerm_bahn	0004872	.00002231	-9.69	0.000	0005857	0003887
i02int_laerm_bahn	0006464	.0002798	-2.31	0.021	0011948	000098
i03_strasse_dist	0000495	.0000173	-2.85	0.004	0000834	0000155
i04_hochleistungsstrasse_dist	.0000273	1.01e-06	27.07	0.000	.0000253	.0000293
1.i05_hochwasser	.0146882	.0015897	9.24	0.000	.0115724	.017804
i072_industrie_300	0013498	.0000654	-20.64	0.000	001478	0012216
i081_hochspannung_300 i091_antennen_300	0000141 0000874	4.29e-06 .0001231	-3.28 -0.71	0.001	0000225 0003286	-5.68e-06
k031_kult_objekte_300	.0019611	.0001231	3.39	0.001	.0008283	.0030939
1031_freiflaechen_dist	.0000157	2.94e-06	5.36	0.000	9.97e-06	.0000215
1052_wald_300	000113	.000067	-1.69	0.092	0002444	.0000184
1061_vielfalt_300	0011587	.0004446	-2.61	0.009	0020302	0002873
107_zerschneidung	2.71e-10	9.38e-11	2.89	0.004	8.68e-11	4.54e-10
108_zersiedelung_gem	0090805	.0003194	-28.43	0.000	0097065	0084545
109_aussicht_dist 110_see_dist	0000281 0000141	1.48e-06 4.13e-07	-19.04 -34.08	0.000	000031 0000149	0000252 0000133
1.1112_seesicht_yes	.0250379	.0019732	12.69	0.000	.0211704	.0289054
112_seesiene_yes	0000107	7.63e-07	-14.01	0.000	0000122	-9.20e-06
1131_naturgewaesser_300	002444	.0002793	-8.75	0.000	0029915	0018966
r012_stadtpaerke_300	.0009407	.0001412	6.66	0.000	.0006638	.0012175
r032_anlagearme_gebiete_300	.0024988	.0005155	4.85	0.000	.0014883	.0035092
r041_zugaengliche_gewaesser_300	0000241	2.25e-06	-10.70	0.000	0000285	0000197
r051_wanderwege_300	.0000152	1.72e-06	8.82	0.000	.0000118	.0000186
r061_radwege_300 r071_bergbahnen_300	9.48e-07 .0000246	2.66e-06 .0000151	0.36	0.722	-4.27e-06 -5.02e-06	6.17e-06
ru/i_bergbannen_3uu c01_besonnung	.0000246	2.38e-06	1.63 27.79	0.104	.0000614	.0000543
g012_tax_70_2002	0248931	.0035579	-7.00	0.000	0318664	0179197
g02_auslaenderanteil	.0048591	.0008381	5.80	0.000	.0032165	.0065016
g04_bauzonenreserven	0026584	.0009696	-2.74	0.006	0045588	000758
_cons	6.545712	.0487083	134.39	0.000	6.450246	6.641179
/sigma_u	.2175079	.0059468			.2061591	.2294814
/sigma_e	.1684465	.00039468			.1678656	.1690293
rho	.6250958	.0128695			.5996215	.6500355
	1	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	

(1) $[log_w01_preis]i01_laerm_strasse + [log_w01_preis]i01int_laerm_strasse = 0$

log_w01_pr~s	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	0015561	.0001222	-12.73	0.000	0017956	0013166

$(1) \quad [\log_w01_preis]i02_laerm_bahn + [\log_w01_preis]i02int_laerm_bahn = 0 \\$

log_w01_pr~s	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	0011336	.0002616	-4.33	0.000	0016463	0006208

Anhang 3: Detaillierte Modellresultate: Regionenspezifisch

A 3.1 OLS-Regressionsmodelle nach BFS-Gemeindetypologie (9), 300m

Modell C1: Zentren (Gemeindetyp 1)

Linear regression, absorbing indicators

Number of obs = 71625 F(46, 71517) = 5396.03 Prob > F = 0.0000 R-squared = 0.8459 Adj R-squared = 0.8456 Root MSE = 0.1797

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
w052_zimmergroesse	.0131878	.000681	19.36	0.000	.011853	.0145226
w06_anz_zimmer	.2848101	.0013346	213.40	0.000	.2821942	.2874259
w10_typ4	0075471	0027052	05 77	0 000	000100	1040663
1 2	.0975471	.0037853	25.77 -15.10	0.000	.090128 1708599	.1049663
3	.1677122	.01100172	15.24	0.000	.146148	.1892764
w11_baujahr7						
2	0869784	.0134204	-6.48	0.000	1132823	0606745
3	1205092	.012643	-9.53	0.000	1452895	0957289
4	1673814	.0125677	-13.32	0.000	192014	1427489
5	0869142	.0127116	-6.84	0.000	111829	0619995
6	0074191	.0127443	-0.58	0.560	0323978	.0175596
7	.0440079	.0130675	3.37	0.001	.0183956	.0696201
w12_angebotsjahr						
2002	001211	.0062129	-0.19	0.845	0133884	.0109663
2003	.0094234	.0062116	1.52	0.129	0027514	.0215981
2004	.0226251	.0061802	3.66	0.000	.0105119	.0347384
2005	.0341995	.0061009	5.61	0.000	.0222416	.0461573
2006	.0421252	.006096	6.91	0.000	.030177	.0540733
2007	.0581148	.0066496	8.74	0.000	.0450816	.071148
e04_miv_erreich_mean	0305402	.001241	-24.61	0.000	0329726	0281079
1.e06_lage_innenstadt	.1015003	.0056687	17.91	0.000	.0903896	.1126109
i01_laerm_strasse	.0003212	.0002382	1.35	0.177	0001456	.000788
i01int_laerm_strasse	0013048	.0003544	-3.68	0.000	0019994	0006102
i02_laerm_bahn	0003782	.0000727	-5.20	0.000	0005207	0002356
i02int_laerm_bahn	.0003659	.0004805	0.76	0.446	0005758	.0013076
i03_strasse_dist	0001577	.0000336	-4.70	0.000	0002235	000092
i04_hochleistungsstrasse_dist	.0000375	1.64e-06	22.84	0.000	.0000343	.0000408
1.i05_hochwasser	.0248541	.0023755	10.46	0.000	.0201981	.02951
i072_industrie_300	0016797	.0000862	-19.49	0.000	0018486	0015108
i081_hochspannung_300	0000103	7.11e-06	-1.45	0.148	0000242	3.65e-06
i091_antennen_300	.0002702	.0001993	1.36	0.175	0001205	.0006608
k031_kult_objekte_300	.0013331	.0008799	1.52	0.130	0003914	.0030577
1032_freiflaechen_300	0003079	.0000569	-5.41	0.000	0004194	0001964
1052_wald_300	.0000341	.000119	0.29	0.775	0001993	.0002674
1061_vielfalt_300	0000794	.0007493	-0.11	0.916	001548	.0013892
107_zerschneidung	1.38e-09	2.09e-09	0.66	0.510	-2.72e-09	5.49e-09
109_aussicht_dist	0000316	2.01e-06	-15.72	0.000	0000356	0000277
110_see_dist	0000178	5.87e-07	-30.27	0.000	0000189	0000166
1.1112_seesicht_yes	.031933	.0035939	8.89	0.000	.024889	.038977
l12_fluss_dist l131_naturgewaesser_300	0000166	1.04e-06	-16.02	0.000	0000187	0000146
r012_stadtpaerke_300	0055908 .0007442	.0005013	-11.15 3.99	0.000	0065734 .0003785	0046083 .0011099
r032_anlagearme_gebiete_300						
r032_aniagearme_gebiete_300 r041_zugaengliche_gewaesser_300	.0023055	.0007167 3.96e-06	3.22 -6.01	0.001	.0009008 0000316	.0037103
r041_zugaeng11che_gewaesser_300 r051_wanderwege_300	.0000238	2.41e-06	8.92	0.000	.0000318	.0000161
r051_wanderwege_300 r061_radwege_300	-7.82e-06	3.10e-06	-2.52	0.000	0000188	-1.74e-06
r071_bergbahnen_300	.0002402	.000049	4.90	0.012	.0001441	.0003362
c01_besonnung	.0002402	3.71e-06	16.06	0.000	.0001441	.0003362
_cons	6.288667	.0273765	229.71	0.000	6.235009	6.342325
a01_gdecode	absorbed				(62 (categories)

(1) i01_laerm_strasse + i01int_laerm_strasse = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0009836	.0001852	-5.31	0.000	0013465	0006207

(1) i02_laerm_bahn + i02int_laerm_bahn = 0

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0000123	.0004509	-0.03	0.978	0008961	.0008716

Modell C2: Suburbane Gemeinden (Gemeindetyp 2)

Linear regression, absorbing indicators Number of obs = $\frac{\text{F(44,65309)}}{\text{F(5000)}} = \frac{65636}{1000}$

Number of obs = 65636 F(44, 65309) = .Prob > F = . R-squared = 0.8499 Adj R-squared = 0.8492 Root MSE = 0.1485

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0114963	.0006072	18.93	0.000	.0103061	.0126865
w052_21mmergroesse w06_anz_zimmer	.2343765	.0012093	193.82	0.000	.2320064	.2367467
w10_typ4						
1	.088305	.0032153	27.46	0.000	.0820031	.0946069
2	22744	.0223079	-10.20	0.000	2711634	1837165
3	.0731546	.018979	3.85	0.000	.0359558	.1103534
wl1_baujahr7						
2	0440211	.02443	-1.80	0.072	091904	.0038617
3	0795836	.0223202	-3.57	0.000	1233311	0358361
4	1507023	.0206613	-7.29	0.000	1911985	1102061
5	0473232	.021291	-2.22	0.026	0890536	0055928
6	.0326526	.0216655	1.51	0.132	0098118	.075117
7	.1082377	.0225011	4.81	0.000	.0641356	.1523399
w12_angebotsjahr						
2002	0182043	.0053966	-3.37	0.001	0287817	007627
2003	0071688	.0053504	-1.34	0.180	0176556	.0033179
2004	003721	.0052999	-0.70	0.483	0141088	.0066667
2005	0023808	.0052385	-0.45	0.649	0126483	.0078868
2006	.0049465	.0052213	0.95	0.343	0052873	.0151802
2007	.0070611	.0056897	1.24	0.215	0040907	.0182129
e04_miv_erreich_mean	0036804	.0012821	-2.87	0.004	0061934	0011674
0.e06_lage_innenstadt	0	(omitted)				
i01_laerm_strasse	.000588	.0002201	2.67	0.008	.0001567	.0010193
i01int_laerm_strasse	0019746	.0003307	-5.97	0.000	0026228	0013264
i02_laerm_bahn	0002256	.0000772	-2.92	0.003	000377	0000742
i02int_laerm_bahn	0021345	.0003759	-5.68	0.000	0028712	0013977
i03_strasse_dist	-9.62e-06	.0000239	-0.40	0.687	0000564	.0000372
i04_hochleistungsstrasse_dist	.0000155	2.09e-06	7.45	0.000	.0000114	.0000196
1.i05_hochwasser	0027128	.0023539	-1.15	0.249	0073265	.0019008
i072_industrie_300	0008703	.0001017	-8.55	0.000	0010697	0006709
i081_hochspannung_300	-8.99e-06	5.47e-06	-1.64	0.101	0000197	1.74e-06
i091_antennen_300	0004487	.0001674	-2.68	0.007	0007768	0001207
k031_kult_objekte_300	.0075459	.0011396	6.62	0.000	.0053122	.0097796
1032_freiflaechen_300	0000618	.0000391	-1.58	0.115	0001385	.0000149
1052_wald_300	00013	.0000986	-1.32	0.187	0003232	.0000632
1061_vielfalt_300	0022493	.0006313	-3.56	0.000	0034868	0010119
107_zerschneidung	3.50e-10	2.41e-10	1.45	0.146	-1.22e-10	8.21e-10
109_aussicht_dist	0000352	2.64e-06	-13.32	0.000	0000404	00003
110_see_dist	0000216	1.93e-06	-11.19	0.000	0000254	0000179
1.1112_seesicht_yes	.0130405	.003316	3.93	0.000	.0065412	.0195398
112_fluss_dist	7.17e-06	1.56e-06	4.59	0.000	4.11e-06	.0000102
1131_naturgewaesser_300	0005989	.0004065	-1.47	0.141	0013957	.0001979
r012_stadtpaerke_300	.0013163	.0003425	3.84	0.000	.0006449	.0019876
r032_anlagearme_gebiete_300	.0035893	.0011103	3.23	0.001	.001413	.0057656
r041_zugaengliche_gewaesser_300	0000162	3.10e-06	-5.22	0.000	0000223	0000101
r051_wanderwege_300	4.55e-06	3.06e-06	1.49	0.137	-1.45e-06	.0000105
r061_radwege_300 r071_bergbahnen_300	.0000223	6.77e-06	3.29	0.001	8.99e-06	.0000355
ru/1_bergbannen_300 c01_besonnung	0000104 .0000974	.0000197	-0.53	0.599	000049	.0000283
_cons	6.288013	5.17e-06 .0328699	18.86 191.30	0.000	.0000873 6.223588	6.352438
a01_gdecode	absorbed				(282 c	ategories)

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0013866	.0001879	-7.38	0.000	0017548	0010184

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0023601	.0003501	-6.74	0.000	0030462	001674

Modell C3: Einkommensstarke Gemeinden (Gemeindetyp 3)

Linear regression, absorbing indicators Number of obs = 8335F(44, 8235) = 527.72

Number of obs = 8335 F(44, 8235) = 527.72 Prob > F = 0.0000 R-squared = 0.8214 Adj R-squared = 0.8192 Root MSE = 0.2012

W052_rimmergroesse	J	g F	Robust	_	D. 1-1	[058 G5	T
W10_typ4	log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval.
W10_typ4	w052_zimmergroesse	.015598	.0018892	8.26	0.000	.0118947	.0193014
1	w06_anz_zimmer	.2651734	.0031735	83.56	0.000	.2589525	.2713942
### ### ### ### ### ### ### ### ### ##	w10_typ4						
### ### #### #### ####################			.0095512	7.98		.0574743	.09492
			.0359437	-4.83	0.000		1030487
2	3	.0602662	.0401943	1.50	0.134	0185246	.139057
30897389 .0497932 -1.80 0.0721873461 .0 41383502 .0485386 -2.85 0.00423349810 50030658 .0480616 -0.06 0.9490972787 .0 6 .0613056 .0479297 1.28 0.2010326486 .1 7 .1798457 .0480037 3.75 0.000 .0857463 .2 W12_angebotsjahr 20020355419 .0303613 -1.17 0.2420950578 .2 20030130442 .0300528 -0.43 0.6640719552 .0 20040269073 .0300205 -0.90 0.3700857552 .0 20050355625 .0298957 -1.20 0.2290945655 .0 20060255581 .0298957 -1.20 0.2290945655 .0 2007009731 .0312361 -0.31 0.7550709617 .0 e04_miv_erreich_mean	w11_baujahr7						
41383502 .0485386 -2.85 0.00423349810 50030658 .0480616 -0.06 0.9490972787 .07030658 .0480616 -0.06 0.9490972787 .07030658 .048037 3.75 0.000 .0857463 .2 w12_angebotsjahr 20020355419 .0303613 -1.17 0.2420950578 20030130442 .0300528 -0.43 0.6640719552 20040265973 .030025 -0.90 0.370 .06640719552 20050359625 .0298957 -1.20 0.2290945655 20060255581 .0298957 -1.20 0.2290945655 2007009731 .0312361 -0.31 0.7550709617 e04_miv_erreich_mean		0552305	.0549678	-1.00	0.315	1629812	.052520
5							.007868
Maintenant							043202
W12_angebotsjahr							.09114
### ### ##############################							.155259
2002	7	.1798457	.0480037	3.75	0.000	.0857463	.273945
2003							
2004 0269073 .0300205 -0.90 0.370 0857552 .0205 0359625 .0298957 -1.20 0.229 0945655 .0298297 -0.86 0.392 0840319 .0207 009731 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.755 0709617 .0312361 -0.31 0.000 0321806 0008573 .0006523 1.31 0.189 0004214 .0312361 -0.0008573 .0006523 1.31 0.189 0004214 .0312361 -0.0008573 .0006523 1.31 0.189 0004214 .0312361 -0.0008573 .0006523 1.31 0.189 0004451 0008573 .0006523 1.31 0.189 0004451 0008573 .0006523 1.31 0.189 0004451 0008573 .0006523 1.31 0.189 0004451 0008573 .000664 0016871 .0008573 .000664 0016871 .0009 .00094541 0008646 .03924 .000664 0016871 .00094441 00094449 .0007473 .00094449 .0009445 .00094459 .0009446 .000							.02397
2005							.045866
2006 20070055581 .0298297 -0.86 0.3920840319 .0 2007009731 .0312361 -0.31 0.7550709617 .0 2007009731 .0312361 -0.31 0.7550709617 .0 2008573 .0049753 -4.51 0.0000321806 2008573 .0006523 1.31 0.1890004214 .0 2011							.031940
2007 009731 .0312361 -0.31 0.755 0709617 .0 e04_miv_erreich_mean 0.e06_lage_innenstadt 0 (omitted) .0008573 .0006523 1.31 0.189 0004214 .0 i01_laerm_strasse .0008573 .0006523 1.31 0.189 0004214 .0 i02_laerm_bahn .0001817 .0004439 -1.84 0.066 0016871 .0 i03_strasse_dist .0001853 .0010173 2.60 0.099 .0004455 .0 i04_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 .0 1072_industrie_300 0027075 .0006491 -4.17 .000 0037979 0 i091_antennen_300 001693 .0001621 -3.24 0.001 0031841 0 k031_kult_objekte_300 0157562 .0046561 -3.38 0.001 0248832 0 1052_wald_300 .0004789 .0003103 1.54 0.100 0							.022640
e04_miv_erreich_mean							.032915
0.e06_lage_innenstadt 0 (omitted) i01_laerm_strasse .0008573 .0006523 1.31 0.189 0004214 .0 i01int_laerm_strasse .0072292 .001135 -6.37 0.000 0094541 0 i02_laerm_bahn .0013993 .0016468 0.85 0.396 0018289 .0 i03_strasse_dist .0013993 .0016468 0.85 0.396 0018289 .0 i04_hochleistungsstrasse_dist .0013993 .0000713 2.60 0.009 .000455 .0 i04_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 .0 i072_industrie_300 0027075 .0006491 -4.17 0.000 0039799 0 i081_hochspannung_300 .0019842 .0006121 -3.24 0.001 0031841 0 k031_kult_objekte_300 0157562 .0046561 -3.38 0.001 0248832 0 l032_freiflaechen_300 .0002523 .0001748 1.44 0.	2007	009731	.0312361	-0.31	0.755	0709617	.051499
i01_laerm_strasse		0224278		-4.51	0.000	0321806	01267
i0lint_laerm_strasse 0072292 .001135 -6.37 0.000 0094541 0016871 .000187 .0004439 -1.84 0.066 0016871 .0018289 .0018281 .0018289 .0018289 .0018289 .0018289 .0018289 .0018289 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 .001828 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
i02_laerm_bahn 000817 .0004439 -1.84 0.066 0016871 .0 i02int_laerm_bahn .0013993 .0016468 0.85 0.396 0018289 .0 i04_hochleistungsstrasse_dist .0001853 .0000713 2.60 0.009 .000455 .0 i04_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 .0 i072_industrie_300 .0199353 .0140509 1.42 0.156 0076079 .0 i081_hochspannung_300 .00027075 .0006491 -4.17 0.000 0039799 i091_antennen_300 .00157562 .0046561 -3.34 0.001 0031841 0 k031_kult_objekte_300 .0057562 .0046561 -3.38 0.001 0248832 0 1032_freiflaechen_300 .0004789 .003103 1.54 0.123 0001294 .0 107_zerschneidung 1.08e-08 2.25e-09 4.77 0.000 6.34e-09 1. 10_se							.002136
i02int_laerm_bahn .0013993 .0016468 0.85 0.396 0018289 .0 i04_hochleistungsstrasse_dist .0001853 .0000713 2.60 0.009 .0000455 .0 i14_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 .0 i072_industrie_300 .0199353 .0140509 1.42 0.156 0076079 .0 i081_hochspannung_300 .0002707 -6.07 0.000 0039799 0 i091_antennen_300 .0001693 .0000279 -6.07 0.000 00031841 0 k031_kult_objekte_300 .0157562 .0046561 -3.24 0.001 0031841 0 1032_freiflaechen_300 .0002523 .0001748 1.44 0.149 0009944 .0 1061_vielfalt_300 .0004789 .003103 1.54 0.123 00126181 0 107_zerschneidung 1.08e-08 2.25e-09 4.77 0.000 6.34e-09 1. 109_aussicht_dist							005004
i03_strasse_dist .0001853 .0000713 2.60 0.009 .0000455 .0014_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 .0019353 .0140509 1.42 0.156 0076079 .0019353 .0140509 1.42 0.156 0076079 .001981 .001981 .00000 0039799 00000 0039799 00000 00039799 00000 00039799 00000 00039799 00000 0000239 00000 0000239 000000 0000239 00000 0000239 000000 0000239 000000 0000239 000000 0000239 000000 0000239 00000000 0000239 0000000 0000239 0000000 0000239 0000000 0000239 0000000 0000239 0000000 00000000 0000239 00000000 000000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 0000000000 000000000							.000053
i04_hochleistungsstrasse_dist 5.58e-06 4.96e-06 1.12 0.261 -4.14e-06 0.0000000 1.i05_hochwasser .0199353 .0140509 1.42 0.156 0076079 0.0000000 i072_industrie_300 0027075 .0006491 -4.17 0.000 0039799 0000000 i091_antennen_300 001693 .0000279 -6.07 0.000 0031841 000000 k031_kult_objekte_300 00157562 .0046561 -3.38 0.001 0248832 000000 1032_freiflaechen_300 .0002523 .0001748 1.44 0.149 0000904 .0000000 1061_vielfalt_300 .0004789 .003103 1.54 0.123 0001294 .000000 107_zerschneidung 1.08e-08 2.25e-09 4.77 0.000 6.34e-09 1.000000 110_see_dist 0000563 .0000127 -4.43 0.000 0000466 0000000 1112_fluss_dist 9.04e-06 6.10e-06 1.48 0.138 -2.91e-06 00000000 1131_naturgewaesser_300 0024498 .001577 -0.9							.004627
1.i05_hochwasser							.000325
i072_industrie_300							.000015
i081_hochspannung_300 0001693 .0000279 -6.07 0.000 0002239 0 i091_antennen_300 0019842 .0006121 -3.24 0.001 0031841 0 k031_kult_objekte_300 0157562 .0046561 -3.38 0.001 0248832 0 1032_freiflaechen_300 .0002523 .0001748 1.44 0.149 0000904 .0 1052_wald_300 .0004789 .0003103 1.54 0.123 0001294 .0 1061_vielfalt_300 0080937 .0023081 -3.51 0.000 0126181 0 107_zerschneidung 1.08e-08 2.25e-09 4.77 0.000 6.34e-09 1. 10_see_dist 0000563 .0000127 -4.43 0.000 0000812 0 1112_seesicht_yes .0238157 .00728 3.27 0.001 .0095451 .0 1131_naturgewaesser_300 0024498 .0015207 -1.61 0.107 0054308 .0 r032_anlagearme_gebiete_300 .0073316 .0025157 2.91 0.004 .0024002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>.047478</td></t<>							.047478
i091_antennen_300							00143
k031_kult_objekte_300 0157562 .0046561 -3.38 0.001 0248832 0 1032_freiflaechen_300 .0002523 .0001748 1.44 0.149 0000904 .0 1052_wald_300 .0004789 .0003103 1.54 0.123 0001294 .0 1061_vielfalt_300 0080937 .0023081 -3.51 0.000 0126181 0 107_zerschneidung 1.08e-08 2.25e-09 4.77 0.000 6.34e-09 1. 109_aussicht_dist 0000563 .0000127 -4.43 0.000 0000812 0 110_see_dist 0000363 5.28e-06 -6.87 0.000 0000466 0 1112_seesicht_yes .0238157 .00728 3.27 0.001 .0095451 .0 1131_naturgewaesser_300 0024498 .0015207 -1.61 0.107 0054308 .0 r032_anlagearme_gebiete_300 .0073316 .0025157 2.91 0.004 .0024002 .0 041_zugaengliche_gewaesser_300 0000364 .0000144 -2.52 0.012 00000466 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>000114 000784</td>							000114 000784
1032_freiflaechen_300							006629
1052_wald_300							.00059
1061_vielfalt_300 0080937 .0023081 -3.51 0.000 0126181 00126181 00126181 0000663 0.000127 -4.43 0.000 0000812 00000812 00000812 00000812 00000812 00000812 000000812 000000812 000000812 000000812 000000812 000000812 00000000000 0000000000 00000000000 0000000000000 000000000 00000000 00000000 00000000 00000000 0000000 00000000 0000000 00000000 0000000 00000000 0000000 0000000 0000000 00000000 0000000 0000000 00000000 0000000 00000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000							.001087
107_zerschneidung							003569
109_aussicht_dist							1.52e-0
110_see_dist							000031
1.1112_seesicht_yes							000031
112_fluss_dist 9.04e-06 6.10e-06 1.48 0.138 -2.91e-06 . 1131_naturgewaesser_3000024498 .0015207 -1.61 0.1070054308 .0 r012_stadtpaerke_3000009499 .0010577 -0.90 0.3690030233 .0 r032_anlagearme_gebiete_300 .0073316 .0025157 2.91 0.004 .0024002 . 041_zugaengliche_gewaesser_3000000364 .0000144 -2.52 0.0120000646 -8. r051_wanderwege_3000000214 .0000115 -1.87 0.0620000438 1.							.038086
1131_naturgewaesser_300	_						.00002
r012_stadtpaerke_300							.000531
r032_anlagearme_gebiete_300							.001123
041_zugaengliche_gewaesser_300							.01226
r051_wanderwege_3000000214 .0000115 -1.87 0.0620000438 1.							-8.11e-0
							1.05e-0
	r061_radwege_300	0000415	.0000911	-0.46	0.649	0002202	.000137
r071_bergbahnen_300 0 (omitted)							
				2.75	0.006	.0000131	.000077
							6.90002

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0063719	.0007273	-8.76	0.000	0077976	0049461

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	.0005822	.0014787	0.39	0.694	0023165	.0034809

Modell C4: Periurbane Gemeinden (Gemeindetyp 4)

Number of obs = 9666 F(45, 9382) = 469.92 Prob > F = 0.0000 R-squared = 0.8459 Adj R-squared = 0.8413 Root MSE = 0.1342 Linear regression, absorbing indicators

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0069271	.0006422	10.79	0.000	.0056683	.008186
w06_anz_zimmer	.2060153	.0021223	97.07	0.000	.2018552	.2101754
w10_typ4						
1	.080149	.0046121	17.38	0.000	.0711083	.0891896
2	1155752	.0373187	-3.10	0.002	1887278	0424225
3	.0555099	.0532286	1.04	0.297	0488296	.1598494
wll_baujahr7						
2	0817838	.0566441	-1.44	0.149	1928185	.0292509
3	0436825	.0536621	-0.81	0.416	1488718	.0615068
4	1302555	.0480513	-2.71	0.007	2244465	0360645
5	0146548	.0478519	-0.31	0.759	1084549	.0791453
6	.0672707	.0477748	1.41	0.159	0263782	.1609197
7	.1518283	.0479478	3.17	0.002	.0578402	.2458164
w12_angebotsjahr						
2002	.0101352	.0116391	0.87	0.384	0126799	.0329504
2003	.0097086	.0115078	0.84	0.399	0128493	.0322664
2004	.0178112	.0115052	1.55	0.122	0047415	.0403639
2005	.0113531	.0113484	1.00	0.317	0108922	.0335984
2006	.0156911	.0113623	1.38	0.167	0065816	.0379637
2007	.0220221	.012486	1.76	0.078	0024533	.0464974
e04_miv_erreich_mean	0030039	.0035016	-0.86	0.391	0098678	.0038599
0.e06_lage_innenstadt	0	(omitted)				
i01_laerm_strasse	.0007584	.0004254	1.78	0.075	0000754	.0015922
i01int_laerm_strasse	0043807	.00089	-4.92	0.000	0061253	002636
i02_laerm_bahn	.0000254	.0002931	0.09	0.931	0005492	.0005999
i02int_laerm_bahn	0004798	.0014894	-0.32	0.747	0033993	.0024398
i03_strasse_dist	0001073	.0000488	-2.20	0.028	0002029	0000117
i04_hochleistungsstrasse_dist	2.24e-06	5.62e-06	0.40	0.690	-8.78e-06	.0000133
1.i05_hochwasser	.0156078	.00727	2.15	0.032	.001357	.0298585
i072_industrie_300	0017421	.0004509	-3.86	0.000	002626	0008581
i081_hochspannung_300	.0000342	.0000129	2.66	0.008	9.00e-06	.0000594
i091_antennen_300	.0007293	.0004539	1.61	0.108	0001604	.001619
k031_kult_objekte_300	0024909	.0034886	-0.71	0.475	0093293	.0043475
1032_freiflaechen_300	0003441	.0001188	-2.90	0.004	000577	0001111
1052_wald_300	0004959	.0002876	-1.72	0.085	0010596	.0000678
1061_vielfalt_300	.0039039	.0019097	2.04	0.041	.0001604	.0076474
107_zerschneidung	1.37e-09	6.79e-09	0.20	0.840	-1.19e-08	1.47e-08
109_aussicht_dist	0000146	.0000118	-1.24	0.216	0000378	8.55e-06
l10_see_dist	.0000189	4.08e-06	4.63	0.000	.0000109	.0000269
1.1112_seesicht_yes	.0181411	.0115904	1.57	0.118	0045786	.0408608
112_fluss_dist	8.84e-06	5.34e-06	1.66	0.098	-1.63e-06	.0000193
1131_naturgewaesser_300	0020639	.0010909	-1.89	0.059	0042023	.0000746
r012_stadtpaerke_300	0004142	.001688	-0.25	0.806	003723	.0028945
r032_anlagearme_gebiete_300	.0036798	.0028304	1.30	0.194	0018683	.009228
r041_zugaengliche_gewaesser_300	0000372	7.85e-06	-4.74	0.000	0000526	0000218
r051_wanderwege_300	0000241	.0000123	-1.96	0.050	0000482	4.92e-08
r061_radwege_300	-6.93e-06	.0000445	-0.16	0.876	0000941	.0000803
r071_bergbahnen_300	0001218	.0000558	-2.18	0.029	0002312	0000123
c01_besonnung	.0000356	.0000103	3.44	0.001	.0000153	.0000558
_cons	5.994703	.0895074	66.97	0.000	5.819249	6.170157
a01_gdecode	absorbed				(239 c	ategories)
— -	I .				-	•

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0036223	.0006319	-5.73	0.000	0048609	0023837

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0004544	.0014072	-0.32	0.747	0032129	.002304

Modell C5: Ländliche Gemeinden (Gemeindetypen 6-9)

Number of obs = 6975 F(44, 6457) = .Prob > F = . R-squared = 0.8880 Adj R-squared = 0.8791 Root MSE = 0.1364 Linear regression, absorbing indicators

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0073214	.0007119	10.28	0.000	.0059258	.0087171
w06_anz_zimmer	.225249	.0023641	95.28	0.000	.2206146	.2298835
w10_typ4						
1	.0630722	.0059841	10.54	0.000	.0513414	.0748031
2	0803162	.0212353	-3.78	0.000	1219445	038688
3	0297512	.069239	-0.43	0.667	1654826	.1059801
wl1_baujahr7						
2	0530786	.034939	-1.52	0.129	1215707	.0154135
3	102973	.0347412	-2.96	0.003	1710772	0348688
4	119127	.0298276	-3.99	0.000	177599	060655
5	0100509	.0298027	-0.34	0.736	0684741	.0483723
6	.0370681	.0294291	1.26	0.208	0206226	.0947588
7	.1274976	.0303979	4.19	0.000	.0679076	.1870876
w12_angebotsjahr						
2002	.0157494	.0122113	1.29	0.197	0081888	.0396876
2003	.0234084	.0120971	1.94	0.053	000306	.0471228
2004	.0376725	.0122229	3.08	0.002	.0137116	.0616334
2005	.0485039	.0117053	4.14	0.000	.0255577	.0714501
2006	.0422718	.0117302	3.60	0.000	.0192768	.0652668
2007	.0620173	.0133868	4.63	0.000	.0357746	.0882599
and min annaigh maan	000006	0040070	1 04	0 066	0105777	0005056
e04_miv_erreich_mean	008996 0	.0048878	-1.84	0.066	0185777	.0005856
0.e06_lage_innenstadt	0006834	(omitted) .0006168	1 11	0 260	0010024	0005257
i01_laerm_strasse i01int_laerm_strasse	.0000948	.0011478	-1.11 0.08	0.268 0.934	0018924 0021553	.0005257
i02_laerm_bahn	.0007596	.000363	2.09	0.036	.000048	.0023449
i02int_laerm_bahn	0082604	.0020189	-4.09	0.000	0122182	0043027
i03_strasse_dist	.0000879	.0000748	1.17	0.240	0000588	.0002345
i04_hochleistungsstrasse_dist	5.21e-06	5.77e-06	0.90	0.366	-6.09e-06	.0000165
1.i05_hochwasser	.0112188	.0073647	1.52	0.128	0032184	.025656
i072_industrie_300	.0000849	.0003475	0.24	0.807	0005963	.0007661
i081_hochspannung_300	0000162	.0000139	-1.16	0.247	0000435	.0000112
i091_antennen_300	.001613	.000536	3.01	0.003	.0005623	.0026637
k031_kult_objekte_300	.0185898	.0029106	6.39	0.000	.0128841	.0242955
1032_freiflaechen_300	0000479	.0001562	-0.31	0.759	000354	.0002583
1052_wald_300	0016768	.0005399	-3.11	0.002	0027351	0006185
1061_vielfalt_300	.0029301	.0025209	1.16	0.245	0020117	.0078719
107_zerschneidung	2.09e-10	1.97e-10	1.06	0.289	-1.77e-10	5.96e-10
109_aussicht_dist	0000101	.0000112	-0.90	0.370	000032	.0000119
110_see_dist	0000121	5.32e-06	-2.27	0.023	0000225	-1.63e-06
1.1112_seesicht_yes	.0114427	.0110956	1.03	0.302	0103084	.0331938
112_fluss_dist	3.55e-07	7.27e-06	0.05	0.961	0000139	.0000146
1131_naturgewaesser_300	0032783	.0012886	-2.54	0.011	0058044	0007522
r012_stadtpaerke_300	0209119	.0018523	-11.29	0.000	0245431	0172807
r032_anlagearme_gebiete_300	0032368	.0023447	-1.38	0.167	0078332	.0013597
r041_zugaengliche_gewaesser_300	8.23e-06	.0000121	0.68	0.498	0000156	.000032
r051_wanderwege_300	0000139	9.75e-06	-1.43	0.154	000033	5.20e-06
r061_radwege_300	.0000673	.0000195	3.45	0.001	.000029	.0001056
r071_bergbahnen_300	0008795	.00028	-3.14	0.002	0014284	0003305
c01_besonnung	.0000456	.0000121	3.78	0.000	.000022	.0000693
_cons	6.224803	.0928038	67.07	0.000	6.042877	6.406729
a01_gdecode	absorbed				(473 c	ategories)
	1				,	3 /

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0005886	.0007467	-0.79	0.431	0020523	.0008752

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0075008	.0018668	-4.02	0.000	0111603	0038414

Anhang 4: Detaillierte Modellresultate: Fallstudien

A 4.1 Einhausung der Autobahn A1 in Zürich-Schwamendingen

Modell D1: OLS-Regressionmodell, Stadt Zürich, 300m

Linear regression

Number of obs = 22706 F(45, 22660) = 1705.41 Prob > F = 0.0000 R-squared = 0.8064 Root MSE = .19726

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
w052_zimmergroesse	.0123216	.0015145	8.14	0.000	.0093532	.0152901
w06_anz_zimmer	.2861274	.0028775	99.43	0.000	.2804872	.2917676
w10_typ4						
1	.1340671	.0079655	16.83	0.000	.1184541	.1496801
2	2121299	.0295528	-7.18	0.000	2700554	1542044
3	.1599288	.0130816	12.23	0.000	.134288	.1855696
w11_baujahr7						
2	0325924	.0227498	-1.43	0.152	0771834	.0119987
3	0440008	.0226002	-1.95	0.052	0882988	.0002972
4	1016334	.0223398	-4.55	0.000	145421	0578458
5	0224566	.0232622	-0.97	0.334	0680521	.0231388
6	.0456408	.023627	1.93	0.053	0006697	.0919513
7	.0656772	.0247029	2.66	0.008	.0172578	.1140965
w12_angebotsjahr						
2002	0584294	.0224411	-2.60	0.009	1024155	0144434
2003	0481081	.0223726	-2.15	0.032	0919599	0042563
2004	0503105	.0222797	-2.26	0.024	0939803	0066407
2005	039899	.0222311	-1.79	0.073	0834735	.0036755
2006	0368379	.0222243	-1.66	0.097	0803992	.0067233
2007	0149279	.0227562	-0.66	0.512	0595317	.0296759
e04_miv_erreich_mean	0179928	.0025048	-7.18	0.000	0229024	0130831
1.e06_lage_innenstadt	.1786133	.0138308	12.91	0.000	.151504	.2057225
i01_laerm_strasse	.0009751	.0005104	1.91	0.056	0000252	.0019755
i01int_laerm_strasse	0018201	.0007358	-2.47	0.013	0032624	0003779
i02_laerm_bahn	0017088	.0001537	-11.12	0.000	00201	0014076
i02int_laerm_bahn	.0036585	.0008332	4.39	0.000	.0020254	.0052917
i03_strasse_dist	0004974	.0000767	-6.49	0.000	0006477	0003471
i04_hochleistungsstrasse_dist	.0000412	3.42e-06	12.07	0.000	.0000345	.0000479
1.i05_hochwasser	.0371585	.0055202	6.73	0.000	.0263386	.0479784
i072_industrie_300	0005587	.0001702	-3.28	0.001	0008922	0002251
i081_hochspannung_300	1.73e-06	.0000122	0.14	0.887	0000221	.0000256
i091_antennen_300	.0016408	.0003923	4.18	0.000	.0008719	.0024096
k031_kult_objekte_300	0068272	.0021328	-3.20	0.001	0110077	0026468
1032_freiflaechen_300	0002263	.0001178	-1.92	0.055	0004572	4.66e-06
1052_wald_300	.0016395	.000319	5.14	0.000	.0010141	.0022648
1061_vielfalt_300	0067732	.0016383	-4.13	0.000	0099844	003562
107_zerschneidung	-6.73e-08	1.99e-08	-3.38	0.001	-1.06e-07	-2.82e-08
109_aussicht_dist	0000409	4.05e-06	-10.08	0.000	0000488	0000329
110_see_dist	0000264	1.26e-06	-21.01	0.000	0000289	0000239
1.1112_seesicht_yes	.0239178	.0069462	3.44	0.001	.0103027	.0375328
112_fluss_dist	0000321	3.46e-06	-9.28	0.000	0000389	0000253
1131_naturgewaesser_300	0070335	.0008566	-8.21	0.000	0087126	0053544
r012_stadtpaerke_300	.0001286	.0003876	0.33	0.740	0006311	.0008882
r032_anlagearme_gebiete_300	0064257	.0011893	-5.40	0.000	0087569	0040945
r041_zugaengliche_gewaesser_300	0000471	8.50e-06	-5.54	0.000	0000638	0000305
r051_wanderwege_300	4.69e-06	.0000169	0.28	0.782	0000285	.0000379
r061_radwege_300	0000429	.0000139	-3.08	0.002	0000702	0000157
r071_bergbahnen_300	0	(omitted)	7 40	0 000	000050	0000005
c01_besonnung	.0000707	9.56e-06	7.40	0.000	.000052	.0000895
_cons	6.320245	.0491837	128.50	0.000	6.223842	6.416649

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	000845	.0003714	-2.28	0.023	0015729	000117

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	.0019497	.0007779	2.51	0.012	.0004249	.0034745

Modell D2: Zentren (Gemeindetyp 1), ohne Hochleistungsstrassen

Linear regression, absorbing indicators

Number of obs = 71625 F(45, 71518) = 5451.76 Prob > F = 0.0000 R-squared = 0.8445 Adj R-squared = 0.8443 Root MSE = 0.1804

		Robust				
log_w01_preis	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
w052_zimmergroesse	.0132711	.0006853	19.37	0.000	.0119279	.0146143
w06_anz_zimmer	.2851253	.0013405	212.70	0.000	.282498	.2877526
w10_typ4						
1	.0975652	.0038058	25.64	0.000	.0901059	.1050246
2	1513681	.0100719	-15.03	0.000	1711091	1316272
3	.1747833	.0111563	15.67	0.000	.1529169	.1966497
wll_baujahr7						
w11_5aujani /	0885959	.0135088	-6.56	0.000	1150731	0621187
3	1241319	.0127214	-9.76	0.000	1490657	0991981
4	1702738	.0126472	-13.46	0.000	1950622	1454854
5	0915533	.0127909	-7.16	0.000	1166233	0664832
6	0110653	.0128241	-0.86	0.388	0362005	.0140699
7	.0432441	.0131504	3.29	0.001	.0174694	.0690189
,	.0132111	.0131301	3.25	0.001	.01,1031	.0050105
w12_angebotsjahr						
2002	0006635	.0062619	-0.11	0.916	0129368	.0116097
2003	.0100081	.0062614	1.60	0.110	0022642	.0222804
2004	.0238205	.0062306	3.82	0.000	.0116087	.0360324
2005	.0347339	.0061512	5.65	0.000	.0226775	.0467904
2006	.042618	.0061469	6.93	0.000	.0305702	.0546659
2007	.0587776	.0067064	8.76	0.000	.045633	.0719221
e04_miv_erreich_mean	0325744	.0012769	-25.51	0.000	0350771	0300716
1.e06_lage_innenstadt	.0983128	.0057347	17.14	0.000	.0870728	.1095528
i01_laerm_strasse	0000376	.0002377	-0.16	0.874	0005035	.0004284
i01int_laerm_strasse	0011776	.0003559	-3.31	0.001	0018751	0004801
i02_laerm_bahn	0007224	.0000726	-9.95	0.000	0008647	0005802
i02int_laerm_bahn	.0012245	.0004799	2.55	0.011	.0002839	.0021652
i03_strasse_dist	0002071	.0000337	-6.14	0.000	0002732	0001411
1.i05_hochwasser	.0232322	.0023847	9.74	0.000	.0185581	.0279063
i072_industrie_300	0015823	.0000867	-18.25	0.000	0017523	0014123
i081_hochspannung_300	0000296	7.14e-06	-4.15	0.000	0000436	0000156
i091_antennen_300	.0003379	.0002002	1.69	0.091	0000545	.0007303
k031_kult_objekte_300	.0011318	.0008798	1.29	0.198	0005926	.0028562
1032_freiflaechen_300	0002468	.0000575	-4.29	0.000	0003595	0001341
1052_wald_300	.0000561	.0001196	0.47	0.639	0001784	.0002906
1061_vielfalt_300	.0015241	.0007557	2.02	0.044	.0000428	.0030053
107_zerschneidung	1.64e-09	1.81e-09	0.91	0.365	-1.91e-09	5.18e-09
109_aussicht_dist	00003	2.02e-06	-14.86	0.000	000034	000026
110_see_dist	0000199	6.06e-07	-32.85	0.000	0000211	0000187
1.1112_seesicht_yes	.0404829	.0035701	11.34	0.000	.0334855	.0474803
112_fluss_dist	-5.49e-06	9.58e-07	-5.73	0.000	-7.37e-06	-3.61e-06
1131_naturgewaesser_300	0036801	.0005013	-7.34	0.000	0046627	0026976
r012_stadtpaerke_300	.0005804	.0001875	3.10	0.002	.0002129	.000948
r032_anlagearme_gebiete_300	.0022153	.0007432	2.98	0.003	.0007586	.0036719
r041_zugaengliche_gewaesser_300	0000241	4.00e-06	-6.02	0.000	0000319	0000162
r051_wanderwege_300	.0000247	2.42e-06	10.23	0.000	.00002	.0000295
r061_radwege_300	0000109	3.10e-06	-3.53	0.000	000017	-4.87e-06
r071_bergbahnen_300	.0002316	.000051	4.54	0.000	.0001316	.0003317
c01_besonnung	.0000691	3.72e-06	18.56	0.000	.0000618	.0000764
_cons	6.324003	.0277313	228.05	0.000	6.26965	6.378357

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0012152	.0001857	-6.54	0.000	0015791	0008513

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	.0005021	.0004507	1.11	0.265	0003813	.0013855

A 4.2 Auszonung versus Überbauung einer Grünfläche in Küsnacht (ZH)

Modell D3: OLS-Regressionsmodell Gemeinde Küsnacht (ZH), 300m

Linear regression

Number of obs = 611 F(41, 568) = . Prob > F = . R-squared = 0.8789 Root MSE = .18375

log_w01_preis	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
w052_zimmergroesse	.0211913	.0020189	10.50	0.000	.0172258	.0251568
w052_21mmergroebbe w06_anz_zimmer	.2740929	.0020105	28.06	0.000	.2549041	.2932818
woo_anz_zmmer	.2710323	.0037033	20.00	0.000	.2317011	.2752010
w10_typ4						
1	.153124	.0279999	5.47	0.000	.098128	.20812
2	0142457	.0870678	-0.16	0.870	1852598	.1567685
3	.0535443	.0587547	0.91	0.363	0618587	.1689472
w11_baujahr7						
wii_baujani / 2	.3258264	.0798304	4.08	0.000	.1690275	.4826253
3	.0195829	.0560109	0.35	0.727	0904308	.1295966
4	.0188845	.0489007	0.39	0.700	0771637	.1149327
5	.1167713	.0533685	2.19	0.029	.0119477	.221595
6	.146462	.0550299	2.66	0.008	.0383751	.2545489
7	.2637556	.055409	4.76	0.000	.1549241	.3725871
w12_angebotsjahr	0204616	0644072	0.60	0 551	0000441	1640670
2002 2003	.0384616 .0287419	.0644073 .0614219	0.60	0.551	0880441 0918998	.1649672
2003	.0287419	.06016	0.47 0.49	0.640 0.621	0918998	.1479251
2004	0112239	.0602402	-0.19	0.852	1295447	.1070969
2005	0017958	.0597979	-0.19	0.832	1222479	.1126562
2007	.0197811	.0617993	0.32	0.749	1222479	.1411641
2007	.013,011	.0017333	0.52	0.715	.1010013	.1111011
e04_miv_erreich_mean	.1331158	.0396205	3.36	0.001	.0552951	.2109364
0.e06_lage_innenstadt	0	(omitted)				
i01_laerm_strasse	0103663	.0031583	-3.28	0.001	0165696	004163
i01int_laerm_strasse	.0035195	.0051913	0.68	0.498	006677	.013716
i02_laerm_bahn	0015172	.0014175	-1.07	0.285	0043015	.0012671
i02int_laerm_bahn	0281224	.0084244	-3.34	0.001	0446691	0115756
i03_strasse_dist	0002774	.0003741	-0.74	0.459	0010122	.0004575
i04_hochleistungsstrasse_dist	.0005426	.0000837	6.48	0.000	.0003782	.000707
1.i05_hochwasser	0088245	.046794	-0.19	0.850	100735	.083086
i072_industrie_300	.0108912	.0063672	1.71	0.088	0016149	.0233973
i081_hochspannung_300	0	(omitted)	0.40	0 682	000000	0046010
i091_antennen_300	.0008276	.0019623	0.42	0.673	0030268	.0046819
k031_kult_objekte_300	.0105175	.02239	0.47	0.639	0334599	.0544948
1032_freiflaechen_300 1052_wald_300	.0034527	.0010582	3.26	0.001 0.245	.0013742 0015818	.0055312
		.0019767	1.16	0.245		.0061834
1061_vielfalt_300 107_zerschneidung	071773		-5.52 3.91		0973114	0462346
107_zerschheidung 109_aussicht_dist	3.76e-07	9.60e-08 .0001025		0.000	1.87e-07	5.64e-07 .0002928
110_see_dist	.0000915	.0001025	0.89 3.55	0.373	0001099 .0001237	.0002928
1.1112_seesicht_yes	.0615895	.02288	2.69	0.000	.0166497	.1065293
1112_fluss_dist	0001044	.0000631	-1.65	0.099	0002284	.0000197
l131_naturgewaesser_300	.0021382	.0119497	0.18	0.858	0213327	.0256091
r012_stadtpaerke_300	0149747	.0057674	-2.60	0.010	0263026	0036467
r032_anlagearme_gebiete_300	.0172179	.0160703	1.07	0.284	0143465	.0487823
r041_zugaengliche_gewaesser_300	0000169	.0000802	-0.21	0.834	0001743	.0001406
r051 wanderwege 300	.0001465	.0000593	2.47	0.014	.0000301	.0002629
r061_radwege_300	0	(omitted)			11100001	
r071_bergbahnen_300	0	(omitted)				
c01_besonnung	.0003788	.0001278	2.96	0.003	.0001277	.0006299
_cons	3.736114	.4370348	8.55	0.000	2.877712	4.594516
					2	

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0068468	.003165	-2.16	0.031	0130633	0006304

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0296396	.00765	-3.87	0.000	0446654	0146138

Modell D4: OLS-Regressionsmodell Bezirk Meilen (ZH), 300m

Linear regression, absorbing indicators

Number of obs = 5297
F(42, 5244) = 367.62
Prob > F = 0.0000
R-squared = 0.8184
Adj R-squared = 0.8166
Root MSE = 0.1939

log_w01_preis	Coef.	Robust Std. Err.	t	P> t	[95% Conf	Interval]
	Coer.	stu. EII.			[95% COIII.	
w052_zimmergroesse	.0122612	.0022047	5.56	0.000	.007939	.0165834
w06_anz_zimmer	.2494813	.0038405	64.96	0.000	.2419524	.2570103
w10_typ4						
1	.1038046	.0115114	9.02	0.000	.0812374	.1263717
2	1342954	.0380155	-3.53	0.000	2088217	0597692
3	0114487	.0454569	-0.25	0.801	1005631	.0776657
w11_baujahr7						
2	0028179	.046862	-0.06	0.952	0946868	.0890511
3	1081437	.0458319	-2.36	0.018	1979934	018294
4	1271233	.0424231	-3.00	0.003	2102903	0439563
5	0021504	.0424722	-0.05	0.960	0854137	.0811128
6	.0723308	.0420753	1.72	0.086	0101544	.154816
7	.1774212	.0426229	4.16	0.000	.0938627	.2609798
w12_angebotsjahr						
2002	1250064	.0323021	-3.87	0.000	188332	0616808
2003	1120926	.0318586	-3.52	0.000	1745487	049636
2004	1191624	.0316393	-3.77	0.000	1811886	0571362
2005	1277787	.0314487	-4.06	0.000	1894312	0661262
2006	1150545	.0315173	-3.65	0.000	1768416	053267
2007	0858623	.0326682	-2.63	0.009	1499056	0218189
e04_miv_erreich_mean	.0086024	.0082133	1.05	0.295	0074992	.024704
0.e06_lage_innenstadt	0	(omitted)				
i01_laerm_strasse	0015915	.0007327	-2.17	0.030	0030279	000155
i01int_laerm_strasse	0007119	.0014277	-0.50	0.618	0035107	.00208
i02_laerm_bahn	0016979	.0004248	-4.00	0.000	0025307	0008653
i02int_laerm_bahn	0225015	.0073643	-3.06	0.002	0369385	008064
i03_strasse_dist	.0000673	.0000918	0.73	0.464	0001128	.0002473
i04_hochleistungsstrasse_dist	.0000179	.0000121	1.47	0.141	-5.90e-06	.0000416
1.i05_hochwasser	0151813	.0484577	-0.31	0.754	1101787	.07981
i072_industrie_300	.0019274	.0011945	1.61	0.107	0004143	.004269
i081_hochspannung_300	0	(omitted)				
i091_antennen_300	0019771	.0007084	-2.79	0.005	0033659	0005884
k031_kult_objekte_300	0193744	.0067116	-2.89	0.004	0325319	0062168
1032_freiflaechen_300	.0000662	.0002095	0.32	0.752	0003445	.0004768
1052_wald_300	.0005461	.0004931	1.11	0.268	0004206	.001512
1061_vielfalt_300	0037877	.0027859	-1.36	0.174	0092492	.001673
107_zerschneidung	4.45e-09	4.05e-09	1.10	0.272	-3.49e-09	1.24e-0
109_aussicht_dist	2.71e-07	.0000163	0.02	0.987	0000317	.000032
l10_see_dist	0000957	.0000121	-7.90	0.000	0001194	0000719
1.1112_seesicht_yes	.0316636	.0065025	4.87	0.000	.0189159	.044411
l12_fluss_dist	0000178	6.84e-06	-2.60	0.009	0000312	-4.36e-0
1131_naturgewaesser_300	0037812	.0012921	-2.93	0.003	0063143	0012483
r012_stadtpaerke_300	0026409	.0021456	-1.23	0.218	0068471	.0015654
r032_anlagearme_gebiete_300	.0062421	.002765	2.26	0.024	.0008215	.0116626
041_zugaengliche_gewaesser_300	0000173	.0000173	-1.00	0.318	0000513	.000016
r051_wanderwege_300	7.47e-06	.0000167	0.45	0.654	0000252	.0000402
r061_radwege_300	0	(omitted)				
r071_bergbahnen_300	0	(omitted)	7 12	0 000	0001000	00010
c01_besonnung	.0001514	.0000212	7.13	0.000	.0001098	.000193
_ cons	6.287484	.1079573	58.24	0.000	6.075843	6.499125

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0023034	.0010389	-2.22	0.027	0043401	0002667

log_w01_pr~s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0241994	.0072347	-3.34	0.001	0383824	0100163