

Ammoniak-Immissionsmessungen in der Schweiz 2000 bis 2021

Messbericht

Im Auftrag des Bundesamtes für Umwelt (BAFU), der OSTLUFT (AI, AR, GL, GR, SG, SH, TG, ZH, FL), der inNET (LU, NW, OW, SZ, UR, ZG), und der Kantone AG, BE, BL/BS, FR, NE, SO

Autorenschaft: Eva Seitler, Mario Meier Juni 2022

Impressum

Auftraggeber

Bundesamt für Umwelt (BAFU)

OSTLUFT (Kantone AI, AR, GL, GR, SG, SH, TG, ZH und Fürstentum Liechtenstein)

inNET (Kantone LU, NW, OW, SZ, UR, ZG),

Kantone AG, BE, BL/BS, FR, NE, SO

Begleitgruppe Ammoniak-Immissionsmessungen

Agroscope	Reckenholz, Zürich	Christoph Ammann
BAFU	Abteilung Luftreinhaltung und Chemikalien	Reto Meier, Rudolf Weber
Empa	Dübendorf, Abteilung Luftfremdstoffe/Umwelttechnik	Christoph Hüglin, Claudia Zellweger
FL	Fürstentum Liechtenstein, Amt für Umwelt	Veronika Wolff
IAP AG	Institut für Angewandte Pflanzenbiologie, Witterswil	Sabine Braun
inNET Monit	oring AG	Christian Ruckstuhl, Hannah Wey
Kt. AG	Departement Bau, Verkehr und Umwelt, Abteilung für Umwelt	Franziska Holzer Küng
Kt. Al	Amt für Umwelt	Sara Bachmann
Kt. AR	Amt für Umwelt	Peter Federer
Kt. BE	Amt für Umwelt und Energie	Stefan Schär
Kt. BL/BS	Lufthygieneamt beider Basel	Enrica Sendelov, René Glanzmann
Kt. FR	Service de l'environnement / Amt für Umwelt	Daniel Clement, Olivier May
Kt. GL	Umweltschutz und Energie	Petra Vögeli
Kt. GR	Amt für Natur und Umwelt	Hanspeter Lötscher
Kt. LU	Dienststelle Umwelt und Energie (uwe), Fachbereich Luft und Strahlen	Roland Müller, Mirjam Utters
Kt. NW	Amt für Umwelt	Angela Zumbühl, Karin Odermatt
Kt. OW	Amt für Landwirtschaft und Umwelt	Marco Dusi
Kt. SG	Amt für Umwelt	Susanne Schlatter, Hanna Herich
Kt. SH	Interkantonales Labor, Schaffhausen, Immissionen	Roman Fendt
Kt. SO	Amt für Umwelt	Rolf Stampfli
Kt. SZ	Amt für Umwelt und Energie	Christian Kiebele
Kt. UR	Amt für Umweltschutz, Abt. Immissionsschutz	Niklas Joos
Kt. ZG	Amt für Umwelt, Abt. Luft und Energie	Raphael Felber
Kt. TG	Amt für Umwelt	Aurelia Nyfeler
Kt. ZH	Amt für Abfall, Wasser, Energie und Luft, Abt. Luft, Klima und Strahlung	Roy Eugster
Meteotest A	G	Beat Rihm
OSTLUFT	Zusammenschluss der Ostschweizer Kantone und des Fürstentums Liechtenstein zur gemeinsamen Überwachung der Luftqualität, Projektgruppe N-Deposition	Hanna Herich (SG),

Jörg Sintermann (ZH)

WSL/LWF Eidg. Forschungsanstalt für Wald, Schnee und Landschaft

(WSL), Birmensdorf

Messungen auf LWF-Flächen Maria Schmitt

Autorenschaft

Eva Seitler und Mario Meier

FUB – Forschungsstelle für Umweltbeobachtung AG

Alte Jonastrasse 83 CH – 8640 Rapperswil

E-Mail: fub@fub-ag.ch, www.fub-ag.ch

Der Dank

geht an alle Personen, welche die Passivsammler gewechselt haben oder auf eine andere Art die Untersuchungen unterstützt haben.

Titelbild

Station MAU 01 Mauren, Kanton Thurgau (Foto: Daniel Stutz, AfU TG)

PDF-Download

https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/studien.html (eine gedruckte Fassung liegt nicht vor)

Disclaimer

Dieser Bericht wurde im Auftrag des BAFU verfasst. Für den Inhalt ist allein der Auftragnehmer verantwortlich.

Inhaltsverzeichnis

1	Zusa	mmenfassung, Résumé, Summary	1
	1.1	Zusammenfassung	1
	1.2	Résumé	4
	1.3	Summary	7
2	Einle	itung	10
	2.1	Ausgangslage	10
	2.2	Zielsetzung	11
	2.3	Projektrahmen	12
3	Meth-	odisches	13
	3.1	Messsystem	13
	3.2	Empfehlung für Messstandorte	
	3.3	Standorteinteilung in Belastungstypen und Immissionstypen	
	3.4	Zeitraum und Umfang der Messungen	
	3.5	Messstandorte im Überblick	14
	3.6	Auswertung	17
	3.6.1	Jahres-, Saison- und Monatsmittelwerte	17
	3.6.2	Boxplots	17
4	Resu	ltate	18
	4.1	Langjährige Entwicklung der Ammoniak-Konzentrationen	
	4.1.1	the state of the s	
	4.1.2 4.1.3		
	4.1.3		
		Vergleich mit Critical Levels	
		Vergleich mit Emissionsentwicklung	
	4.4	Berechnung von Konzentrationskarten	
	4.5	Zeitreihen der einzelnen Standorte	
	4.6	Jahresverläufe der Konzentrationen	
	4.7	Beispiele regionaler Messnetze	
	4.7.1	Kanton Bern	57
	4.7.2		
	4.7.3		
	4.7.4 4.7.5	3	
	4.7.6	Zentralschweizer Kantone und Ostluft	
5	Quali	itätssicherung	
6		atur	
7		Standart I Impletriary and	
	7.1	Standort-Umplatzierungen	
	7.2	Beschreibung der Standorte	
	7.3 7.4	Standorte und Jahreswerte der regionalen Messnetze	
	7.4 7.5	Weitere Standorte	
_			
×	Glass	ear	79

1 Zusammenfassung, Résumé, Summary

1.1 Zusammenfassung

Ammoniak-Immissionsmessungen in der Schweiz von 2000 bis 2021

Ammoniak (NH₃) trägt heutzutage in der Schweiz von allen reaktiven Stickstoffverbindungen anteilsmässig am meisten zur Stickstoffbelastung von empfindlichen Ökosystemen bei. Damit ist Ammoniak wesentlich für die Überdüngung (Eutrophierung) und Versauerung solcher Systeme verantwortlich. Zu diesen empfindlichen Ökosystemen gehören u.a. Wälder, Hoch- und Flachmoore, artenreiche Naturwiesen und Heidelandschaften. Ammoniak trägt aber auch zum sekundären Feinstaub bei. Feinstaub hat grosse negative Auswirkungen auf die menschliche Gesundheit. Der Handlungsbedarf zur Minderung der Ammoniakbelastung in der Schweiz ist gross und deshalb ist die Belastungssituation und deren Entwicklung immissionsseitig zu überwachen.

Dieser Bericht beschreibt die Resultate der Ammoniakmessungen in der Schweiz und des Fürstentums Liechtenstein, welche im Auftrag des Bundesamtes für Umwelt (BAFU), der OSTLUFT, der inNET/in-LUFT und verschiedener Kantone sowie des Fürstentums Liechtenstein durchgeführt werden. Gezeigt werden Messungen zwischen 2000 und 2021 an insgesamt 83 Standorten. An 13 dieser Standorte wird die NH₃-Konzentration seit 2000 durchgehend gemessen, an acht weiteren Standorten seit 2004, an elf zusätzlichen Standorten seit 2008 und an 21 weiteren seit 2013. An 23 der 83 Standorte wurden die Messungen nach 2013 aufgenommen oder zwischendurch ausgesetzt. Die Standorte repräsentieren unterschiedliche Belastungstypen und reichen von intensiver Tierproduktion bis hin zu extensiv bewirtschafteten Alpweiden, sowie verkehrsnahen und innerstädtischen Standorten.

Das Ziel der Messungen ist die Beurteilung der Immissionssituation, um Veränderungen über einen längeren Zeitraum beobachten zu können. Dabei werden auch die Entwicklung der Ammoniak-Konzentrationen im Jahresverlauf sowie die räumliche Variation zwischen unterschiedlichen Standorttypen aufgezeigt.

OSTLUFT hat Anfang 2021 ein koordiniertes, zukunftsorientiertes NH₃-Passivsammler-Messnetz gestartet. Dabei liegt der Schwerpunkt auf Messungen in sensiblen Ökosystemen. An 7 Standorten werden zudem weitere Stickstoffkomponenten zur Bestimmung des Stickstoffeintrages erhoben. Die Ammoniak-Konzentrationen im OSTLUFT-Gebiet sind seit Jahren stabil und liegen im ländlichen Raum deutlich über den Critical Levels. Die Massnahmenpläne einzelner Kantone setzen vor allem auf technische Lösungen, um die Ammoniakemissionen zu senken. Eine Abnahme der Ammoniakkonzentrationen konnte in den Immissionsmessungen bisher nicht beobachtet werden. Das NH₃-Messnetz ab 2021 soll weitere Informationen und Argumente liefern, um die Dringlichkeit weitergehender Emissionsminderungsmassnahmen zu unterstreichen. Die Messstandorte liegen mehrheitlich in empfindlichen Ökosystemen und Naturschutzgebieten, weil gerade diese Lebensräume durch die atmosphärischen Stickstoffeinträge besonders gefährdet sind.

Die Passivsammler wurden von der FUB-Forschungsstelle für Umweltbeobachtung AG bereitgestellt und analysiert. Seit 2018 werden Ferm- anstelle von Radiello-Sammler verwendet. Die Vergleichsmessungen zeigen, dass die beiden Methoden sehr gut übereinstimmen. Die Auswahl und Betreuung der Messstandorte erfolgte durch die Standortbetreiber. Ammoniakmessungen können stark von lokalen Quellen oder Senken am Messstandort beeinflusst sein. Dementsprechend müssen die Standorte so ausgewählt und gepflegt werden, dass die

freie Anströmbarkeit der Passivsammler jederzeit gewährleistet ist und die Messung nicht durch wechselnde Vegetation beeinflusst wird.

Die höchsten Ammoniakkonzentrationen und stärksten jahreszeitlichen Schwankungen wurden in Gebieten mit intensiver Tierproduktion gemessen, wo die Jahresmittel von Ammoniak Werte von 6–12 µg m⁻³ erreichten. In Regionen mit Ackerbau lagen die Jahresmittelwerte bei 2–5 µg m⁻³. Die fünf ländlichen Standorte an Autobahnen oder verkehrsreichen Durchgangsstrassen, die Konzentrationen von 3–5 µg m⁻³ aufwiesen, sind durch den Verkehr und die Landwirtschaft beeinflusst. In Städten wurden Konzentrationen von 2–4 µg m⁻³ mit geringem Jahresgang beobachtet. Im Jahr 2021 lag der Median der Jahresmittelwerte aller 83 Standorte bei 4.2 µg m⁻³. Nachdem die Jahresmittelwerte in den Jahren 2018 bis 2020 die höchsten seit Messbeginn im Jahr 2000 waren, lagen die Jahresmittelwerte 2021 im tieferen bis mittleren Bereich. Die beobachtete Variabilität von Jahr zu Jahr wird stark durch die Witterung beeinflusst, da sich diese sowohl auf die Emissionen wie auch auf die atmosphärischen Umwandlungs- und Depositionsprozesse auswirkt.

Fazit

- An den meisten der 13 Standorte, an denen seit 2000 ununterbrochen gemessen wurde, blieb die Ammoniakkonzentration ähnlich hoch. Eine Reduktion der Ammoniakkonzentrationen kann in diesem Zeitraum nicht beobachtet werden. (Abbildung Z 1).
- Die konstant hohen Ammoniakkonzentrationen zeigen, dass die umgesetzten Massnahmen zur Emissionsreduktion in der Landwirtschaft nicht ausreichen, um die Ammoniakimmissionen flächendeckend zu senken.
- Die Ammoniakbelastung ist am höchsten in Gebieten mit intensiver Tierproduktion $(6-12 \mu g m^{-3})$.
- In Gebieten, in denen mehrheitlich Ackerbau betrieben wird, sind die Ammoniak-Konzentrationen (2–5 μg m⁻³) und die saisonalen Schwankungen meist kleiner als in Gebieten mit Tierproduktion.
- Die höchsten Konzentrationen werden in Perioden mit verbreitet zeitgleicher Gülleausbringung gemessen.
- Im Dezember und Januar sind die Werte im Jahresverlauf in der Regel am niedrigsten.
- Mehrere Messstandorte in der gleichen Geländekammer können unterschiedlich hohe Ammoniak-Konzentrationen aufweisen, zeigen aber meistens parallele Verläufe der Jahreswerte.
- Die Konzentrationen des gasförmigen Ammoniaks tragen wesentlich zum Stickstoffeintrag in empfindliche Ökosysteme bei. Die kritischen Eintragsraten (Critical Loads) werden in der Schweiz bei den empfindlichen Ökosystemen grossräumig überschritten. Auch die in Bezug auf die Direktwirkungen von Ammoniak festgelegten kritischen Konzentrationen (Critical Levels) zum Schutz der Vegetation in naturnahen Ökosystemen werden in der Schweiz vielerorts überschritten.
- Die vorhandenen Messungen erlauben es, ein auf Emissionserhebungen basierendes Ausbreitungsmodell zu kalibrieren, welches eine flächendeckende Darstellung der Ammoniakkonzentrationen erlaubt.

Abb. Z 1 Mittelwert der Ammoniakkonzentrationen Mittelwert (durchgezogene Linie) und Einzelwerte (Kreise) der Ammoniak-Jahresmittelkonzentrationen aller 13 Standorte, an denen seit 2000 durchgehend gemessen wird.

Ausblick

Die Messungen an den meisten Standorten werden 2022 weitergeführt. Zehn Standorte wurden eingestellt, 18 Standorte neu oder nach Unterbrechung gestartet. Davon liegen zehn neue Standorte im Kanton Jura und einer im Kanton Wallis. Diese zwei Kantone beteiligen sich 2022 erstmals am Messnetz. Die Kantone Uri und Basel-Landschaft erweitern ihr Messnetz Anfang bzw. Mitte 2022.

Eine langfristige Messung der Ammoniakkonzentration ist notwendig, um die Wirksamkeit von Massnahmen zur Minderung der Ammoniakemissionen immissionsseitig zu überprüfen.

1.2 Résumé

Mesures des immissions d'ammoniac en Suisse entre 2000 et 2021

De tous les composés azotés réactifs l'ammoniac (NH₃) est le polluant le plus important pour les écosystèmes sensibles et un des principaux responsables de leur surfertilisation (eutrophisation) et acidification. Parmi ses écosystèmes sensibles figurent entre autres les forêts, les hauts-marais et bas-marais, les prairies naturelles riches en espèces ou les landes. L'ammoniac contribue aux poussières fines secondaires. Les poussières fines ont des effets négatifs sur la santé humaine. Il y a fort à faire pour réduire la pollution par l'ammoniac en Suisse, d'où l'importance de suivre l'évolution de sa charge polluante, aussi bien sous l'angle des émissions que des immissions.

Ce rapport décrit les résultats des mesures d'ammoniac en Suisse et la Principauté du Liechtenstein qui sont réalisées sur mandat de l'Office fédéral de l'environnement (OFEV), OSTLUFT, inNET/in-Luft, et plusieurs autres cantons, ainsi que la Principauté du Liechtenstein. Présenté sont les mesures effectuées entre 2000 et 2021 sur 83 sites. Treize de ces stations sont entrées en fonction en 2000, huit ont été ajoutées en 2004, onze en 2008 et 21 en 2013. À 23 des 83 stations, les mesures ont débuté après 2013 ou ont été temporairement interrompues. Elles sont représentatives de différents types d'exposition : de la région d'élevage intensif jusqu'au pâturage alpin extensif, en passant par des sites urbains ou proches d'axes routiers.

Ces mesures ont pour objectif principal de fournir une vue d'ensemble des immissions d'ammoniac sur différents sites et de mettre en évidence l'évolution des concentrations sur une longue période, ainsi que les variations saisonnières et entre différents types de sites.

OSTLUFT a démarré au début 2021, des mesures par capteurs passifs NH₃ coordonnées et orientées vers l'avenir. L'accent est mis sur les mesures dans les écosystèmes sensibles. De plus, d'autres composants azotés sont collectés à 7 sites pour déterminer les apports d'azote. Les concentrations d'ammoniac dans la région d'OSTLUFT sont stables depuis des années et sont bien supérieures aux niveaux critiques dans les zones rurales. Les plans de mesures des différents cantons s'appuient principalement sur des solutions techniques pour réduire les émissions d'ammoniac. Une diminution des concentrations d'ammoniac n'a pas pu être observée dans les mesures d'immission jusqu'à présent. Le réseau de surveillance de l'ammoniac à partir de 2021 devrait fournir des informations et des arguments supplémentaires pour souligner la nécessité de nouvelles mesures de réduction des émissions. La majorité des sites de surveillance est située dans des écosystèmes sensibles et des réserves naturelles, car ces habitats sont particulièrement menacés par les apports d'azote atmosphérique.

Les capteurs passifs ont été fournis par l'entreprise FUB - Forschungsstelle für Umweltbeo-bachtung AG et les analyses effectuées par son laboratoire. A partir de 2018, la méthode Radiello a été remplacée par la méthode Ferm. Les mesures comparatives montrent que les deux méthodes s'accordent très bien. Le choix des emplacements et leur suivi ont été assurés par les exploitants des réseaux concernés. Les concentrations d'ammoniac sont parfois fortement influencées par les sources et les puits situés au voisinage immédiat des stations. Celles-ci doivent donc être choisies et entretenues de manière à assurer une ventilation sans entraves dans toutes les directions et à éviter toute influence de la végétation environnante.

Les concentrations d'ammoniac les plus élevées et les variations les plus fortes ont été enregistrées dans les régions pratiquant l'élevage intensif d'animaux. Les concentrations annuelles d'ammoniac y atteignaient entre 6 et 12 µg m⁻³. Dans les régions de grandes cultures, elles se situaient entre 2 et 5 µg m⁻³. Sur les cinq stations rurales en bordure d'autoroute ou

des routes fréquentées, les concentrations variaient entre 3 et 5 µg m⁻³, elles y subissent l'influence conjuguée du trafic et de l'agriculture. Dans les villes, les concentrations fluctuent entre 2 et 4 µg m⁻³ avec de faibles variations saisonnières. La médiane des concentrations annuelles pour les 83 stations était de 4.2 µg m⁻³ en 2021. Alors que les valeurs moyennes annuelles de 2018 à 2020 ont été les plus élevées depuis le début des mesures en 2002, les valeurs moyennes annuelles pour 2021 se situent dans la fourchette inférieure à la moyenne. Les variations interannuelles observées sont nettement influencées par les conditions météorologiques qui impactent les émissions, ainsi que les processus de transformation dans l'atmosphère et de dépôt.

Conclusions

- Sur la majorité des 13 stations ayant fait l'objet d'un suivi ininterrompu depuis 2000, les concentrations d'ammoniac sont restées à peu près constantes. Aucune diminution n'a été constatée pendant cette période. (Fig. R 1)
- Les concentrations d'ammoniac constamment élevées montrent que les mesures mises en œuvre pour réduire les émissions agricoles de l'ammoniac ne sont pas suffisantes pour réduire les immissions d'ammoniac de manière générale.
- Les stations situées en zone de production animale intensive se caractérisent par des concentrations élevées (6–12 μg m⁻³).
- Là où les grandes cultures dominent, les concentrations sont moins élevées (2–5 µg m⁻³) et présentent moins de variations saisonnières que dans les régions d'élevage.
- Les concentrations les plus élevées sont enregistrées durant les périodes d'épandages de lisier simultanés et à large échelle.
- Les concentrations d'ammoniac sont les plus faibles en décembre et en janvier.
- Plusieurs stations de mesure dans le même compartiment de terrain peuvent montrer des concentrations de différents niveaux, mais souvent avec une évolution parallèle des valeurs annuelles.
- L'ammoniac gazeux contribue substantiellement aux dépôts azotés dans les écosystèmes sensibles. En Suisse, les charges critiques d'azote nutritif sont dépassées sur de vastes étendues. Quant aux niveaux critiques, fixés en fonction des effets directs de l'ammoniac sur la végétation, elles sont également dépassées en maints endroits du pays.
- Les valeurs mesurées permettent de calibrer un modèle de dispersion sur la base des inventaires d'émissions qui permet la présentation des concentrations d'ammoniac sur l'ensemble de la Suisse.

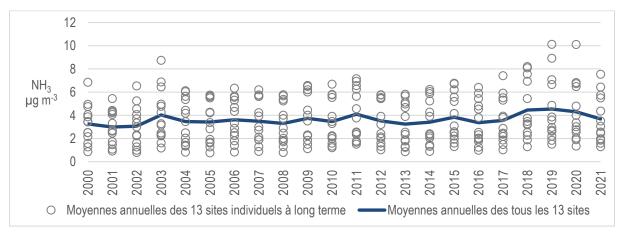


Fig. R 1 Concentrations d'ammoniac en moyenne annuelle Moyennes annuelles (ligne continue) et valeurs individuelles (cercles) des 13 stations qui mesurent l'ammoniac depuis 2000.

Perspectives

Les mesures se poursuivent en 2022 dans la plupart des stations. Dix sites ont été abandonnés. Dix-huit sites ont été initiés ou redémarrés après une interruption. Dix de ces nouveaux sites se trouvent dans le canton du Jura et un dans le canton du Valais. Ces deux cantons participeront au réseau de mesure pour la première fois en 2022. Les cantons d'Uri et de Bâle-Campagne étendront leur réseau de mesure au début respectivement mi-2022.

L'observation permanente des concentrations d'ammoniac en Suisse est nécessaire pour vérifier si les mesures prises pour diminuer les émissions se reflètent au niveau des immissions.

1.3 Summary

Monitoring ambient ammonia concentrations in Switzerland between 2000 and 2021

Of all reactive nitrogen compounds ammonia (NH₃) is the major contributor to nitrogen pollution of sensitive ecosystems, resulting in over-fertilisation (eutrophication) and acidification of such systems. These sensitive ecosystems include, among others, forests, raised bogs, fens, species-rich meadows, and heathlands. Ammonia also contributes to secondary particulate matter. Particulate matter has severe negative impacts on human health. There is a strong need for action to reduce ammonia emissions in Switzerland and monitoring of ambient ammonia concentrations is essential for evaluating their development.

This report describes the results of the ambient ammonia measurements in Switzerland and Principality of Liechtenstein conducted on behalf of the Federal Office for the Environment (FOEN), OSTLUFT (air quality monitoring of cantons in eastern Switzerland and Liechtenstein), the inNET/in-LUFT (air quality monitoring of cantons in central Switzerland), several cantons and the Principality of Liechtenstein. Shown are measurements between 2000 and 2021 at 83 sites. A total of 13 sites have been operational since 2000, 8 were added in 2004, 11 in 2008 and 21 in 2013. At the remaining 23 locations, monitoring started after 2013 or was temporarily interrupted. The sites represent various exposure situations: from intensive animal production to extensive alpine pastures, as well as near roads and in urban areas.

The main goal of these measurements is to record ambient ammonia concentrations at various sites in Switzerland and to monitor long-term changes. They also aim at monitoring the development of ambient concentrations of ammonia throughout the year, as well as the differences between various types of sites.

At the beginning of 2021, OSTLUFT started a coordinated, future-oriented passive sampler measuring network for NH₃. The focus is on measurements in sensitive ecosystems. In addition, further nitrogen components are collected at 7 locations to determine the deposition of nitrogen. Ammonia concentrations in the OSTLUFT area have been stable for years and are well above critical levels in rural areas. The action plans of individual cantons rely primarily on technical solutions to reduce ammonia emissions. A decrease in the ammonia concentrations could not be observed in the immission measurements so far. The ammonia monitoring network from 2021 should provide further information and arguments to underline the necessity of further mitigation measures. The majority of the monitoring sites are located at sensitive ecosystems and nature reserves because these habitats are particularly threatened by atmospheric nitrogen inputs.

The passive samplers were provided and analysed by FUB – Forschungsstelle für Umweltbeobachtung AG. Since 2018, Ferm instead of Radiello samplers are used. Comparative measurements show that the two methods are in very good agreement. The selection of the measurement locations and the operation of each site were ensured by the various network operators. Local sources or sinks have a strong influence on the ambient ammonia concentrations. Thus, the sites have to be selected and maintained so as to ensure a freely circulating airflow at all times and to avoid the influence of changes in the surrounding vegetation on the measurements.

The highest ammonia concentrations and greatest seasonal fluctuations were found in regions with intensive livestock farming, where annual concentrations reached 6 to 12 μ g m⁻³. Values in cultivated crop areas ranged from 2 to 5 μ g m⁻³. The five rural sites near motorways or busy roads with annual averages of 3 to 5 μ g m⁻³ are influenced by both traffic and agriculture. At urban sites concentrations of 2 to 4 μ g m⁻³ with small annual cycle were measured.

In 2021, the median of all 83 sites was $4.2 \,\mu g \, m^{-3}$. After the annual mean values in the years 2018 to 2020 were the highest since measurements began in 2000, the annual mean values for 2021 were in the lower to medium range. The year-to-year variability is strongly influenced by meteorological conditions as they affect emissions and at the same time atmospheric transformation and deposition processes.

Conclusions

- Very little change was observed at the 13 locations where ammonia concentrations were monitored since the year 2000. No reduction in ammonia concentrations has been observed during this period. (Fig. S 1)
- The constantly high ammonia concentrations show that the measures implemented to reduce agricultural ammonia emissions are not sufficient to effectively reduce ammonia levels throughout Switzerland.
- Values were generally highest in areas with intensive animal production (6–10 µg m⁻³).
- In areas with predominant crop farming, both concentrations (2–5 µg m⁻³) and fluctuations were lower compared to areas with livestock farming.
- The highest ammonia concentrations are measured during periods with widespread simultaneous slurry application.
- Ammonia concentrations were at most sites lowest during December and January.
- Sites located in similar terrains may show different levels of ammonia concentrations, yet the development of the annual mean values is usually very similar.
- The concentrations of gaseous ammonia contribute substantially to the deposition of nitrogen into sensitive ecosystems. The critical loads for nutrient nitrogen are exceeded in most parts of Switzerland. The ammonia concentrations also exceed the critical levels set to protect vegetation from direct exposure in many regions of Switzerland.
- The measured ammonia concentrations facilitate the calibration of a dispersion model based on emission inventories, providing a nationwide presentation of the ammonia concentrations.

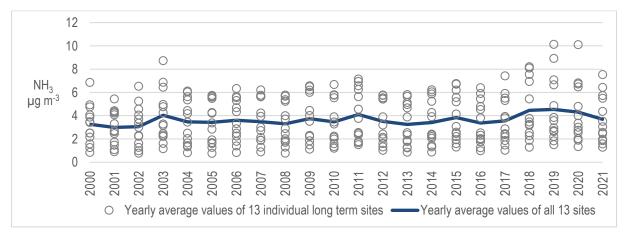


Fig. S 1 Annual mean of ammonia concentrations
Average (solid line) and single values (circles) of the annual mean ammonia concentrations from all 13 sites with continuous measurements since 2000.

Outlook

In 2022 measurements will be continued at most of the sites. Ten locations will not be continued, 18 locations will be started or restarted after a break. Of these, 10 new locations are in the canton of Jura and one in the canton of Valais. These two cantons participate in the measuring network for the first time in 2022. The cantons of Uri and Basel-Landschaft are expanding their measuring network at the beginning and mid-2022, respectively.

Monitoring the long-term development of ambient ammonia concentrations is essential to document the efficiency of measures aimed at reducing ammonia emissions.

2 Einleitung

2.1 Ausgangslage

Ammoniakemissionen führen zu bedeutenden Stickstoffeinträgen in empfindliche Ökosysteme wie Wälder, Moore und oligotrophe Stillgewässer, was langfristig zur Bodenversauerung, Überdüngung und einer Verschiebung der Artenzusammensetzung führt. Emittiertes Ammoniak wird teilweise in der näheren Umgebung der Emissionsquellen deponiert, es bildet jedoch auch mit Säuren – vor allem mit Salpeter- und Schwefelsäure aus Verbrennungsprozessen – Aerosole, die über weite Strecken transportiert werden können (EKL 2013). In Bezug auf die Masse ist Ammonium das weitaus wichtigste beteiligte Kation im Feinstaub. An NABEL-Standorten wurden im Jahresdurchschnitt 4 bis 9 % Ammonium-Anteil in PM10 gemessen (Empa 2021). Während winterlicher Inversionen konnte gezeigt werden, dass etwa die Hälfte des PM10 (Empa 2006) und bis zu zwei Drittel des PM1 aus Ammoniumnitrat und -sulfat bestehen (PSI/uwe 2007).

In der Schweiz betrugen die Ammoniakemissionen im Jahr 2020 rund 53'000 Tonnen NH₃ (FOEN 2022). Die Landwirtschaft verursachte davon 94 % und ist damit die grösste Quelle. Weitere Ammoniak-Emittenten sind der "Verkehr", "Industrie und Gewerbe" und "Haushalte" mit je 2 % Anteil (BAFU 2022). Die NH₃-Emissionen aus der Landwirtschaft in der Schweiz sanken zwischen 1990 und 2000 – vor allem wegen der Reduzierung der Tierbestände – von rund 65'000 auf 54'000 Tonnen Ammoniak pro Jahr, und nahmen seit 2000 auf 50'000 Tonnen NH₃ pro Jahr ab (FOEN 2022). Somit liegen die Ammoniakemissionen aus der Landwirtschaft nach wie vor deutlich über der Zielsetzung von 25'000 Tonnen Ammoniak-Stickstoff pro Jahr, was rund 30'000 Tonnen NH₃ entspricht (BAFU 2013, BAFU & BLW 2016).

Landwirtschaftsland ist nach Gülleausbringung eine starke Ammoniakquelle. In Zeiträumen, in denen keine Gülle ausgebracht wird, sind landwirtschaftliche Flächen, abhängig von der Art und dem Zustand der Vegetation, jedoch eine mehr oder weniger starke Senke für Ammoniak. Im Gegensatz dazu bietet überbautes Gebiet wenig Senken.

Sowohl die direkte Belastung der Vegetation mit gasförmigem Ammoniak als auch die durch Ammoniak und Ammoniumsalze zusammen mit oxidierten Stickstoffverbindungen (NO_x) verursachten Stickstoffeinträge, haben schädliche Auswirkungen auf empfindliche Ökosysteme. Um den Langzeitwirkungen erhöhter Ammoniak-Konzentrationen Rechnung zu tragen (UNECE 2007, Cape et al. 2009, Mills et al. 2010), wurden im Rahmen des UNECE Workshops on Atmospheric Ammonia vom Dezember 2006 die Critical Levels für Ammoniak folgendermassen festgelegt¹:

- NH₃-Konzentration von 1 µg m⁻³ für empfindliche Moose und Flechten und Ökosysteme, wo diese niederen Pflanzen für das Ökosystem von Bedeutung sind
- NH₃-Konzentration von 3 μg m⁻³ für höhere Pflanzen. Aufgrund der Schätz-Unsicherheit wird jedoch ein Bereich von 2–4 μg m⁻³ angegeben.

10

¹ Gemäss Cape et al. (2009) gibt es für die NH₃-Messungen zur Ermittlung der Critical Levels keine standardisierte Höhe über der Vegetation. Es wird auf die Bedeutung einer genügenden Höhe über der Vegetation hingewiesen (üblicherweise 1.5 m bei kurzer Vegetation), um Unsicherheiten in Bezug auf den Einfluss der Vegetation und den damit im Zusammenhang stehenden vertikalen Gradienten möglichst auszuschalten.

Der Gesamteintrag von Stickstoff setzt sich aus der Nass- und Trockendeposition von oxidierten und reduzierten stickstoffhaltigen Verbindungen zusammen. Dieser Stickstoff-Eintrag liegt weiträumig über den im Rahmen der UNECE Konvention über weiträumige grenz- überschreitende Luftverunreinigung (Genfer Luftreinhaltekonvention, CLRTAP) festgelegten Critical Loads für Stickstoffeinträge in empfindliche Ökosysteme (CLRTAP 2017, Kapitel V; Bobbink & Hettelingh 2011; EKL 2005; EKL 2014, Thimonier et al. 2005; Waldner et al., 2007). In der Schweiz werden die Critical Loads für Stickstoff auf fast 90 % der Waldflächen, einem Drittel aller Trockenwiesen und -weiden, fast allen Hochmooren und drei Viertel der Flachmoore überschritten (BAFU 2018). Die grossflächige und teilweise massive Überdüngung mit Stickstoff führt u.a. zu einer Reduktion der Artenvielfalt (BAFU 2011, Roth et al. 2013, Roth et al. 2015). Der Anteil des hauptsächlich von der Landwirtschaft stammenden Ammoniaks und Ammoniums macht dabei je nach Standort 50-90 % des gesamten Stickstoffeintrags aus (Seitler et al. 2021).

Für Ammoniak gibt es im Anhang 7 der Luftreinhalteverordnung (LRV) keinen Immissionsgrenzwert. Critical Loads und Critical Levels sind jedoch von der Bedeutung her mit Immissionsgrenzwerten der LRV gleichwertig (BAFU 2020)². Bei deren Überschreitung müssen die Immissionen demnach als übermässig bezeichnet werden. Damit sind die Behörden gemäss LRV verbindlich aufgefordert, Massnahmen zur Minderung der massgeblich durch Ammoniak verursachten übermässigen Stickstofffrachten zu treffen. Zur Beurteilung der Übermässigkeit von Stickstoffeinträgen und Ammoniak-Immissionen anhand von Critical Loads und Levels steht den kantonalen Fachstellen eine Vollzugshilfe zur Verfügung (BAFU 2020).

Seit 2022 ist die Abdeckung von Güllelagern gesetzlich vorgeschrieben (KOLAS und KVU 2022). Der Einsatz von emissionsmindernden Techniken zur Gülleausbringung ist seit 2022 in den Kantonen Thurgau und Luzern sowie ab 2024 schweizweit obligatorisch (mit Ausnahmen, Agridea 2022). Im Fürstentum Liechtenstein ist der Einsatz von emissionsmindernden Techniken zur Gülleausbringung ab 2023 Pflicht. Zudem sind folgende Massnahmen zur Minderung der Ammoniakverluste in der Landwirtschaft Stand der Technik und daher gemäss Art. 4 LRV grundsätzlich anzuwenden: Optimierung der Stallhaltungssysteme und Tierhaltungsformen (Stall- und Laufhofreinigung, Abluftreinigung etc.), Stickstoff optimierte Fütterung und bedarfsgerechte Düngung (BAFU & BLW 2021A & B, UNECE 2014, Cercl'Air 2002, KOLAS 2006, KVU 2006, Agridea & Landwirtschaftsamt Thurgau 2006, Kanton Luzern uwe 2007, Kanton Appenzell Ausserrhoden 2008).

2.2 Zielsetzung

Das zentrale Ziel der Messungen ist die gesamtschweizerische, langfristige Erfassung und Darstellung der Ammoniak-Immissionssituation. Dabei soll die Entwicklung der Ammoniak-Konzentrationen im Jahresverlauf, die räumliche Variation sowie die unterschiedlichen Belastungen an verschiedenen Standorttypen aufgezeigt werden. Die Messungen dienen auch der Kalibrierung und Validierung der modellierten Ammoniakkonzentrationen.

Ein wesentliches Ziel des langfristig angelegten Ammoniak-Monitorings an verschiedenen Standorten in der Schweiz ist die Erfolgskontrolle von Massnahmen zur Reduktion von Am-

-

² Gemäss EKL (2014) soll Ammoniak in erster Linie aufgrund seines hohen Anteils an den Stickstoffeinträgen beurteilt werden, da die Critical Loads die prioritär zu berücksichtigenden Belastungsgrenzen sind.

moniakemissionen in der Landwirtschaft (Ressourcenprojekte, Massnahmenpläne, Umsetzung der Vollzugshilfen Landwirtschaft des BAFU und des BLW). Die Reduktion der Ammoniakemissionen ist nötig zum Schutz der Ökosysteme vor Eutrophierung und Versauerung sowie zur Minderung der Feinstaubbelastung (BAFU 2020, Cercl'Air 2002, EKL 2005, KOLAS 2006, BBI 2009, EKL 2013, EKL 2014).

2.3 Projektrahmen

In diesem Bericht werden die Resultate der Ammoniakmessungen in der Aussenluft mit Passivsammlern im Zeitraum von 2000 bis 2021 präsentiert. Im Berichtjahr 2021 umfasste das Messnetz total 142 Standorte in der Schweiz und dem Fürstentum Liechtenstein. Die Zeitreihen von 83 Standorten, an denen 2021 seit mindestens zwei Jahren gemessen wurde, werden in Kapitel 4.5 als Boxplots dargestellt und im Anhang (Kap. 7.2 & 7.3) tabellarisch aufgeführt. Liegen mehrere Standorte nahe beisammen, wurde jeweils ein repräsentativer Standort ausgewählt. In Kapitel 4.7 und Anhang 7.4 werden räumlich verdichteten Messnetze dargestellt und beschrieben. 20 Standorte wurden 2021 erstmals betrieben; sie sind im Anhang 7.5 und 7.6 aufgeführt. Ebenfalls nur in Anhang 7.5 und 7.6 erscheinen 26 Standorte aus weiteren verdichteten Messnetzen, da diese in eigenen Berichten der inNET und OSTLUFT beschrieben werden.

Die Messungen erfolgen im Auftrag des BAFU, der OSTLUFT, des Fürstentums Liechtenstein (seit 2008) sowie der Kantone Luzern und Freiburg (seit 2006), Zug (seit 2007), Bern (seit April 2008), Thurgau (seit August 2008), Graubünden (seit 2009), Aargau, Appenzell Innerrhoden, Ob- und Nidwalden, Schwyz, St. Gallen und Uri (seit 2010), Solothurn (seit 2011), Neuenburg (seit 2012), Zürich, Schaffhausen und Basel-Land (seit Frühling 2012), Glarus (seit 2015) Appenzell Ausserrhoden (seit 2019) und werden durch die FUB – Forschungsstelle für Umweltbeobachtung AG an unterschiedlich belasteten Standorten in der Schweiz durchgeführt. Einige Daten stammen aus regionalen Projekten, wie z.B. der Umsetzung des Ressourcenprogramms des BLW durch die Kantone.³

Die detaillierte Beschreibung aller 2021 betriebenen Standorte, die gemessenen NH_3 -Konzentrationen sowie die modellierten Emissionen und Konzentrationen werden in den Standortdatenblättern 2021 dargestellt (Seitler et al. 2022).

³ Art. 77 LwG, https://www.blw.admin.ch/blw/de/home/instrumente/ressourcen--und-gewaesserschutzprogramm/ressourcenprogramm.html, Stand 16.04.2020

3 Methodisches

3.1 Messsystem

Die Messungen wurden mit Passivsammlern nach VDI 3869 Blatt 4 durchgeführt. Bis 2003 wurden Zürcher-Passivsammler eingesetzt, anfangs 2004 wurde auf Radiello-Passivsammler, und ab Anfang 2018 auf die Ferm-Passivsammler umgestellt. Die Vergleichbarkeit der Ergebnisse der drei Messmethoden wurde durch Parallelmessungen an verschiedenen Standorten untersucht. Die Zürcher Passivsammler wurden auf die Radiello-Passivsammler kalibriert. Die Übereinstimmung zwischen Radiello und Ferm ist sehr gut (Abb. 52).

Die Richtigkeit der Passivsammlermessungen wurde mit einer unabhängigen aktiven Messmethode (Denuder, VDI 3869 Blatt 3) sowie durch weitere Vergleichsmessungen und regelmässige Qualitätskontrollen laufend überprüft. An wechselnden NABEL-Stationen werden die Passivsammler seit 2008 mit NABEL-Minidenudern (Abb. 51) und seit 2011 mit Spektrometern zur kontinuierlichen Messung von Ammoniak (Cavity Ring Down Spectroscopy) kontinuierlich verglichen.

Sammel- und Messmethoden, Vergleichsresultate und Aspekte zur Qualitätssicherung sind in einem separaten Methodenbericht (Seitler & Thöni 2009) sowie in Dämmgen et al. (2010) beschrieben.

Vergleichsmessungen haben gezeigt, dass die Expositionsdauer der Radiello- und Ferm-Sammler (1, 2, 4 oder 6 Wochen) keinen Einfluss auf die gemessenen Werte hat (Seitler 2015, Seitler 2022).

3.2 Empfehlung für Messstandorte

Die Standorte für Ammoniakmessungen sollen so gewählt werden, dass so weit wie möglich die regionale Immissionsbelastung erfasst werden kann. Dazu sollen folgende Kriterien beachtet werden:

- Platzierung auf einem offenen Feld mit freier Anströmbarkeit.
- Die Sammler sollen an einem Mast oder Kandelaber befestigt werden. In keinem Fall in einer Baumkrone oder in einer Hecke!
- WMO/GAW und das EMEP empfehlen für Schadstoffe, die mit der Vegetation reagieren können (wie z. B. Ozon) eine Expositionshöhe von 3 bis 5 m über Boden. (WMO 2017, EMEP)
- Von Bäumen, Büschen, Hecken oder hochwachsenden Kulturen (z.B. Mais) soll genügend Abstand (horizontal ein Mehrfaches der Vegetationshöhe) gewählt werden.
- Die Passivsammler müssen jederzeit und langfristig frei anströmbar bleiben, d.h. nachwachsende Vegetation (Gras, Büsche) muss regelmässig zurückgeschnitten werden.
- Der Standort soll regelmässig (mindestens vierteljährlich) fotografiert werden, von Vorteil werden die Bilder in vier Himmelsrichtungen jeweils mit der Messstelle im Vordergrund aufgenommen.
- Jegliche Veränderungen in der Umgebung, wie z.B. neue Bauten, Strassen sowie getroffene Massnahmen zur Emissionsminderung von NH₃ sollen ebenfalls rapportiert und dokumentiert werden.

Weichen die Messstandorte von diesen Empfehlungen ab, wird dies in den Standortdatenblättern begründet. Beispielsweise wurden niedrigere Expositionshöhen von Standorten mit vorangegangenen Messungen nicht den Empfehlungen angepasst, um die Vergleichbarkeit der Daten beizubehalten. Höhere Expositionshöhen werden bewusst gewählt, um z.B. die Immissionen eines grossräumigeren Bereiches oder die Situation über den Baumkronen zu erfassen.

Ergänzend können für Fallstudien, wie z.B. die Überprüfung der Wirksamkeit von kantonalen Massnahmen, Standorte in unmittelbarer Nähe von Emissionsquellen gewählt werden.

3.3 Standorteinteilung in Belastungstypen und Immissionstypen

Angelehnt an die Belastungstypen der NABEL-Stationen werden die Standorte anhand ihrer geografischen Lage und der unterschiedlichen Emittenten in deren Umgebung in acht lufthygienische Belastungstypen eingeteilt:

Alp, oberhalb 1800 m ü. M. Ländlich, verkehrsbelastet

Ländlich, oberhalb 900 m ü. M. Vorstädtisch Ländlich, unterhalb 900 m ü. M. Städtisch

Ländlich, Autobahn Städtisch, verkehrsbelastet

Anhand der Höhe der Ammoniak-Jahresmittelwerte (2017 bis 2021) wurden die Standorte zusätzlich in Immissionstypen eingeteilt. Diese Einteilung ist an die Critical Levels für Ammoniak gemäss UNECE 2007 angelehnt:

 $< 1 \mu g m^{-3}$ 1–3 $\mu g m^{-3}$ 3–5 $\mu g m^{-3}$ 5–8 $\mu g m^{-3}$ > 8 $\mu g m^{-3}$

3.4 Zeitraum und Umfang der Messungen

Seit 2000 werden in der Schweiz NH₃-Konzentrationen in der Luft erfasst. An 13 Standorten wird seit 2000, an 21 Standorten seit 2004 und an 32 Standorten seit 2008 durchgehend gemessen, seit 2013 sind es 60 Standorte mit ununterbrochenen Messreihen. In einigen Kantonen wurde Ammoniak im Zusammenhang mit der Erfolgskontrolle der Ressourcenprojekte gemäss Artikel 77a und 77b des Landwirtschaftsgesetzes (nachhaltige Nutzung natürlicher Ressourcen) gemessen. Eine Auswahl dieser Standorte – z.B. jeweils ein Standort aus einem regional verdichteten Messnetz - wurde in diese Auswertung miteinbezogen. Anfang 2019 wurden (vor allem im OSTLUFT-Gebiet) neue Standorte in empfindlichen Ökosystemen eingerichtet. Bei mehreren Standorten in einem kleinräumigen Gebiet wurde für die Auswertung in diesem Bericht jeweils ein möglichst abseits von starken Quellen liegender Standort ausgewählt. Insgesamt werden 83 Standorte im Hauptteil dieses Berichtes berücksichtigt, die alle mindestens zwei Jahre betrieben wurden. Die Anzahl vollständiger Messjahre jedes Standortes ist in Tabelle 1 aufgeführt. In Kapitel 7.3, Tabelle 14 ist detailliert ersichtlich, welche Standorte wann beprobt wurden. Weitere Standorte aus verdichteten Messnetzen oder Standorte, die erst ein Jahr betrieben wurden, sind im Anhang (Kap. 7.4 und 7.5) aufgelistet.

3.5 Messstandorte im Überblick

In Abbildung 1 werden die Messstandorte dargestellt und in Tabelle 1 kurz beschrieben (ausführlicher in Kapitel 7.2, Tabelle 13 sowie in den Standortdatenblättern: Seitler et al. 2022).

Tab. 1

Standorte der Messungen 2021 Einteilung der Standorte nach Belastungs- und Immissionstypen. Das mehrjährige Jahresmittel ist (wo vorhanden) aus den Jahren 2017–2021 berechnet worden. Die schwarzen Linien trennen Belastungstypen, die grauen Linien Immissions-typen innerhalb eines Belastungstyps.

arte b.1		Standort Name	Kt./ Land		Belastungstyp	Immis- sionstyp µg m ⁻³	Mehrjähriges Jahresmittel*		Messreihe	(Kap. 4. Abb. N
_	CHA	Chaumont	NE		Ländlich,	1 – 3	1.3	22	2000 - 21	7.00.11
	RAN	Merishausen Hagenturm	SH		oberhalb 900 m ü. M.		1.4	3	2019 - 21	12
	RIG	Rigi-Seebodenalp	SZ	1031			1.7	22	2000 - 21	
	ZB 01	Zugerberg 1	ZG	990			2.1	22	2000 - 21	
	FRÜE	Früebüel	ZG	980			2.2	15	2007 - 21	
6	BA	Bachtel	ZH	930			2.6	22	2000 - 21	13
7	ZIGE	Zigerhütti	ZG	989			2.7	15	2007 - 21	
_	AIO	Oberegg	Al	1071	Ländlich, > 900 m ü. M.	3 – 5	3.1	12	2010 - 21	
-	SARE	Sagno Reservoir	TI		Ländlich,	1-3	1.7	8	2014 - 21	
	RAF	Hüntwangen	ZH		unterhalb 900 m ü. M.	1-3	2.1	9	2014 - 21	
	AEG	Knonau	ZH	449	unternalo 300 m u. w.		2.1	3	2013 - 21	
	WBM	Mollis	GL	831			2.3	4	2018 - 21	
	SCH	Schänis	SG	630			2.3	21	2000, 02 - 21	
	GMO	Gänsemoos	BE	797			2.9	3	2019 - 21	
_		Hudelmoos 3	TG	_	Ländlich,	3 – 5		21		
	HUD 3					3-3	3.0		2001 - 21	
	VTG	Gwatt	BE		unterhalb 900 m ü. M.		3.0	13	2009 - 21	
	BRIS	Brislach	BL	450			3.2	9	2013 - 21	
	PAY	Payerne	VD	489			3.2	22	2000 - 21	
	IEB	Bärau	BE	725			3.2	13	2009 - 21	
	OBI	Ottenbach	ZH	386			3.3	3	2019 - 21	
	RO	Root Michaelskreuz	LU	791			3.6	21	2001 - 21	
	WTG1	Gimmiz Dach	BE	444			3.7	13	2009 - 21	
	HEMO	Hessigkofen Moosgasse	SO	605			3.8	11	2011 - 21	
	DEB	Näfels	GL	436			4.1	7	2015 - 21	
	ILN 01	Illnau-Effretikon 1	ZH	540			4.1	7	2015 - 21	
	BENN	Bennwil	BL	540			4.2	9	2013 - 21	
	MI01	Misery	FR	607			4.2	14	2008 - 21	
	N14	Domat/Ems	GR	570			4.2	13	2009 - 21	
	BIR1	Birrfeld 1	AG	393			4.3	11	2011 - 21	
	VU01	Vuisternens-en-Ogoz	FR	850			4.4	16	2006 - 21	
	FRAU	Kloster Frauental	ZG	395			4.4	15	2007 - 21	
	BHU	Berg	SG	591			4.5	2	2020 - 21	
	HBL	Lotzwil	BE	509			4.6	13	2009 - 21	
	SZ-01	Bauschli	SZ	490			4.6	12	2010 - 21	
	UES	Untereggen	SG	553			4.7	2	2018, 21	
	TAE	Tänikon	TG	539			4.7	22	2000 - 21	
	INWI	Inwil	ZG	437			4.7	15	2007 - 21	
38	NEHU	Neuendorf Hurtmatten	SO	435			4.9	11	2011 - 21	
	SSH	Stein	AR		Ländlich,	5 – 8	5.0	3	2019 - 21	
	KBR	Uznach	SG		unterhalb 900 m ü. M.		5.1	2	2020 - 21	
	AIG	Gonten	AI	898			5.1	12	2010 - 21	
	RRI	Rugell	FL	431			5.2	3	2019 - 21	
	KIT	Kirchberg	SG	740			5.2	3	2019 - 21	
	BSZ	Ziegelbrücke	GL	424			5.2	7	2015 - 21	
	NMS	Malans	GR	529			5.2	13	2009 - 21	
	MAEM	Matzendorf Emet	SO	594			5.2	11	2011 - 21	
	BRM	Beromünster NABEL	LU	797			5.4	5	2017 - 21	
	NZI 01	Zizers 1	GR	527			5.4	13	2009 - 21	
	GEF	Gelfingen	LU	572			5.6	6	2016 - 21	
	SAM2	Suhretal 2	AG	493			5.8	12	2010 - 21	
	SHkl	Neunkirch Erspel	SH	420			6.0	9	2013 - 21	
		Wauwil 16	LU	499			6.1	16	2006 - 21	
	NGS	Grüsch Schwellenen	GR	607			6.1	11	2011 - 21	
	MAU 01	Mauren 1	TG	439			6.2	22	2000 - 21	
	ZG-02	Niederwil 2	ZG	420			6.5	12	2010 - 21	
	NEU 02	Neudorf 2	LU	735			6.6	16	2006 - 21	
	NE 03	Le Landeron	NE	431			6.7	10	2012 - 21	
	MAG	Magadino-Cadenazzo	TI	204			6.7	22	2000 - 21	
	EST	Eschen	FL	441			6.8	13	2008 - 21	
	OW-02	Obwalden 2	OW	560			6.9	12	2010 - 21	
	NW-02	Stans Galgenried Süd	NW	440			6.9	12	2010 - 21	
	TUG01	Tuggen	SZ	409			7.0	2	2020 - 21	
	NRB	Bilten	GL	411			7.1	3	2018 - 19, 21	
		Schüpfheim 0	LU	735			7.1	22	2000 - 21	
	URI 01	Uri 1	UR	455			7.2	12	2010 - 21	
	BAV	Balzers	FL	473			7.3	14	2008 - 21	
	HÄG	Häggenschwil	SG	555			7.5	19	2003 - 21	28
	ALB	Altstätten	SG		Ländlich,	> 8	8.2	4	2018 - 21	
	HOL 01	Holderhus 1	LU	590	unterhalb 900 m ü. M.		8.7	22	2000 - 21	29
	SIN3	Freiamt 3	AG	519			9.5	12	2010 - 21	
	APS	Steinegg	Al	820			9.9	19	2003 - 21	
	ESC 08	Eschenbach 8	LU	495			10.0	18	2004 - 21	
73	WEIN	Weinfelden	TG	422			10.4	12	2009 - 15, 17 - 21	30
4	WAU 13	Wauwil 13	LU	501			10.8	18	2004 - 21	
75	WIG	Netstal	GL	455	Ländlich, verkehrsbelaste	3 – 5	3.5	7	2015 - 21	31
	SLI 01	Schaan 1	FL		Ländlich, verkehrsbelaste	5-8	5.3	10	2012 - 21	
-		,	_	_						
	NV4	San Vittore	GR		Ländlich, an Autobahn	3-5	3.3	13	2009 - 21	
	SIO	Sion-Aeroport	VS	483		3 – 5	3.8	22	2000 - 21	
79	HAE	Härkingen	SO	431	Ländlich, an Autobahn	5 – 8	5.1	16	2006 - 21	
30	BAS	Basel-Binningen	BL	317	Vorstädtisch	1 – 3	2.8	22	2000 - 21	35
_		Lugano	TI		Städtisch	1 – 3	2.6	22	2000 - 21	
-	LUG									
31	SOAL	Solothurn Altwyberhüsli	SO	452	Städtisch, verkehrsbelasti	1 – 3	2.4	11	2011 - 21	37

15

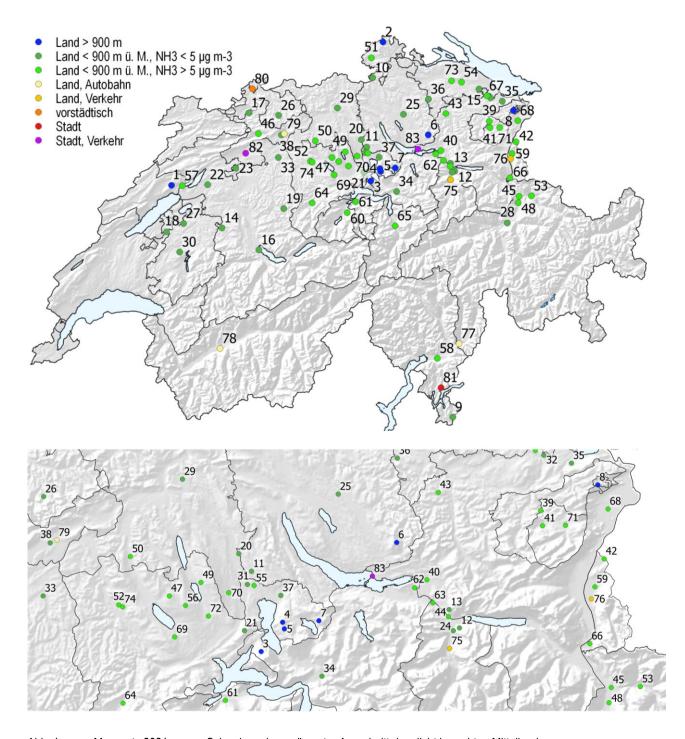


Abb. 1 Messnetz 2021, ganze Schweiz und vergrösserter Ausschnitt des dicht beprobten Mittellandes Die Nummerierung entspricht den Standortnummern in Tabelle 1.
Programm: QGIS; Quelle Hintergrundkarte: Bundesamt für Landestopografie swisstopo

3.6 Auswertung

3.6.1 Jahres-, Saison- und Monatsmittelwerte

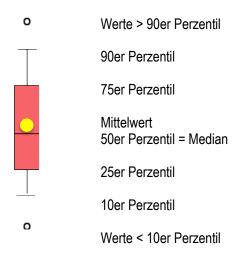
Für die Jahresmittelwerte wurden die Messwerte auf das Kalenderjahr umgerechnet, indem die Messperioden über den Jahreswechsel zeitgewichtet aufgeteilt wurden.

Die Messperiode 1999/2000, im Bericht als 2000 beschrieben, stimmt nicht mit einem Kalenderjahr überein. Für die Berechnung dieser Jahresmittelwerte wurde als Ende der Messperiode der Messbeginn plus ein Jahr festgelegt.

Als Saisonmittelwerte wurden die Messwerte aus den folgenden Monaten zeitgewichtet berechnet:

Winter Dezember des Vorjahrs, Januar, Februar

Frühling März, April, Mai Sommer Juni, Juli, August


Herbst September, Oktober, November

Die Jahreswerte werden nur berücksichtigt, wenn mindestens 11 Monate vorhanden sind (ca. 85 %). Die Saisonmittelwerte werden verwendet, wenn mindestens 80 % und die Monatsmittel, wenn mindestens 50 % der Zeit gemessen wurde.

Monatsmittelwerte wurden als Grundlage für Boxplots und Verlaufsgrafiken genommen.

3.6.2 Boxplots

Die einzelnen Standorte sind als Boxplots dargestellt, welche die 10er, 25er, 50er (Median), 75er und 90er Perzentile zeigen. Werte oberhalb des 90er Perzentils respektive unterhalb des 10er Perzentils sind als Einzelpunkte eingezeichnet (siehe unten). Bei den Boxplots aus mehreren, seit 2000, 2004, 2008 und 2013 durchgehend gemessenen Standorten, sind auch die Mittelwerte als gelber Punkt markiert. Die Monatsmittelwerte eines Jahres bilden jeweils einen Boxplot.

4 Resultate

Die Resultate werden in diesem Bericht zusammengefasst dargestellt. Die Verläufe der Konzentrationen werden in den Standortdatenblättern (Seitler et al. 2022) dargestellt.

4.1 Langjährige Entwicklung der Ammoniak-Konzentrationen

4.1.1 Messungen an 13 Standorten seit 2000

An dreizehn Standorten wird bereits seit 2000 durchgehend gemessen (Tabelle 2). An einigen Standorten mussten die Passivsammler verschoben werden. Zum Teil wurden Parallelmessungen durchgeführt und wenn nötig die früheren Werte angepasst. In Kapitel 7.1 sind die Änderungen detailliert aufgeführt.

Tab. 2 Standorte seit 2000, Standortcharakteristik

Belastungs- und Immissionstypen der 13 Standorte, an denen schon seit 2000 gemessen wird.

4 Standorte	Ländlich, oberhalb 900 m ü. M.	Immissionstyp 1–3	CHA, RIG, ZB 01, BA
2 Standorte 4 Standorte	Ländlich , unterhalb 900 m ü. M. Ländlich , unterhalb 900 m ü. M.	Immissionstyp 3–5 Immissionstyp 5–8	PAY, TAE MAG, MAU 01, HOL 01, SCHÜ 00
1 Standort	Ländlich, Autobahn	Immissionstyp 3-5	SIO
1 Standort	Vorstädtisch	Immissionstyp 1–3	BAS
1 Standort	Städtisch	Immissionstyp 1–3	LUG

Tab. 3 Standorte seit 2000, Perzentile und Mittelwerte

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen (in µg m⁻³) aller 13 Standorte an denen seit 2000 gemessen wird. Datengrundlage sind Monatsmittelwerte.

Jahr	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Anzahl Monatsmittelwerte	156	154	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156
kleinster Monatsmittelwer	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.0	0.4	0.3	0.3
10er Perzentil	8.0	0.7	0.8	0.7	0.9	0.8	8.0	1.0	1.0	1.0	0.9	1.4	0.9	8.0	0.9	1.2	0.9	1.1	1.1	1.5	1.3	1.3
25er Perzentil	1.9	1.4	1.3	1.9	1.7	1.9	2.0	1.8	1.8	2.0	1.8	2.2	1.8	1.6	1.6	2.1	1.8	1.9	2.2	2.1	2.3	2.0
Median	3.0	2.8	2.7	3.6	3.2	3.2	3.2	3.0	3.0	3.5	3.3	3.5	3.1	2.9	3.1	3.3	2.8	3.2	3.8	3.8	3.6	3.1
Mittelwert	3.3	3.0	3.1	4.0	3.5	3.4	3.6	3.5	3.3	3.7	3.5	4.1	3.5	3.2	3.4	3.8	3.4	3.6	4.5	4.5	4.3	3.7
75er Perzentil	4.1	4.0	3.9	5.1	4.9	4.8	4.9	4.8	4.6	5.0	4.7	5.7	4.9	4.6	4.9	5.1	4.7	4.6	6.3	5.6	5.5	4.9
90er Perzentil	5.5	5.4	5.6	7.7	6.2	6.3	6.8	6.5	6.0	7.0	6.3	7.7	6.3	6.4	6.1	7.4	6.7	6.1	8.4	8.6	7.8	7.1
grösster Monatsmittelwer	14.9	15.6	16.5	17.3	9.6	9.9	11.9	11.7	15.8	12.6	14.4	13.5	13.5	9.2	13.2	12.7	12.5	22.0	19.7	23.1	17.8	13.3

In Tabelle 3 und Abbildung 2 sind die Perzentile und Mittelwerte der Monatsmittelwerte zusammengefasst. Das Jahr 2021 wies innerhalb der Messperiode 2000 – 2021 mittlere Ammoniakkonzentrationen und gemäss MeteoSchweiz eine mittlere bis tiefe Jahresmitteltemperatur auf. In den Jahren 2018, 2020 (wärmste Jahre seit Messbeginn) und 2019 (sechstwärmstes Jahr, drittwärmster Sommer) wurden die höchsten Werte gemessen. Ebenfalls hoch sind die Perzentile in den Jahren 2011 (viertwärmstes Jahr seit Messbeginn) und 2003 (wärmster Sommer). Die Messwerte der Jahre 2000 bis 2002 sowie 2013 sind eher tief.

Standorte seit 2000

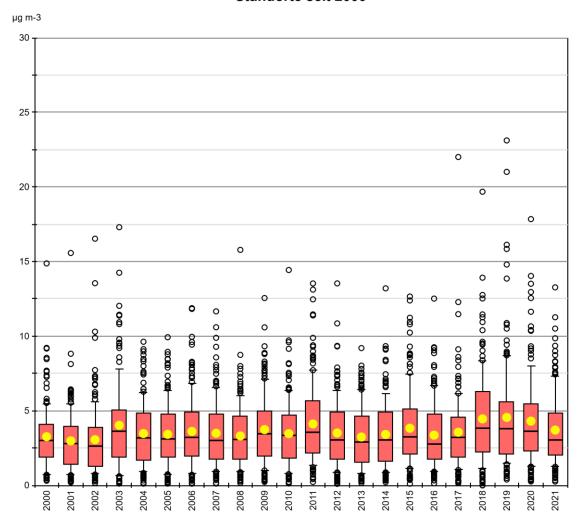


Abb. 2 Monatliche Konzentrationen der Standorte seit 2000, Boxplots
Die Ammoniak-Konzentrationen der 13 Standorte, an denen seit Messbeginn während 22 Jahren durchgehend gemessen wurde. Datengrundlage sind Monatsmittelwerte.

Abbildung 3 zeigt die Jahresmittelwerte der einzelnen Standorte, an denen seit 2000 jedes Jahr gemessen wurde. Bei vielen Standorten fallen die Jahre 2003, 2011 und 2018 bis 2020 mit den höchsten Werten auf, was mit der warmen Witterung dieser Jahre zusammenhängt. Die langjährigen Messungen an diesen unterschiedlich belasteten Standorten zeigen keine Tendenz zur Zu- oder Abnahme der Ammoniakkonzentration.

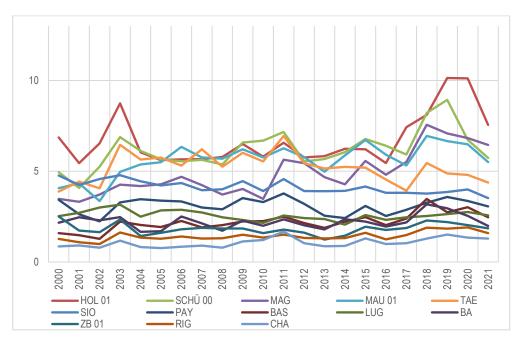


Abb. 3 Standorte seit 2000, Jahresmittelwerte im Verlauf

Jahresmittelwerte der Ammoniakkonzentrationen aller 13 Standorte an denen seit 2000 gemessen wird. Einheit: µg m³

4.1.2 Messungen an 21 Standorten seit 2004

An 21 Standorten wird mindestens seit 2004 durchgehend gemessen (Tabelle 4)

Tab. 4 Standorte mindestens seit 2004, Perzentile und Mittelwerte Belastungs- und Immissionstypen der 21 Standorte, an denen seit 2004 gemessen wird.

4 Standorte	Ländlich, oberhalb 900 m ü. M.	Immissionstyp 1–3	CHA, RIG, ZB 01, BA
2 Standorte 3 Standorte 4 Standorte 4 Standorte	Ländlich, unterhalb 900 m ü. M. Ländlich, unterhalb 900 m ü. M. Ländlich, unterhalb 900 m ü. M. Ländlich, unterhalb 900 m ü. M.	Immissionstyp 1–3 Immissionstyp 3–5 Immissionstyp 5–8 Immissionstyp > 8	SCH, HUD 03 PAY, RO, TAE MAU 01, MAG, SCHÜ 00, HÄG HOL 01, APS, ESC 08, WAU 13
1 Standort	Ländlich, Autobahn	Immissionstyp 3–5	SIO
1 Standort	Vorstädtisch	Immissionstyp 1–3	BAS
1 Standort 1 Standort	Städtisch Städtisch, verkehrsbelastet	Immissionstyp 1–3 Immissionstyp 3–5	LUG RAP

In Tabelle 5 und Abbildung 4 sind die Perzentile und Mittelwerte der Monatsmittelwerte zusammengefasst. Die Monatsmittelwerte der 21 Standorte, an denen während 18 Jahren gemessen wurde, sind als Boxplots dargestellt (Abb. 4). Die Jahresmittel der Jahre 2018 bis 2020 zeigen die höchsten Werte.

Tab. 5 Standorte mindestens seit 2004, Perzentile und Mittelwerte

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen (in μ g m 3) aller 21 Standorte an denen mindestens seit 2004 gemessen wird. Datengrundlage sind Monatsmittelwerte.

Jahr	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Anzahl Monatsmittelwerte	252	252	252	252	252	252	251	252	252	252	252	252	252	251	252	252	251	252
kleinster Monatsmittelwer	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.0	0.4	0.3	0.3
10er Perzentil	1.2	1.0	1.2	1.3	1.2	1.3	1.1	1.6	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.7	1.6	1.4
25er Perzentil	2.1	2.0	2.2	1.9	1.9	2.1	2.0	2.3	1.9	1.8	1.9	2.3	2.1	2.2	2.8	2.5	2.5	2.2
Median	3.8	3.6	3.5	3.3	3.3	3.9	3.7	3.9	3.5	3.2	3.4	3.6	3.1	3.6	4.4	4.1	4.0	3.5
Mittelwert	4.3	4.3	4.7	4.2	4.1	4.5	4.2	4.9	4.2	3.8	4.1	4.6	4.1	4.4	5.4	5.3	5.2	4.4
75er Perzentil	5.7	5.7	5.9	5.7	5.5	6.3	5.6	6.6	5.7	5.4	5.6	5.7	5.5	5.6	7.5	7.1	6.7	5.8
90er Perzentil	8.4	8.8	9.6	8.2	8.0	8.5	8.3	9.3	8.3	7.4	7.4	9.3	8.7	8.9	11.1	10.8	10.4	9.1
grösster Monatsmittelwer	17.5	20.0	19.7	15.1	15.8	18.4	20.5	20.2	21.6	13.1	19.1	22.3	17.7	22.8	19.7	23.1	27.4	17.6

Standorte seit 2004

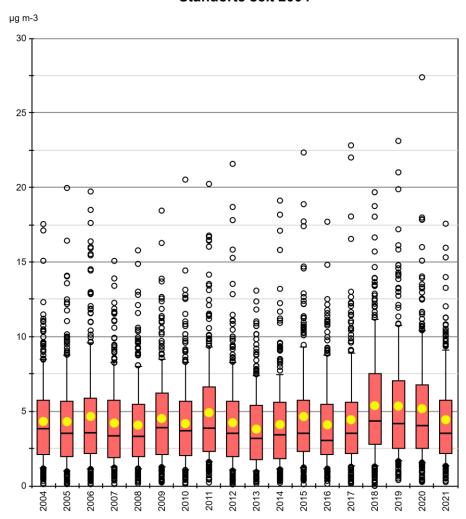


Abb. 4 Monatliche Konzentrationen der Standorte mindestens seit 2004, Boxplots
Die Ammoniak-Konzentrationen der 21 Standorte, an denen während 18 Jahren gemessen wurde. Datengrundlage sind
Monatsmittelwerte.

Abbildung 5 zeigt die Jahresmittelwerte der einzelnen Standorte, an denen mindestens seit 2004 durchgehend gemessen wird. Bei den Standorten mit hohen Konzentrationen sind die Schwankungen von Jahr zu Jahr meist grösser als bei Standorten mit niedrigen Konzentrationen.

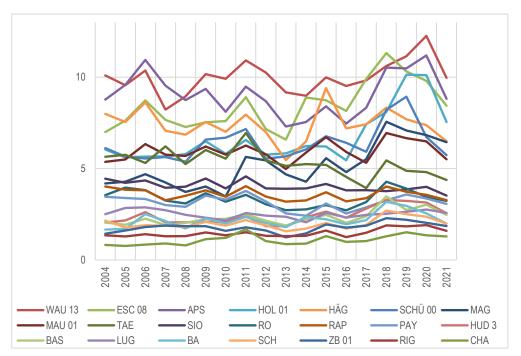


Abb. 5 Standorte mindestens seit 2004, Jahresmittelwerte im Verlauf Jahresmittelwerte der Ammoniakkonzentrationen aller 21 Standorte an denen seit 2004 gemessen wird. Einheit: µg m³

4.1.3 Messungen an 32 Standorten seit 2008

An 32 Standorten wird mindestens seit 2008 durchgehend gemessen (Tabelle 6).

Tab. 6 Standorte mindestens seit 2008, Standortcharakteristik

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen (in μg m³) aller 32 Standorte an denen mindestens seit 2008 gemessen. Datengrundlage sind Monatsmittelwerte.

6 Standorte	Ländlich, oberhalb 900 m ü. M.	Immissionstyp 1 – 3	CHA, RIG, ZB 01, FRUE, BA, ZIGE
2 Standorte 7 Standorte	Ländlich , unterhalb 900 m ü. M. Ländlich , unterhalb 900 m ü. M.	Immissionstyp 1 – 3 Immissionstyp 3 – 5	SCH, HUD 03 PAY, RO, VU01, MI01, FRAU, INWI, TAE
8 Standorte	Ländlich, unterhalb 900 m ü. M.	Immissionstyp 5 – 8	WAU16.4, MAU 01, MAG, NEU02, EST, BAV, SCHÜ 00, HÄG,
4 Standorte	Ländlich, unterhalb 900 m ü. M.	Immissionstyp > 8	HOL 01, APS, ESC 08, WAU 13
1 Standort 1 Standort	Ländlich , Autobahn Ländlich , Autobahn	Immissionstyp 3 – 5 Immissionstyp 5 – 8	SIO HAE
1 Standort	Vorstädtisch	Immissionstyp 1 – 3	BAS
1 Standort 1 Standort	Städtisch Städtisch, verkehrsbelastet	Immissionstyp 1 – 3 Immissionstyp 3 – 5	LUG RAP

Tab. 7 Standorte seit 2008, Perzentile und Mittelwerte

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen aller 32 Standorte an denen mindestens seit 2008 gemessen wird, in μ g m^3 , Datengrundlage sind Monatsmittelwerte.

Jahr	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Anzahl Monatsmittelwerte	384	384	383	384	381	382	383	384	384	383	384	384	382	382
kleinster Monatsmittelwer	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.0	0.4	0.3	0.3
10er Perzentil	1.3	1.4	1.2	1.8	1.2	1.1	1.3	1.5	1.4	1.4	1.7	1.9	1.8	1.7
25er Perzentil	2.2	2.3	2.1	2.5	2.0	2.0	2.1	2.4	2.1	2.4	2.9	2.9	2.8	2.3
Median	3.5	4.1	3.8	4.2	3.6	3.4	3.6	3.9	3.5	3.8	4.5	4.5	4.4	3.9
Mittelwert	4.0	4.4	4.2	4.9	4.2	3.9	4.1	4.6	4.1	4.4	5.4	5.4	5.1	4.5
75er Perzentil	5.0	5.7	5.4	6.4	5.4	5.3	5.4	5.9	5.3	5.6	7.1	7.0	6.5	5.7
90er Perzentil	7.2	7.9	7.6	8.8	7.6	7.3	7.2	8.9	7.7	8.2	10.5	9.9	9.5	8.3
grösster Monatsmittelwer	15.8	18.4	20.5	20.2	21.6	13.1	19.1	22.3	17.7	22.8	19.7	23.1	27.4	17.6

Standorte seit 2008

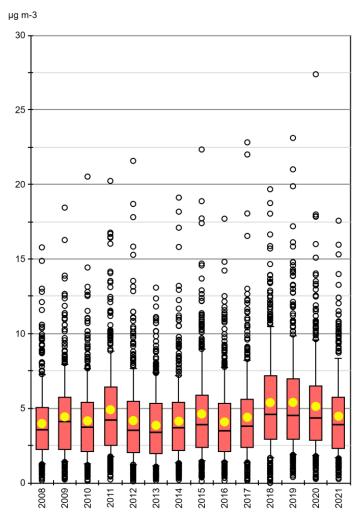
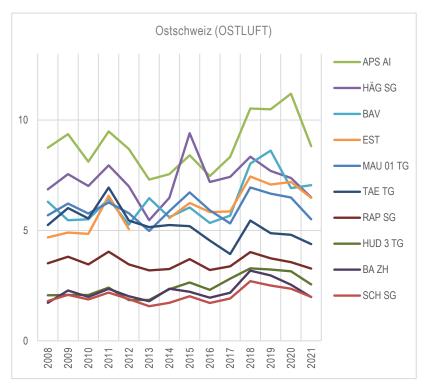



Abb. 6 Monatliche Konzentrationen der Standorte mindestens seit 2008, Boxplots
Die Ammoniak-Konzentrationen der 32 Standorte, an denen seit Messbeginn während 14 Jahren durchgehend gemessen wurde. Datengrundlage sind Monatsmittelwerte.

In Tabelle 7 sind die Perzentile und Mittelwerte der Monatsmittelwerte zusammengefasst.

Die Monatsmittelwerte der 32 Standorte, an denen mindestens seit 2008 gemessen wurde, sind als Boxplots dargestellt (Abb.6). Abbildung 7 zeigt den Verlauf der Jahresmittelwerte dieser Standorte. Wiederum fallen die warmen Jahre 2011, 2015 (drittwärmstes Jahr seit Messbeginn) und 2018 bis 2020 auf.

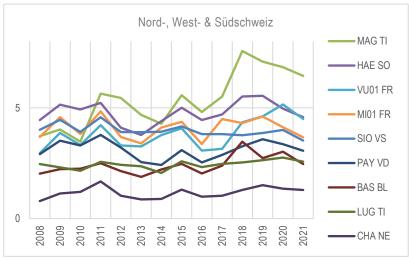


Abb. 7 A Standorte seit 2008, Jahresmittelwerte im Verlauf Jahresmittelwerte der Ammoniakkonzentrationen von 19 der 32 Standorte an denen seit 2008 gemessen wird. Einheit: µg m-3

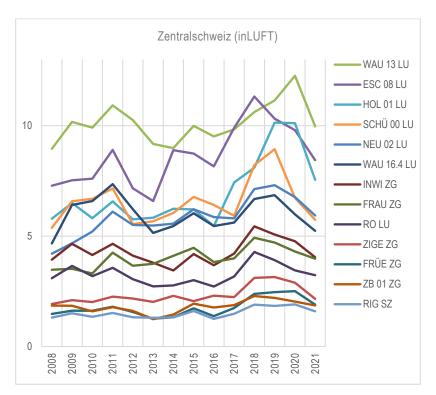


Abb. 7B Standorte seit 2008, Jahresmittelwerte im Verlauf Jahresmittelwerte der Ammoniakkonzentrationen von 13 der 32 Standorte an denen seit 2008 gemessen wird. Einheit: µg m³

4.1.4 Messungen an 60 Standorten seit 2013

An 60 Standorten wird mindestens seit 2013 durchgehend gemessen (Tabelle 8).

Tab. 8 Standorte mindestens seit 2013, Standortcharakteristik

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen (in μ g m³) aller 60 Standorte an denen mindestens seit 2013 gemessen wird. Datengrundlage sind Monatsmittelwerte.

6 Standorte 1 Standort	Ländlich , oberhalb 900 m ü. M. Ländlich , oberhalb 900 m ü. M.	Immissionstyp 1–3 Immissionstyp 3–5	CHA, RIG, ZB 01, FRÜE, BA, ZIGE, AIO
2 Standorte 18 Standorte	Ländlich , unterhalb 900 m ü. M. Ländlich , unterhalb 900 m ü. M.	Immissionstyp 1–3 Immissionstyp 3–5	RAF, SCH HUD 03, VTG, BRIS, PAY, IEB, RO, WTG1, HEMO, BENN, MI01, N14, BIR1, VU01, FRAU, HBL, TAE, INWI, NEHU
20 Standorte	Ländlich , unterhalb 900 m ü. M.	Immissionstyp 5–8	AIG, NMS, MAEM, NZI01, SAM2, SHkl, WAU16.4, NGS, MAU 01, ZG-02, NEU 02, NE03, MAG, EST, OW-02, NW-02, SCHÜ 00, UR01, BAV, HÄG
5 Standort	Ländlich , unterhalb 900 m ü. M.	Immissionstyp > 8	HOL 01, SIN3, APS, ESC08, WAU 13
1 Standort	Ländlich, verkehrsbelastet	Immissionstyp 5–8	SLI01
2 Standorte 1 Standorte	Ländlich , Autobahn Ländlich , Autobahn	Immissionstyp 3–5 Immissionstyp 5–8	NV4, SIO HAE
1 Standort	Vorstädtisch	Immissionstyp 1–3	BAS
1 Standort	Städtisch	Immissionstyp 1–3	LUG
1 Standort 1 Standorte	Städtisch, verkehrsbelastet Städtisch, verkehrsbelastet	Immissionstyp 1–3 Immissionstyp 3–5	SOAL RAP

In Tabelle 9 und Abbildung 9 sind die Perzentile und Mittelwerte der Monatsmittelwerte zusammengefasst. Abbildung 8 zeigt den Verlauf der Jahresmittelwerte dieser 60 Standorte, sie sind nach Landesteilen geordnet. Ausser in der Südschweiz sind die Ammoniakkonzentrationen deutlich tiefer als in den drei wärmeren Vorjahren.

Tab. 9 Standorte mindestens seit 2013, Perzentile und Mittelwerte

Die Perzentile und Mittelwerte der Ammoniak-Konzentrationen (in μ g m⁻³) aller 60 Standorte an denen mindestens seit 2013 gemessen wird. Datengrundlage sind Monatsmittelwerte.

	2013	2014	2015	2016	2017	2018	2019	2020	2021	
Anzahl Monatsmittelwerte	717	719	717	720	718	719	716	716	712	
kleinster Monatsmittelwer	0.1	0.2	0.1	0.1	0.1	0.0	0.4	0.3	0.3	
10er Perzentil	1.3	1.5	1.6	1.6	1.5	2.0	2.1	2.0	1.7	
25er Perzentil	2.2	2.3	2.5	2.3	2.5	3.1	3.1	3.0	2.5	
Median	3.5	3.5	3.9	3.6	3.9	4.9	4.6	4.4	4.0	
Mittelwert	3.9	4.2	4.6	4.1	4.4	5.3	5.3	5.1	4.5	
75er Perzentil	5.1	5.4	5.8	5.3	5.6	7.0	6.5	6.4	5.6	
90er Perzentil	7.2	7.0	8.4	7.3	7.8	9.4	9.3	9.2	8.3	
grösster Monatsmittelwer	13.1	31.4	22.3	17.7	22.8	19.7	23.1	27.4	22.3	

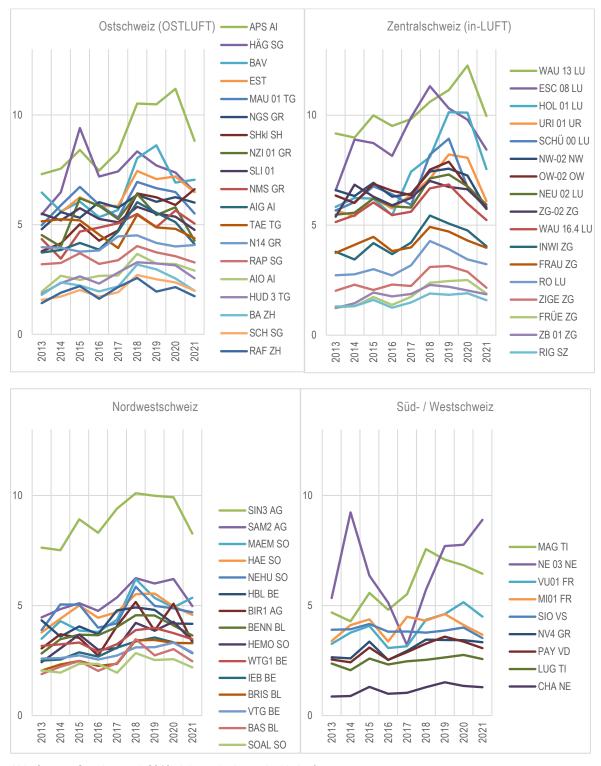


Abb. 8 Standorte seit 2013, Jahresmittelwerte im Verlauf Jahresmittelwerte der Ammoniakkonzentrationen aller 60 Standorte an denen seit 2013 gemessen wird, aufgeteilt nach geografischen Regionen. Einheit: μg m⁻³

Standorte seit 2013

Abb. 9 Standorte mindestens seit 2013, monatliche Konzentrationen als Boxplots
Die Ammoniak-Konzentrationen der 60 Standorte, bei denen während 9 Jahren gemessen wurde. Die jährlichen Boxplots fassen die Monatsmittelwerte zusammen. 3

4.2 Vergleich mit Critical Levels

Die Critical Levels für Ammoniak betragen (CLRTAP 2017, Kapitel III):

- NH₃-Konzentration von 1 μ g m⁻³ für empfindliche Moose und Flechten sowie Ökosysteme, wo diese niederen Pflanzen für das Ökosystem von Bedeutung sind
- NH₃-Konzentration von 3 µg m⁻³ für höhere Pflanzen. Aufgrund der Schätz-Unsicherheit wird jedoch ein Bereich von 2–4 µg m⁻³ angegeben.

Fünf Standorte des Messnetzes befinden sich nahe bei **Hochmooren** (Tabelle 10). Mit Mehrjahresmittelwerten von 2.1 bis 2.9 μ g m⁻³ wird an diesen Standorten der Critical Level für Ammoniak für dieses empfindliche Ökosystem deutlich überschritten.

Von zehn Standorten an **Flachmooren** liegen die gemessenen Ammoniakkonzentrationen bei drei Standorten im Unsicherheitsbereich des Critical Levels für höhere Pflanzen, bei den anderen sieben Standorten deutlich über diesem Bereich.

Der Standort auf einer **Trockenwiese** in Merishausen liegt mit 1.4 µg m⁻³ unter dem Critical Level für höhere Pflanzen.

Von acht **waldnahen Standorten** (innerhalb 40 m vom Waldrand) bleiben ein Standort unter dem Critical Level für höhere Pflanzen, zwei Standorte erreichen den Unsicherheitsbereich des Critical Levels für höhere Pflanzen von 2–4 µg m⁻³, an fünf Standorten wird der Critical Level deutlich überschritten. Grosse Teile der landwirtschaftlichen Flächen in der Schweiz grenzen an empfindliche Ökosysteme, vor allem an Wald.

Tab. 10 Ammoniak-Konzentrationen bei empfindlichen Ökosystemen
Mehrjahresmittelwerte von nahe bei Hochmooren, Flachmooren, Trockenwiesen oder an Wäldern gelegenen Standorten,
verglichen mit den Critical Levels für empfindliche Ökosysteme. Konzentrationen an Standorten im Bereich der Critical Levels sind orange, diejenigen oberhalb der Critical Levels sind rot dargestellt. Abstände der Messstellen zu den Ökosystemen und Landwirtschaftsbetrieben sind angegeben.

			- 1	NH ₃ -Konz	entration			A	Abstand zu		
Nr.	Code	Standort Name	Kt/	Mittelwert	Critical Level	Hochmoor	Flachmoor	Trocken-	Wald		direkte Umgebung
(Karte			Land	2017* - 2021				wiese		betrieb	
Abb.1)				μg m ⁻³	μg m ⁻³	m	m	m	m	m	
	Hochm	oor HM									
	HUD 0	Hudelmoos 0	TG	2.7		0	0		10		ländlich, Naturschutzgebiet
11	AEG	Knonau	ZH	2.1		0	0		50	180	Hochmoor
14	GMO	Gänsemoos	BE	2.9	1	0			0	214	Hochmoor
5		Früebüel	ZG	2.2		50			80		Wiesen, Hoch- & Flachmoorrand
4	ZB 01	Zugerberg 1	ZG	2.1	_	80			50		Weide, Hochmoorrand
	Flachm	oor FM									
32	BHU	Berg SG	SG	4.5			0		0		Flachmoor
43	KIT	Kirchberg	SG	5.2			0		330		Flachmoor
16	VTG	Gwatt	BE	3.0			0				Flachmoor, auf Turm im Schilf, Seeufer
20	OBI	Ottenbach	ZH	3.3			0			740	Flachmoor, Fluss
42	RRI	Rugell	FL	5.2	2 - 4		0				Flachmoor
7	ZIGE	Zigerhüttli	ZG	2.7			5		190		Flachmoor, Naturschutzgebiet
52	WAU 16	6 Wauwil 16	LU	6.1			10				Flachmoor, extensives Wiesland
63	NRB	Bilten	GL	7.1			20				Wiesen, Flachmoor, ARA
35	UES	Untereggen	SG	4.7			60		10		Wiesen, Wald, Flachmoor
68	ALB	Altstätten	SG	8.2			60			500	Flachmoor, Wiesen, Äcker
	Trocker	nwiese									
2	RAN	Merishausen Hagenturm	SH	1.4	2 - 4			0	10		Trockenwiese, Waldlichtung
	Waldra	nd									
9	SARE	Sagno Reservoir	тι Ι	1.7					7		Trinkwasserfassung, Waldlichtung
			LU	8.0					7	100	intensive Landwirtschaft
	SEM	Sempach	LÜ	6.8					10		Gewerbe, Wiesen, Wald
49	GEF	Gelfingen	LÜ	5.6	2 - 4				18		Wiesen, Wald
13	SCH	Schänis	SG	2.3					25		Waldlichtung, Weide
	GWA	Grosswangen	LU	4.3					25	100	Wiesen, Ackerbau, Wald
69	HOL 01		LU	8.7					30		Obstkultur, Wiese, Wald, Graswirtschaft
12	WBM	Mollis	GL	2.3					35		Weiden, Wald
				* wo vorhanden	1	_					

Zu beachten ist, dass die Critical Loads für Stickstoff für empfindliche Ökosysteme überschritten sein können, auch wenn die Ammoniakkonzentrationen unterhalb des Critical Levels für Ammoniak bleiben. Grund dafür sind zusätzliche Stickstoffeinträge in Form von Ammonium und oxidierten Verbindungen (NO_x, NO₃-, HNO₃).

4.3 Vergleich mit Emissionsentwicklung

Die Schweiz rapportiert ihre jährlichen Luftschadstoffemissionen im Rahmen der Genfer Luftreinhaltekonvention und als Mitglied der Europäischen Umweltagentur (EUA) (FOEN 2022)⁴. Die Ammoniakemissionen der Schweiz 1990-2020 sind in Kupper et al. 2022 detailliert beschrieben. Bei Ammoniak ist die Landwirtschaft der Hauptemittent (Tabelle 11).

Tab. 11 NH₃-Emissionen der Schweiz zwischen 2000 und 2020
Für die Quellengruppe Landwirtschaft und die Summe aller Quellengruppen (FOEN 2022)
In blau gekennzeichnet: Bezugsjahr für Vergleich Emission und Immission.

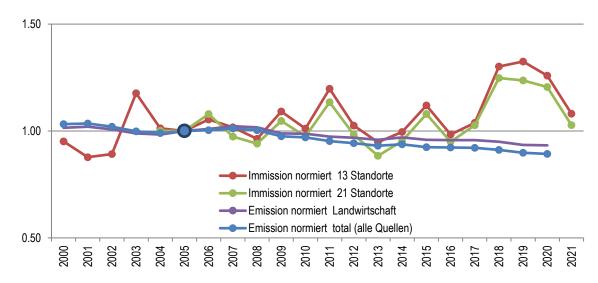


Abb. 10 Vergleich der Entwicklung von Emissionen und Immissionen, alle normiert auf das Jahr 2005.

Die Emissionen (Summe aller Quellengruppen sowie Quelle Landwirtschaft) und die Mittelwerte der Immissionen der 13 bzw. 21 Standorte wurden auf das Bezugsjahr 2005 normiert.

Die Mittelwerte der Immissionen der 13 seit 2000 resp. der 21 seit 2004 gemessenen Standorte werden mit den Ammoniakemissionen verglichen. Dazu wird 2005 als Bezugsjahr festgelegt und alle Werte relativ zum Wert dieses Jahres angegeben (Abb. 10).

Gemäss Emissionsinventar 2022 haben die landwirtschaftlichen zwischen 2000 und 2020 um 8 %, die gesamten schweizerischen NH₃-Emissionen um 13 % abgenommen. Eine Reduktion der Ammoniakimmissionen kann in diesem Zeitraum allerdings nicht beobachtet werden. Während der Einfluss der Witterung bei den Immissionsmessungen gut beobachtet

⁴ "Emissionsdaten basieren auf Erhebungen, Annahmen und komplexen Modellrechnungen. Diese sind naturgemäss mit zum Teil grossen Unsicherheiten verbunden, was bei der Verwendung der Daten und bei deren Interpretation zu berücksichtigen ist. Viele Bereiche werden bei Methodenänderungen auch rückwirkend aktualisiert, sodass auch Daten aus früheren Jahren nicht als definitiv betrachtet werden können." https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/emissionsinformationssystem-der-schweizemis.html

werden kann (vgl. warme Jahre 2003, 2011, 2015 und 2018-2020), wird die Witterung eines spezifischen Jahres bei den Emissionsberechnungen nicht berücksichtigt.

4.4 Berechnung von Konzentrationskarten

- Entfernung zwischen Messstandort und Stall > 150m; berücksichtigt für Regressionslinie
- Entfernung zwischen Messstandort und Stall < 150m oder offensichtlich falsche Stallkoordinaten

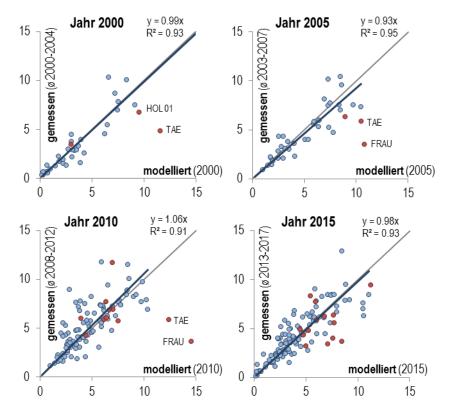


Abb. 11 Vergleich modellierter mit gemessen NH₃-Konzentrationen, Jahre 2000 resp. 2000–2004, 2005 resp. 2003–2007, 2010 resp. 2008–2012 und 2015 resp. 2013–2017

Die Trendlinien beziehen sich nur auf Standorte > 150 m entfernt von landwirtschaftlichen Betrieben (blaue Punkte).

Einheit: µg m³

Meteotest hat im Auftrag des BAFU die Ammoniakemissionen und -konzentrationen flächendeckend für die Schweiz modelliert (Thöni et al. 2004, Rihm und Achermann 2016, Rihm & Künzle 2019). Dazu wurden die Emissionen in den Jahren 1990, 2000, 2005, 2010 und 2015 auf dem Hektarraster berechnet und daraus mithilfe eines statistischen Ausbreitungsmodelles Konzentrationskarten erstellt. Die Modellierung basiert auf gesamtschweizerisch vorhandenen Datensätzen wie der landwirtschaftlichen Betriebszählung und der Arealstatistik des BFS, Gemeindegebiete und Topografie von swisstopo sowie Hofdüngerflüsse und Sömmerungsbetriebe des BLW. Anschliessend wurde durch Vergleich der modellierten Konzentrationen mit den gemessenen Konzentrationen eine höhenabhängige Kalibrierungsfunktion ermittelt und zur Anpassung der Konzentrationskarten an die gemessenen Werte verwendet (Rihm & Künzle 2019).

Abbildung 11 zeigt einen Vergleich der so modellierten Ammoniakkonzentrationen mit den gemessenen Mittelwerten der Jahre 2000–2004, 2003–2007, 2008–2012 und 2013–2017. Die modellierten Werte stimmen gut mit den gemessenen Konzentrationen überein (R²=0.84, 0.77, 0.48 resp. 0.68), was natürlich auch eine Folge der verwendeten Kalibrierungsfunktion ist. Messstandorte wurden nicht in die Regression einbezogen, wenn ihr Abstand zu Ställen weniger als 150 m beträgt oder wenn der Stallstandort aus der Betriebszählung des BFS offensichtlich stark vom tatsächlichen Stallstandort abweicht (Abb. 11, rote Punkte).

Die Streuung zwischen den mit Passivsammlern für einen bestimmten Punkt ermittelten Konzentrationen und den Modellresultaten können hauptsächlich mit eingeschränkten räumlichen Informationen zu den stationären landwirtschaftlichen Quellen (Ställe, Hofdüngerlager) und Vereinfachungen bei der Ausbreitungsberechnung erklärt werden. Die hohe Anzahl von Messstandorten ermöglicht jedoch eine zuverlässige Schätzung der räumlichen Konzentrationsverteilung.

4.5 Zeitreihen der einzelnen Standorte

In den folgenden Abbildungen werden die Ammoniakkonzentrationen der einzelnen Standorte als jährliche Boxplots dargestellt (je aus den 12 Monatsmittelwerten berechnet), einerseits um den Vergleich unter den Standorten besser sichtbar zu machen, andererseits um die Entwicklung über diese 22 Jahre aufzuzeigen. Berücksichtigt wurden die 83 Standorte, an denen im Jahr 2021 und mindestens ein weiteres Jahr gemessen wurde. Innerhalb räumlich verdichteter Messnetze wurde jeweils ein repräsentativer Standort ausgewählt. Die Reihenfolge entspricht weitgehend jener der Tabelle 1. Eine Erklärung der Symbole in den Boxplots findet sich in Abschnitt 3.6.2 auf Seite 17.

Belastungstyp: Ländlich, oberhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration 1–3 µg m⁻³

Abbildungen 12 und 13 zeigen die 7 höher gelegenen Standorte in Wiesen- und Weidegebieten mit Jahresmittelwerten zwischen 1 und 3 μg m⁻³.

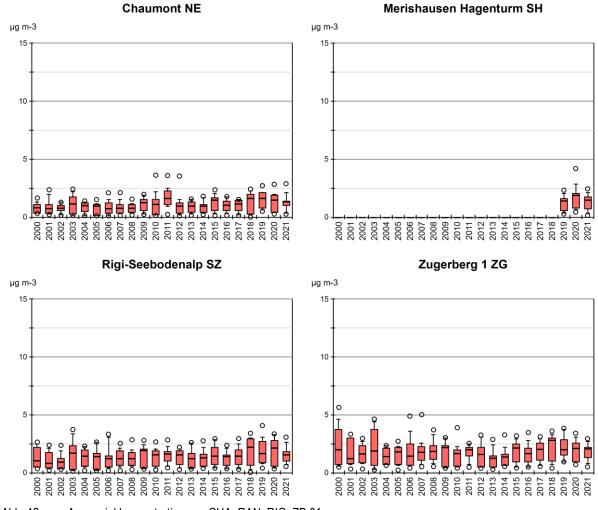
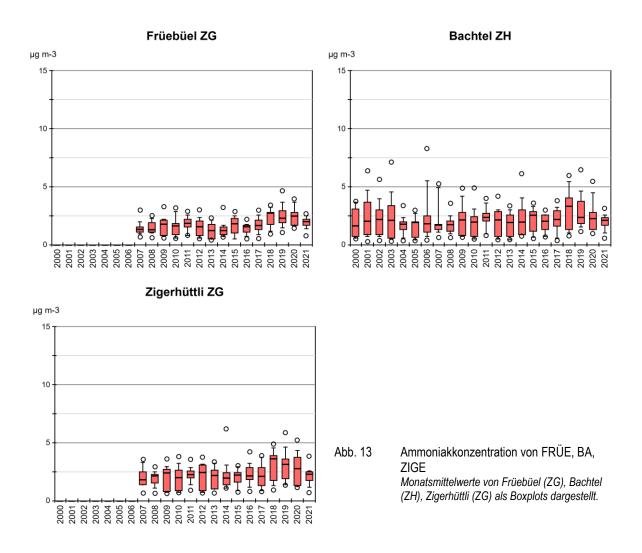



Abb. 12 Ammoniakkonzentration von CHA, RAN, RIG, ZB 01

Monatsmittelwerte von Chaumont (NE), Merishausen (SH), Rigi-Seebodenalp (SZ), Zugerberg 1 (ZG) als Boxplots dargestellt.

Belastungstyp: Ländlich, oberhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration 3–5 μg m⁻³

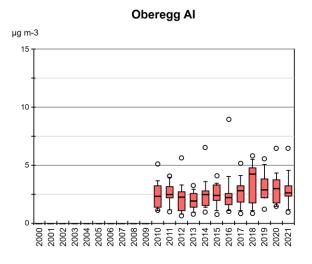


Abbildung 14 zeigt einen höher gelegenen Standort mit Jahresmittelwerten zwischen 3 und 5 $\mu g \ m^{-3}$.

Abb. 14 Ammoniakkonzentration von AlO

Monatsmittelwerte von Oberegg (Al) als
Boxplots dargestellt.

Belastungstyp: Ländlich, unterhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration 1–3 µg m³

Abbildungen 15 bis 16 zeigen die 6 ländlich gelegenen Standorte unterhalb 900 m ü. M. mit niedrigen Immissionen.

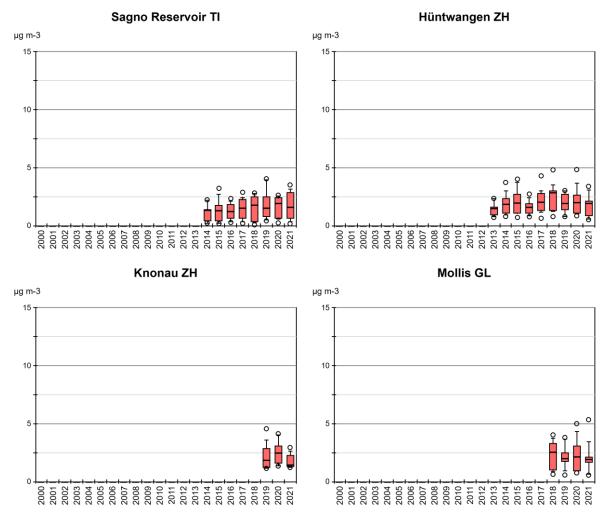
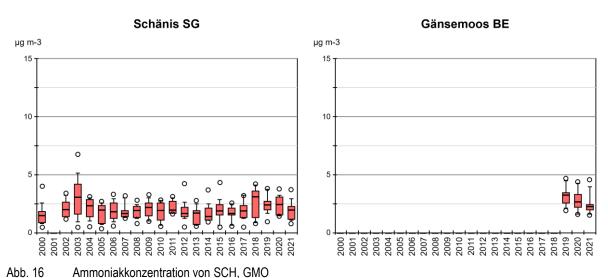



Abb. 15 Ammoniakkonzentration von SARE, RAF, AEG, WBM
Monatsmittelwerte von Sagno Reservoir (TI), Hüntwangen (ZH), Knonau (ZH), Mollis (GL) als Boxplots dargestellt.

Abb. 16 Ammoniakkonzentration von SCH, GMO Monatsmittelwerte von Schänis (SG), Gänsemoos (BE) als Boxplots dargestellt.

Belastungstyp: Ländlich, unterhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration 3–5 µg m⁻³

Abbildungen 17 bis 21 zeigen die 22 unter 900 m gelegenen ländlichen Standorte mit einem Jahresmittelwert im Bereich von 3 bis 5 μ g m⁻³.

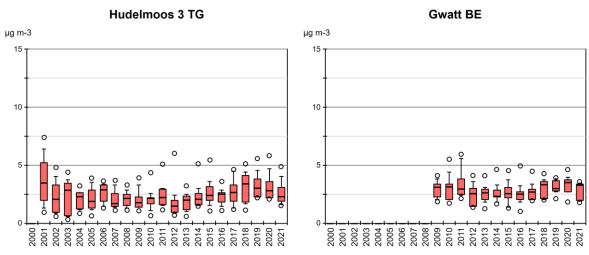


Abb.17 Ammoniakkonzentration von HUD 3, VTG

Monatsmittelwerte von Hudelmoos 3 (TG), Gwatt (BE) als Boxplots dargestellt.

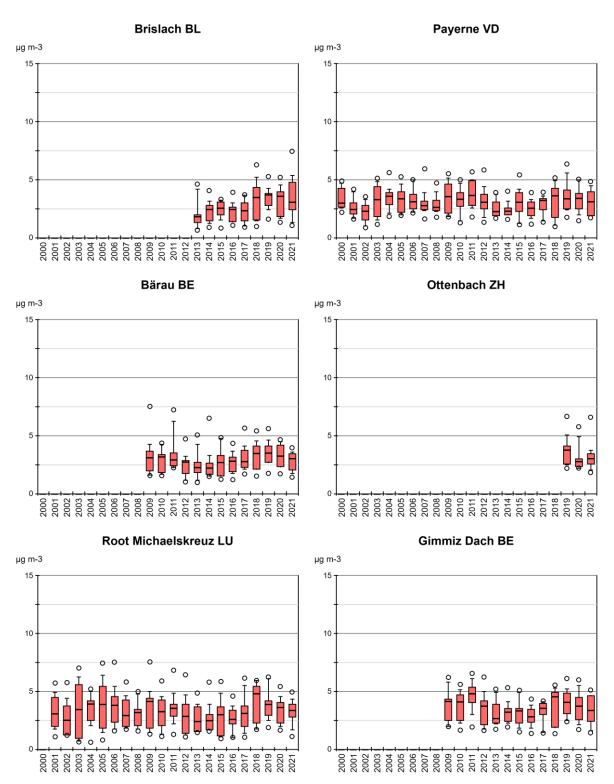


Abb.18 Ammoniakkonzentration von BRIS, PAY, IEB, OBI, RO, WTG1
Monatsmittelwerte von Brislach (BL), Payerne (VD), Bärau (BE), Ottenbach (ZH), Root Michaelskreuz (LU), Gimmiz Dach (BE) als Boxplots dargestellt.

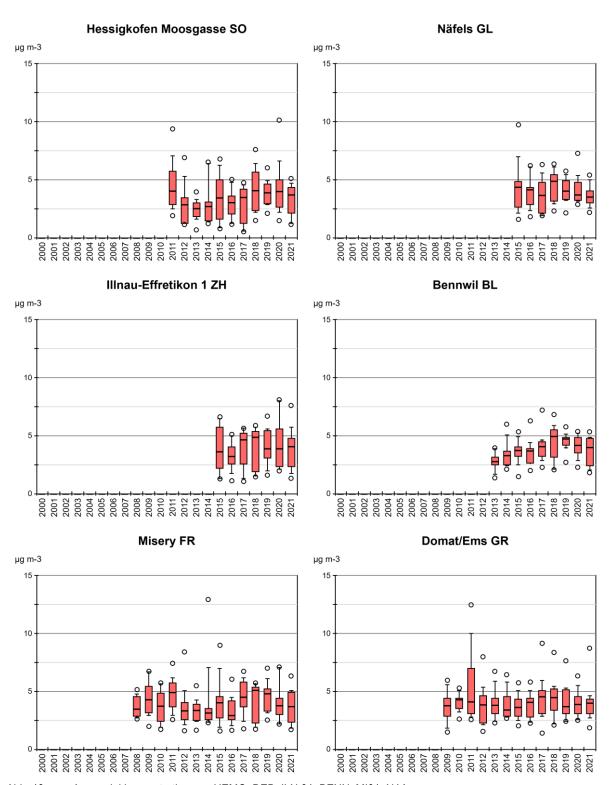


Abb. 19 Ammoniakkonzentration von HEMO, DEB, ILN 01, BENN, MI01, N14,
Monatsmittelwerte von Hessigkofen Moosgasse (SO), Näfels (GL), Illnau-Effretikon 1 (ZH), Bennwil (BL), Misery (FR), Domat/Ems (GR) als Boxplots dargestellt.

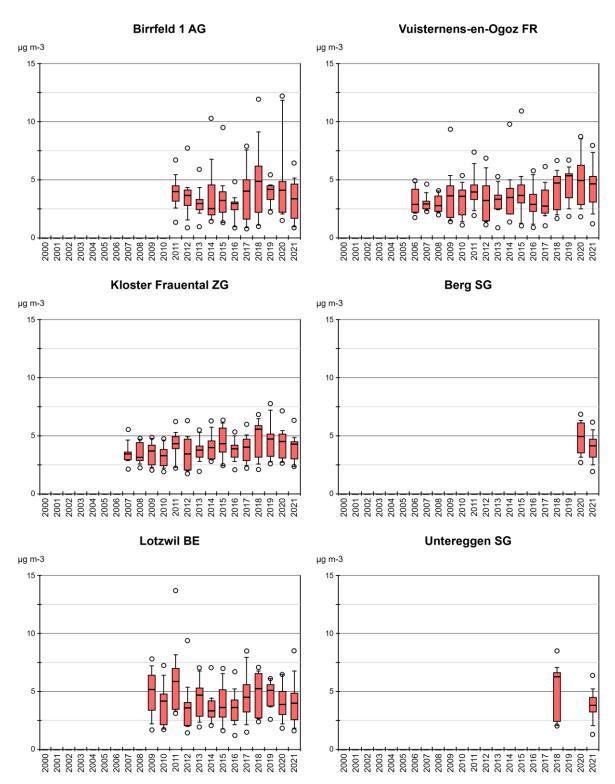


Abb. 20 Ammoniakkonzentration von BIR1, VU01, FRAU, BHU, HBL, UES

Monatsmittelwerte von Birrfeld 1 (AG), Vuisternens-en-Ogoz (FR), Kloster Frauental (ZG), Berg (SG), Lotzwil (BE), Untereggen (SG) als Boxplots dargestellt.

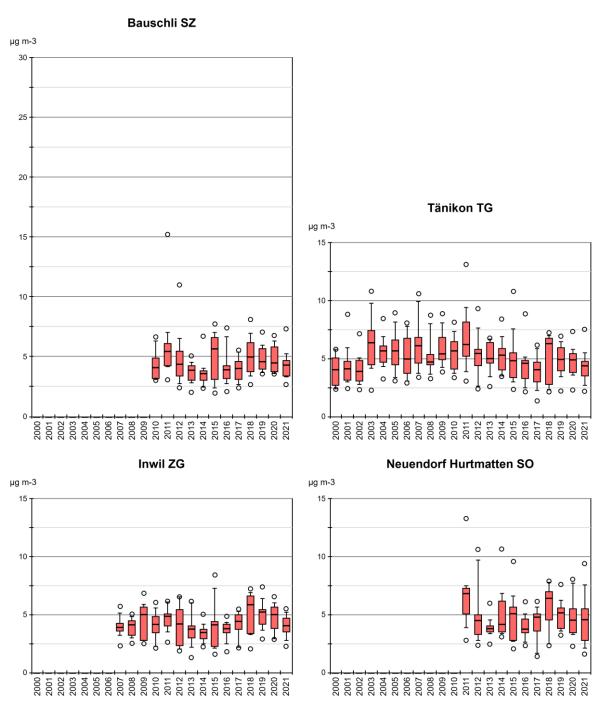


Abb. 21 Ammoniakkonzentration von SZ-01, TAE, INWI, NEHU

Monatsmittelwerte von Bauschli (SZ), Tänikon (TG), Inwil (ZG), Neuendorf Hurtmatten (SO) als Boxplots dargestellt.

Belastungstyp: Ländlich, unterhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration 5-8 µg m⁻³

Abbildungen 22 bis 28 zeigen die 29 landwirtschaftlich geprägten Standorte mit höheren Immissionen von $5-8\mu g~m^{-3}$.

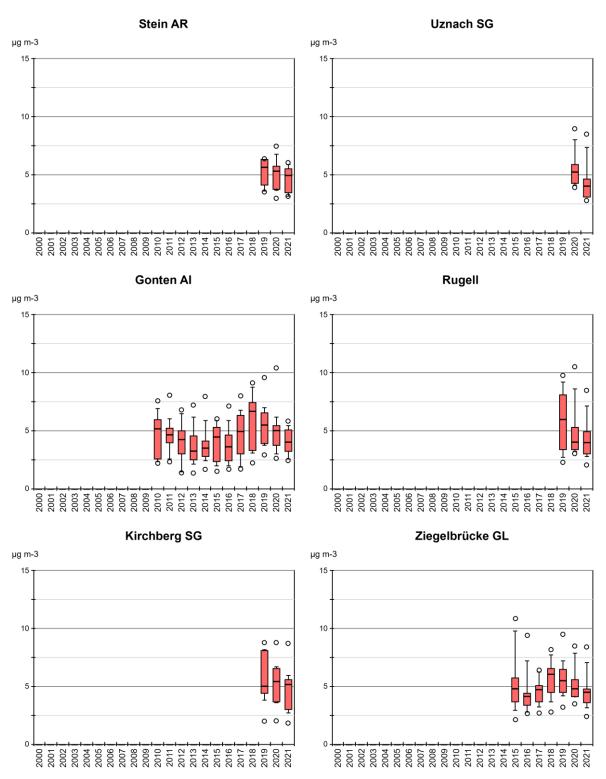


Abb. 22 Ammoniakkonzentration von SSH, KBR, AIG, RRI, KIT, BSZ,

Monatsmittelwerte von Stein (AR), Uznach (SG), Gonten (AI), Rugell (FL), Kirchberg (SG), Ziegelbrücke (GL) als Boxplots dargestellt.

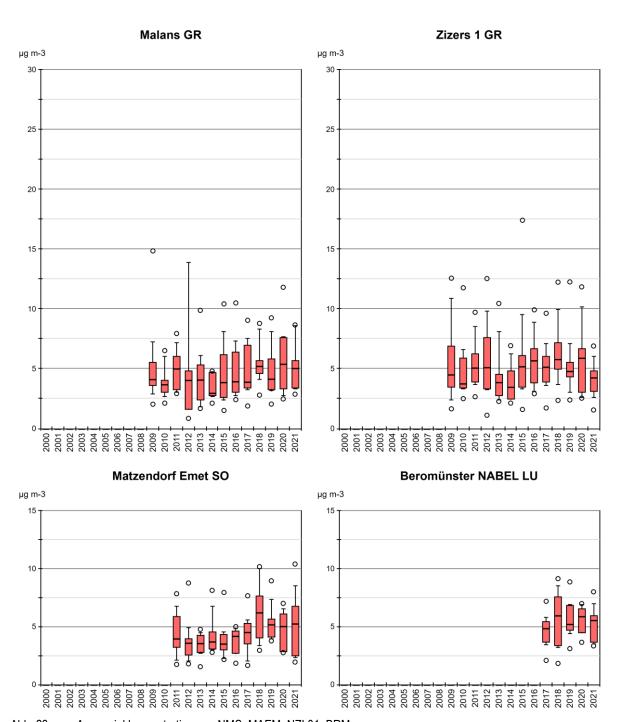


Abb. 23 Ammoniakkonzentration von NMS, MAEM, NZI 01, BRM
Monatsmittelwerte von Malans (GR), Matzendorf Emet (SO), Zizers 1 (GR), Beromünster NABEL (LU)) als Boxplots dargestellt.

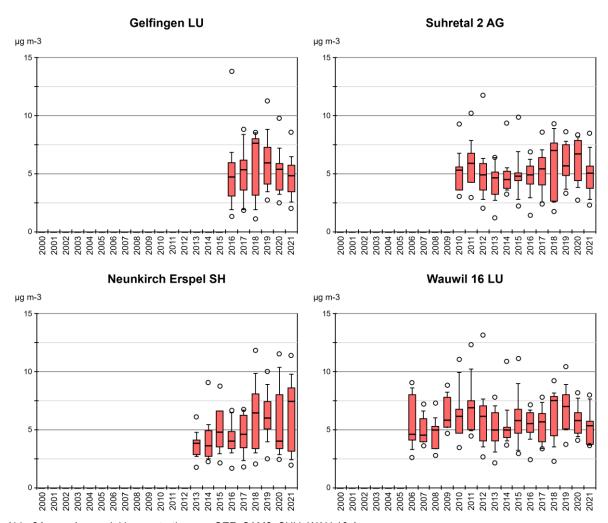
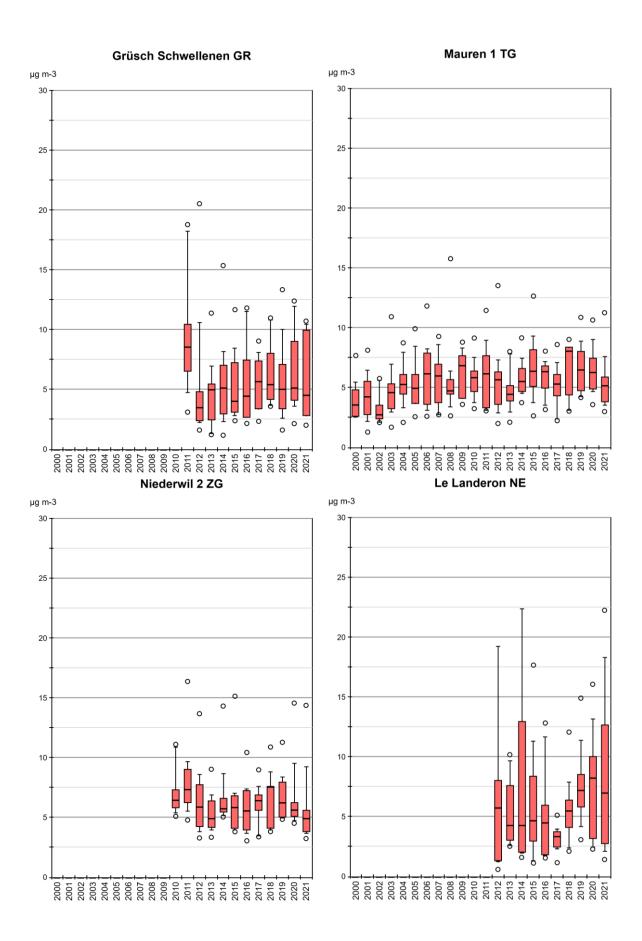



Abb. 24 Ammoniakkonzentration von GEF, SAM2, SHkl, WAU 16.4

Monatsmittelwerte von Gelfingen (LU), Suhretal 2 (AG), Neunkirch Erspel (SH), Wauwil 16 (LU) als Boxplots dargestellt.

Nächste Seite:

Abb. 25 Ammoniakkonzentration von NGS, MAU 01, ZG-02, NE 03,
Monatsmittelwerte von Grüsch Schwellenen (GR), Mauren 1 (TG), Niederwil 2 (ZG), Le Landeron (NE) als Boxplots dargestellt.

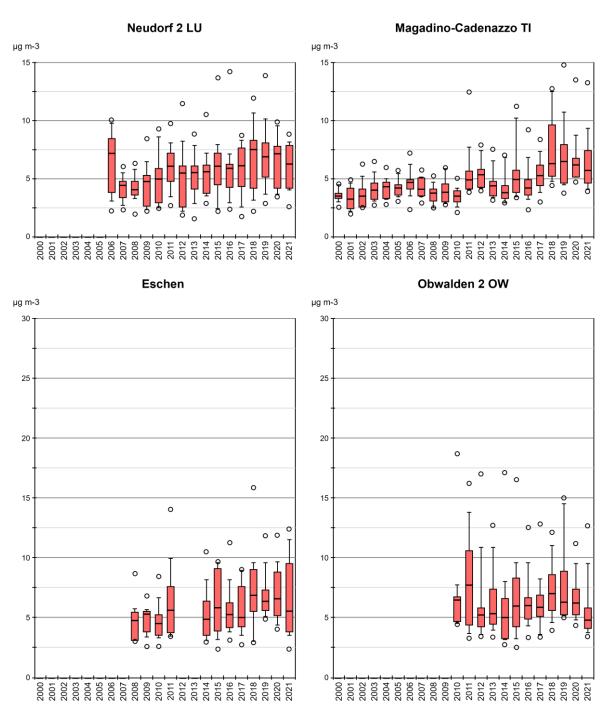


Abb. 26 Ammoniakkonzentration von NEU 02, MAG, EST, OW-02
Monatsmittelwerte von Neudorf 2 (LU), Magadino-Cadenazzo (TI), Eschen (FL), Obwalden 2 (OW) als Boxplots dargestellt.

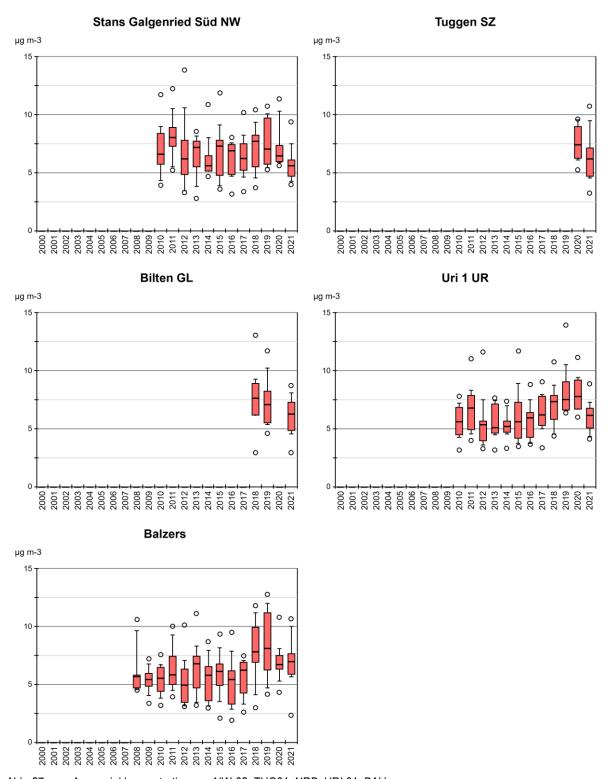


Abb. 27 Ammoniakkonzentration von NW-02, TUG01, NRB, URI 01, BAV

Monatsmittelwerte von Stans Galgenried Süd (NW), Tuggen (SZ), Bilten (GL), Uri 1 (UR), Balzers (FL) als Boxplots dargestellt.

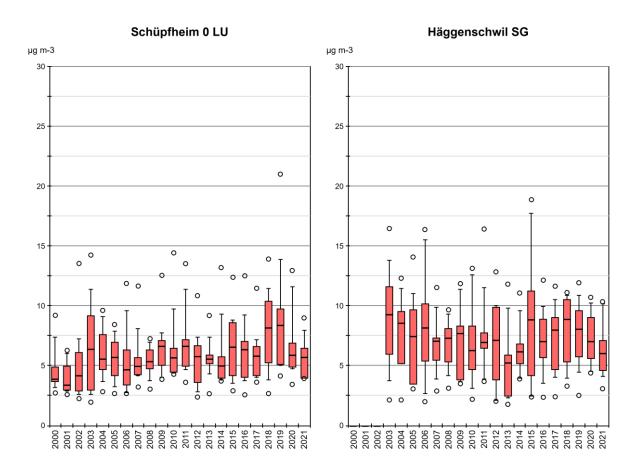
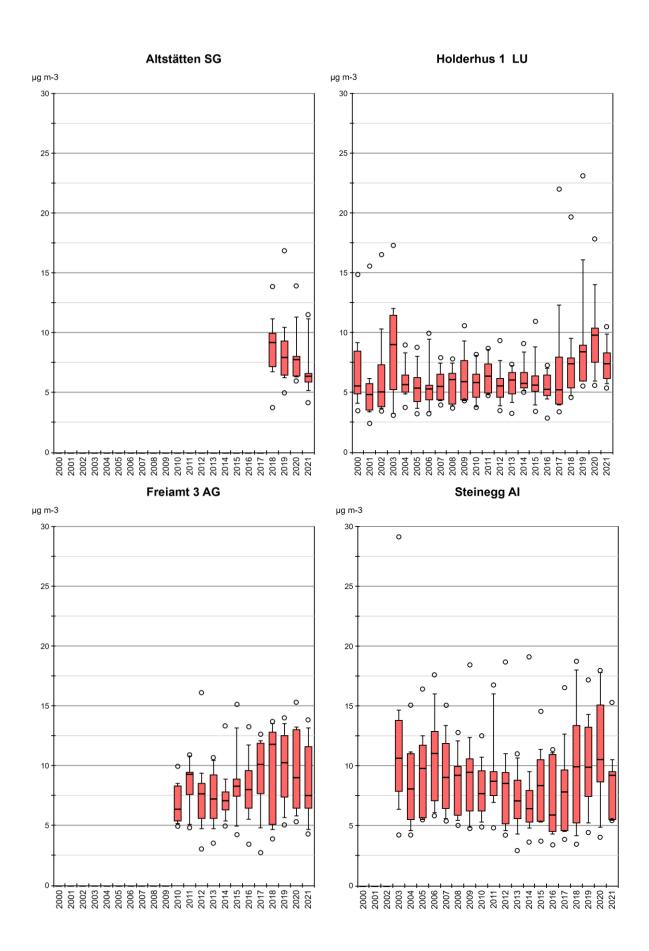
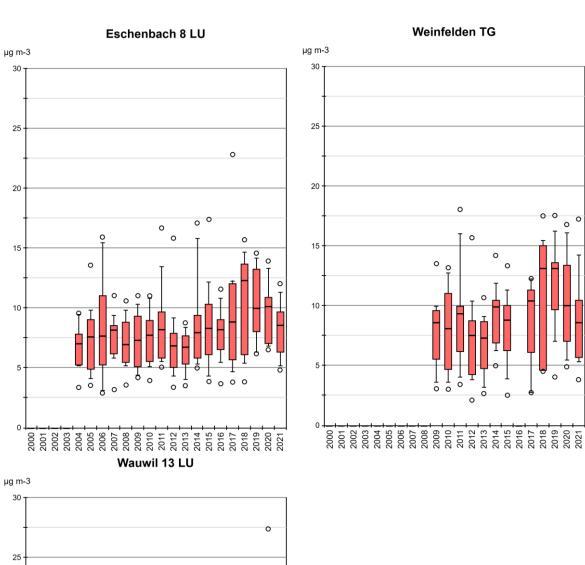


Abb. 28 Ammoniakkonzentration von SCHÜ 00, HÄG

Monatsmittelwerte von Schüpfheim 0 (LU), Häggenschwil (SG) als Boxplots dargestellt.


Belastungstyp: Ländlich, unterhalb 900 m ü. M.; Immissionstyp: NH₃-Konzentration > 8 µg m⁻³


Abbildungen 29 bis 30 zeigen die sieben ländlich gelegenen stark landwirtschaftlich beeinflussten Standorte unterhalb 900 m ü. M. mit hohen Immissionen – Jahresmittel höher als 8 $\mu g \ m^{-3}$.

Nächste Seite:

Abb. 29 Ammoniakkonzentration von ALB, HOL 01, SIN3, APS

Monatsmittelwerte von Altstätten (SG), Holderhus 1 (LU), Freiamt 3 (AG), Steinegg (AI) als Boxplots dargestellt.

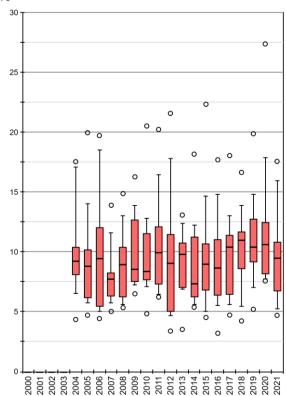


Abb. 30 Ammoniakkonzentration von ESC 08, WEIN, WAU 13

Monatsmittelwerte von Eschenbach 8 (LU), Weinfelden (TG), Wauwil 13 (LU) als Boxplots dargestellt.

Belastungstyp: Ländlich, verkehrsbelastet; Immissionstyp: NH3-Konzentration 3-5 µg m-3

Abbildung 31 zeigt die Werte des Standorts Netstal, die direkt an einer stark befahrenen Durchgangsstrasse in der Siedlung liegt, aber auch von Landwirtschaft beeinflusst ist.

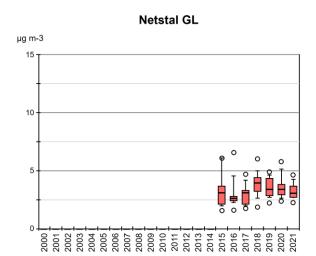


Abb. 31 Ammoniakkonzentration von WIG

Monatsmittelwerte von Netstal (GL) als Boxplots dargestellt.

Belastungstyp: Ländlich, verkehrsbelastet; Immissionstyp: NH3-Konzentration 5-8 µg m⁻³

Abbildung 32 zeigt die Werte des Standorts Schaan 1, der direkt an einer stark befahrenen Strassenkreuzung in der Siedlung liegt, aber auch von Landwirtschaft beeinflusst ist.

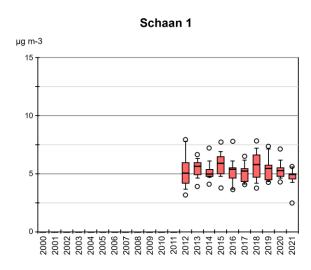


Abb. 32 Ammoniakkonzentration von SLI 01

Monatsmittelwerte von Schaan 1 (FL) als Boxplots dargestellt.

Belastungstyp: Ländlich, an Autobahn; Immissionstyp: NH₃-Konzentration 3-5 µg m⁻³

Die Standorte San Vittore und Sion-Aeroport sind sowohl an der Autobahn gelegen, wie auch von landwirtschaftlicher Fläche umgeben (Abb. 33).

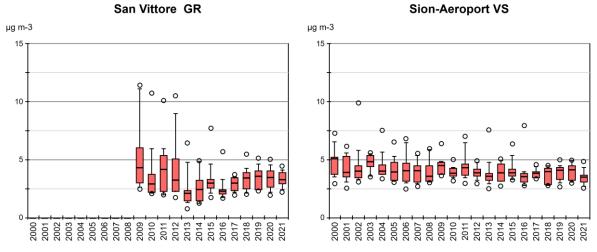


Abb. 33 Ammoniakkonzentration von NV4 und SIO

Monatsmittelwerte von San Vittore (GR) und Sion-Aeroport (VS) als Boxplots dargestellt.

Belastungstyp: Ländlich, an Autobahn; Immissionstyp: NH₃-Konzentration 5-8 μg m⁻³

Der Standort Härkingen ist ebenfalls direkt an der Autobahn gelegen und von landwirtschaftlicher Fläche umgeben (Abb. 34).

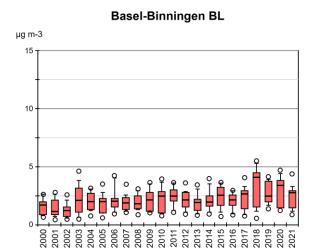


Abb. 34 Ammoniakkonzentration von HAE

Monatsmittelwerte von Härkingen (SO) als Boxplots dargestellt.

Belastungstyp: Vorstädtisch; Immissionstyp: NH₃-Konzentration 1–3 µg m⁻³

Abbildung 35 zeigt den Standort Basel-Binningen, der siedlungsnah aber nicht verkehrsexponiert liegt.

Abb. 35 Ammoniakkonzentration von BAS Monatsmittelwerte von Basel-Binningen (BL) als Boxplots dargestellt.

Belastungstyp: Städtisch; Immissionstyp: NH₃-Konzentration 1-3 µg m⁻³

Der Standort Lugano (Abb. 36) ist durch Gebäude von den umliegenden Strassen abgeschirmt.

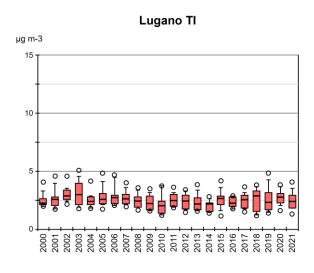


Abb. 36 Ammoniakkonzentration von LUG

Monatsmittelwerte von Lugano (TI) als Boxplots dargestellt.

Belastungstyp: Städtisch, verkehrsbelastet; Immissionstyp: NH₃-Konzentration 1–3 µg m⁻³

Der Standort Solothurn Altwyberhüsli ist auf zwei Seiten von Ackerbau, auf zwei Seiten von einer Strasse mit daran angrenzenden Wohngebieten umgeben (Abb. 37).

Solothurn Altwyberhüsli SO

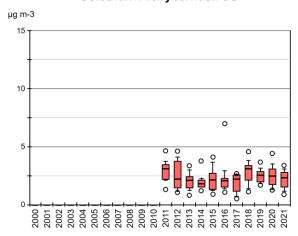


Abb. 37 Ammoniakkonzentration von SOAL
Monatsmittelwerte von Solothurn Altwyberhüsli (SO) als Boxplots dargestellt.

Belastungstyp: Städtisch, verkehrsbelastet; Immissionstyp: NH₃-Konzentration 3-5 µg m⁻³

Der Standort Rapperswil in kleinstädtischer Umgebung liegt an stark befahrenen Durchgangsstrassen (Abb. 38).

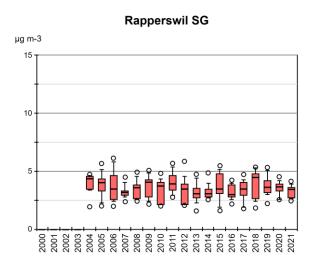


Abb. 38 Ammoniakkonzentration von RAP

Monatsmittelwerte von Rapperswil (SG) als Boxplots dargestellt.

4.6 Jahresverläufe der Konzentrationen

Die folgenden Graphiken zeigen Jahresverläufe der Ammoniak Konzentrationen an charakteristischen Standorten. Um die gemittelten Jahresverläufe darzustellen, wurden die Mediane der Monatsmittelwerte der letzten 18 Jahren berechnet.

Ackerbau und Tierproduktion

In ländlichen Gebieten sind Jahresgänge mit tiefen Winterwerten und höheren Sommerwerten zu beobachten. In Ackerbaugebieten, wie z.B. Payerne (PAY) sind die Schwankungen geringer und die Werte insgesamt tiefer als in Gebieten mit intensiver Tierproduktion, wie z.B. Wauwil 13 (WAU 13) und Ap.-Steinegg (APS). Auffallend sind die Spitzenwerte im März und November sowie etwas weniger im Sommer, welche mit Gülleausbringung erklärt werden können (Abb. 39).

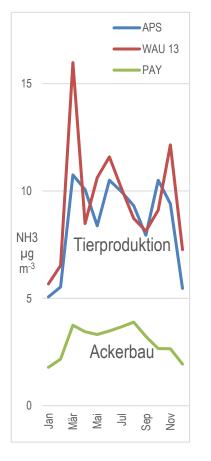


Abb. 39

Jahresverläufe der NH₃-Konzentration an landwirtschaftlich bewirtschafteten Standorten

Mediane der Monatsmittel 2004–2021

Ackerbau: Beispiel Payerne (PAY), typischer Jahresgang mit wenig hohen Spitzenwerten.

Tierproduktion: Beispiel Wauwil 13 (WAU 13) und Ap.-Steinegg (APS), typischer Jahresgang überlagert mit Konzentrationsspitzen bei landwirtschaftlicher Tätigkeit wie Gülleausbringung.

Naturschutzgebiete

Der Ammoniakeintrag in Naturschutzgebiete ist stark beeinflusst von der direkten Umgebung. Am höher gelegenen Standort Zugerberg (ZB 01), mit nur wenig umliegender Tierproduktion und am Hochmoorrand gelegen, sind die Werte tiefer als im Flachmoor Wauwilermoos (WAU 16.4), welches von intensiver Landwirtschaft umgeben ist (Bsp. WAU 13). Bei Standort ZB 01 zeigen sich kaum Monate mit Spitzenwerten, hingegen bildet sich im Moor (WAU 16.4) der in der Umgebung herrschende Jahresgang (WAU 13) auf tieferem Niveau ab (Abb. 40).

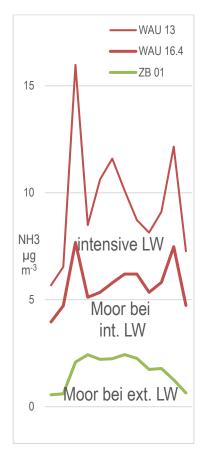


Abb. 40 Jahresgänge der NH₃-Konzentration bei Mooren Mediane der Monatsmittel 2004–2020 (ZB 01, WAU 13), 2006–2020 (WAU 16.4).

ZB 1 bei extensiver LW, WAU 16.4 bei intensiver LW. Zum Vergleich WAU 13 inmitten intensiver LW in der Nähe des Moores (LW = Landwirtschaft).

Städtische Gebiete

Städtische und verkehrsreiche Standorte zeigen vergleichbare NH₃-Konzentrationen und saisonale Variationen (Abb. 41) wie die Ackerbauregionen (Abb. 39). Massgebliche Ammoniakemittenten in Städten sind Fahrzeuge, Kanalisation und Kehricht. Jedoch bildet sich auch die landwirtschaftliche Tätigkeit in der Umgebung der Stadt im jährlichen Verlauf ab (RAP).

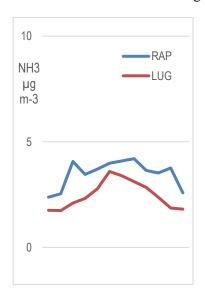


Abb. 41 Jahresverläufe der NH₃-Konzentration an städtischen Standorten

Mediane der Monatsmittel 2004–2020.

Rapperswil: Messung auf ca. 12 m oberhalb Strassenkreuzung. (DTV = 24'000)

Lugano: Messung ca. 50 m entfernt von Strassen (Innenhofsituation).

"Untypische" Verläufe

Die Werte an den Standorten Sion Aeroport (SIO) und Magadino (MAG) und – noch ausgeprägter – San Vittore (NV4) laufen dem allgemeinen Jahreszeitmuster entgegen: Im Winter werden regelmässig höhere Werte gemessen als im Sommer (Abb. 42). Bei San Vittore ist eine mögliche Erklärung, dass sich im unteren Misox in der kalten Jahreszeit regelmässig ein Kaltluftsee ausbildet. Zwischen Mitte Dezember und Ende Januar kommt keine Sonne zur Messstelle. Bekannt ist die Messstelle auch wegen hoher PM10-Belastung im Winter.

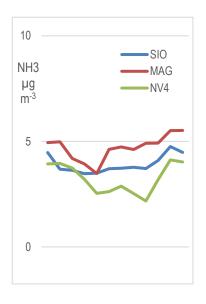


Abb. 42 Jahresgänge der NH₃-Konzentration an Standorten mit "untypischem" Verlauf Mediane der Monatsmittel 2004–2021 (SIO, MAG), 2009–2021 (NV4).

Atypischer Jahresgang mit höheren Werten im Winter als im Sommer.

4.7 Beispiele regionaler Messnetze

Die Standorte der regionalen Messnetze sind in Kapitel 7.4, Tabelle 15 beschrieben.

4.7.1 Kanton Bern

Der Standort WTG1 befindet sich auf 30 Metern Höhe über Boden auf dem Wasserturm von Gimmiz im Berner Seeland. Die Messungen in Gimmiz wurden durch drei Standorte nördlich, südlich und westlich des Turms (WTGN, WTGS, WTGW) erweitert (Abb. 43 links, westlicher Standort nur 2011–2018 betrieben), je mit auf 3.3 m Höhe installierten Aufhängvorrichtungen. 250 m nordnordöstlich des Turms liegt ein grösserer Landwirtschaftsbetrieb, ansonsten ist der Wasserturm von intensiv bewirtschafteten Acker-, Gemüse- und Futterbauflächen sowie einer Obstanlage umgeben.

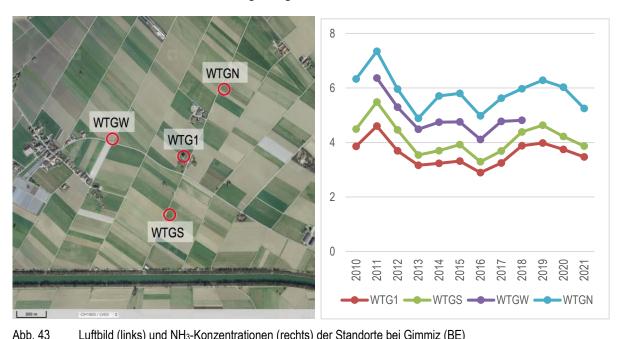


Abb. 43 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte bei Gimmiz (BE)
 Verlauf der Jahresmittelwerte, Einheit: μg m⁻³.
 Der Standort WTG 1 befindet sich auf dem Wasserturm in 30 m Höhe, bei den anderen Standorten sind die Aufhängevorrichtungen auf 3.3 m Höhe montiert. Luftbild: geodata © swisstopo.

Die Jahresmittelwerte der vier Standorte verlaufen parallel. Der Unterschied zwischen den niedrigsten Werten der Station auf dem Wasserturm (WTG1) und den höchsten Werten des in der Nähe des erwähnten Landwirtschaftsbetriebs gelegenen, nördlichen Standorts (WTGN) beträgt ca. 2.2 µg m⁻³ (Abb. 43 rechts). Von 2011 bis 2016 sind die Werte tendenziell gesunken. 2010 startete ein Projekt zur Reduktion der Nitratbelastungen aus der Landwirtschaft, das sich inzwischen positiv auf die Nitratwerte im Trinkwasser ausgewirkt hat und unterdessen um sechs weitere Jahre verlängert wurde. Im Rahmen dieses Projekt wurde im Zuströmbereich des Wasserturms auf einer Fläche von ca. 160 ha die Bewirtschaftung mehrheitlich extensiviert (bodenschonende Anbausysteme, Ackerland zu Wiesland u.a.). Zusätzlich sind im Zusammenhang mit dem kantonalen Ressourcenprogramm, das von 2009 bis 2015 dauerte, verschiedene ammoniakmindernde Massnahmen umgesetzt worden. Unter anderem wird nun ein grosser Teil der Gülle mit Schleppschlauchverteiler ausgebracht. Der erneute Anstieg der Werte von 2018 bis 2020 wurde in der ganzen Schweiz beobachtet und steht mit der warmen Witterung dieser Jahre in Verbindung.

4.7.2 Kanton Solothurn

In drei Geländekammern im Kanton Solothurn wurden je drei bis fünf Messpunkte platziert.

In der Gegend von Hessikofen im Solothurner Mittelland (Abb. 44) verlaufen die Jahresmittelwerte der Ammoniakkonzentrationen mehrheitlich parallel, mit einem Unterschied von ca. $1.2 \,\mu g \, m^{-3} \, NH_3$ vom höchsten zum tiefsten Wert. 2011 und 2018/2019 zeigten sich (wohl witterungsbedingt) bei allen Standorten höhere Werte.

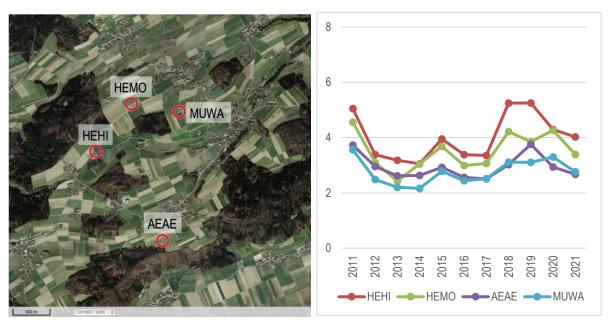


Abb. 44 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte bei Hessikofen (SO) Verlauf der Jahresmittelwerte, Einheit: μg m⁻³.

Alle 4 Standorte befinden sich in Gebieten mit Feld und Ackerwirtschaft. Luftbild: geodata © swisstopo.

In der Region Matzendorf im Solothurner Jura unterschieden sich bis 2016 die Jahresmittelwerte um ca. 1 μ g m⁻³, seit 2017 wird der Unterschied grösser (Abb. 45). Die Jahresmittelwerte von MAEM und MACH sind zunehmend, während die Konzentration am Standort MAST kaum schwankt.

Ebenfalls ähnliche Verläufe aber grössere Unterschiede in den Ammoniakkonzentrationen finden sich in der Region Egerkingen (Abb. 46). EGWA im Industriegebiet von Egerkingen, NEHU im Landwirtschaftsgebiet und HAE an Autobahn und Feldern gelegen weisen die höchsten Jahresmittelwerte von 4 bis 6 μ g m⁻³ auf. HAGN, ein Standort am Jurahang weist die niedrigsten Jahresmittelwerten in dieser Region von 1.5 bis 2 μ g m⁻³ auf. Der Standort GUWI, ebenfalls im Landwirtschaftsgebiet gelegen, zeigt eine mittlere Konzentration von 4 μ g m⁻³. Es ist kein Trend bezüglich Zu- oder Abnahme zu sehen.

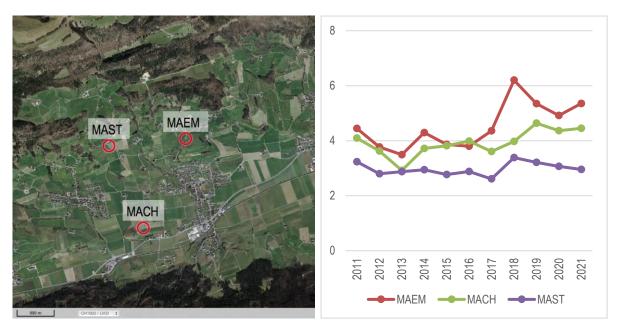


Abb. 45 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte bei Matzendorf (SO) Verlauf der Jahresmittelwerte, Einheit: µg m⁻³.

Alle 3 Standorte befinden sich in Gebieten mit Feld- und Ackerwirtschaft. Luftbild: geodata © swisstopo.

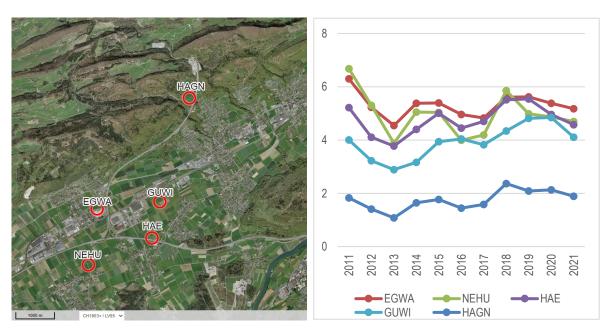


Abb. 46 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte bei Egerkingen (SO)

Verlauf der Jahresmittelwerte, Einheit: µg m⁻³.

EGWA liegt direkt zwischen Strasse und Einkaufszentrum; GUWI und NEHU inmitten von Feldern, HAGN am Jurahang in der Nähe des Waldes, der NABEL-Standort HAE direkt an der Autobahn und an landwirtschaftlichen Kulturen.

Luftbild: geodata © swisstopo.

4.7.3 Kanton Graubünden

Südöstlich vom Dorf Grüsch in der Region Prättigau/Davos sind zwei Standorte im Abstand von 470 Metern platziert. Nahe von Grüsch Dorf befinden sich mehrere Landwirtschaftsbetriebe. In diesem Gebiet kommen im Winter häufig Kaltluftseen vor.

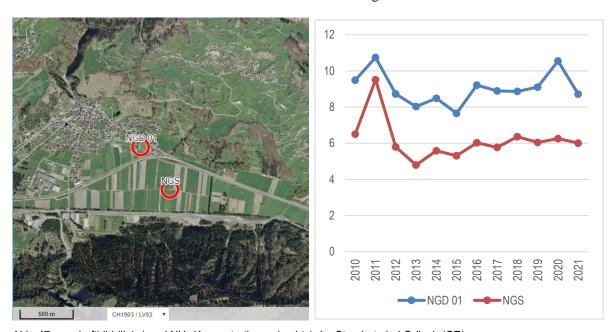


Abb. 47 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte bei Grüsch (GR)
 Verlauf der Jahresmittelwerte, Einheit: μg m⁻³.
 Die zwei Standorte befinden sich in einem Ackerbaugebiet, nahe bei Grüsch Dorf befinden sich mehrere Landwirtschaftsbetriebe. Luftbild: geodata © swisstopo.

In Grüsch verlaufen die Werte der zwei Standorte mehrheitlich parallel mit einem Unterschied von ca. $3 \,\mu g \, m^{-3} \, NH_3$. Die Konzentrationen haben sich seit 2012 nur wenig verändert (Abb. 47).

4.7.4 Kanton Thurgau

Im Norden vom Hudelmoos, im Thurgau an der Grenze zum Kanton St. Gallen gelegen, sind die Standorte HUD 0 und HUD 3 100 m voneinander entfernt. Der Standort HUD 3 ist nur auf 1.5 m über Grund aufgestellt und im Laufe der Jahre wurde dieser von Bäumen und Büschen umgeben, während sich der Standort HUD 0 auf 3 m Höhe befindet und frei von hoher Vegetation im Moor steht. Der Standort Muolen im Kanton St. Gallen ist am südlichen Rand des Moorse, 860 m von HUD 3 entfernt auf 3 m Höhe exponiert.

Die Jahreswerte von HUD0 und HUD 3 unterscheiden sich nur um 0 bis 0.5 μg m⁻³, MOH hatte 2021 einen doppelt so hohen Jahreswert (Abb. 48).

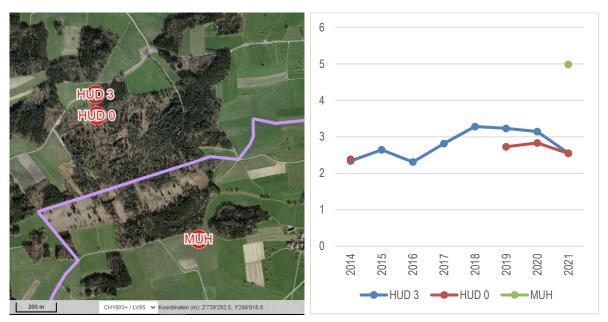


Abb. 48 Luftbild (links) und NH₃-Konzentrationen (rechts) der Standorte im Hudelmoos (TG & SG) Links: Kantonsgrenze lila markiert. Rechts: Verlauf der Jahresmittelwerte, Einheit: µg m⁻³. Drei unterschiedlich exponierte Standorte im Hudelmoos. Luftbild: geodata © swisstopo.

4.7.5 Kanton Luzern, Höhentransekt

Abb. 49 Luftbild (links) und NH₃-Konzentrationen (rechts) in Wauwil 16 mit NH₃-Messungen auf 2 und 4 m Höhe) Verlauf der Jahresmittelwerte, Einheit: μg m⁻³.

NH₃-Messungen auf 2 und 4 m Höhe am Wauwilermoos. Luftbild: geodata © swisstopo.

Am Wauwilermoos im Kanton Luzern wird Ammoniak auf 2 und 4 Metern Höhe über Grund gemessen. Um das Moor wird intensive Landwirtschaft betrieben.

Die NH₃-Jahresmittelwerte sind oben 0.4 bis 0.7 μg m⁻³ höher als unten. (Abb. 49).

4.7.6 Zentralschweizer Kantone und Ostluft

Regionale Messnetze in den Zentralschweizer Kantonen LU, NW, OW, SZ, UR und ZG sind in Wey et al. (2021) beschrieben. Jene der Kantone Appenzell-Innerrhoden, Appenzell-Ausserrhoden, Glarus, Graubünden, St. Gallen, Schaffhausen, Thurgau und Zürich und des Fürstentums Liechtenstein im Ostluft-Jahresbericht (Ostluft 2021).

5 Qualitätssicherung

Die FUB nimmt seit 2015 am EMEP-Ringversuch der analytischen Methoden⁵ teil. Ammoniak auf Filtern sowie Ammonium im synthetischen Regen erfüllten die EMEP-Qualitätsnorm (Abb. 50).

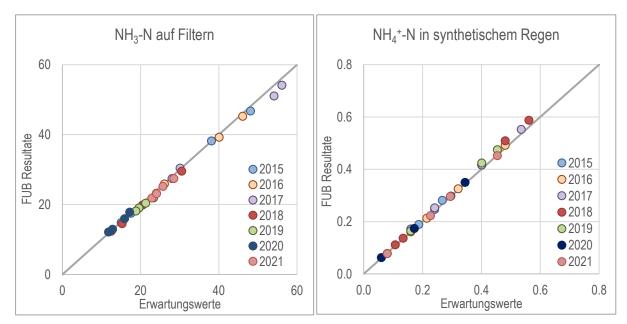


Abb.50 Ringversuchsresultate der FUB, verglichen mit den erwarteten Konzentrationen. Links: Ammoniak auf imprägnierten Filtern, Einheit: µg N pro Filter Rechts: Ammonium in Niederschlag, Einheit: µg N l-1.

Passivsammler werden laufend mit einem Referenzverfahren (Denuder, VDI 3869 Blatt 3 2010, BAFU & Empa 2018) überprüft. Abbildung 51 links zeigt den Vergleich zwischen Minidenudern der Empa (Quelle: NABEL, BAFU und Empa) und Radiello Passivsammlern. In Abbildung 51 rechts sind die Ferm Passivsammlerwerte mit Empa-Minidenudern des NABEL-Messnetzes verglichen. Vergleiche mit Radiello Passivsammlern erfolgten von 2011 bis 2017, mit Ferm Passivsammlern von 2018 bis 2021. Die Übereinstimmung ist gut.

Ferm-Passivsammler werden ebenfalls laufend mit Radiello-Sammlern verglichen, (Abb. 52, links, 2009 bis 2017). Die Probenahme von der 2- & 4-Wochen-Werte erfolgte an 12 Standorten (extensive und intensive Landwirtschaft, Stadt, Verkehr, Hintergrund). Abbildung 52 rechts, zeigt die Vergleichswerte von 9 Standorten im Jahr 2018, Rapperswil, Bachtel und Sachsen seit 2018 und Robenhuserried seit Mitte 2021. Die Übereinstimmung ist sehr gut.

Die Messwerte des Jahres 2018 bis 2020 waren an vielen Orten höher als in früheren Jahren. Dies ist jedoch nicht auf die Umstellung von Radiello auf Ferm im Jahr 2018 zurückzuführen, wie der Vergleich in Abbildung 52 rechts zeigt.

 5 EMEP - 33rd - 39rd intercomparison of analytical methods, organisiert und durchgeführt von NILU - Norwegian Institute for Air Research

.

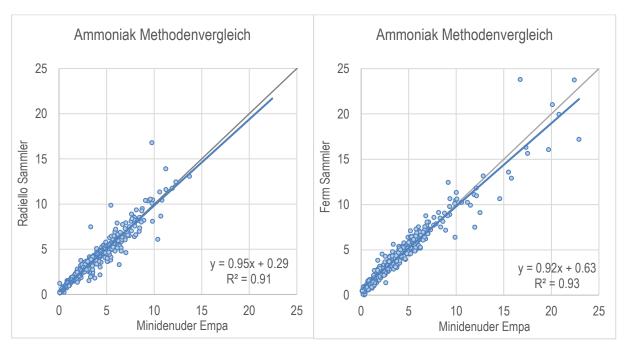


Abb. 51 NH₃-Konzentration von Passivsammlern im Vergleich mit Minidenudern Oben links: Radiello Sammler und Minidenuder (Referenzverfahren, Quelle: NABEL), 526 Datenpaare. Oben rechts: Ferm Sammler und Minidenuder (Quelle: NABEL), 413 Datenpaare, Einheit: µg m⁻³.

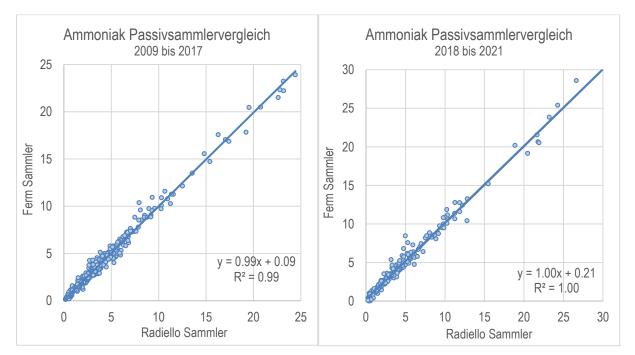


Abb. 52 Radiello- und Ferm-Passivsammler für Ammoniak im Vergleich 2 Passivsammlertypen der FUB: links 2009 bis 2017 (427 Datenpaare), rechts 2018 bis 2021 (254 Datenpaare) Einheit: µg m⁻³.

6 Literatur

- Agridea 2022: Emissionsmindernde Ausbringverfahren
- Agridea & Landwirtschaftsamt Thurgau 2006: Projektskizze N-Effizienz der Hofdünger steigern durch Reduktion der Ammoniakverluste.
- BAFU 2011: BDM-Facts Nr.3: Stickstoffeintrag aus der Luft verändert Vielfalt.
- BAFU 2013: Stickstoffflüsse in der Schweiz 2020, Bern. Umwelt-Wissen Nr. 1309, 107 S.
- BAFU 2018: Umwelt Schweiz 2018 Bericht des Bundesrates.
- BAFU 2020: Übermässigkeit von Stickstoff-Einträgen und Ammoniak-Immissionen. Bewertung anhand von Critical Loads und Critical Levels insbesondere im Hinblick auf einen kantonalen Massnahmenplan Luftreinhaltung. Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 2003, 23 S.
- BAFU 2022: Auszug aus dem Emissionsinventar EMIS der Abteilung Luftreinhaltung und Chemikalien.
- BAFU & BLW 2016: Umweltziele Landwirtschaft. Statusbericht 2016. Bundesamt für Umwelt. Umwelt-Wissen Nr.1633, Bern, 114 S.
- BAFU & BLW 2021A: Baulicher Umweltschutz in der Landwirtschaft. Ein Modul der Vollzugshilfe Umweltschutz in der Landwirtschaft. Teilrevidierte Ausgabe 2021. Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1101, 113 S.
- BAFU & BLW 2021B: Nährstoffe und Verwendung von Düngern in der Landwirtschaft. Ein Modul der Vollzugshilfe Umweltschutz in der Landwirtschaft. Teilrevidierte Ausgabe 2021. Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1225, 61 S.
- BAFU & Empa 2020: Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL) 2020.
- BBI 2009: Konzept betreffend lufthygienische Massnahmen des Bundes. Bericht des Bundesrats 11.9.2009, Bundesblatt Nr. 40 6.10.2009.
- Bobbink R., Hettelingh JP (eds.), 2011: Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. Coordination Centre for Effects, National Institute for Public Health and the Environment.
- Cape J. N., van der Eerden L. J., Sheppard L. J., Leith I. D., Sutton M. A. 2009: Reassessment of Critical Levels for Ammonia. Chapter 2 In: Sutton M. A., Reis S., Baker S. M. H. (Eds) 2009: Atmospheric Ammonia, Springer Science +Business Media B. V. ISBN 978-1-4020-9120-9.
- Cercl'Air 2002: Minderung der Ammoniak-Emissionen aus der Landwirtschaft Grundlagen der Luftreinhaltung. Positionspapier des Cercl'Air Bericht der Arbeitsgruppe Ammoniak-Emissionen.

- CLRTAP 2017: Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution.
- Dämmgen U., Thöni L., Lumpp R., Gilke K., Seitler E., Bullinger M. 2010: Feldexperiment zum Methodenvergleich von Ammoniak- und Ammonium-Konzentrationsmessungen in der Umgebungsluft, 2005 2008 in Braunschweig. vTl Johann Heinrich von Thünen-Institut Braunschweig, Sonderheft 337.
- EKL 2005: Stickstoffhaltige Luftschadstoffe in der Schweiz. Status-Bericht der Eidg. Kommission für Lufthygiene (EKL), Bern.
- EKL 2013: Feinstaub in der Schweiz 2013 Statusbericht der Eidgenössischen Kommission für Lufthygiene.
- EKL 2014: Ammoniak-Immissionen und Stickstoffeinträge. Eidgenössische Kommission für Lufthygiene (EKL), Bern.
- EMEP: EMEP manual for sampling and chemical analysis: http://www.nilu.no/projects/ccc/manual/index.html (Stand 26.04.2022).
- Empa 2006: Chemische Zusammensetzung des Feinstaubs während der Smoglagen im Januar/Februar 2006. Abteilung Luftfremdstoffe/Umwelttechnik Empa Nr. 203'056/4.
- Empa 2021: Chemische Zusammensetzung und Quellen von Feinstaub, Untersuchungen an ausgewählten NABEL-Standorten. Abteilung Luftfremdstoffe/Umwelttechnik Empa.
- FOEN 2022: Switzerland's Informative, Inventory Report 2022, Submission of March 2022 to the United Nations ECE Secretariat. Federal Office for the Environment FOEN, Air Pollution Control and Chemicals Division, Bern.
- Kanton Appenzell Ausserrhoden 2008: Massnahmenplan Luftreinhaltung, Aktualisierung 2008.
- Kanton Luzern, Umwelt und Energie (uwe) 2007: Massnahmenplan Luftreinhaltung, Teilplan Ammoniak.
- KOLAS 2006: Empfehlungen zur Reduktion der Ammoniakverluste aus der Landwirtschaft. Herausgeber: Konferenz der Landwirtschaftsämter Schweiz (KOLAS).
- KOLAS und KVU 2022, Abdeckung von Güllelagern zur Reduktion von Ammoniakemissionen
- Kupper T., Häni Ch., Bretscher D., Zaucker F., 2022: Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020
- KVU 2006: Positionspapier über Ökologie und Landwirtschaft: Zustand wichtiger Umweltbereiche und Weiterentwicklung der agrarpolitischen Massnahmen vom 24. November 2006. Herausgeber: Konferenz der Vorsteher der Umweltschutzämter der Schweiz, (KVU).
- Mills G., Pleijel H., Büker P., Braun S., Emberson L., Harmens H., Hayes F., Simpson D., Grünhage L., Karlsson P.-E., Danielsson H., Bermejo V., Gonzalez Fernandez I. (2010 Revision): Chapter 3: Mapping Critial Levels for Vegetation. In: Manual on Methodologies and Criteria

- for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends, Modelling and Mapping Manual of the LRTAP Convention.
- Ostluft 2021: Jahresbericht 2021 https://jahresbericht.ostluft.ch/2021 (Stand 26.04.2022).
- PSI/uwe 2007: Verursacher von Feinstaub, Teilbericht 1 PSI: Januar Februar 2006, Teilbericht 2 uwe: Datenanalyse Reiden 2005/06, Paul Scherrer Institut / Umwelt und Energie Kanton Luzern.
- Rihm B., Achermann B. 2016: Critical Loads of Nitrogen and their Exceedances. Swiss contribution to the effects-oriented work under the Convention on Long-range Transboundary Air Pollution (UNECE). Federal Office for the Environment, Bern. Environmental studies no.1642: 78 p.
- Rihm B., Künzle T. 2019: Mapping Nitrogen Deposition 2015 for Switzerland. Technical Report on the Update of Critical Loads and Exceedance, including the years 1990, 2000, 2005 and 2010. Meteotest, Bern, commissioned by the Federal Office for the Environment (FOEN).
- Roth T., Kohli L., Rihm B., Achermann B., 2013: Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agriculture, Ecosystems and Environment 178: 121-126.
- Roth T., Kohli L., Rihm B., Amrhein V., Achermann B. 2015: Nitrogen deposition and multi-dimensional plant diversity at the landscape scale. R. Soc. open sci. 2: 150017.
- Seitler E. 2015: Einfluss der Expositionsdauer bei NH₃-Passivsammern von Radiello. Bezugsquelle: FUB, 8640 Rapperswil.
- Seitler E. 2022: Einfluss der Expositionsdauer bei Ferm-Passivsammlern für Ammoniak. Bezugsquelle: FUB, 8640 Rapperswil.
- Seitler E., Thöni L. 2009: Ammoniak-Immissionsmessungen in der Schweiz Sammel- und Messmethoden. Bezugsquelle: FUB, 8640 Rapperswil.
- Seitler E., Meier M., Ehrenmann Z. 2021: Atmosphärische Stickstoff-Deposition in der Schweiz 2000 bis 2019. FUB Forschungsstelle für Umweltbeobachtung 8640, Rapperswil https://www.bafu.admin.ch/bafu/de/home/themen/luft/publikationen-studien/studien.html (Stand 16.04.2022).
- Seitler E., Schnyder R., Rihm B. 2022: Ammoniak-Immissionsmessungen in der Schweiz, Beschreibung der Standorte und Daten. Bezugsquelle: FUB, 8640 Rapperswil.
- Thimonier A., Schmitt M., Waldner P., Rihm B. 2005: Atmospheric deposition on Swiss Long-term Forest Ecosystem Research (LWF) plots. Environmental Monitoring and Assessment 104: 81-118.
- Thöni L., Brang P., Braun S., Seitler E., Rihm B. 2004: Ammonia monitoring in Switzerland with passive samplers: patterns, determinants and comparison with modelled concentrations. Environmental Monitoring & Assessment.

- UNECE 2007: Report on the Workshop on Atmospheric Ammonia: Detecting Emission Changes and Environmental Impacts. ECE/EB.AIR/WG.5/2007/3.
- UNECE 2014: Leitfaden zur Vermeidung und Verringerung von Ammoniakemissionen aus landwirtschaftlichen Quellen, ECE/EB.AIR/120.
- VDI 3869 Blatt 3 2010: Messen von Ammoniak in der Aussenluft; Probenahme mit beschichteten Diffusionsabscheidern (Denudern); Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin.
- VDI 3869 Blatt 4 2012: Messen von Ammoniak in der Aussenluft; Probenahme mit Passivsammlern; Fotometrische oder ionenchromatografische Analyse. Beuth Verlag GmbH, 10772 Berlin
- Waldner P., Schaub M., Graf Pannatier E., Schmitt M., Thimonier A., Walthert L. 2007. Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded? In: Paoletti E., Schaub M., Bytnerowicz A. (eds.). Air Pollution and Global Change: Key Studies of the Effects on Forest Vegetation. Environmental Monitoring and Assessment (Special Issue) 128:5-17.
- Wey H., Ruckstuhl, C. 2021: Messbericht Ammoniak, Ammoniakmessungen in der Zentralschweiz von 2000 bis 2010, inNET Monitoring AG, Altdorf.
- WMO 2017: WMO Guide to meterological instruments and methods of observation. WMO-No. 8 2014 edition, Part I, Chap. 16.

7 Anhang

7.1 Standort-Umplatzierungen

In den ersten Jahren wurden die Sammler nicht nach einheitlichen Kriterien platziert. 2008 wurden Kriterien definiert und Empfehlungen für Messstandorte formuliert (Kapitel 3.2). An manchen Standorten wurden daraufhin die Passivsammler höher gehängt, um den Messempfehlungen zu entsprechen. Wenn möglich wurde jeweils über ein Jahr an der alten und der neuen Position gemessen, die alten Werte wurden, wenn nötig, mit den durch die Vergleichsmessungen ermittelten Faktoren umgerechnet, um die langjährigen Messreihen zu erhalten. Andere Standorte mussten im Lauf der Jahre, meist wegen Bauarbeiten, verschoben werden. In Tabelle 12 sind die Standorte mit Änderungen aufgeführt.

Tab. 12 bedeutender Wechsel am Standort
Standorte die umplatziert werden (mussten) aber weitergeführt wurden.

Nr. (Karte Abb.1		Standort Name	Kt. / Land	Stao der langj. Entw. (Kap. 4.1)	bedeutender Wechsel	Vergleichsmessungen, Umrechnung der alten Werte
41	AIG	Gonten	Al	seit 2013	2021 um 100 m verschoben	nein
71	APS	Steinegg	Al	seit 2004	2008 ca. 10 m verschoben	nein
72	ESC 08	Eschenbach 8	LU	seit 2004	2006 4 Monate lang versetzt	nein
59	EST	Eschen	FL	seit 2008	2013 um 570 m verschoben	nein
67	HÄG	Häggenschwil	SG	seit 2004	2018 120 m versch. + von 1.7 auf 3.5 m höher gehängt	nein
69	HOL 01	Holderhus 1	LU	seit 2000	2007 von 1.2 auf 4 m höher gehängt	ja, HOL 01 = HOL 00 * $0.98 + 0.90 (R^2 = 0.95)$
81	LUG	Lugano	TI	seit 2000	1999 - 2005 grosse Umbauten, mehrmals verschoben	nein
54	MAU 01	Mauren 1	TG	seit 2000	2009 von 1.7 auf 3 m höher gehängt	ja, MAU 01 = MAU 00 (R^2 = 0.92)
28	N14	Domat/Ems	GR	seit 2013	2012 von 2 auf 3 m höher gehängt	nein
	NGD 01	Grüsch Dorf 1	GR	-	2012 von 2 auf 3 m höher gehängt	ja, NGD 01 = NGD 00 * 1.02 (R ² = 1.00)
48	NZI 01	Zizers 1	GR	seit 2013	2012 von 2 auf 3 m höher gehängt	ja, NZI 01 = NZI 00 * 0.96 (R^2 = 0.98)
64	SCHÜ 00	Schüpfheim 0	LU	seit 2000	2007 10 m verschoben, von 1 auf 3 m höher gehängt	nein
74	WAU 13	Wauwil 13	LU	seit 2004	2006 höher gehängt	nein
4	ZB 01	Zugerberg 1	ZG	seit 2000	2007 von 1.3 auf 2.2 m höher gehängt	ja, ZB 01 = ZB 00 * 1.05 (R^2 = 0.97)

7.2 Beschreibung der Standorte

Tab. 13 Standortbeschreibung tabellarisch
Beschreibung der Standorte, sortiert nach Belastungs- und Immissionstypen.

Seiten 69 & 70

7.3 Jahres- und saisonale Mittelwerte der Standorte

Tab. 14 Ammoniakkonzentrationen

Die Werte sind aufgeführt, wenn mindestens über 85 % (Jahr) oder 80 % (Saison) der Zeitspanne exponiert wurde.

Seiten 71 bis 73

r. (art	Code	Standort Name	Standort Gebiet	Kt./ Land	Stationsbetreiber	Koordi E	naten N	Höhe	Relief	Expo- sition	Neigung > 5 %	Höhe Sammler ü. Boder
bb.1)					m	m	m ü.M.			%	m
	CHA	Chaumont	Neuenburg	NE	NABEL	565'090	211'040	1137	Н	SE	7	3.5
	RAN	Merishausen Hagenturm	,g	SH	OSTLUFT	684'769	292'087	900	Н	SE	7.3	
3	RIG	Rigi-Seebodenalp		SZ	NABEL	677'845	213'462	1031	Н	NW	30	2
4	ZB 01	Zugerberg 1	Zug	ZG	IAP	682'992	220'489	990	K	_		2.2
5	FRÜE	Früebüel	Zugerberg	ZG	InNET	683'416	218'902	980	Е	_		2.4
6	BA	Bachtel	hinterer Sennenberg	ZH	OSTLUFT / FUB	710'340	239'607	930	Н	Е	18	1.4
7	ZIGE	Zigerhütti	Oberägeri	ZG	InNET	691'689	220'849	989	Н	W	14	2.3
	AIO	Oberegg	St. Anton	Al	Kt. Al	758'570	253'406	1071	Н	NW	12	2.5
	SARE	Sagno Reservoir	CE / UIOII	TI	IAP	724'286	80'024	820	T			1.65
	RAF	Hüntwangen	Rafzerfeld	ZH	Kt. ZH / FUB	678'908	271'880	399	E			4
			The state of the s					449	E	_		3
	AEG	Knonau	Agelsee	ZH	OSTLUFT / FUB	675'521	232'695				40	3
	WBM	Mollis	Welschenbühl	GL	Kt. GL	725'392	219'122	831	Н	NW	10	
	SCH	Schänis	Wellrüti	SG	OSTLUFT, WSL/LWF	722'923	223'521	630	Н	W	59	2
	GMO	Gänsemoos		BE	Kt. BE	593'658	186'957	797	Е	_		
	HUD 3	Hudelmoos 3	Amriswil im Wald	TG	OSTLUFT	739'124	265'522	521	E	_		1.5
16	VTG	Gwatt	Thun	BE	Kt. BE	614'540	174'585	558	Е	_		. 7
17	BRIS	Brislach	Feberech	BL	Kt. BL	608'865	252'037	450	E	_		4
18	PAY	Payerne		VD	NABEL	562'285	184'775	489	Е	_		3.5
19	IEB	Bärau		BE	Kt. BE	628'595	197'847	725	T	NW	9	7
20	OBI	Ottenbach	Bibelaas	ZH	OSTLUFT / FUB	672'489	236'903	386	Е	_		3
21	RO	Root Michaelskreuz		LU	InNET	673'847	218'489	791	Н	NW	17	1.7
22	WTG1	Gimmiz Dach	Walperswil	BE	Kt. BE	585'511	211'410	444	Е	_		30
	HEMO	Hessigkofen Moosgasse		SO	Kt. SO	601'471	220'742	605	E	_		4
	DEB	Näfels	Schwärzistrasse	GL	Kt. GL	723'928	218'452	436	E	_		9.5
	ILN 01	Illnau-Effretikon 1	Chrützegg	ZH	Kt. ZH / FUB	696'314	251'183	540	E	_		4
	BENN			BL	Kt. BL		250'596	540	K			4
	MI01	Bennwil Misery	Sunnenblick Le Haut du Mont	FR	Kt. BL Kt. FR	625'684 571'915	189'478	607	K	_		2.6
•										_		
	N14	Domat/Ems	Plarenga	GR	Kt. GR	755'100	189'730	570	E	_		2
	BIR1	Birrfeld 1	Lupfig	AG	Kt. AG	658'980	254'775	393	E	_		3
	VU01	Vuisternens-en-Ogoz	Au Lieu dit Le Chapy	FR	Kt. FR	569'708	173'324	850	K	_		3
	FRAU	Kloster Frauental	Cham	ZG	InNET	674'546	229'562	395	E	_		2.3
	BHU	Berg	Huebermoos	SG	OSTLUFT	745'620	260'525	591	Е	_		3
33	HBL	Lotzwil		BE	Kt. BE	625'558	226'796	509	E	_		3
34	SZ-01	Bauschli		SZ	InNET	692'420	207'555	490	Ε	_		3
35	UES	Untereggen	Schlossweier	SG	Kt. SG	752'265	258'595	553	Е	_		3
36	TAE	Tänikon	Aadorf	TG	NABEL	710'500	259'810	539	Е	_		3.5
37	INWI	Inwil	Baar	ZG	InNET	682'567	226'900	437	Е	_		2.3
	NEHU	Neuendorf Hurtmatten		SO	Kt. SO	627'257	239'509	435	E	_		4
	SSH	Stein	Carabinali	AR			247'230	722	Н	Е	7.7	
	KBR	Uznach	Sägehüsli	SG	OSTLUFT OSTLUFT	744'888 717'580	230'665	408	E		1.1	3
			Kaltbrunner Ried									
	AIG	Gonten	Gontenbad	AI	Kt. Al	745'301	243'603	898	E	-		2.5
	RRI	Rugell	Riet	FL	FL	760'091	235'669	431	E	_		
	KIT	Kirchberg	Turpenriet	SG	OSTLUFT	720'314	251'605	740	E	_		3
	BSZ	Ziegelbrücke	Berufsschule	GL	Kt. GL	722'744	221'825	424	Е	_		5
45	NMS	Malans	Rütenen	GR	Kt. GR	761'785	204'850	529	E	_		2
46	MAEM	Matzendorf Emet		SO	Kt. SO	614'279	240'205	594	K	_		4
47	BRM	Beromünster NABEL		LU	NABEL	655'840	226'780	797	K	_		
48	NZI 01	Zizers 1	Neulöser	GR	Kt. GR	761'250	201'200	527	Е	_		3
19	GEF	Gelfingen		LU	IAP	663'397	230'005	572	Н	SW		3.5
50	SAM2	Suhretal 2	Staffelbach	AG	Kt. AG	646'488	236'250	493	Н	SW	7	3
51	SHkl	Neunkirch Erspel		SH	Kt. SH	678'190	283'124	420	Е	_		4
	WAU 16.4			LU	InNET	643'707	224'651	499	E	_		4
	NGS	Grüsch Schwellenen		GR	Kt. GR	768'760	205'060	607	E	_		2
	MAU 01	Mauren 1	Pünt	TG	OSTLUFT	729'182	269'404	439	E			3
	ZG-02	Niederwil 2	. un	ZG	InNET	676'164	209'404	439	E			3
	NEU 02	Neudorf 2		LU	Innet	659'706	229'211	735	H	NE	6	3
			Chaton Météo Cuinca Fatra dans Lara			571'165				INE	0	3
	NE 03 MAG	Le Landeron	Station Météo Suisse, Entre-deux-Lacs	NE	Kt. NE		210'798	431	E	_		2.5
		Magadino-Cadenazzo	O-h Oh	TI	NABEL	715'500	113'200	204	E	_		3.5
	EST	Eschen	Schwarze Strasse	FL	FL	757'866	228'970	441	E	_		2
	OW-02	Obwalden 2	Kerns	OW	InNET	664'518	195'592	560	Е	-		4
	NW-02	Stans Galgenried Süd		NW	InNET	669'272		440	Е	_		3.6
	TUG01	Tuggen		SZ	InNET	714'630	228'761	409				4
	NRB	Bilten	Niederriet	GL	Kt. GL	719'002	225'156	411	Е	_		
64	SCHÜ 00	Schüpfheim 0		LU	InNET	644'727	201'091	735	Н	SE	9	3
	URI 01	Uri 1	Erstfeld	UR	InNET	691'655	188'171	455	Е	_		3
	BAV	Balzers	Aviols		FL	756'662	215'349	473	Е	_		1.8
	HÄG	Häggenschwil	Buo	SG	OSTLUFT	743'590	261'675	555	E	_		3
	ALB	Altstätten	Bannriet	SG	OSTLUFT	761'030	247'635	420	E			3.5
						657'129				NI NI	7	
	HOL 01	Holderhus 1	Neuenkirch	LU	InNET		216'962	590	Н	N	7	4
	SIN3	Freiamt 3	Sins	AG	Kt. AG	670'061	227'561	519	E	_		3
	APS	Steinegg	Rödelbach	Al	OSTLUFT	750'830	243'700	820	E	_		1.7
	ESC 08	Eschenbach 8		LU	InNET	665'208	221'946	495	E	_		3
	WEIN	Weinfelden	Weid	TG	OSTLUFT	723'547	270'162	422	E	_		3
4	WAU 13	Wauwil 13		LU	InNET	644'669	224'165	501	Е			3
75	WG	Netstal	Wiggisparkzentrum	GL	Kt. GL	723'045	214'203	455	Е	_		12.5
	SLI 01	Schaan 1	Lindenkreuzung	FL	FL	757'046	226'080	450	E	_		2.2
										_		
	NV4	San Vittore	San Vittore	GR	Kt. GR	727'760	121'500	270	E	_		2
	SIO	Sion-Aeroport		VS	NABEL	592'540	118'755	483	Е	_		3.5
19	HAE	Härkingen		SO	NABEL	628'875	240'185	431	Е	<u></u>		3.5
	BAS	Basel-Binningen		BL	NABEL	610'890	265'605	317	Е	_		3.5
			ì	TI					E	_		2
	LUG	Lugano		_	NABEL	717'615	96'645	281		_		
27	SOAL	Solothurn Altwyberhüsli		SO	Kt. SO	607'067	229'174	453	Е	-		3
	RAP	Rapperswil	untere Bahnhofstrasse 30	SG	FUB	704'520	231'541	430	Е			12

E = Ebene H = Hang K = Kuppe T = Terrasse

				•					Abstan			
r. Code			landwirtschaftliche Nutzung	Strassen-	Verkehr DTV	-					Wald	Waldabstand
arte	5	ionsty	p	abstand	(% LKW)	grösse	LW-Betrieb	wiese	moor	moor		Bemerkungen
b.1)		µg m ⁻³						m	m	m	m	
1 CHA	Ländlich,	1 – 3	Wiesen, Weiden, Graswirtschaft	_	_	Einzelhöfe	4050	_	_	-	85	
2 RAN 3 RIG	oberhalb 900 m ü. M.		Wiesen, Weiden		_	Einzelhöfe	1350	0	_	_	10 85	
4 ZB 01			Wiesen, Weiden Wiesen. Weiden	_		Einzelhof		_	_	80	50	
5 FRÜE			Wesen, Weiden	_	_	Einzelhöfe		_	_	50	80	
6 BA			Wiesen, Weiden, Graswirtschaft	_	_	Einzelhöfe	140	_	_	_	80	
7 ZIGE			Wesen, Weiden	_	_	Einzelhöfe		_	5	720	190	
8 AIO	Ländl., > 900 m ü. M.	3-5	Landwirtschaft	_		Einzelhöfe	90	_	_	_	75	
9 SARE	Ländlich,	1-3		_		Weiler			_	_	7	
10 RAF	unterhalb 900 m ü. M.		Obstgarten, Ackerbau	_	_	kleines Dorf, Einzelhof	35 (Pferde?)	800	_	_	120	
11 AEG			Schweinezuchtbetrieb	_	_	Einzelhöfe	180	_	0	0	50	
12 WBM			Wiesen, Weiden	_	_	Einzelhöfe		_	250	_	35	Bäume 10 m
13 SCH			Weide, Schafe, seit 2013 Rinder	_	_	Einzelgebäude		_	_	-	25	
14 GMO			Wiesen, Ackerbau, Reitstall 180 m NE			Weiler	214		_	0	0	Flachmoor geht in Wald üb
15 HUD 3	Ländlich,	3 – 5	Landwirtschaft, Naturschutzgebiet	_	_	_		_	80	46	0	Waldrand
16 VTG	unterhalb 900 m ü. M.		extensive Bewirtschaftung	_	-	Kleinstadt		_	0	-	720	
17 BRIS			Wiese, Landwirtschaft	_	_	Einzelhöfe		_	_	-	285	
18 PAY			Grasland, Ackerbau	_	_	grosses Dorf		_	_	_	1500	Baumgruppen 170 m
19 IEB			Wiesen, Weiden, wenig Ackerbau	_	_	kleines Dorf	740	_	_	_	130	Fig. 11. 11. 12. 12. 20
20 OBI			Ackerbau, Graswirtschaft			kleines Dorf Weiler	740	_	0		1600	Einzelbäume 30 m
21 RO 22 WTG1			Obst-, Graswirtschaft Acker-, Gemüse-, Futter- und Obstbau		_	Einzelhof	150	1000	_	_	90 2000	
23 HEMO			Ackerbau, Tierwirtschaft, Wald	_	_	Weiler, Einzelhof			_	_	2000	
24 DEB			oud, normadiul, Hulu	10	?	Industrie, grosses Dorf		_	_	_	140	
25 ILN 01			Ackerbau, Graswirtschaft	_	_	kleines Dorf		_	620	630	440	
26 BENN			Wiese, Landwirtschaft	_	-	Weiler, Einzelhöfe		_	_	_	210	
27 MI01			Ackerbau, Gras-, Weidewirtschaft	_	_	Weiler		_	_	_	700	
28 N14			Wiese, Landwirtschaft	150	27'500 (6%)	kleines Dorf		880	_	-	830	
29 BIR1			Wiesen, Weiden	_	_	Industrie, Einzelhof		1500	_	-	630	
30 VU01			Gras-/Weidewirtschaft, Ackerbau	_	-	Einzelhöfe, Industrie		_	_	-	380	
31 FRAU			Wiesen, Weiden	_	_	Weiler	440	_	140	_	80	
32 BHU 33 HBL			Wiese, Landwirtschaft	_	_	Einzelhöfe	412	_	_	0	0 160	
34 SZ-01			intensive Landwirtschaft Wiesen, Weiden	15	?	grosses Dorf, Einzelhöfe	135		_	_	1000	
35 UES			Wiesen, Weiden	15		Einzelhöfe	140	_	_	60	10	
36 TAE			intensive Landwirtschaft	_	_	grosses Dorf, Einzelhöfe	125	_	_	_	600	
37 INWI			Wiesen, Weiden	_	_	Kleinstadt		_	_	_	720	
38 NEHU			Ackerbau, Tierwirtschaft	2	200	kleines Dorf, Einzelhof	70	_	_	_	1000	
39 SSH	Ländlich.	5 – 8	Graswirtschaft			Einzelhöfe	260	1000	_	_	360	kleiner Laubwald 40 m
40 KBR	unterhalb 900 m ü. M.		Wiesen, Ackerbau	_	_	grosses Dorf	692	_	_	170	1650	
41 AIG			Landwirtschaft, Naturschutzgebiet	_		Einzelhöfe	453	_	190	70	380	
42 RRI			Wiesen, Weiden	_	_	_			0		770	
43 KIT			Ackerbau, Wiesen, Weiden	50	?	grosses Dorf		_	0	-	330	
44 BSZ			Landwirtschaft	_	_	Kleines Dorf, Einzelhöfe		660		-	300	
45 NMS			Wiese, Landwirtschaft	_	_	kleines Dorf		370	_	-	800	
46 MAEM			Ackerbau, Tierwirtschaft	_	_	Einzelhöfe	145	_	_	_	435	
47 BRM 48 NZI 01			Wiesen, Ackerbau Wiese, Landwirtschaft	_	_	Einzelhöfe Einzelhöfe		1250	_	-	400 700	
49 GEF			Wiesen, Weiden	_	_	kleines Dorf		1250	_		18	Baumreihe sehr nahe
50 SAM2			Wiesen, Weiden	_	_	Weiler			_	_	700	Daumenie Sem nane
51 SHkl			Ackerbau, Obstbäume	_	_	_		_	_	_	1700	
52 WAU 16.4			Naturschutzgebiet, Wiesen	_	_	_		_	10	_	600	
53 NGS			Wiese, Landwirtschaft	280	10'980 (6%)	kleines Dorf		680	-	_	270	
54 MAU 01			int. Landwirtschaft, Acker, Obstbau	150	6'700 (<5%)	Weiler		_	_	-	890	
55 ZG-02			Wiesen, Weiden, Ackerbau	_	_	kleines Dorf, Einzelhöfe		_	1450	_	150	
56 NEU 02			Weide, Acker	_	_	Einzelhöfe		_	_	-	560	
57 NE 03			Ackerbau	_	_	grosses Dorf		1400	_	_	1300	
58 MAG			Obst- u. Gemüseanbau	_	-	Einzelgebäude (Hof)?	80	_	350	-	570	Allee 40 m
59 EST			Wiesen, Ried			Einzelhof (ab 2013)	40					Allee 10 m
60 OW-02			Wiesen, Weiden Wiesen, Weiden	_	_	Weiler, Industrie		1200	860	_	520 280	
61 NW-02 62 TUG01			Ackerbau, Tierwirtschaft	_	_	Industrie, grosses Dorf kleines Dorf	390	1200	870	_	280 930	
63 NRB			Wesen, Weiden	300	?	Kläranlage 300 m	030	_	20	_	550	Bäume am Teich
64 SCHÜ 00			Wiesen, Weiden	_		grosses Dorf		_	_	_	240	
65 URI 01			offenes Wiesland, Futterbau, Weide	_	_	Einzelhöfe	120	1300	_	_	500	
66 BAV			Wiesen, Kuhweide	60 zur Hauptst.	ca. 7'100	grosses Dorf, Einzelhöfe					180	
67 HÄG			intensive Tierwirtschaft		-	Weiler, Einzelhof	100	_	_	_	230	
68 ALB	Ländlich,	> 8	Wiesen, Ackerbau	-	_	Einzelhof	500	_	60	_	3300	Allee 70 m
69 HOL 01	unterhalb 900 m ü. M.		Obstbau, Wiese	_	_	grosses Dorf, Einzelhof	85	_	_	_	30	
70 SIN3			Wiesen, Weiden	_	-	Weiler, Einzelhöfe	120	_	_	-	75	
71 APS			intensive Tierwirtschaft	_	_	Weiler, Einzehöfe	190	-	_	_	380	
72 ESC 08			intensive Landwirtschaft	-	-	Einzelhöfe	150	_	-	-	520	
73 WEIN			Wiesen, Ackerbau	_	_	Einzelhof		-	_	-	330	
74 WAU 13	,		sehr intensive Landwirtschaft	-		_	, ,		550		560	
75 WIG	Ländlich, Verkehr	3 – 5		65	18500	grosses Dorf, bei Industrie		230	_	_	200	
76 SLI 01	Ländlich, Verkehr		keine	ca. 4	?	grosses Dorf						
77 NV4	Ländlich, Autobahn	3 – 5	Wiese, Landwirtschaft	200	11'500, 6%	Industrie		480	-	-	230	
8 SIO			Obstbau	30	30'000 (5%)	Industrie		880	_	_	750	
79 HAE	Ländlich, Autobahn	5-8	intensive Landwirtschaft	20	75'000 (13.5%)	kleines Dorf			=	三	670	
BO BAS	Vorstädtisch		Parkanlage, Schrebergärten	200	Stadtverkehr	Stadt		780			65	
B1 LUG	Städtisch	1-3		50	Stadtverkehr	Stadt		_	_	_	-	
•	Städfisch, Verkehr		Ackerbau, Graswirtschaft									
32 SOAL									_	_		
32 SOAL 33 RAP	Städtisch, Verkehr	3-5		25 15	10000 24'000 (6%)	Kleinstadt Kleinstadt		_	750	_		

Strassenabstand: — = > 200 m Verkehr DTV: = < 2000 Fahrzeuge

March Marc	Nr. Code (Karte	Standort Name	Belastungstyp	Immis- sionstyp								Ammor	Jahres	nzentra smittelv µg m ⁻³		Luft										
Marchane Improvement	Abb.1)			μg m ⁻³	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Second Content				1-3	0.9	0.9	0.8	1.2	0.8	0.8	0.8	0.9	0.8	1.1	1.2	1.7	1.0	0.9	0.9	1.3	1.0	1.0	1.3			1.3
			oberhalb 900 m ü. M.		4.0	4.4	4.0	4.0	4.0	4.0	4.4	4.0	4.0	4.5	4.0	4.5	4.0	4.0	4.0	4.0	4.0	4.5	4.0			1.3
Fromour Property																										1.6
Bashels					2.5	1.7	1.0	2.3	1.4	1.0	1.0															1.9
Mary					2.2	2.5	2.3	2.5	1.7	1.7	2.5															2.0
Segret Resource Leaders Leader	7 ZIGE	Zigerhütti										2.1	1.9	2.1	2.0	2.3	2.2	2.0	2.3	2.1	2.3	2.2	3.1	3.1	2.9	2.2
Michaelenge	8 AIO	Oberegg	Ländlich, > 900 m ü. M.	3 – 5											2.6	2.6	2.4	1.9	2.7	2.5	2.7	2.7	3.7	3.2	3.2	2.9
11-10-10 11-10-10-10 11-10-		Sagno Reservoir	Ländlich,	1-3															1.1	1.3	1.2			1.9	1.6	1.8
19-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			unterhalb 900 m ü. M.															1.4	1.9	2.2	1.6	2.2	2.6			1.7
Selection Sele																							2.5			1.8
Mary					16		2.1	3 3	22	1.8	19	1 9	1.8	2.1	1 9	22	1 9	16	17	2.0	17	1 9				2.1
					1.0		2.1	0.0	2.2	1.0	1.0	1.5	1.0	2.1	1.5	2.2	1.5	1.0	1.7	2.0	1.7	1.5	2.1			2.5
Section Sect			Ländlich,	3-5		3.4	2.3	2.5	2.0	2.2	2.6	2.1	2.1	2.1	2.1	2.4	1.8	1.9	2.3	2.6	2.3	2.8	3.3			2.6
	16 VTG	Gwatt	unterhalb 900 m ü. M.											3.0	3.1	3.4							3.1	3.1	3.3	2.9
Second																										3.3
December 1.00 1.0					3.4	2.6	2.2	3.3	3.5	3.4	3.3	3.0	2.9													3.1
2 PM Control C														3.3	2.9	3.5	2.5	2.5	2.5	2.9	2.7	3.1	3.4			2.8 3.2
2						3.2	29	3.5	3.5	4.0	3.8	3.3	3.1	3.7	3.2	3.6	3.0	27	2.8	3.0	27	3.2	4.3			3.2
Description Non-Company Description Non-						3.2		5.0	5.0		5.5	5.0	5													3.5
See No.	23 HEMO	Hessigkofen Moosgasse																		3.7	3.0	3.1	4.2	3.9	4.3	3.4
28 EMM Mary																										3.7
27 MM Morey 28 MR M DOWNSTER 29 MR M DOWNSTER 29 MR M DOWNSTER 29 MR M DOWNSTER 29 MR M DOWNSTER 30 MR M M M M M M M M M M M M M M M M M M																		2.0	2.5							3.9
28 NI4 Domaitme 19 19 19 19 19 19 19 1													27	16	30	40	27									3.6
29 BRT 10 WORTH WINTERFORM STREET STR													3.1													4.1
3 1 1 1 1 1 1 1 1 1														5.7												3.3
Sept	30 VU01	Vuisternens-en-Ogoz									3.1	3.0	3.0	3.9	3.3	4.2	3.3	3.3	3.8	4.1	3.1	3.1	4.3	4.6	5.2	4.5
33 Half, Lobow 1.5 Lobow 1		Kloster Frauental										3.6	3.5	3.5	3.3	4.3	3.7	3.7	4.1	4.5	3.8	4.0	4.9	4.7	4.3	4.0
SUES Difference 1																1										4.1
39 USA Undergogen STAE Taminon STAE STAINON Inval STAE STAINON Inval Inval STAE STAINON Inval Inval STAE STAINON Inval Inval Inval STAE STAINON Inval In														5.1												4.2
Second S															4.5	0.0	4.9	3.1	3.1	5.1	4.2	4.0		4.9	4.0	3.9
State Stat					3.9	4.4	4.1	6.5	5.6	5.7	5.3	6.2	5.2	6.0	5.5	6.9	5.4	5.2	5.2	5.2	4.5	3.9		4.9	4.8	4.4
98 SSH Sein Lindish, S=8 1																										4.0
March Marc	38 NEHU	Neuendorf Hurtmatten														6.7	5.3	3.9	5.0	5.0	4.0	4.2	5.9	5.0	4.9	4.7
4 Alf March Ma		Stein	Ländlich,	5 – 8																				5.3	5.1	4.6
March Marc			and the life COO as in Ad												4.0	4.7	4.0	0.7	2.0	4.0	2.0	4.7	0.0			4.5
49 KIT Morehers			unternalo 900 m u. M.												4.8	4.7	4.2	3.7	3.8	4.2	3.9	4.7	0.0			4.1
44 BSKZ Melanse 1.5																										4.8
46 Macendorf Fine 4 18 Macendorf Fine 4																				5.4	4.7	4.6	5.9			4.6
4 Park Renominser NAREL														5.3	3.9	5.1										5.0
48 NZCIO Zibers 1 49 GEF Gelfingen 49 GEF Gelfingen 50 SMA2 Subresul 2 51 SMM Neunkrich Erspel 51 SMM Neunkrich Erspel 51 SMM Neunkrich Erspel 52 FMA1 164 Neunwis 16 53 NGSS 53 NGSS 53 NGSS 54 SMA2 Subresul 2 55 NGSS 55																4.4	3.8	3.5	4.3	3.9	3.8					5.4
49 GEF Gelfrogen														E 0	E 0	E 6	5.0	4.5	4.0	6.2	5.0					5.3 4.3
State Stat														5.0	3.0	5.0	0.0	4.0	4.0	0.2						4.8
52 MAU 16 4 Mauveri 1 6															5.2	6.0	5.1	4.5	4.8	5.1						5.0
53 MSC Grüsch Schwelenen .																		3.8	4.1	5.0	4.3	4.7	6.4	6.2	5.9	6.6
54 MAJU 11 Mauren 1											5.5	5.0	4.7	6.4	6.6											5.2
55 ROU20 Needows 2 Needows					4.1	4.2	2.4	E 0	E 4	E E	6.3	E 0	E 7	6.0	F 0											6.0
56 NEJ 02 Neudorf 2					4.1	4.5	3.4	5.0	3.4	5.5	0.5	5.0	3.1	0.2												5.5 5.8
57 NBC3 Le Landeron 3,5 3,3 3,7 4,3 4,2 4,3 4,7 4,0 4,0 5,5 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,4 4,7 4,3 4,5 5,6 5,6 5,6 5,6 5,6 5,6 5,6 5,7 5,7 5,7 5,8 5,8 5,8 7,7 7,8											6.4	4.2	4.2	4.7												5.9
Septen S																										8.9
0 Okyarler 2 Okyarler		Magadino-Cadenazzo			3.5	3.3	3.7	4.3	4.2	4.3	4.7	4.2	3.7	4.0	3.5	5.6	5.4	4.7	4.3	5.6	4.8	5.5	7.6	7.1	6.8	6.4
61 NW-02 Stans Galgenried Süd Figure Figur													4.7	4.9				0.4								6.5
Composition Tuggen Tugge																										5.8
63 NRB Bilem 4,9 4,1 5,3 6,9 6,1 5,7 5,6 5,6 6,6 7,2 5,5 5,7 6,6 6,6 7,2 5,5 5,7 6,6 6,8 6,4 5,9 8,2 8,9 6,7 6,7 6,6 5,0 1,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															1.1	0.2	0.9	0.0	0.3	0.9	0.5	0.4	1.4	1.0		5.7 6.4
64 SCHÜ 00 Schüpheim 0																							7.8	7.4	0	6.1
66 BAV Balzers					4.9	4.1	5.3	6.9	6.1	5.7	5.6	5.6	5.4	6.6	6.7	7.2	5.5	5.7	6.1	6.8	6.4	5.9			6.7	5.7
67 HÄG Hägenschwil Ländlich, >8 68 ALB Allsätten Ländlich, >8 69 HOLO1 Holderhus 1 unterhab 900 m ü. M. 69 5.4 6.5 8.7 6.0 5.6 5.8 6.5 5.8 6.6 5.8 5.8 6.6 5.8 5.8 6.2 6.2 5.5 7.4 8.3 7.7 7.4 6.9 HOLO1 Holderhus 1 unterhab 900 m ü. M. 69 5.4 6.5 8.7 6.0 5.8 5.8 5.8 6.6 5.8 5.8 6.6 5.8 5.8 6.2 6.2 5.5 7.4 8.3 7.7 7.4 6.7 5.8 6.8 4.6 6.9 HOLO2 HOLDER HARMON MARK NORTH HARWON MARK NORTH HARMON MARK NORTH HARM																										6.1
68 ALB Altsäten Ländlich, >8																										7.0
69 HOL 01 Holderhus 1 unterhalb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. In the halb 900 m \(\text{ M}\). M. M. M. In the halb 900 m \(\text{ M}\). M.			1 " 1" 1					9.4	8.0	7.5	8.6	7.1	6.9	7.5	7.0	7.9	7.0	5.5	6.5	9.4	7.2	7.4				6.5
70 SIN3 Freiant 3 Freiant				> 8	0.0		0.5	0 -	0.0			6.7	E 0	0.5	E 0	0.0	F 0	E 0	0.0	0.0		7.1				6.9
71 IAPS Steinegg			unternalb 900 m ü. M.		6.9	5.4	6.5	8.7	6.0	5.6	5.7	5.7	5.8	6.5												7.5 8.3
72 EBC 08 Eschenbach 8 Family Fam								11 0	8.8	9.6	10 9	9.5	8 7	9.4												8.8
73 WEIN Weinfelden 74 WAU 13 Wauwil 13								. 1.3																		8.4
74 WAU 13 Wauwil 13		Weinfelden																								9.1
76 SLI 01 Schaan 1 Ländlich, verkehrsbelasis 5-8	74 WAU 13	Wauwil 13							10.1	9.6	10.4	8.2	9.0	10.2						10.0	9.5	9.8				10.0
77 NV4 San Vittore Ländlich, an Autobahn 3-5	75 WG	Netstal	Ländlich, verkehrsbelast	3-5																3.5	3.1	3.0	3.9	3.6	3.7	3.3
78 SIO Sion-Aeroport	76 SLI 01	Schaan 1	Ländlich, verkehrsbelast	e 5-8													5.4	5.5	5.2	5.7	5.3	5.1	5.8	5.5		4.8
79 HAE Härkingen Ländlich, an Autobahn 5-8 .			Ländlich, an Autobahn	3 – 5																						3.3
80 BAS Basel-Binningen Vorstädfisch 1-3 1.6 1.5 1.3 2.2 2.0 1.9 2.3 1.9 2.0 2.2 2.3 2.5 2.1 1.9 2.2 2.5 2.0 2.4 3.5 2.7 3.0 3 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1					4.8	4.2	4.6	4.8	4.4	4.2																3.5
81 LUG Lugano Sädtisch 1-3 2.5 2.7 3.0 3.2 2.5 2.8 2.9 2.7 2.5 2.3 2.2 2.6 2.4 2.1 2.6 2.3 2.5 2.5 2.5 2.5 2.6 2.8 2.5 2	•			_											_	•	_	_	_	_	_	_			_	4.6
82 SOAL Solothurn Allwyberhüsii Städtisch, verkehrsbelasti 1 – 3 2.9 2.5 2.1 2.0 2.3 2.4 1.9 2.8 2.5 2.6 2.5 2.6 2.7 2.0 2.3 2.4 2.0 2.3 2.4 2.0 2.5 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6											_	_	_	_	_		_	_	_	_		_	_	_	_	2.5
					2.5	2.7	3.0	3.2	2.5	2.8	2.9	2.7	2.5	2.3	2.2											2.6
83 RAP Rapperswil Städtisch, verkehrsbelast 3 - 5 4.0 3.8 3.8 3.8 3.3 3.5 3.8 3.5 4.0 3.5 3.2 3.3 3.7 3.2 3.4 4.0 3.7 3.6																										2.2
	83 RAP	Rapperswil	Städtisch, verkehrsbelast	3-5					4.0	3.8	3.8	3.3	3.5	3.8	3.5	4.0	3.5	3.2	3.3	3.7	3.2	3.4	4.0	3.7	3.6	3.3

ode						v	Vinte			e (De	nzent ez des	Vorj			, Feb)													F		nonia ngsm	nittelv	werte	(Mäi)						
	00	01	02	03	04	05	06	07	08		µg m 3 10		12	13	14	15	16	17	18	19	20	21	00	01	02	03	04	05	06	07	08		ı g m ³ 10		12	13	14	15	16	17	18	19	20
HA	0.3	0.3					0.1														0.5	0.9	1.3																			2.1	2.1
IAN IIG	0.4	0.5	0.3	0.2	0.3	0.3	0.2	0.6	0.7	0.3	0.3	0.7	0.6	0.3	0.7	0.5	0.4	0.6	0.2	0.6		0.7		11	13	21	1.5	1.8	12	20	16	22	16	22	17	13	2.0	2.0	14	1.8	21		3.0 2.9
B 01	0.6	0.0		0.3	0.7				1.1	0.5	0.4	0.8	0.5	0.4	0.6		0.6	1.0	0.5	1.5	0.9	1.2	2.7						1.2	2.9	2.7	2.7	2.4	2.5	2.3	1.7	2.2	2.4	2.1	2.5	2.2	2.1	3.1
RÜE A	0.6	1 5	1.0	0.4	0.5	0.0	0.5	12			0.7					0.7					1.5			2.2	2.0	2.0	17	2.4	2.6														3.1 4.1
GE	0.6	1.5	1.2	0.4	0.5	0.0	0.5	1.3			0.7													2.2	2.9	3.9	1.7	2.4	2.0														4.1
0												1.5	0.8	0.9	1.4	0.9	1.3	1.6	0.9	2.1	1.4	1.7											3.0	3.5	3.5	2.5	4.2	3.0	4.8	3.4	4.3	3.9	4.5
ARE AF														0.7							0.9																						3.6
EG														0.7	1.0	0.0	0.5	1.0	1.2	1.2		1.7														1.7	2.0	2.0	2.2	3.1	3.0		3.4
BM CH	0.7			4.4	1.0	1.0	0.7	4.5	1.6	4.4	0.8	1.0	1.0	0.0	0.0	0.7	0.0		0.7		0.9		0.4		2.6	2.2	2.7	2.4	10	2.0	2.0	0.7	2.7	2.7	2.0	2.0	2.6	2.7	2.0	2.4			4.2 3.3
MO	0.7			1.1	1.0	1.0	0.7	1.0	1.0	1.1	0.0	1.0	1.2	0.0	0.0	0.7	0.5		0.7	1.0		2.5			2.0	3.3	2.1	2.4	1.5	2.0	2.0	2.1	2.1	2.1	2.0	2.0	2.0	2.1	2.0	2.4	2.1		4.2
UD 3			1.5	1.2	0.8	1.3	1.3	1.9	2.1		1.2													2.6	3.5	3.6	2.4	3.4	2.8	3.4	2.3												4.9
TG RIS										2.1	1.9	2.9	1.7	1.5							1.8	2.6										3.7	3.4	4.3	3.2			3.0					4.1
AY	2.4	2.2	1.9	1.3	2.7	2.1	2.1	2.7	2.7		1.5			1.8	1.9	1.4	1.7	2.3	1.1	2.4	2.4	2.7	4.2	2.8	3.0	3.8	4.3	4.3	3.1	4.3						2.6	3.3	3.9	2.7	3.3	3.7	3.3	4.3
B Bl										1.7	1.6	2.5	1.5	1.6	2.3	1.7	2.0	2.8	1.9		2.4											4.7	3.2	4.9	3.6	3.0	3.7	3.2	2.8	3.6	3.3		4.1
0			1.3	0.8	1.2	1.6	1.7	2.3	2.2	1.6	1.4	2.3	1.3	1.3	1.6	1.2	1.0	1.9	1.5					3.8	3.9	4.8	4.0	5.9	4.2	4.9	3.1										5.1		4.8
TG1 EMO										2.0	2.0	3.5							1.5		3.2											5.4	4.3					3.8 4.5			4.3 5.3		
EB													1.4	1.5	1.0	1.0			2.4	3.6	3.1	3.7												5.0	4.3	2.1	0.0		5.0				
N 01 ENN														16	2.4				1.4		2.1															21	27		3.3			4.5	7.2
ENN 101									3.3	3.9	1.9			2.2	2.8	1.9	2.1		2.1			3.3									3.6	6.1	4.6	6.3	5.3			4.1			5.0 4.7	4.4	
14											3.1		2.5		3.4	2.6	3.0	4.1	1.9	3.4	2.7	2.7										5.4					5.9	4.5	4.0	5.3	5.0		
R1 J01							2.2	2.6	2.7	1.9	1.3	3.0	1.6	1.4	2.0				0.9 1.7			3.3							2.2	3.9	2.8	4.8	3.8		4.9		5.6	5.3 6.3		3.7			7.6
RAU									3.0	2.3	2.1	2.8	1.9	2.2	3.0	2.6	2.8	3.1	2.3	3.5	2.8									4.8	3.7	4.5	3.9	5.5	4.7	3.7	5.1	5.2	4.0	4.5	5.2	4.8	5.6
HU BL										2.2	1.9	3.6	2.4	2.1	3.9	1.9	2.1	3.3	2.4	3.7	3.2	3.8										7.1	5.3	7.1	5.8	4.1	4.8	4.5	4.1	4.9	6.0	4.9	6.2 5.7
Z-01																					4.1																	4.8			5.3		5.7
ES AE	2.6	4.0	3.1	3.9	4.2	4.1	3.0	4.7	53	42	3.9	6.0	3.7	2.8	49	2.9	27	3.6	1.9	3.5	3.3	4.0	4.5	5.4	5.6	7.6	6.9	6.5	4.7	9.0	5.9	79	66	9.7	75	5.5	7.0	7.1	6.1	49	6.1	56	6.1
WI	2.0	4.0	3.1	5.5	4.2	4.1	3.0	4.1	3.7		2.8													5.4	5.0	7.0	0.3	0.5	4.7					5.4	5.0	4.0	4.2	5.0	3.7	4.6	5.9	5.1	6.1
EHU													2.9	2.7	3.5	2.6	2.6	3.3	3.3	4.4	3.4									-				9.4	8.5	4.6	6.2	7.2	4.4	4.6	6.7		6.8
SH BR																					3.4	4.6																				5.2	7.6
G												3.1	1.7	2.2	3.2	1.7	2.0	2.7	2.4	3.6	2.8												5.6	5.7	4.9	3.8	5.0	4.6	3.6	6.2	6.8		7.6
RI T																						5.1 5.0																					8.1 7.1
SZ.																			3.4		4.9	5.1																	5.1				7.3
MS AEM											3.0	4.0	2.1						2.9	4.5 5.4		6.3 4.1										9.1	4.5					7.3 5.2			6.1	4.2	
RM																			2.8	4.4	4.2	5.4																		5.0	7.5	4.9	6.7
ZI 01 EF											2.9	5.7	6.0	2.0	3.0	2.8	4.0		3.6 1.6			3.3 4.5										8.8	7.2	6.7	6.6	6.7	5.1	10.3		6.9 5.9			
M2												4.7	2.9			2.8		3.5	2.3	4.5	3.3												6.0	7.9	6.7			6.4	5.5	5.3	7.8		7.3
kl AU 16.4								16	5.3	15	4.5	6.0	3.5	2.6 3.6	3.3 5.6	3.4	2.7 4.5		2.3 3.1			4.7 5.7							12	6.4	4.1	8.0	7.1	80	8.1	4.3 5.1		5.4 6.9	3.6 5.4	5.5 6.0	7.7	6.4	9.0 7.0
3S								4.0	3.3	4.5	4.5		5.2	3.0	4.8	5.3	4.5		5.5										4.2	0.4	4.1	0.0			8.0				7.5		8.4		8.9
AU 01 G-02	2.7	4.4	2.9	2.7	4.3	3.2	3.2	4.4	7.6	3.4	4.0			2.9					2.8			6.5 7.5		4.9	3.9	7.1	6.0	6.7	6.9	8.3	4.8	8.4						7.7 7.9			8.3 8.9	6.1	8.6
U 02								3.4	3.9	2.3	2.5								2.6										6.7	5.6	4.7	6.4											
03	2.7	2.0		0.7	2.4	4.0	1		0	2.4	2.5	4.7									7.9			٥٠	0.0	4.0	2.4	2.0	2.0	4.4	0.7	2.0	0.7					8.7					7.0
AG T	3.7	3.0	5.5	3.1	3.4	4.3	5.4	5.5	5.0		3.5 4.3			4.3					8.2 2.9		9.9			2.5	2.9	4.0	3.1	3.0	3.9	4.4	2.7 4.0				6.7								5.7 9.4
V-02												8.5	4.1		9.2	4.5	6.4	6.3	4.4		6.7	7.9											10.7	10.7	9.2	7.6	9.6	7.5	7.9	8.1	10.1	8.4	7.8
V-02 IG01												6.3	4.0	3.9	6.0	4.3	5.5	5.4	4.3	6.7	5.9 6.1	6.2											8.0	9.8	8.4	6.5	7.4	1.3	6.8	7.2	8.5		9.2
В																					5.8	5.6																				6.3	8.5
HÜ 00 RI 01	3.4	3.4	3.1	2.3	3.7	4.4	3.8	4.0	5.2	4.2	4.4										7.5			4.2	8.8	9.2	7.4	7.2	4.9	8.7	5.2	8.7						8.4 5.6				13.2	10.1 9.3
١V											4.2	5.1	3.9	3.4	5.6	3.0	4.0	4.9	3.4	8.1	6.2	4.7											6.4	7.9	6.7	7.9	6.9	7.0	4.4	6.3	8.3		8.5
iG B					4.6	6.2	2.6	5.4	6.0	3.4	3.7	4.5	2.7	2.7	4.6	2.9	5.6	4.6	4.4							10.7	7.2	8.2	7.7	10.3	6.1	9.2	6.5	11.7	8.8	5.0	7.9	8.5	7.8	7.2			10.1
B IL 01	4.4	5.2	3.8	3.3	5.2	4.7	3.7	5.9	6.0	4.1	4.3	5.7	4.1	4.3	6.2	4.2	4.5	5.2	4.4		6.8 5.8			4.7	5.2	9.6	6.4	6.3	4.8	6.3	4.9	9.3	6.0	7.6	7.1	5.3	6.9	7.2	5.0	5.6			11.1 12.0
13												6.8	4.6	4.3	7.4	4.9	5.8	5.9	4.6	7.2	5.6	8.2											6.4	9.8	10.4	8.3	9.5	10.6	8.1	10.0	12.1	9.7	11.4
S C 08					6.0						5.5 4.6															15.6																	13.9 11.5
IN										3.3	4.4	5.7	3.1	3.4	7.7	3.8			3.9	8.4	7.7	8.4										10.9	10.8	14.7	11.7	7.5	11.0	10.8		11.1	14.2	10.4	13.0
U 13						7.0	6.1	7.9	7.7	6.5		9.0	5.1	6.0	7.7	5.3					18.4						11.4	12.2	8.5	12.2	8.9	14.2	12.3	14.3	12.6	10.1	11.6						13.1
01													3.6	4.4	5.6	4.4					2.9														6.0	5.7	5.7						4.9 6.3
4											6.5	6.3									4.5											5.2	3.9	4.3									3.5
)	6.4	5.4	7.3	5.1	4.8	6.0					4.2	5.5	3.9	3.6	5.5	3.7	4.3	5.5	3.2	3.7	3.9	3.6	4.1	3.4	3.9	4.9	3.9				3.3	4.3	3.6	4.5	3.8	3.3	4.0	3.9	3.1	3.4	3.3	3.0	3.6
KS	0.7	0.0	0.6	0.5	1.0	10	•		-		3.6				_				_		•		_	1.4	1.4	20	2.1		_	_	_	_			_		_	-		_	_		5.7 4.0
IG																																_											2.8
								0											1.3					5.5		0		0															3.4
AL													1.0	1.1	1.0	1.1	1.0	1.2	1.0	1.5	1.0	1.0												3.9	3.0	2.4	2.7	2.9	2.1	2.4	3.0	2.0	3.4

March Marc	Code											akkor nittelv		(Jun,																monia ostmit	telwe		Sep, (
004		00	01	02	03						09	-	11	12					_												07	08	09											_	21
780		1.0	1.5	1.0	2.1	1.2	1.2	1.4	0.9	1.1	1.4	1.5	1.2	1.3	1.5	1.0	1.8	1.4	1.4	2.1					0.7	0.4	0.9	0.7	0.8	0.9	1.0	0.6	1.0	1.9	2.1	0.8	0.6	0.7	1.3	1.2	1.0	1.5			
Figure 1																																													
Dec. 19 25 27 27 22 28 28 20 20 27 27 28 48 49 35	FRÜE	2.7	4.4	4.0	4.0	2.5	2.1	12	1.4	2.1	2.0	2.5	1.7	2.1	1.8	1.0	2.2	1.8	2.3	3.1	3.8	3.1	1.9									1.1	1.3	1.5	2.0	1.4	0.8	1.3	2.0	1.5	1.8	2.3	2.1	2.2 2	2.1
See:	ZIGE	2.1	4.4	4.0	4.0	2.5	2.1	4.5				2.7	2.2	2.8	2.8	2.3	2.7	2.7	2.8	4.4	4.9	3.5		1.0	2.0	1.0	1.0	1.7	1.0	2.3				2.0	2.5	2.0	1.8	2.3	1.8	2.5	2.3	3.1	3.3	2.7 2	2.3
Part												3.5	3.1	3.0																				2.5	2.3	2.2					_				
New May 1	RAF													2.1							2.6	2.5	2.0													1.4							1.5	1.5 1	1.4
900	WBM	4.0		0.4		0.0		0.0			0.4	0.0		0.0	0.4		0.5	0.0	0.5		3.3	3 2.6	3.0			4.0		4.0	0.4	4.0	4.0	4.0	0.4	4.0	0.0	4.0	4.0	4.0					1.8	1.5 1	1.9
VEG 6		1.9		2.4	5.6	2.8	2.0	2.9	1.7	2.2	2.1	2.2	1.7	2.0	2.4	1.7	2.5	2.0	2.5	3.9						1.6	3.2	1.9	2.1	1.8	1.6	1.6	2.4	1.8	2.3	1.6	1.3	1.6	2.0	1.7	1.5	3.1			
BRS			6.3	3.2	3.6	2.7	2.5	3.4	1.7												3.7				2.9	1.2	1.7	1.7	1.7	2.7	1.4														
EM	BRIS	2.6	2.5	2.0	4.0	2.0	4.1	4.1	2.0					2.7	3.6	2.8	2.9	2.9	2.5	4.4		2 4.1		2.4	22	1.5	2.4	2.4	2.1	2.7	2.6					2.3	1.7	2.3	2.9	2.7	3.1	4.2	3.6	3.3 2	2.7
NO	IEB	3.0	3.5	2.8	4.8	3.9	4.1	4.1	2.8						3.6						4.5	3.3	2.9		2.3	1.5	2.4	3.4	3.1	3.1	2.0												3.7	3.6 3	3.2
INDIO B			4.5	4.1	5.8	4.8	5.4	5.2	2.9	4.2	4.4	4.1	3.3	4.3	4.0	2.9	3.9	3.3	4.6	5.6					2.5	2.0	2.6	3.7	3.4	3.9	3.1	2.9	3.3	3.0	3.4	2.7	2.2	2.5	3.2	2.6	2.5	4.5			
DEB										3.9	4.5	5.0																				3.0	3.8	4.0											
ERNN MICHAEL STATE	DEB											5.1		0.1			4.8	4.2	4.1	5.0	5.0	3.4	3.8												1.0	2.0			4.5	3.3	2.9	4.9	3.8	3.9 3	3.5
NH	BENN																4.2	4.0	4.3	4.8	5.	1 4.6																4.6	3.9	4.6	5.0	6.0	4.8	4.0 3	3.9
NOT PRAY 30 38 54 45 38 45 38 47 33 34 48 57 68 67 36 26 25 37 35 49 31 28 39 35 28 37 35 44 31 38 39 35 28 37 35 49 31 28 39 35 38 37 47 39 31 38 39 31 28 39 35 28 37 35 49 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 35 48 39 31 28 39 31 39										4.3																					3.7	2.8												4.1 5	5.8
FRAU RA RA RA RA RA RA RA R								4.1	3.0	3.8	5.4	4.5																		3.6	2.8	2.5	3.7												
HEL 6, 2, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	FRAU															4.8	5.9	4.8	5.2	6.5	6.9	5.0	5.2																					3.8 3	3.6
UES Fig. Fi	HBL									6.3	5.8										5.	1 4.6	4.9									4.5	4.9											3.9 5	5.0
NMHU	UES											4.7	4.9	6.0	3.7	2.9	5.6	3.6			5.3													5.0							4.4		4.8	3	3.3
NEHU SSH ROR SSH SSH		3.7	4.0	4.2	7.9	5.6	6.4	6.5																	4.1	2.8	6.6	5.9	6.4	6.3															
KER																					5.7	7 5.2													6.5	4.1	4.0	5.6	4.6	4.4	4.1	6.3			
RRI NT	KBR																				4.6	4.0																						5.5 4	1.4
BSZ NS												5.9	4.5	5.0	5.4	4.0	5.4	5.5	6.4	8.3														5.0	5.3	4.9	3.4	3.6	4.7	4.2	3.8	6.1			
MEM 31 38 38 36 41 41 45 73 58 64 57 42 93 35 55 52 42 48 77 53 45 58 67 58 1												4.9	3.8		3.1	3.1	5.1	3.8	5.0	6.3																			6.5	4.8	4.2	6.9	5.3		5.4 1.5
BRM NZ201 \$42											3.8		5.0		3.6	3.5	4.7	5.7	5.5	5.3	6.0												5.1	3.4						4.7	2.9	6.3	4.8	4.3 4	1.1
SEM2 SMAP SMAP SMAP SMAP SMAP SMAP SMAP SMAP	BRM										4.0								5.9	6.6	7.0	5.4	5.7										7.4	2.0							4.8	6.7	5.8	5.8 5	
SHM WAIL 164 WAIL 164 WAIL 164 WAIL 164 WAIL 165 WA	GEF										4.2							8.0	6.6	7.7	8.8	6.7	5.5										7.1							6.2	6.2	8.0	6.3	5.1 5	
NGMUOT 44 50 3.7 61 56 61 85 57 52 52 62 42 42 61 65 65 80 86 15 48 87 97 80 60 89 35 29 31 30 41 42 89 42 39 8 8 8 48 84 84 88 84 84 84 88 84 88 84 88 84 88 88												5.8	4.8																					5.1	6.5										
MAUGU 37 61 56 61 85 67 52 52 62 42 61 65 63 69 61 54 82 79 70 60 39 35 25 38 84 56 68 50 52 73 55 69 60 44 58 74 72 60 77 62 53 4								6.6	4.2	5.1	5.6	6.8																		6.9	5.2	4.3	6.7												
NEU 02	MAU 01	4.4	5.0	3.7	6.1	5.6	6.1	8.5	5.7	5.2	5.2		4.2	6.1	6.5	6.3	6.9	6.1	5.4	8.2	7.9	7.0	6.0		3.5	2.5	3.8	5.4	5.6	6.8	5.0	5.2	7.3	5.5	6.9	6.0	4.4	5.8	7.4	7.2	6.0	7.7	6.2	5.3 4	1.8
MAG ST HAG ST HA	NEU 02							6.6	4.2	4.7	5.0			6.7	7.4	4.8	7.0	8.6	7.0	9.2	11.3	8.1								8.2	4.1	3.7	4.9			6.2	5.2	6.6	6.7	5.3	6.4	8.7	6.9	7.3 6	6.6
044 05 05 05 05 05 05 05 05 05 05 05 05 05		3.7	4.0	3.9	5.4	4.5	4.4	4.0	3.3	4.0	4.0	4.3	4.4												3.4	3.1	3.5	4.9	4.7	5.4	4.0	3.9	5.6	3.8	7.4										
NWGQ TUGOT T										5.5	4.4																					3.8	5.4												
NRB	NW-02																				8.9	7.0	5.3																				6.5	6.8 5	5.7
URIO1 OR OR OR OR OR OR OR	NRB					0.0		0.0			0.7	7.0		0.4	0.0		0.0	0.0			8.0	ו	6.3			0.1		0.4	0.0		4.0	5.0	0.5	5.0	7.0	4.0		0.7	0.0	5.0			7.7	7	7.4
HÅG	URI 01	4.4	5.5	5.8	9.4	6.3	5.7	6.9	5.0			6.3	5.0	5.9	6.6	4.2	5.9	5.6	6.5	7.5	9.5	7.3	5.9		3.6	3.4	5.8	6.4	6.2	6.3	4.8			5.8	8.5	5.6	5.4	6.5	7.0	7.1	6.9	9.0	7.3	8.1 6	6.5
ALB HOLO1 96 92 11.6 11.8 6.3 5.8 70 5.0 6.3 5.9 6.5 5.8 6.5 6.5 6.6 6.6 6.2 14.5 12.0 15.8 9 6.7 8.7 2 32 5.6 9.4 6.1 6.3 6.7 5.8 6.2 6.5 6.6 6.8 5.4 6.3 6.5 6.6 7.4 82 85 10.2 10.8 11.8 11.8 1.2 11.8 11.8 11.8 11.8 11.					13.5	10.7	11.3	14.0	7.0																		8.6	6.8	7.3	9.3	6.4														7.1 5.7
SIN3 Sin3 Sin4 Sin5 S	ALB	0.6	0.0																	9.4	8.6	7.1	6.5		2.0	E C																11.6	8.3	8.1 6	6.6
ESC 08 6 9 8.0 11.6 7.8 9.0 7.8 9.4 7.4 7.8 7.7 7.6 9.6 9.0 10.7 12.8 12.5 10.9 9.1 8.4 8.8 13.3 7.8 6.9 8.3 7.7 10.3 6.5 6.4 11.8 10.0 8.8 12.5 14.1 97. 9.9 8 WEIN 97. 91. 132 8 10.10 8.5 14.1 10.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 10.5 7 10.5 11.3 12.5 11.3 12.5 10.5 11.3 12.5 11.3 12.5 11.3 12.5 10.5 11.3 12.5 10.5 11.3 12.5 10.5 11.3 12.5 11.3 12.5 11.3 12.5 10.5 11.3 12.5 11.3 12.5 10.5 11.3 12.	SIN3	9.0	3.2									8.3	8.2	8.4	9.9	6.8	11.0	11.1	12.2	12.8	13.	12.3			3.2									6.8	9.5	7.5	6.6	7.4	8.2	8.5	10.2	10.8	9.1	10.1 7	.4
WAU 13 9, 7 9, 1 13, 2 68 10, 7 80 10, 8 68 14, 8 10, 9 7, 9 11, 6 9, 7 13, 1 10, 9 14, 4 89 12, 8 11, 7 10, 4 13, 4 7, 6 82 11, 2 9, 6 11, 6 8, 7 8, 4 10, 0 10, 1 11, 5 9, 6 11, 4 9, 4 9, 9 9, 9 9, 9 1, 1 10, 9 14, 4 89 12, 8 11, 7 10, 4 13, 4 7, 6 82 11, 2 9, 1 1, 6 8, 7 8, 4 10, 0 10, 1 11, 5 9, 6 11, 4 9, 4 9, 9 9, 9 1, 1 10, 9 14, 4 89 12, 8 11, 7 10, 4 13, 4 7, 6 82 11, 2 9, 1 1, 6 8, 7 8, 4 10, 0 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 9 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 1 10, 1 11, 5 9, 6 11, 4 9, 4 9, 4 9, 4 9, 4 9, 4 9, 4 9,					13.0																						12.7																		
MG						9.7	9.1	13.2	6.8	10.7																		11.7	10.4	13.4	7.6														
NV4	WG														2.3	2.3	3.4	2.5	3.3	4.2	4.	1 3.1	3.2																3.7	2.9	2.7	4.5	3.3	3.5 3	3.2
SO 3.5 3.7 3.4 5.0 3.7 3.4 5.0 3.7 3.8 4.5 2.9 3.3 3.9 3.8 3.3 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	NV4										3.9	3.0	2.4									_											4.0	2.4			_		_						
BAS 2.1 2.5 2.1 4.0 2.9 2.9 3.1 2.1 2.7 2.9 3.5 3.0 2.8 2.9 3.2 3.5 2.8 3.3 4.2 3.9 4.0 3.5 1.5 1.1 1.0 1.4 2.1 2.0 2.1 1.5 1.7 1.9 2.0 2.3 1.6 1.6 1.6 2.3 2.2 2.4 3.9 2.6 2.7 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		3.5	3.7	3.4	5.0	3.7																			4.6	3.9	4.2	4.7																	
SOAL 2.7 3.6 2.9 1.8 3.2 4.1 2.6 3.7 3.2 3.0 2.5 2.7 1.7 1.9 2.0 1.7 2.1 3.0 2.2 2.2 2	BAS						2.9	3.1	2.1	2.7	2.9	3.5	3.0	2.8	2.9	3.2	3.5	2.8	3.3	4.2	3.9	4.0	3.5	1.5	_				2.0	2.1	1.5	1.7	1.9	2.0	2.3	1.6	1.6	1.6	2.3	2.2	2.4	3.9	2.6	2.7 2	2.1
		3.1	3.6	3.6	4.4	3.2	3.7	3.8	2.9	3.0	3.1	3.3													2.4	3.0	2.7	2.5	2.6	2.9	2.3	2.4	2.2	2.1		2.4									
RAP 58 4.5 4.2 5.0 3.1 3.8 4.3 4.4 3.5 4.0 4.3 3.2 4.6 3.7 4.3 5.0 4.8 4.0 3.7 5.0 4.8 4.0 3.7 4.4 4.2 4.7 3.1 3.4 4.0 3.8 4.2 3.4 3.0 3.3 4.0 3.3 3.4 4.7 3.5 3.6 3	RAP				5.8	4.5	4.2	5.0	3.1	3.8	4.3	4.4															3.7	4.4	4.2	4.7	3.1	3.4	4.0	3.8		3.4									

7.4 Standorte und Jahreswerte der regionalen Messnetze

Tab. 15 Standortbeschreibung und Jahresmittelwerte der regionalen Messnetze aus Kap. 4.7 tabellarisch Standorte sortiert nach Region.

Die Jahreswerte sind aufgeführt, wenn mindestens über 85 % (Jahr) der Zeitspanne exponiert wurde.

Seite 75

7.5 Weitere Standorte

Das Schweizer Messnetz umfasst weitere, in diesem Bericht nicht aufgeführte Standorte:

- Standorte, an denen erst ein Jahr gemessen wurde.
- Standorte, die im Bericht der Zentralschweizer Ammoniakmessungen beschrieben werden (Wey et al. 2021, OSTLUFT 2021), oder zu Projekten mit anderer Fragestellung / Ausrichtung gehören.

Diese Standorte sind in Tabelle 16 und auch in der separaten "Beschreibung der Standorte und Daten" (Seitler et al. 2022) mit aufgeführt.

Tab. 16 Standortbeschreibung und Jahresmittelwerte weiterer Standorte tabellarisch Standorte im Messnetz, auf die in diesem Bericht nicht eingegangen wurde.

Die Jahreswerte sind aufgeführt, wenn mindestens über 85 % (Jahr) der Zeitspanne exponiert wurde.

Seiten 76 bis 77

N	0-4-	Oten deat News	1/4	Stations-	K l		1181-	Dallas	F	Höhe	Dalaston vator	I!.	Stroopen	Voukobu DTV
	Code	Standort Name	Kt.	betreiber	Koord		Hone	Reliet			Belastungstyp			
(Kar				petreiber	Ε	N			sition	ü. Boden			abstand	(% LKW)
Abb.	.1)				m	m	m ü.M.			m		µg m⁻³	m	
22	WTG1	Gimmiz Dach	BE	Kt. BE	585511	211410	444	Е	_	30	Land, <900 m	3 – 5	_	_
	WTGN	Gimmiz Nord	ΒE	Kt. BE	585777	211848	444	Ε	_	3.3	Land, <900 m	5 – 8	_	_
	WTGS	Gimmiz Süd	BE	Kt. BE	585417	211024	444	Ε	_	3.3	Land, <900 m	3 – 5	_	_
	WTGW	Gimmiz West	BE	Kt. BE	585039	211522	444	Е	_	3.3	Land, <900 m	3 – 5	_	_
	NGD 01	Grüsch Dorf 1	GR	Kt. GR	768490	205450	615	Е	_	3	Land, <900 m	> 8	100	10'980 (6%)
53	NGS	Grüsch Schwellenen	GR	Kt. GR	768760	205060	607	Е	_	2	Land, <900 m	5 – 8	280	10'980 (6%)
	AEAE	Aetigkofen Aenerfeld	SO	Kt. SO	601879	218936	625	Н	N	4	Land, <900 m	1 – 3	_	_
	EGWA	Egerkingen Waro	SO	Kt. SO	627482	240932	434	Е	_	4	Land, Verkehr	5 – 8	2	14'000
	GUWI	Gunzgen Winkel	SO	Kt. SO	629072	241113	429	Ε	_	4	Land, <900 m	3 – 5	_	_
79	HAE	Härkingen	SO	NABEL	628875	240185	431	Ε	_	3.5	Land, Autobahn	5 – 8	20	75'000 (13.5%)
	HAGN	Hägendorf Gnöd	SO	Kt. SO	629822	243741	590	Т	_	4	Land, Autobahn	1 – 3	130	45'000
	HEHI	Hessigkofen Hinterfeld	SO	Kt. SO	600992	220114	601	Ε	_	4	Land, <900 m	3 – 5	_	_
23	HEMO	Hessigkofen Moosgasse	SO	Kt. SO	601471	220742	605	Ε	_	4	Land, <900 m	3 – 5	_	_
	MACH	Matzendorf Chuehölzli	SO	Kt. SO	613721	239016	521	Τ	_	4	Land, <900 m	3 – 5	_	_
46	MAEM	Matzendorf Emet	SO	Kt. SO	614279	240205	594	K	_	4	Land, <900 m	5 – 8	_	_
	MAST	Matzendorf Strickler	SO	Kt. SO	613268	240102	602	Н	SE	4	Land, <900 m	1 – 3	_	_
	MUWA	Mühledorf Wasserreservoir	SO	Kt. SO	602101	220637	619	K	_	4	Land, <900 m	1 – 3	_	_
38	NEHU	Neuendorf Hurtmatten	SO	Kt. SO	627257	239509	435	Ε	_	4	Land, <900 m	3 – 5	2	200
82	SOAL	Solothurn Altwyberhüsli	SO	Kt. SO	607067	229174	453	Е		3	Stadt, Verkehr	1 – 3	25	10'000
	HUD 0	Hudelmoos 0	TG	OSTLUFT	739134	265420	518	Е	_	3	Land, <900 m	1 – 3	_	
15	HUD 3	Hudelmoos 3	TG	OSTLUFT	739124	265522	521	Е	_	1.5	Land, <900 m	3 – 5	_	_
	MUH	Muolen	SG	OSTLUFT	739626	264815	519	Е	_	3	Land, <900 m			
52	WAU 16.4	Wauwil 16	LU	InNET	643707	224651	499	Е	_	4	Land, <900 m	5 – 8	_	_
	WAU 16.2	Wauwil 16	LU	InNET	643707	224651	499	Е	_	2	Land, <900 m	3 – 5	_	_

Relief.

E = Ebene

Strassenabstand: — = > 200 m

Verkehr DTV: — = < 2000 Fahrzeuge

H = Hang

K = Kuppe T = Terrasse

Code	direkte Umgebung	Siedlungsgrösse	Betrieb abstan				N	•	n resmi µg m ⁻³		rt				
			m	2010	2011	2012	2013				2017	2018	2019	2020	2021
WTG1	Acker-, Gemüse-, Futterbau	Einzelhof		3.9	4.6	3.7	3.2	3.2	3.3	2.9	3.2	3.9	4.0	3.7	3.5
WTGN	Acker-, Gemüse-, Futterbau	Einzelhöfe		6.3	7.3	6.0	4.9	5.7	5.8	5.0	5.6	6.0	6.3	6.0	5.2
WTGS	Acker-, Gemüse-, Futterbau	Weiler, Einzelhof		4.5	5.5	4.5	3.5	3.7	3.9	3.3	3.7	4.4	4.6	4.2	3.9
WTGW	Acker-, Gemüse-, Futterbau	Weiler			6.4	5.3	4.5	4.7	4.8	4.1	4.8	4.8			
NGD 01	Wiese, Landwirtschaft	kleines Dorf, Einzelhof	90	9.5	10.7	8.7	8.0	8.5	7.7	9.2	8.9	8.9	9.1	10.5	8.7
NGS	Wiese, Landwirtschaft	kleines Dorf		6.5	9.5	5.8	4.8	5.6	5.3	6.0	5.8	6.4	6.0	6.2	6.0
AEAE	Grasland, Ackerbau, Wald	Weiler			3.7	3.0	2.6	2.6	2.9	2.6	2.5	3.0	3.8	2.9	2.7
EGWA	Einkaufszentrum, Parkplätze, Ackerbau	grosses Dorf			6.3	5.2	4.5	5.4	5.4	5.0	4.8	5.6	5.6	5.4	5.2
GUWI	Grasland, Ackerbau	kleines Dorf			4.0	3.2	2.9	3.2	3.9	4.0	3.8	4.3	4.8	4.8	4.1
HAE	Felder, Wiesen, Autobahn A1	kleines Dorf		4.9	5.2	4.1	3.8	4.4	5.0	4.4	4.7	5.5	5.5	5.0	4.6
HAGN	Grasland, Ackerbau, Wald	Weiler			1.8	1.4	1.1	1.6	1.8	1.4	1.6	2.4	2.1	2.1	1.9
HEHI	Grasland, Ackerbau, Wald	Einzelhöfe	130		5.0	3.4	3.2	3.1	4.0	3.4	3.4	5.2	5.3	4.3	4.0
HEMO	Grasland, Ackerbau, Wald	Weiler, Einzelhof			4.6	3.1	2.4	3.0	3.7	3.0	3.1	4.2	3.9	4.3	3.4
MACH	Grasland, Ackerbau	Einzelhöfe	140		4.1	3.6	2.9	3.7	3.8	4.0	3.6	4.0	4.6	4.4	4.5
MAEM	Grasland, Ackerbau	Einzelhöfe	145		4.4	3.8	3.5	4.3	3.9	3.8	4.4	6.2	5.3	4.9	5.4
MAST	Grasland, Wald, wenig Ackerbau	Einzelhöfe	50		3.2	2.8	2.9	2.9	2.8	2.9	2.6	3.4	3.2	3.1	3.0
MUWA	Grasland, Ackerbau, Wald	Einzelhöfe			3.6	2.5	2.2	2.2	2.8	2.4	2.5	3.1	3.1	3.3	2.8
NEHU	Grasland, Ackerbau	kleines Dorf, Einzelhof	70		6.7	5.3	3.9	5.0	5.0	4.0	4.2	5.9	5.0	4.9	4.7
SOAL	Ackerbau, Wohngebiete	Kleinstadt			2.9	2.5	2.1	2.0	2.3	2.4	1.9	2.8	2.5	2.6	2.2
HUD 0	ländlich, Naturschutzgebiet	_	1110					2.4					2.7	2.8	2.5
HUD 3	Wald, Wiesen, Acker	_		2.1	2.4	1.8	1.9	2.3	2.6	2.3	2.8	3.3	3.2	3.1	2.6
MUH	Hochmoor, Wald	Einzelhöfe	528												5.0
WAU 16.4	Flachmoor, extensives Wiesland	_		6.6	7.4	6.2	5.1	5.5	6.0	5.5	5.6	6.7	6.9	6.0	5.2
WAU 16.2	2 Flachmoor, extensives Wiesland	_		6.2	6.7	5.7	4.6	4.8	5.3	4.8	5.1	5.9	6.3	5.4	4.6

NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 14 Eschenb: ESC 16 Eschenb:			betreiber	_									
AIB Brülisau GAK Gais NTW Trimmis MUH Muolen THA Thal VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 10 Sechupfte ESC 10 OS Schüpfte ESC 10 OS Schüpf				Е	N			sition	ü. Boden		sionstyp a	bstand	(% LKW)
GAK Gais NTW Trimmis MUH Muolen THA Thal VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 10 Schüpfhe ESC				m	m	m ü.M.			m		μg m ⁻³	m	
NTW Trimmis MUH Muolen THA Thal VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 10 Schüpfte ESC 10 Schüp		Al	OSTLUFT	752549	239898	956.5	Н		3	Land, >900 m	1 – 3	_	-
MUH Muolen THA Thal VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 19 Eschenbe GWA Grosswar HOL 03 Holderhu NEU 01 Neudorf NEU 03 Neudorf NEU 03 Schüpfhe SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass		AR	OSTLUFT	753878	247097	966	Ε	N	3.5	Land, >900 m	1 – 3	_	_
THA Thal VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe GWA Grosswal HOL 03 Holderhu NEU 01 Neudorf NEU 01 Neudorf NEU 01 Neudorf NEU 03 Schüpfhe SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldele SZ-03a Laimgass	mis				195285		Н	NW	3	Land, <900 m	1 – 3		
VIK Vilters ZUZ Zuzwil MEG Merishau NEW Neunkirc SCHUB01a Schübelt WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Esche	en	SG	OSTLUFT	739626	264815	519.2	Е	_		Land, <900 m	3 – 5	_	_
ZUZ Zuzwil MEG Merishau NEW Neunkiro SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 19 Eschenb: ESC 19 Eschenb: CHÜ 03 Holderhu NEU 01 Neudorf 1 NEU 01 Neudorf 1 NEU 01 Neudorf 2 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 WAU 19 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass			OSTLUFT				Е	_		Land, <900 m	1 – 3	_	_
MEG Merishau NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 15 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 14 Eschenb: ESC 12 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 18 Eschenb: ESC 10 Eschenb: ESC			OSTLUFT				Е	_		Land, <900 m	3 – 5	_	_
NEW Neunkirc SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkir WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 14 Eschenb: ESC 16 Eschenb:			OSTLUFT			533	Е	_	3	Land, <900 m	5 – 8	_	_
SCHUB01a Schübelb WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 19 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 10 Eschenb: ESC 11 Eschenb: ESC 11 Eschenb: ESC 12 Eschenb: ESC 12 Eschenb: ESC 13 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 16 Eschenb: ESC 16 Eschenb: ESC 17 Eschenb: ESC 18 Eschenb: ESC 19 Eschenb: ESC 10 Eschen	shausen Gräte		Kt. SH / O				Н	W	3	Land, <900 m	1 – 3	_	_
WAN01a Wangen AFM Affeltrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkin WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 14 Eschenb: ESC 19 Eschenb: ESC 19 Eschenb: ESC 19 Eschenb: CHU 01 Neudorf NEU 01 Neudorf NEU 01 Neudorf NEU 01 Neudorf SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1: WAU 14 Wauwil 1: WAU 17 Wauwil 1 WAU 19 Wauwil 1: WAU 19 Wauwil 1: WAU 19 Wauwil 1: NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass	kirch Widen				283155		H	S	3	Land, <900 m	3 – 5	_	_
AFM Affeitrang IMM Immenbe KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 19 Eschenbe ESC 19 Eschenbe CWA Grosswal HOL 03 Holderhu NEU 01 Neudorf NEU 01 Neudorf NEU 03 Schüpfhe SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Vauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass					226762	424	E		4	Land, <900 m	1 – 3		
IMM Immenber KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb Wasterkii Willer Schüber Schüber Wasterkii Wallerhu Eschüber Wallerhu Neudorf Neudorf Neudorf Neudorf Neudorf Schüber Schüber Schüber Schüber Schüber Schüber Schüber Schüber Schüber Waller Wallerhu Wauwil 1 Wallerhu Wallerhu Wauwil 1 Wallerhu Walle	•				227470		E		4	Land, <900 m	1 – 3		
KEB Kemmen NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb: ESC 14 Eschenb: ESC 15 Eschenb: ESC 19 E	-		OSTLUFT				E	_	2.7	Land, <900 m	3 – 5	_	_
NET Neerach OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb ESC 14 Eschenb ESC 15 Eschenb ESC 19 Eschenb GWA Grosswal HOL 03 Holderhu NEU 01 Neudorf NEU 03 Neudorf SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass	J		OSTLUFT				Н			Land, <900 m	1 – 3	_	_
OSD Ossinger ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenb ESC 14 Eschenb ESC 15 Eschenb ESC 19 Eschenb GWA Grosswal HOL 03 Holderhu NEU 01 Neudorf NEU 03 Neudorf SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass			OSTLUFT				E	_	2.7	Land, <900 m	1 – 3	_	
ROAA Aabach WAB Wasterkii WIH Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenbi ESC 14 Eschenbi ESC 15 Eschenbi ESC 19 Esche			OSTLUFT				E	_	4	Land, Verkehr	1 – 3		5'000 <x<20'00< td=""></x<20'00<>
WAB Wasterkin Wilh Winterthu TRS Triesenb BEM Beromün ESC 07 Eschenber ESC 14 Eschenber ESC 15 Eschenber ESC 19 Eschenber ES	•		OSTLUFT				E		4	Land, Verkehr	1 – 3	(740)	(33000)
BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ES					243425		E	-	3.6	Land, <900 m	1 – 3	_	_
BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe ESC 10 Eschenbe ES			OSTLUFT				Н	SW	4	Land, <900 m	1 – 3	_	_
BEM Beromün ESC 07 Eschenbe ESC 14 Eschenbe ESC 15 Eschenbe ESC 19 Eschenbe GWA Grosswan HOL 03 Holderhu NEU 01 Neudorf NEU 03 Neudorf SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass			OSTLUFT			513	H E	SW	4	Land, <900 m Land, >900 m	1 – 3	_	_
ESC 07 Eschenbites C 14 Eschenbites C 15 Eschenbites C 19	enberg	FL	ΓL	702433	219671	1307			J	Lanu, >900 III	<1	_	
ESC 07 Eschenbites C 14 Eschenbites C 15 Eschenbites C 19													
ESC 14 Eschenbi ESC 15 Eschenbi ESC 19 Eschenbi GWA Grosswar HOL 03 Holderhu NEU 01 Neudorf 1 NEU 03 Neudorf 3 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder SZ-03a Laimgass	münster IAP				226819		E	_	3.5	Land, <900 m	5 – 8	_	_
ESC 15 Eschenbigers Eschenbigers GWA Grossware HOL 03 Holderhut NEU 01 Neudorf NEU 03 Neudorf SCHÜ 02 Schüpfter SCHÜ 03 Schüpfter SCHÜ 04 Wauwit 1 WAU 14 Wauwit 1 WAU 17 Wauwit 1 WAU 19 Wauwit 1 NW-01 Stans Gar NW-03 Oberdorf OW-04 Obwalder SZ-03a Laimgass					221074	498	Н	NW		Land, <900 m	> 8	_	_
ESC 19 Eschenb: GWA Grosswar HOL 03 Holderhu NEU 01 Neudorf 1 NEU 03 Neudorf 2 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder SZ-03a Laimgass	enbach 14				221017	541	Н	E	3	Land, <900 m	> 8	_	_
GWA Grosswal HOL 03 Holderhu NEU 01 Neudorf 1 NEU 03 Neudorf 2 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SCHÜ 04 Wauwil 1 WAU 10 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgass					220788	520	H	SE		Land, <900 m	> 8	_	_
HOL 03 Holderhu HOL 04 Holderhu NEU 01 Neudorf 1 NEU 03 Neudorf 2 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder SZ-03a Laimgass					221169	495	Е	_	3	Land, <900 m	> 8	_	_
HOL 04 Holderhu NEU 01 Neudorf 1 NEU 03 Neudorf 2 SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldel SZ-03a Laimgas					221994				3.5	Land, <900 m	3 – 5	_	_
NEU 01 Neudorf NEU 03 Neudorf SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder SZ-03a Laimgass					216724	605	Н	N	3	Land, <900 m	5 – 8		
NEU 03 Neudorf: SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1: WAU 14 Wauwil 1: WAU 17 Wauwil 1: WAU 19 Wauwil 1: NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwaldet SZ-03a Laimgas:					216902	590	E	— NNA/	4	Land, <900 m	> 8	_	_
SCHÜ 02 Schüpfhe SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder SZ-03a Laimgass					224550	720	Н	NW	3	Land, <900 m	5 – 8	_	_
SCHÜ 03 Schüpfhe SEM Sempach WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass					224246	755	Н	SE		Land, <900 m	5 – 8	150	_
SEM Sempact WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass	•				201575 201394	700 720	E	_	3	Land, <900 m	5 – 8	150	
WAU 10 Wauwil 1 WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass	•				219737		E	_		Land, <900 m	5 – 8 5 – 8	190	
WAU 14 Wauwil 1 WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass		LU			224950	500.2	E	_	3.5 3	Land, <900 m Land, <900 m	> 8	_	_
WAU 17 Wauwil 1 WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass					224930	500	E	_	3		>8	_	-
WAU 19 Wauwil 1 NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass					225590	500	E		3	Land, <900 m Land, <900 m	5 – 8		_
NW-01 Stans Ga NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass								_				_	-
NW-03 Oberdorf OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass					224324 202160	500 439	E E	_		Land, <900 m Land, <900 m	5 – 8 5 – 8	— 120	— Autobahn
OW-01 Obwalder OW-04 Obwalder SZ-03a Laimgass	dorf Schiesstand				200273	466	E	_		Land, <900 m	5 – 8	115	Autobariii
OW-04 Obwalder SZ-03a Laimgass					195471	558	E			Land, <900 m	5 – 8		
SZ-03a Laimgas					196174	575	E	_	4	Land, <900 m	> 8	_	
					207210	495	E	_		Land, <900 m	5 – 8	— 180	_
URI 02 Uri 2	•				188555	455	E	_		Land, <900 m	5 – 8	104	
URI 03 Uri 3					189215	455	E	_		Land, <900 m	5 – 8	120	
ZG-01 Niederwil					229868	430	E	_		Land, <900 m	>8	_	_
ZG-03 Niederwil					229387		E	_		Land, <900 m	> 8		_
				3, 3, 00	Relief:	0		Ebene			abstand: –	- > 00/) m

77

Code o	direkte Umgebung	Siedlungsgrösse E	etriebs	s-			NI	-		ttelwe	rt				
		а	bstand						ug m ⁻³						
			m	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	Flachmoor/Waldnah	Einzelhöfe	404												1.9
	Flachmoor/Hochm./Waldnah	Einzelgebäude	230												2.0
NTW T	Trockenwiese /Waldnah		766												1.6
	Hochmoor/Wald	Einzelhöfe	528												4.98
	Flachmoor, Siedlung, See, Flugplatz	kleines Dorf	456												2.7
	Feuchtgebiet, Siedlung	kleines Dorf	163												3.8
	Flachmoor	kleines Dorf	308												5.9
MEG T	Trockenwiese, waldnah	kleines Dorf	237												1.7
	Feuchtgebiet	_	606												4.4
	Wiesen, Ackerbau		184												*
	Wiesen, Ackerbau		355												*
	Flachmoor	kleines Dorf	277												4.9
IMM T	Trockenw./S-Wald	kleines Dorf	197												2.6
KEB F	Flachmoor	Weiler	337												2.3
	Flachmoor	-	433												2.4
OSD F	Flachmoor	_	510												1.8
ROAA F	Flachmoor, Siedlung	Kleinstadt	1110												1.9
WAB T	Trockenwiese	kleines Dorf	69												1.6
WIH T	Trockenwiese/Wald	Weiler	825												1.8
TRS V	Wiese/Waldnah	Einzelhöfe													0.7
												* <85	5 % Ze	itabde	ckung
BEM V	Weiher, Wiesen,Flugplatz, Wald	Industrie (Feuerwerk)								5.6	5.5	7.1	7.0	6.2	5.4
ESC 07 in	intensive Landwirtschaft	Einzelhöfe		7.5	8.7	7.9	8.2	8.5	8.7	7.4	9.5	12.6	12.0	10.2	8.8
ESC 14 in	intensive Landwirtschaft	Einzelhöfe	80	10.7	13.4	12.0	11.2	12.9	13.5	12.5	14.3	17.9	17.2	14.0	11.9
ESC 15 in	intensive Landwirtschaft	Einzelhöfe		7.6	8.5	7.3	7.2	7.4	8.4	7.7	8.4	11.4	11.0	8.8	8.4
ESC 19 in	intensive Landwirtschaft	Einzelhöfe	100	6.8	7.2	5.8	6.2	5.8	6.8	5.7	7.2	8.9	10.0	7.7	6.3
GWA V	Wiesen, Ackerbau, Wald	Weiler, Einzelhöfe	100							3.6	4.3	4.7	4.6	4.2	3.6
HOL 03 C	Obstkultur, Wiese, Wald	grosses Dorf, Einzelho	130	5.7	6.8	5.4	5.1	6.1	5.8	5.6	5.1	7.0	6.3	5.6	4.8
HOL 04 C	Obstkultur, Wiese, Wald	grosses Dorf, Einzelho	60	12.5	12.6	10.0	9.4	9.9	9.2	8.9	9.9	11.2	10.2	9.8	10.0
NEU 01 V	Wiesen, Weiden	Einzelhöfe		5.3	6.8	5.4	5.5	6.0	6.8	6.1	6.4	8.5	8.0	6.9	5.9
NEU 03 V	Wiesen, Weiden	Einzelhöfe		4.9	5.2	4.4	3.9	4.9	4.9	4.1	4.4	5.6	5.7	4.7	4.6
SCHÜ 02 V	Wiesen, Weiden, Fluss	grosses Dorf, Einzelhöfe)	6.9	8.3	7.1	5.9	6.6	7.2	6.6	7.0	8.4	8.4	7.3	6.6
SCHÜ 03 V	Wiesland, Acker	grosses Dorf, Einzelhö	30								7.0	8.7	8.5	7.5	6.6
SEM C	Gewerbe, Wiesen, Wald	Industrie								5.8	6.5	7.7	7.2	6.9	5.8
WAU 10 V	Wiesland, Acker	Einzelhöfe		8.5	9.2	8.3	7.4	7.3	8.9	7.5	8.4	9.1	9.0	8.7	8.1
WAU 14 V	Wiesland, Acker	_		8.0	10.0	9.0	7.5	7.6	9.5	8.5	8.8	7.8	8.9	8.9	7.5
WAU 17 V	Wiesland, Acker	kleines Dorf, Einzelhöfe		8.0	9.0	7.8	7.1	6.5	7.3	6.7	7.3	8.3	8.3	7.9	6.6
WAU 19 V	Wiesland, Acker	_		6.9	8.6	7.2	6.2	7.1	8.0	8.0	7.1	8.0	7.6	7.1	6.4
	Wiesen, Weiden	Industrie, grosses Dorf		6.5	7.1	6.8	5.9	6.2	6.8	5.9	6.2	7.9	7.8	7.3	5.6
NW-03 V	Wiesen, Weiden	Einzelhöfe	150	6.9	7.4	6.4	5.7	6.3	6.6	6.3	6.7	7.6	7.6	6.9	6.1
OW-01 V	Wiesen, Weiden	Einzelhöfe, grosses Dor	f	7.5	8.8	7.0	6.8	6.1	7.5	7.0	6.9	8.4	8.5	7.3	6.7
	Wiesen, Weiden	Weiler									6.9		10.0	9.7	8.4
	Wiesen, Weiden	grosses Dorf, Einzelhö	90											5.1	5.0
	Wiesen, Weiden	Einzelhöfe		6.9	7.2	6.2	6.1	5.3	5.2	4.4	5.3	5.7	6.4	6.8	6.0
	•	Einzelhöfe		7.3	8.2	6.9	6.4	5.9	7.1	5.9	5.5	6.9	6.9	7.3	6.3
	Wiesen, Weiden	LINZEINOIE		7.0	0.2	0.0	٠. ١	0.0	7.1	5.5	5.5	0.5	0.5	1.0	0.0
URI 03 V	Wiesen, Weiden, Ackerbau	Weiler, Einzelhöfe		10.9			0.1	0.0	9.3	7.8	10.1		12.9	10.1	7.4

8 Glossar

Aerosole Gemische aus festen und/oder flüssigen Schwebeteilchen in der Luft

BAFU Bundesamt für Umwelt
BFS Bundesamt für Statistik

BLW Bundesamt für Landwirtschaft

Boxplot Diagramm zur grafischen Darstellung der Verteilung von Resultaten, zur Ver-

mittlung in welchem Bereich die Daten liegen und wie sie sich über diesen

Bereich verteilen.

CLRTAP Convention on Long-range Transboundary Air Pollution bzw. Genfer Luftrein-

haltekonvention

Critical Levels Konzentration bzw. Dosis eines Schadstoffes in der Atmosphäre, bei deren

Überschreitung nachteilige Effekte bei Pflanzen, Tieren oder Menschen auf-

treten können.

Critical Loads Kritische Eintragsgrenzen, bei deren Überschreitung negative Veränderungen

an verschiedenen Ökosystemen (z.B. Wälder, Moore) auftreten.

EMEP European Monitoring and Evaluation Programme; Co-operative programme

for monitoring and evaluation of the long range transmissions of air pollutants

in Europe

FOEN Federal Office for the Environment (Englisch für BAFU)

GAW Global Atmosphere Watch, Programm der WMO

in-LUFT Messnetz zur Luftqualitätsüberwachung auf dem Gebiet der Zentralschweiz

der Kantone Uri, Schwyz, Nidwalden, Obwalden, Luzern und Zug

LWF Langfristige Waldökosystem-Forschung

LwG Landwirtschaftsgesetz

NILU Norwegian Institute for Air Research oligotroph nährstoffarm (für Gewässer und Moore)

OSTLUFT Die Luftgualitätsüberwachung der Ostschweizer Kantone Appenzell-Innerrho-

den, Appenzell-Ausserrhoden, Glarus, Graubünden (Teil), St. Gallen, Schaff-

hausen, Thurgau und Zürich und des Fürstentums Liechtenstein

PM1 Particulate Matter mit einem aerodynamischen Durchmesser von <1 µm,

lungengängiger Feinstaub

PM10 Particulate Matter mit einem aerodynamischen Durchmesser von <10 µm,

einatembarer Feinstaub

Quelle Emissionsverursacher

Ressourcenprogramm Förderung der nachhaltigen Stickstoff-Ressourcennutzung durch das BLW

Senke Oberfläche an denen Stoffe abgelagert und so der Atmosphäre entzogen wer-

den

swisstopo Bundesamt für Landestopographie

UNECE United Nations Economic Commission for Europe

VDI Verein Deutscher Ingenieure

WMO World Meteorological Organisation