NAWA TREND Biologie 2023

Diatomeen und Äusserer Aspekt

Fachbericht

Bericht Nr. 2142-B-01 Datum Entwurf: 22.10.2024 Datum Endfassung: 5.3.2025

Impressum

Auftraggeber: BAFU Bundesamt für Umwelt, Abteilung Wasser, CH-3003 Bern

Amt des Eidg. Departements für Umwelt, Verkehr, Energie und

Kommunikation (UVEK)

Auftragnehmer: AquaPlus AG, Gotthardstrasse 30, CH-6300 Zug

PhycoEco, Rue des XXII-Cantons 39, CH-2300 La Chaux-de-

Fonds

Autoren: Christa Gufler, Joachim Hürlimann, Yvonne Bernauer

(AquaPlus AG)

François Straub (PhycoEco)

MitarbeiterIn: Yvonne Bernauer, Margrit Ensner Egloff (AquaPlus AG)

Jennifer Iseli (PhycoEco)

Arielle Cordonier (Kanton Genf)

Hinweis: Diese Studie / dieser Bericht wurde im Auftrag des Bundesamtes

für Umwelt (BAFU) verfasst. Für den Inhalt ist allein der Auftrag-

nehmer verantwortlich.

Fotos auf der Titelseite:

Links oben: Mikroskopaufnahme *Didymosphenia geminata*; eine gebietsfremde Kieselalge. Rechts oben: Necker bei Lütisburg (ID 027, SG). Links unten: Pfaffern bei Rothrist (ID 032, AG). Rechts unten: Exemplarisches Beispiel von Steinen der quantitativen Kieselalgen-Probenahme.

Inhaltsverzeichnis

		Seite
Zusan	nmenfassung	1
1	Ausgangslage und Auftrag	2
2 2.1 2.2 2.3 2.4 2.5	Material und Methoden Allgemein Feldarbeit Laborarbeit Auswertung Qualitätssicherung	3 3 3 4 7
3 4 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Charakterisierung Messstellen Äusserer Aspekt Kieselalgen Charakterisierung Lebensgemeinschaft Artenzusammensetzung Planktische Arten Gebietsfremde Arten (Neophyta) Teratologie Zelldichte Biologisch indizierte Wasserqualität (DI-CH) Standortgerechtigkeit Kieselalgen und Äusserer Aspekt Qualitätssicherung	11 14 19 19 22 23 23 25 27 30 38 38 41
6 7 8	Fazit und Ausblick Literaturverzeichnis Glossar und Abkürzungen	43 44 47
9 A B C D	ANHANG Übersicht Messstellen Charakterisierung Messstellen Kieselalgen Resultate Kieselalgen Qualitätssicherung	48 49 52 55 58

Zusammenfassung

Ausgangslage

Der vorliegende Fachbericht ist Bestandteil des Monitoringprogrammes NAWA TREND Biologie. Er beinhaltet das Teilprogramm Kieselalgen (Diatomeen) und Äusserer Aspekt des Untersuchungsjahres 2023. Neben der Auswertung der aktuellen Untersuchungsperiode werden die Ergebnisse mit früheren Kampagnen verglichen.

Messstellen

Insgesamt wurden an 113 watbaren Stellen Kieselalgenproben entnommen und untersucht sowie im Feld der Äussere Aspekt erhoben. Die Untersuchungen erfolgten gemäss BAFU Methoden Äusserer Aspekt und Kieselalgen. Die Probenahmen wurden zusammen mit denjenigen des Makrozoobenthos im Frühjahr durchgeführt.

Qualitätssicherung

Die Qualitätssicherung der Daten wurde durch die Durchführung von Workshops gewährleistet. Zusätzlich wurde eine einheitliche Taxaliste (Synonomieliste) festgelegt und sämtliche Indexberechnungen sowie Auswertungen überprüft. Alle Daten und Protokolle liegen in elektronischer Form vor.

Äusserer Aspekt

Der Äussere Aspekt der 113 Stellen wurde hauptsächlich durch Abfälle (57 % aller Stellen) und Kolmation (54 %) sowie durch stabile Schaumbildung (35 % der Stellen) beeinträchtigt. Im Vergleich zur Gewässersohle wiesen die Parameter der fliessenden Welle deutlich weniger Beeinträchtigungen auf. Der Äussere Aspekt entspricht im Jahr 2023 weitgehend den Resultaten der Vorperioden.

Kieselalgen

Im Jahr 2023 wurden in den Kieselalgenproben insgesamt 273 Taxa identifiziert. Seit Beginn der NAWA-Kampagnen hat die Anzahl der gebietsfremden Kieselalgen sowie deren Vorkommen und Häufigkeit deutlich zugenommen. Hinsichtlich der biologisch indizierten Wasserqualität, basierend auf dem DI-CH-Wert, wiesen 93 % der untersuchten Stellen in Bezug auf die Nährstoffbelastung eine gute bis sehr gute Zustandsklasse auf. Allerdings zeigten sich erhebliche Defizite bei der Standortgerechtigkeit. Lediglich 16 % der untersuchten Stellen wiesen eine standortgerechte Lebensgemeinschaft auf. Die Lebensgemeinschaften entsprechen somit basierend auf dem DI-CH-Wert weitgehend den Anforderungen an die Wasserqualität gemäss GSchV Anhang 2. Die ökologischen Ziele gemäss GSchV Anhang 1, welche naturnahe und standorttypische Lebensgemeinschaften vorgeben, werden jedoch grösstenteils nicht erreicht.

Trend

Der DI-CH-Wert zeigt über die Kampagnen hinweg ein geringfügigen Trend zur Verbesserung. Zugleich ist eine Zunahme in der Verbreitung und Häufigkeit gebietsfremder Arten in der Schweiz feststellbar. Beim Äusseren Aspekt wurden keine wesentlichen Veränderungen über die Zeit festgestellt.

1 Ausgangslage und Auftrag

Ausgangslage

Das NAWA TREND Monitoringprogramm des Bundesamtes für Umwelt (BAFU) und der Kantone überwacht die Langzeitentwicklung der Fliessgewässer in der Schweiz anhand biologischer und anderer Indikatoren. Das Hauptziel ist es, den Zustand der Oberflächengewässer sowie deren Entwicklung im Laufe der Zeit zu verfolgen. Weiter sollen problematische Entwicklungen frühzeitig erkannt und der Erfolg von Massnahmen im Gewässerschutz sowie anderen Bereichen überwacht werden. Die biologischen Erhebungen im Rahmen von NAWA TREND bestehen aus den Teilprogrammen Diatomeen (Kieselalgen), Fische, Makrophyten (Wasserpflanzen) und Makrozoobenthos (wirbellose Kleintiere der Gewässersohle), wobei die Erhebungen alle vier Jahre stattfinden. Im Jahr 2023 wurde die vierte Untersuchungskampagne durchgeführt.

Auftrag

Dieser Fachbericht präsentiert die Ergebnisse des Teilprogrammes Diatomeen der aktuellen Untersuchungskampagne und vergleicht die Daten mit früheren Untersuchungskampagnen. Der Auftrag umfasst die Präparation, Bestimmung, Qualitätssicherung, Auswertung und Berichterstattung der Kieselalgen und des Äusseren Aspektes. Die Probenahme der Kieselalgen und die Erhebung des Äusseren Aspektes erfolgte durch das Teilprogramm Makrozoobenthos im Frühling 2023.

2 Material und Methode

2.1 Allgemein

Grundlagen

Die Basis dieses Berichtes stellen die Kieselalgen-Proben der Untersuchungskampagne 2023 dar, welche an insgesamt 113 Stellen untersucht wurden. Tabelle 2.3 enthält einen Überblick der bisher in NAWA TREND untersuchten Proben sowie die Angaben der Auftraggeber und Bearbeiter. Die detaillierte Liste mit allen Angaben zu den untersuchten Stellen befindet sich im Überblick in Tabelle 2.4 und im Detail in Anhang A und Anhang B. Die Zähllisten sowie die Kurzkommentare wurden dem Auftraggeber in elektronischer Form übergeben.

2.2 Feldarbeit

Probenahme

Die Probenahme der Kieselalgen und die Erhebung des Äusseren Aspektes erfolgte durch das Teilprogramm Makrozoobenthos im Frühjahr 2023.

Kieselalgen

Die Probenahme der Kieselalgen erfolgte gemäss dem Modul-Stufen-Konzept (MSK) Kieselalgen (BAFU 2007a). Erweiternd zur MSK-Methode wurde die Probenahme quantitativ durchgeführt (standartisierte Probenahme-Utensilien, protokollieren Anzahl beprobter Steine respektive Flächen) mit dem Ziel, die Zelldichten der Lebensgemeinschaft zu eruieren. Pro Stelle wurden von mindestens 5 Steinen eine gleich grosse Aufwuchsfläche mittels Abkratzutensilien gemäss Douglas (1958) abgekratzt. Die Proben wurden im Anschluss mit Formaldehyd (37 %) auf eine Endkonzentration von rund 2 bis 4 % fixiert. Die beprobten Steine wurden fotografisch dokumentiert.

Äusserer Aspekt

Des Weiteren wurden der Äussere Aspekt (BAFU 2007b) erfasst sowie die Messstellen fotografisch dokumentiert. Beim Äusseren Aspekt wurden die Parameter der fliessenden Welle (Schaum, Trübung, Geruch, Verfärbung) und der Gewässersohle (Kolmation, Abfälle, Feststoffe Siedlungsentwässerung, Verschlammung, Eisensulfid, heterotropher Bewuchs) erhoben. Der Äussere Aspekt umfasst daher Aspekte des gesamten benetzten Bereichs, einschliesslich des Uferbereichs über der Wasserlinie.

2.3 Laborarbeit

Präparation

Die Kieslelalgen-Proben wurden im Labor des Amt für Verbraucherschutz des Kantons Zug mittels Heissoxidationsmethode (Salz- und Schwefelsäure sowie anschliessende Endoxidation mit Kaliumnitrat) quantitativ präpariert (Straub 1981; BAFU 2007a). Anschliessend erfolgte die Einbettung der gereinigten Schalen in Kunstharz (Naphrax).

Bestimmung

Für die Bestimmung und Zählung der 500 Schalen (jede Kieselalgenart besteht aus zwei Schalenhälften, Summe der gezählten Schalen = 100 %) wurde ein Mikroskop mit 1'000facher Vergrösserung (Ölimmersion, Phasenkontrast, Interferenz-Beleuchtung) verwendet. Die Teratologien (Missbildungen bei der Schalenstruktur) wurden für jede Art erfasst, indem nach Typen unterschieden wurde (Abbildung 2.1). Die Bestimmung erfolgte nach Hofmann et al. (2013), Krammer & Lange-Bertalot (1986; 1991a; 1991b; 2007) und Lange-Bertalot & Metzeltin

(1996) sowie bei Bedarf mit weiterer Spezialliteratur (z.B. Diatoms of Europe (diverse Bände), Reichardt 2018). Die Nomenklatur richtet sich weitgehend nach Hofmann et al. (2013) sowie der Synonymliste gemäss der Publikation auf der MSK-Webseite. Analog zur Probenahme und Herstellung der Dauerpräparate erfolgte auch die Bestimmung und Zählung der Kieselalgen quantitativ. Die Bestimmung der Kieselalgen erfolgte durch erfahrene Fachexpert:Innen (AquaPlus AG: Yvonne Bernauer, Christa Gufler, Margrit Ensner Egloff, Joachim Hürlimann; PhycoEco: François Straub, Jennifer Iseli; Kanton Genf: Arielle Cordonier). Die involvierten Fachexperten nehmen jährlich am Workshop Diatomeen der Arbeitsgemeinschaft S.A.M / A.S.E.M (Schweizerische Arbeitsgemeinschaft Mikroflora) teil und absolvieren jährlich einen Ringtest, welcher ebenfalls durch S.A.M. / A.S.E.M organisiert wird.

Archivierung

Die präparierten Proben und Präparate werden an drei Standorten in den Sammlungen der AquaPlus AG, PhycoEco (Muzoo, La Chaux-de Fonds) und des BAFU (EAWAG, Dübendorf) archiviert.

2.4 Auswertung

Diatomeen-Index

Die Auswertungen erfolgten gemäss MSK-Methode Kieslelagen (BAFU 2007a). Die Auswertungen beruhen auf den relativen Häufigkeiten, welche an jeder Stelle für jede gefundene Kieselalgenart aufgrund der Zählung eruiert wurden. Der biologische Zustand der Fliessgewässer wurde anhand des Diatomeen Index der Schweiz DI-CH ermittelt. Die Zustandsbeschreibungen haben einen bekannten Bezug zu chemischen Parametern, die anthropogene Nährstoffbelastungen anzeigen, und sind somit ein wichtiger Aspekt im Hinblick auf die Überprüfung der ökologischen Zielsetzung gemäss Anhang 1 und den Anforderungen an die Wasserqualität gemäss Anhang 2 der Gewässerschutzverordnung (GSchV 1998). Der DI-CH reicht von 1 (nährstoffarmes Wasser) bis 8 (nährstoffreiches und organisch belastetes Wasser) und wird in fünf Klassen eingeteilt: «sehr gut», «gut», «mässig», «unbefriedigend», «schlecht». Für die Berechnung werden indikative Taxa beigezogen, wobei der Indikationswert D ein Taxon bezüglich den von ihm bevorzugten chemischen Lebensbedingungen charakterisiert (Tabelle 2.1).

Tab. 2.1: Zustandsklassen DI-CH-Wert und D-Werte mit Angabe der jeweiligen numerischen Werten, Beurteilung und Farbcodierung. Bei den D-Werten werden in der Klasse «sehr gut» die Taxa mit einem D-Wert < 2.5 durch die Farbe hellblau optisch gesondert dargestellt (BAFU 2007a).

DI-CH	Beurteilung	Farbcode
1.00 - 3.49	sehr gut	
3.50 - 4.49	gut	
4.50 - 5.49	mässig	
5.50 - 6.49	unbefriedigend	
6.50 - 8.00	schlecht	

D-Werte	Beurteilung	Farbcode
1, 1.5, 2	sehr gut	
2.5, 3	sehr gut	
3.5, 4	gut	
4.5, 5	mässig	
5.5, 6	unbefriedigend	
6.5, 7, 7.5, 8	schlecht	

Standortgerechtigkeit

Zusätzlich zum Diatomeen Index der Schweiz DI-CH wurde die Standortgerechtigkeit der Lebensgemeinschaft beurteilt. Die Standortgerechtigkeit orientiert sich an einer gewässertypspezifischen Referenzvorstellung und bewertet, ob eine vorgefundene Lebensgemeinschaft dem Standort entsprechend natürlich/naturnah ist. Diese Beurteilung ist von zentraler Bedeutung, da in der Gewässerschutzverordnung Anhang 1 (ökologische Ziele) in Artikel 1 festgelegt ist, dass:

Die Lebensgemeinschaften von Pflanzen, Tieren und Mikroorganismen oberirdischer Gewässer und der von ihnen beeinflussten Umgebung sollen:

- a) naturnah und standortgerecht sein sowie sich selbst reproduzieren und regulieren,
- b) eine Vielfalt und eine Häufigkeit der Arten aufweisen, die typisch sind für nicht oder nur schwach belastete Gewässer des jeweiligen Gewässertyps.

Die Kennwerte zur Beurteilung der Standortgerechtigkeit waren der DI-CH-Wert, der Anteil an Arten mit D-Werten ≥ 5.5 und < 2.5, die Gleichmässigkeit der Populationsstruktur (Evenness), die Taxazahl, der maximale Anteil des häufigsten Taxons pro Probe (Dominanz) sowie der relative Anteil an Neophyten (Tabelle 2.2). Damit werden art- und indexspezifische Kennwerte beigezogen, sodass die Struktur der Lebensgemeinschaft wie auch indikative Gruppen (DI-CH, D-Gruppen) in die Beurteilung einfliessen. Die firmeneigene Methode befindet sich noch in der Testphase und ist nicht publiziert. Dennoch zeigt sich, dass der Anspruch auf eine standortgerechte Lebensgemeinschaft deutlich höher ist, wie das blosse Erfüllen der biologisch indizierten Wasserqualität (DI-CH-Wert).

Tab. 2.2: Kennwerte zur Beurteilung und Erfüllung der Standortgerechtigkeit in Abhängigkeit der Biogeografie. DI-CH-Wert, Belastungszeiger (D-Wert ≥ 5.5), Sauberwasserzeiger (D-Wert < 2.5), Evenness, Taxazahl, Dominanz und Anteil Neophyta (gebietsfremde Arten).

		Ökologie		Struktu	ır Lebensgei	Gebietsfremde Arten	
	DI-CH	D-Wert \geq 5.5 3	D-Wert < 2.5 ³	Evenness ⁴	Taxazahl ⁴	Dominanz ⁵	Summe rH ⁶
Mittelland ¹	< 4.5	< 15 %	> 10 %	> 0.4	> 18	< 50 %	< 2 %
Alpiner Raum ²	≤ 2.0	< 10 %	> 20 %	> 0.4	> 18	< 50 %	< 2 %

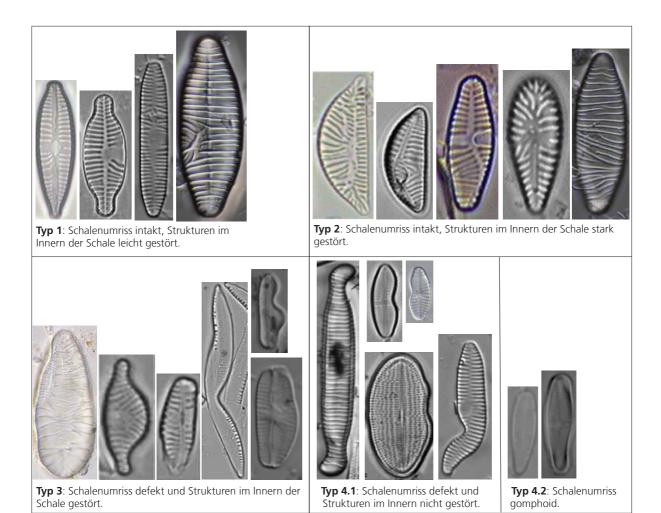
¹ Mittelland: Biogeografische Regionen Mittelland und Jura.

Teratologie

Des Weiteren wurde der Anteil an Teratologien an der gesamten Lebensgemeinschaft quantifiziert. Teratologien bezeichnen dabei Schalenmissbildungen, die durch Stressfaktoren hervorgerufen werden und ausserhalb der natürlichen phänotypischen Variabilität liegen. Diese Stressfaktoren können sowohl natürlicher (wie z.B. Silikatmangel, hohe UV-Strahlung in Gebirgsregionen, Temperaturschwankungen, hohe Zelldichte) als auch unnatürlicher Natur sein (wie z.B. häus-

² Alpiner Raum: Biogeografische Regionen Alpennord- und Alpensüdflanke sowie östliche und westliche Zentralalpen.

 $^{^{3}}$ Summe relative Anteile rH der Taxa mit D-Werten ≥ 5.5 respektive < 2.5.


⁴ Natürliche Verhältnisse mit geringer Evenness resp. Taxazahl bleiben vorbehalten (Erstbesiedler, Sauberwasserarten D-Wert < 2.5 dominierend, bspw. der Gattungen Achnanthidium und Gomphonema). Erfüllung Standortgerechtigkeit bei Taxazahl < 18 gilt als unklar</p>

⁵ Bei einer Dominanz einer Art > 50 % spielt der D-Wert des Taxons eine zusätzliche Rolle. Erfüllung Standortgerechtigkeit gilt als unklar bei D-Wert > 2.5 - < 4.5 (Alpen) bzw. > 3.5 - < 4.5 (Mittelland).

 $^{^{6}}$ Erfüllung Standortgerechtigkeit gilt als unklar bei rH ≥ 2 - < 10 %.

liches Abwasser, hohe Ammonium- und Nitritkonzentrationen, Schwermetalle, Mikroverunreinigungen, atypisch hoher Salzgehalt, Radioaktivität). Es wird angenommen, dass bei einem Anteil von missgebildeten Schalen von ≥ 0.5 % der Lebensgemeinschaft (100 % entsprechen 500 Schalen) anthropogene Einflüsse durchaus eine Rolle spielen könnten. Allerdings ist das Wissen über die Ursachen von Teratologien in natürlichen Populationen begrenzt.

Die Erfassung der Teratologie erfolgt anhand von vier Typen, wobei Typ 4 weiter unterteilt wird (Abbildung 2.1). Die Definition dieser Typen basiert auf morphologischen Merkmalen, welche im Lichtmikroskop gut erkennbar sind. Nach dem aktuellen Wissensstand haben diese Typen keine Aussagekraft in Bezug auf Einflussfaktoren, ökologische Relevanz oder andere Bedeutungen. Einzig der Typ 4.2 könnte ein stressbedingter Effekt sein, welcher infolge hoher Zelldichte auftreten könnte.

Abb. 2.1: Exemplarische Darstellung verschiedener Teratologie-Typen (Missbildungen Schalenstrukturen). Teratologie-Typen 1 bis 4.2 gemäss S.A.M / A.S.E.M. (Workshop Kieselalgen in La Chaux-de-Fonds der Schweizerischen Arbeitsgemeinschaft Mikroflora) und AquaPlus & PhycoEco (2014b). Die Schalen sind nicht in gleicher Vergrösserung abgebildet. Die Fotos stammen von AquaPlus AG, Falasco et al. (2009), Rimet & Ector (2006) sowie Rimet et al. (2006). Gomphoid bezeichnet eine Formbeschreibung in Anlehnung an den Umriss der Schalen der Gattung *Gomphonema*.

Weitere Auswertungen Weiter wurden die Taxazahl, die Diversität H nach Shannon (Log mit Basis 2, Shannon & Weaver, 1949) sowie weitere taxa- und indexspezifische Auswertungen durchgeführt (planktische Arten, gebietsfremde Arten, etc.) sowie die Zell- respektive die Besiedelungsdichte (= Anzahl Zellen pro Fläche in cm²) berechnet.

Einflussgrössen

Die Auswertungen hinsichtlich Einflussgrössen basieren auf der vom BAFU zur Verfügung gestellten Charakterisierung der Einzugsgebiete (EZG). Diese Zusammenstellung enthält pro Messstelle Angaben zur Fläche, mittleren Höhenlage, Hydrologie, Ökomorphologie, Landnutzungen, Zugehörigkeit der biogeografischen Region, Abwasseranteil bei Niederwasser und weitere Parameter. Es wurden dieselben Datentypen verwendet wie bei der Berichterstattung der bisherigen Untersuchungskampagnen (AquaPlus & PhycoEco 2014a; AquaPlus & PhycoEco 2017; AguaPlus & PhycoEco 2021a).

Datenabgabe

Die Datenerfassung erfolgte in der Datenbank BIS der Firma AquaPlus AG. Die Datenzusammenstellung (Äusserer Aspekt, Kieselalgen) wurden dem Auftraggeber in elektronischer Form übergeben. Die Daten der Kieselalgenzählungen der NAWA TREND Untersuchungen 2011-2019 wurden im Januar 2020 und die Daten des Jahres 2023 im September 2024 an MIDAT+ DIA übergeben.

2.5 Qualitätssicherung

Workshops

Die Qualitätssicherung der Daten wurde durch die Durchführung von Workshops sichergestellt. Dabei lag der Fokus darauf, eine einheitliche Praxis bei der Probenahme, Laborarbeit und Auswertung zu gewährleisten sowie Unsicherheiten und mögliche Fehlerquellen zu diskutieren und zu klären. Die Workshops fanden am 28. November 2022 in Dübendorf auf Deutsch und am 18. November 2022 in Fribourg auf Französisch statt.

Doppelzählungen

Des Weiteren wurden bei zehn ausgewählten Proben Doppelzählungen durchgeführt. Die Proben wurden nach folgendem Kriterienkatalog ausgewählt: Die Zählungen und QS-Zählungen wurden jeweils von zwei Personen aus verschiedenen Institutionen durchgeführt. Von den zehn Proben waren sechs vom BAFU und vier kantonale Proben, wobei, mit Ausnahme einer Probe (Arve ID 86 GE, Zählung durch Arielle Cordonier) die Auftraggeber durchwegs PhycoEco und AquaPlus AG waren. Die QS-Zählungen wurden basierend auf einem Gradienten des DI-CH-Wertes ausgewählt, wobei die Gewichtung der Zustandsklassen berücksichtigt wurde. Es wurde zudem sichergestellt, dass alle Bestimmer mindestens bei einer QS-Zählung berücksichtigt wurden. Anschliessend wurden die Zähllisten und Auswertungen verglichen, um eine zuverlässige und konsistente Datenbasis sicherzustellen.

Plausibilisierung

Sämtliche Zähllisten wurden auf Auffälligkeiten hin geprüft und gegebenenfalls im Mikroskop verifiziert. Etwaige Fragen zu Bestimmungen wurden von den Autoren des Fachberichts der beiden beteiligten Institutionen, AquaPlus AG und PhycoEco, diskutiert.

Synonymie / DI-CH

Zudem wurde eine einheitliche Taxaliste vorgegeben (Synonymieliste), die D- und G-Werte überprüft und eine Nachkontrolle sämtlicher Indexberechnungen der DI-CH-Werte durchgeführt.

Zelldichten

Die ermittelten Zelldichten wurden mit Hilfe der Fotos der abgekratzten Steine plausibilisiert.

Tab. 2.3: Übersicht Anzahl Proben pro Jahr inklusive Angabe verschiedener Zusatzinformationen.

Angaben zu Auftraggeber, Gebiet/Kanton, Präparation, Bearbeitung und Qualitätssicherung (QS).

20 Stellen wurden von 2011-2014 jährlich beprobt.

⁵ Salmsacher Aach (ID 073, TG) und Ron (ID 116, LU) wurden im Rahmen eines Zusatzauftrages im Jahr 2019 das letzte Mal beprobt.

Jahr	Anzahl Proben	Auftrag- geber	Gebiet/Kanton	Präparation	Bearbeitung ¹
2011	10	BAFU	OST	AquaPlus AG	AquaPlus AG
	10	BAFU	WEST	AquaPlus AG	PhycoEco
2012	8	Kanton	AG	AquaPlus AG	AquaPlus AG
	4	Kanton	NW, OW, SZ, UR	AquaPlus AG	AquaPlus AG
	13	Kanton	ZH	Kanton ZH	Kanton ZH
	32	BAFU	OST ²	AquaPlus AG	AquaPlus AG
	1 2 10 4 23	Kanton Kanton Kanton BAFU BAFU Proben im	GE NE VD VS WEST ³ Jahr 2012 (inkl. 8 Dop	Kanton GE PhycoEco PhycoEco AquaPlus AG AquaPlus AG	Kanton GE PhycoEco PhycoEco PhycoEco PhycoEco
2013	10	BAFU	OST	AquaPlus AG	AquaPlus AG
	10	BAFU	WEST	AquaPlus AG	PhycoEco
2014	10	BAFU	OST	AquaPlus AG	AquaPlus AG
	10	BAFU	WEST	AquaPlus AG	PhycoEco
2015	8	Kanton	AG	AquaPlus AG	AquaPlus AG
	2	Kanton	SZ, UR	AquaPlus AG	AquaPlus AG
	13	Kanton	ZH	AquaPlus AG	AquaPlus AG
	28	BAFU	OST ²	AquaPlus AG	AquaPlus AG
	1	Kanton	GE	Kanton GE	Kanton GE
	2	Kanton	NE	PhycoEco	PhycoEco
	10	Kanton	VD	PhycoEco	PhycoEco
	4	BAFU	VS	AquaPlus AG	PhycoEco
	20	BAFU	WEST ^{3, 4}	AquaPlus AG	PhycoEco
	88	Proben im	Jahr 2015 (keine Dopp	oelbeprobungen)	
2019	10	Kanton	AG	AquaPlus AG	AquaPlus AG
	4	Kanton	SZ, UR, NW, OW	AquaPlus AG	AquaPlus AG
	56	BAFU	OST, BE	AquaPlus AG	AquaPlus AG
	1	Kanton	GE	Kanton GE	Kanton GE
	3	Kanton	NE	PhycoEco	PhycoEco
	30	BAFU	WEST ⁴ , VD	AquaPlus AG	PhycoEco
	104		Jahr 2019 (keine Dopp		5.
	2	Zusatzstel	len (Abklärung Auswirku	ung Stellenverschiebun	g~)
2023	10	Kanton	AG	AquaPlus AG	AquaPlus AG
	4	Kanton	SZ, UR, NW, OW	AquaPlus AG	AquaPlus AG
	66	BAFU	OST, BE	AquaPlus AG	AquaPlus AG
	1	Kanton	GE	AquaPlus AG	Kanton GE
	3	Kanton	NE	PhycoEco	PhycoEco
	6	Kanton	VS	PhycoEco	PhycoEco
	23	BAFU	WEST ⁴ , VD	AquaPlus AG	PhycoEco
	113	Proben im	Jahr 2023 (keine Dopp	pelbeprobungen)	

462 Proben der Jahre 2011-2023 (inkl. Doppelbeprobungen/ohne Zusatzstellen)

Qualitätssiche	rung		
2012*	8	BAFU	OST und WEST QS Feld: Doppelbeprobungen
			* inkl. NAWA SPEZ (Mentue vom März 2012)
2012	10	BAFU	OST und WEST QS Labor: Überprüfen der Zählungen
2015	11	BAFU	OST und WEST QS Labor: Überprüfen der Zählungen
2019*	10	BAFU	OST und WEST QS Labor: Uberprüfen der Zählungen
2023	10	BAFU	* inkl. 5 Proben der Probeserie NAWA SPEZ 2018 OST und WEST QS Labor: Uberprüfen der Zählungen

¹ Bestimmung, Zählung, Kurzkommentare erstellen.

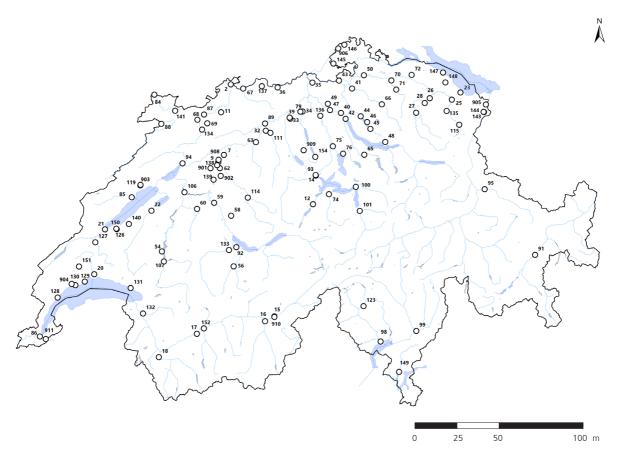
² OST: Kantone AI, AR, BL, BS, GR, LU, SG, SO, TG, TI, ZG und VD (Mentue 2012).

³ WEST: Kantone BE, FR, JU, VS.

⁴ Aare (ID 055, BE) nicht beprobt.

Tab. 2.4: Übersicht Messstellen sortiert nach Kanton und Identitätsnummer (ID). Die Tabelle zeigt die Anzahl der entnommenen Proben pro Jahr für jede Messstelle. Hauptuntersuchungsjahre sind fett hervorgehoben. Seit Beginn der Untersuchungen wurden 20 Messstellen kontinuierlich beprobt, wobei die Salmsacher Aach (ID 73, TG) letztmals im Jahr 2019 untersucht wurde. Im Jahr 2012 wurden acht Stellen doppelt beprobt, darunter die Mentue (ID 126, VD) im Rahmen des Projektes NAWA SPEZ 2012. Im Jahr 2019 wurden im Rahmen eines Zusatzauftrags die Auswirkungen einer Stellenverschiebung an der Salmsacher Aach (ID 73, TG) und der Ron (ID 116, LU) untersucht.

Ϋ́	ID	Gewässer, Ort	2011	2012	2013	2014	2015	2019	2023	Ā	ID	Gewässer, Ort	2011	2012	2013	2014	2015	2019	2023
AG	CH_032_AG	Pfaffnern, Rothrist		1			1	1	1	SG	CH_023_SG	Steinach, Vor Mündung, Mattenhof	1	1	1	1	1	1	1
	CH_033_AG	Wyna, Suhr		1			1	1	1		CH_025_SG	Sitter, Leebrugg		1			1	1	1
	CH_034_AG	Bünz, Möriken	1	2	1	1	1	1	1		CH_026_SG	Thur, Niederbüren, Golfplatz		1			1	1	1
	CH_035_AG	Surb, Döttingen, bei Pegel ALG		1			1	1	1	_	CH_027_SG	Necker, Ob Thur, Lütisburg	1	1	1	1	1	1	1
	CH_036_AG	Sissle, Eiken		1			1	1	1	_	CH_028_SG	Glatt, Niederuzwil, Buechental		1			1	1	1
	CH_039_AG	Suhre, Suhr, bei Zentrum Bärenmatte		1			1	1	1	_	CH_143_SG	Zapfenbach, OB RBK, Bernecker Riet						1	1
	CH_079_AG	Aabach, Niederlenz		1			1	1	1	_	CH_144_SG	Mittlerer Seegraben, Balgacher Riet						1	1
	CH_111_AG	Wigger, Zofingen		1			1	1	1	_	CH_905_SG	Aächeli, Au, ob RBK Zinggen							1
	CH_136_AG	Küntenerbach, Künten						1	1	SH	CH_145_SG	Landgrabe, Trasadingen						1	1
	CH_137_AG	Möhlinbach, Zeiningen						1	1		CH_146_SG	Beggingerbach, Beggingen, vor ARA						1	1
Al	CH_115_AI	Sitter, Appenzell	1	2	1	1	1	1	1	_	CH_906_SH	Zwärenbach, Schleitheim							1
AR	CH_135_AR	Urnäsch, Kubel, ob Sitter		1			1	1	1	SO	CH_009_SO	Limpach, Kyburg		1			1	1	1
BE	CH_007_BE	Emme, Gerlafingen, Steg		1			1	1	1		CH_011_SO	Lüssel, Breitenbach		1			1	1	1
	CH_055_BE	Aare, Brienzwiler		1							CH_089_SO	Dünnern, Olten, Hammer		1			1	1	1
	CH_056_BE	Engstlige, Frutigen	1	1	1	1	1	1	1		CH_901_SO	Limpach, Messen							1
	CH_058_BE	Chise, Oberdiessbach	1	1	1	1	1	1	1		CH_908_SO	Mülibach, Küttigkofen							1
	CH_059_BE	Gürbe, Vor Mündung, Bodenacher Fähre		1			1	1	1	SZ	CH_100_SZ	Muota, Wilerbrugg	1	2	1	1	1	1	1
	CH_060_BE	Sense, Thörishaus	1	1	1	1	1	1	1		CH_070_TG	Murg, Frauenfeld	1	1	1	1	1	1	1
	CH_062_BE	Urtenen, Schalunen		1			1	1	1	_	CH_071_TG	Lauche, Bei Mühle Matzingen		1			1	1	1
	CH_063_BE	Langete, Mangen		1			1	1	1	_	CH_072_TG	Chemibach, Märstetten		1			1	1	1
	CH_092_BE	Kander, Hondrich		1			1	1	1	_	CH_073_TG	Salmsacher Aach, Amriswil	1	1	1	1	1	(1)	
	CH_094_BE	La Suze, Biel, Mitte vor Mündung		1			1	1	1	_	CH_147_TG	Eschelisbach, Moosburg						1	1
	CH_106_BE	Saane, Marfeldingen		1			1	1	1	_	CH_148_TG	Salmsacher Aach, Amriswil, vor ARA (F)						1	1
	CH_114_BE	Emme, Emmenmatt, Mitte		1			1	1	1	_	CH_098_TI	Maggia, Locarno, Solduno		1			1	1	1
	CH_133_BE	Simme, Latterbach	1	1	1	1	1	1	1		CH_099_TI	Moesa, Lumino		1			1	1	1
	CH_134_BE	La Birse, Choindez-Aval de la Roche St. Jean		1			1	1	1	_	CH_123_TI	Maggia, Brontallo		1			1	1	1
	CH_138_BE	Chrümlisbach, Chüechumatt						1	1	_	CH_149_TI	Vedeggio, Agno, Muzzano						1	1
	CH_139_BE	Ballmoosbach, Mettle, Waldrand						1	1	UR	CH_101_UR	Reuss, Attinghausen, Allmeinigärtli		1			1	1	1
	CH_902_BE	Urtenen, Kernenried							1	VD	CH_020_VD	Venoge, Ecublens, Les Bois		1			1	1	1
BL	CH_067_BL	Ergolz, Augst, Autobahn		1			1	1	1		CH_021_VD	Thielle, Yverdon, Les Parties		1			1	1	1
BS	CH_002_BS	Birs, Birskopf		1			1	1	1		CH_022_VD	Broye, Domdidier		1			1	1	1
FR	CH_054_FR	Sionge, Vuippens		1			1	1	1	_	CH_126_VD	Mentue, La Mauguettaz (E)		2			1	1	1
	CH_107_FR	Sarine, Broc, Halte des Marches	1	1	1	1	1	1	1	_	CH_127_VD	Talent, Chavornay	1	2	1	1	1	1	1
	CH_140_FR	Bainoz, La Vounaise						1	1	_	CH_128_VD	Promenthouse, Le Rancho		1			1	1	1
GE	CH_086_GE	Arve, Passerelle, E. de Médicine		1			1	1	1	_	CH_129_VD	Boiron de Morges, Lac		1			1	1	1
	CH_911_GE	La Seymaz, Villette							1	_	CH_130_VD	Aubonne, Allaman, Le Coulet	1	2	1	1	1	1	1
GR	CH_091_GR	Inn, S-chanf		1			1	1	1	_	CH_131_VD	Veveyse, Vevey		1			1	1	1
	CH_095_GR	Landquart, Felsenbach		1			1	1	1	_	CH_132_VD	Grande Eau, Aigle, Autoroute		1			1	1	1
JU	CH_068_JU	Sorne, Delémont		1			1	1	1	_	CH_150_VD	Ruisseau Gi, Amont Mauguettaz						1	1
	CH_069_JU	Scheulte, Vicques		1			1	1	1	_	CH_151_VD	Le Combagnou, Pampigny, Le Selier						1	1
	CH_084_JU	Allaine, Boncourt		1			1	1	1	_	CH_904_VD	Eau Noire de Perroy, Le Martheray							1
	CH_087_JU	Birs, Les Riedes-Dessus		1			1	1	1	VS	CH_015_VS	Rhône, Brig		1			1	1	1
	CH 088 JU	Doubs, Ocourt, Pesses des Vernes	1	1	1	1	1	1	1		CH_016_VS	Vispa, Visp		1			1	1	1
	CH_141_JU	Erveratte, La Pran						1	1	_	CH_017_VS	Rhône, Sion		1			1	1	1
LU	CH_014_LU	Reuss, Luzern, Bahnhof		1			1	1	1	_	CH_018_VS	Drance, Martigny	1	1	1	1	1	1	1
	CH_093_LU	Kleine Emme, Littau-Reussbühl		1			1	1	1	_	CH_152_VS	Canal D'Uvrier, Aval STEP Uvrier						1	1
	CH_116_LU	Ron, Hochdorf, Sempachstrasse (F)	1			1	(1)		_	CH_910_VS	Canal de Brig, Amont STEP Brig							1
	CH_154_LU	Ron, Hochdorf	-	•				1		ZG	CH_075_ZG	Lorze, Frauenthal		1			1	1	1
	CH_909_LU	Wyna, Beromünster, Badi							1		CH_076_ZG	Lorze, Letzi	1	1	1	1	1	1	1
NE	CH_085_NE	Areuse, Boudry, Brücke (Pont RC)	1	1	1	1	1	1	1	_	CH_040_ZH	Limmat, Hönggersteg		1	-		1	1	1
	CH_119_NE	Seyon, Valangin		1			1	1	1		CH_040_ZH	Töss, Freienstein		1			1	1	1
	CH_153_NE	Doubs , Saut du Doubs						1		_	CH_041_ZH	Sihl, Sihlhölzli		1			1	1	1
	CH_903_NE	Sorge, Valangin, avant STEP							1	_	CH_043_ZH	Glatt, Rheinsfelden		1			1	1	1
NW	CH_074_NW	Engelberger Aa, Oberdorf Ennerberg		1			1	1	1	_	CH_044_ZH	Glatt, Abfluss Greifensee		1			1	1	1
	CH_012_OW	Sarner Aa, Sarnen, Kägiswil		1			1	1	1	_	CH_045_ZH	Aabach, Mönchaltorf		1			1	1	1
	J	, ,								_									<u> </u>


Tab. 2.4: Übersicht Messstellen sortiert nach Kanton und Identitätsnummer (ID). Die Tabelle zeigt die Anzahl der entnommenen Proben pro Jahr für jede Messstelle. Hauptuntersuchungsjahre sind fett hervorgehoben. Seit Beginn der Untersuchungen wurden 20 Messstellen kontinuierlich beprobt, wobei die Salmsacher Aach (ID 73, TG) letztmals im Jahr 2019 untersucht wurde. Im Jahr 2012 wurden acht Stellen doppelt beprobt, darunter die Mentue (ID 126, VD) im Rahmen des Projektes NAWA SPEZ 2012. Im Jahr 2019 wurden im Rahmen eines Zusatzauftrags die Auswirkungen einer Stellenverschiebung an der Salmsacher Aach (ID 73, TG) und der Ron (ID 116, LU) untersucht.

보	ID	Gewässer, Ort	2011	2012	2013	2014	2015	2019	2023
ZH	CH_046_ZH	Aa, Niederuster		1			1	1	1
	CH_047_ZH	Reppisch, Dietikon		1			1	1	1
	CH_048_ZH	Jona, Nach Rüti		1			1	1	1
	CH_049_ZH	Furtbach, Otelfingen	1	2	1	1	1	1	1
	CH_050_ZH	Thur, Andelfingen, Brücke		1			1	1	1
	CH_065_ZH	Sihl, Hütten		1			1	1	1
	CH_066_ZH	Töss, Rämismühle, Zell	1	2	1	1	1	1	1
Anz	zahl Stellen p	pro Jahr	20	68	70	70	88	104	113
Anz	ahl Doppelb	eprobungen	0	8	0	0	0	0	0
Anz	ahl Proben բ	oro Jahr	20	97	20	20	88	104	113
Anz	ahl Zusatzst	ellen	0	0	0	0	0	2	0
Anz	ahl Proben F	Periode 2011-2023				46	2		

3 Charakterisierung Messstellen

Messstellennetz

Das Messstellennetz NAWA TREND 2023 umfasst 113 Messstellen (Abbildung 3.1, Anhang A). Die grossen und tiefen Fliessgewässer (wie Aare, Linth, Rhône bei Genf, Vorder- und Hinterrhein, Hochrhein, Ticino) wurden nicht biologisch untersucht. Dazu fehlen standardisierte Untersuchungsmethoden. Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Abb. 3.1: Geografische Darstellung der Messstellen NAWA TREND 2023 mit Angabe der Messtellenbezeichnung. Datensatz NAWA TREND 2023 (n=113). Karte erstellt durch AquaPlus AG. Messstellen ID vgl. Tabelle 2.4.

EZG und Hydrologie

Die Spannweiten einiger ausgewählter Kenngrössen der 113 Messstellen sind in Tabelle 3.1 aufgelistet und in Abbildung 3.2 dargestellt. Das kleinste Einzugsgebiet (EZG) weist eine Fläche von 1 km² (Eau Noire de Perroy, ID 904, VD), während das grösste Einzugsgebiet 3'372 km² umfasst (Rhône, ID 17, VS). Der mittlere jährliche Abfluss (MQ) liegt zwischen 0.02 m³/s (Eschelisbach, ID147, TG; Canal D'Uvrier, ID 152, VS) bis zu 120 m³/s (Rhône, ID 17, VS).

Landnutzungen

Die Gradienten der Landnutzungen verdeutlichen eine breite Palette unterschiedlicher Nutzungen wie Grünflächen, Ackerland, Obstbau und Rebbau. Viele Messstellen weisen zudem einen hohen Anteil an Siedlungsflächen, Waldgebieten oder unproduktiven Flächen auf (Tabelle 3.1, Abbildung 3.2). An 29 von 113 Stellen beträgt die Gesamtfläche des Einzugsgebietes, die von überlagernden anthropogenen Nutzungen (Siedlung, Acker, Obstbau und/oder Rebbau) geprägt ist,

mehr als 50 %. An 30 Stellen liegt dieser Anteil unter 10 %. Die Anzahl Grossvieheinheiten (GVE) pro km² Einzugsgebiet beträgt zwischen 2 und 243 mit einem Median von 46.

FLOZ

Von den 113 untersuchten Fliessgewässerabschnitten entsprechen 75 der Flussordnungszahl (FLOZ) 4, 5 oder 6. Die kleinsten Gewässer (FLOZ 1), mit einer Ausnahme, sowie die grössten Gewässer der Schweiz (FLOZ 9) wurden nicht untersucht.

Abwasser

Bei den 113 untersuchten Messstellen wiesen 39 keine Abwasserbelastung auf und bei 23 Stellen war der Abwasseranteil bei Niedrigwasser gering (0-10 %). An 49 Stellen lag der Abwasseranteil zwischen 10% und über 50%. Bei zwei Messstellen (Arve, ID 86, GE; Doubs, ID 88, JU) konnten aufgrund unzureichender Daten keine Angaben zum Abwasseranteil gemacht werden. Der Auslandanteil des Einzugsgebietes überstieg bei diesen Stellen > 20 % (Tabelle 3.1).

Weiteres

Detaillierte Angaben pro Messstelle befinden sich im Anhang B sowie im vom BAFU publizierten NAWA-Konzept (BAFU 2013). Die Ergebnisse weiterer chemischer und biologischer Untersuchungen sind in den Fachberichten der einzelnen Module (Makrozoobenthos, Makrophyten und Fische) enthalten und können ebenfalls zur Charakterisierung der Messstellen herangezogen werden.

Tab. 3.1: Charakterisierung der Messstellen NAWA TREND 2023 anhand ausgewählter Kennwerte.

Datensatz NAWA TREND 2023 (n=113).

Fläche

Flächenanteil des gesamten Einzugsgebietes EZG (inkl. Auslandsanteil)

Hydrologie

MQ: Mittlerer jährlicher Abfluss

Landnutzungen

Flächenanteil des Einzugsgebietes EZG in der Schweiz (inkl. Teilgebiete oberhalb der grossen Seen)

Wald: Bestockte Flächen Landw.: Landwirtschaft Unprod.: Unproduktive Flä-

chen (Gewässer, Fels und Geröll, unproduktive Vegetation, Gletscher)

GVE: Anzahl Grossvieheinheiten pro km² Einzugsgebiet

Weitere Kennwerte

FLOZ: Flussordnungszahl nach Strahler (1952)

AbwKat: Abwasserkategorie, Anteil Abwasser bei Niederwasser Q₃₄₇; keine Angabe (k.A.)

Kenn- wert	Einheit	Minimum	Median	Mittelwert	Maximum
Fläche	km ²	1	123	327	3372
MQ	m ³ /s	0.02	3.4	10.2	120
Landnutzungen					
Wald	Anteil [%]	1	29	30	58
Landw.	Anteil [%]	3	52	50	89
Unprod.	Anteil [%]	0	3	10	82
Siedlung	Anteil [%]	0	9	11	38
GVE	Anzahl/km²	2	46	55	243

Kenn-	Einheit	Flussordnungszahl FLOZ											
wert		1	2	3	4	5	6	7	8	9			
FLOZ	Anzahl	1	6	18	24	26	25	11	2	0			
	Anteil [%]	1	5	16	21	23	22	10	2	0			
	kummuliert [%]	1	6	22	43	66	88	98	100	100			

Kenn-	Einheit	Abwasserkategorie [Klassen in %]											
wert		0	0-10	10-20	20-50	>50	k. A.						
AbwKat	Anzahl	39	23	11	21	17	2						
	Anteil [%]	35	20	10	19	15	2						
	kummuliert [%]	35	55	65	83	98	100						

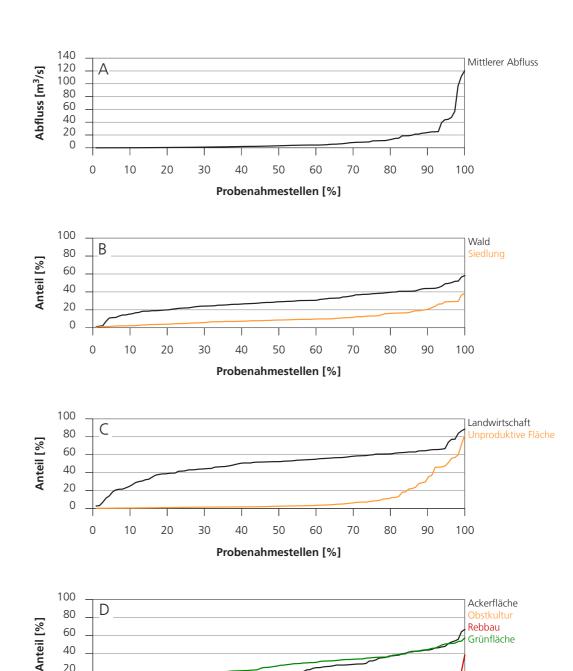


Abb. 3.2: Grafische Darstellung hydrologischer sowie landnutzungsspezifischer Gradienten pro Einzugsgebiet. A: Mittlerer Abfluss (MQ), B: Wald- und Siedlungsfläche, C: Landwirtschafts- und unproduktive Fläche, D: Acker-, Obst-, Grün- und Rebbaufläche, E: Anzahl Grossvieheinheiten (GVE) pro km² Einzugsgebiet. Anteil Probenahmestellen in Prozent [%]. Datensatz NAWA TREND 2023 (n= 113 = 100 %).

40 20

0

0

10

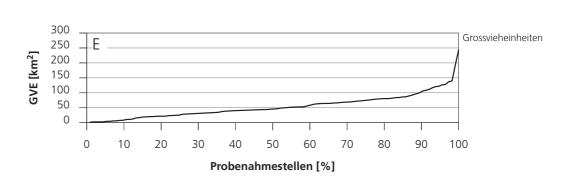
30

20

40

50

Probenahmestellen [%]


60

70

80

90

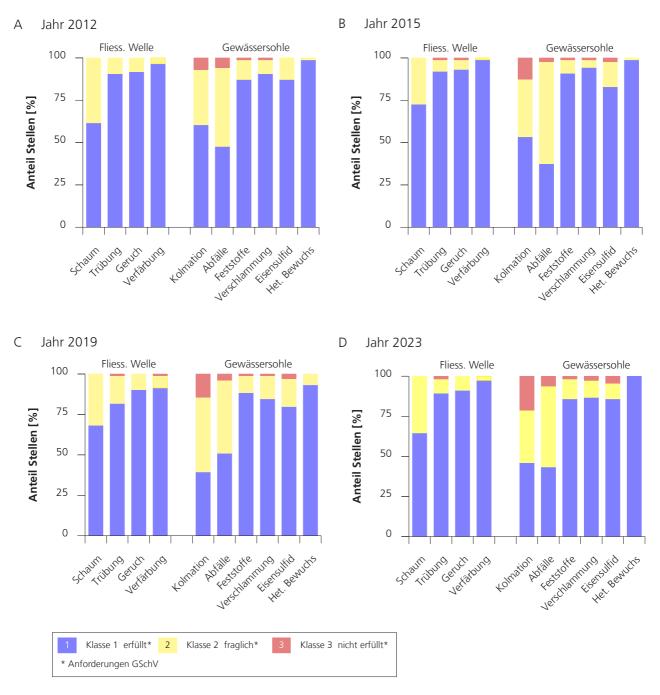
100

4 Äusserer Aspekt

Allgemein

In Abbildung 4.1 sind die Resultate des Äusseren Aspektes pro Parameter für die Perioden der Jahre 2012, 2015, 2019 im Vergleich zur aktuellen Periode 2023 dargestellt. Die Tabelle 4.1 enthält die Anzahl Beeinträchtigungen der fliessenden Welle (4 Parameter), der Gewässersohle (6 Parameter) sowie insgesamt (alle Parameter) pro Stelle für die Perioden 2012, 2015, 2019 und 2023 des Projektes NAWA TREND.

Im Jahr 2023 wiesen die Parameter der fliessende Welle im Vergleich zu den Parametern der Gewässersohle wie bereits in den Vorperioden deutlich weniger Beeinträchtigungen auf. Dies dürfte einerseits damit zusammenhängen, dass die Feldaufnahmen oft bei Trockenwetter durchgeführt werden und damit keine Entlastungen stattfinden (daher selten Geruch nach Abwasser, unnatürliche Trübungen und Verfärbungen). Andererseits manifestieren sich insbesondere Abwasserbelastungen sowie fehlende Dynamik viel eher und längerfristig in der Gewässersohle (Akkumulation). Eine beeinträchtigte Gewässersohle ist daher auch bei Trockenwetter erkennbar (Abbildung 4.1).


Fliessende Welle

Bei der fliessenden Welle stellte der Parameter Schaum jeweils mit Abstand die häufigste Art der Beeinträchtigung dar. Je nach Periode wiesen rund 30 bis 40 % aller Stellen stabilen Schaum der Ursache 'unbekannt' oder 'anthropogen' auf (geringe bis mittlere Häufigkeit, Klasse 2). Eine unnatürliche Trübung oder Verfärbung des Wassers wie auch ein unnatürlicher Geruch trat in allen Perioden mit ≤ 10 % aller Stellen auf, ausgenommen in der Untersuchungskampagne 2019 und 2023 lag der Anteil der Stellen mit unnatürlicher Trübung bei 18 % respektive bei 11 % (Abbildung 4.1). Betrachtet man die Anzahl Beeinträchtigungen der fliessenden Welle, so wiesen bei der Untersuchungskampagne NAWA TREND 2023 58 der insgesamt 113 Stellen keine Beeinträchtigungen auf. Bei 45 Stellen wurde eine Beeinträchtigung und bei 10 Stellen zwei Beeinträchtigungen festgestellt. Bis auf zwei Stellen mit starker Ausprägung von Trübung infolge Wasserkraft waren es immer geringe bis mittlere Vorkommnisse 'unbekannter' oder 'anthropogener' Ursache (Tabelle 4.1).

Gewässersohle

Bei der Gewässersohle wurde je nach Untersuchungsperiode an rund 40 bis 60 % aller Stellen eine Kolmation 'unbekannter' oder 'anthropogener' Ursache nachgewiesen, wobei eine starke Kolmation (Klasse 3) einen Anteil von 7 bis 21 % einnahm. Der Parameter Abfälle trat je nach Periode bei rund 50 bis 60 % aller Stellen auf. Oft befindet sich dieser Abfall entlang der Ufer und weniger häufig im benetzten Bereich. Der Abfall stammt entweder von Passanten oder wird während Hochwasserereignissen jeweils soweit bachabwärts verfrachtet, bis er am Ufer an Ästen oder anderen Strukturen hängen bleibt. Die anderen Parameter der Gewässersohle traten deutlich weniger häufig auf. Eisensulfidflecken waren in den vier Perioden bei 13 bis 20 % der Stellen vertreten und damit häufiger wie Feststoffe aus der Siedlungsentwässerung (9 bis 14 %), Verschlammung (6 bis 15 %) oder heterotropher Bewuchs (0 bis 7 %) (Abbildung 4.1).

Als Ursachen für eine Kolmation wurden Versinterung (natürlich), mangelnde Dynamik, Morphologie (Kanalisierung), Baustelle (Hochwasserschutz), Landwirtschaft (Drainagen) sowie Schwall-Sunkbetrieb erwähnt. Beim Abfall wurde sehr häufig Verpackungen aufgeführt und bei den Feststoffen aus der Siedlungsent-

Abb. 4.1: Bewertung Parameter Äusserer Aspekt der Untersuchungsjahre 2012-2023. Unterteilung in Parameter der fliessenden Welle (Schaum, Trübung, Geruch, Verfärbung) und Parameter der Gewässersohle (Kolmation, Abfälle, Feststoffe, Verschlammung, Eisensulfid, heterotropher Bewuchs). Bewertung gemäss BAFU Modul-Stufen-Konzept Äusserer Aspekt (BAFU 2007b). Datensatz NAWA TREND 2012 (n=89, davon bei n=3 Daten Äusserer Aspekt nicht vorhanden), NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104), NAWA TREND 2023 (n=113).

wässerung WC-Papier sowie Hygieneartikel. Bei der Trübung war häufig als Bemerkung die Wasserkraft und selten Baustelle (Hochwasserschutz) und Abwassereinleitung vermerkt. Als natürliche Ursache für Trübung galten Niederschlagsereignisse, Schnee- sowie Gletscherschmelze und Seeausfluss. Bei allen anderen Parametern war die Bemerkung Abwassereinleitung die meist genannte Ursache. Betrachtet man die Anzahl Beeinträchtigungen der Gewässersohle, so waren diese in der Untersuchungskampagne NAWA TREND 2023 im Vergleich zur fliessenden Welle deutlich häufiger. So wiesen bloss 28 der 113 Stellen keine Beeinträchtigung der Gewässersohle auf. Bei den restlichen 85 Stellen traten eine (30 Stellen), zwei (30 Stellen), drei (20 Stellen), vier (3 Stellen) oder bei zwei Stellen gar fünf Beeinträchtigungen pro Stelle auf (Canal D` Uvrier, ID 152, VS; Canal de Brig; ID 910, VS) (Tabelle 4.1).

Beeinträchtigungen

Betrachtet man die Anzahl totaler Beeinträchtigungen der Untersuchungskampagne NAWA TREND 2023, so waren nur 20 der 113 Stellen durch keine Beeinträchtigung gekennzeichnet. Die Stellen mit fünf Beeinträchtigungen pro Stelle waren die Vedeggio (ID 149, TI) und der Canal de Brig (ID 910, VS). Jene mit sechs Beeinträchtigungen pro Stelle waren die Broye (ID 22, VD) und der Canal D` Uvrier (ID 152, VS). Diese vier Stellen wiesen fast durchgehend alle eine kolmatierte Gewässersohle, Abfälle, Abfälle der Siedlungsentwässerung, eine Verschlammung, Eisensulfid und/oder eine unnatürliche Trübung auf (Tabelle 4.1).

Zeitverlauf

In Tabelle 4.2 sind die Bewertung hinsichtlich Schaum (fliessende Welle) und Kolmation (Gewässersohle) für die immer untersuchten 20 Stellen aufgelistet. Diese beiden Parameter traten sehr häufig mit 'unbekannter' oder 'anthropogener' Ursache auf. Während Schaum immer nur die Fundhäufigkeit 'wenig / mittel' einnahm, trat die Kolmation der Gewässersohle an den Stellen Drance (ID 18, VS) jährlich sowie an der Bünz (ID 34, AG), der Chise (ID 058, BE) und am Talent (ID 127, VD) vereinzelt auch mit starker Ausprägung auf. Die jährlichen Aufnahmen lassen kein eindeutiges und allgemein gültiges Muster hinsichtlich Konstanz eines Parameters erkennen. An gewissen Stellen gab es nie eine Schaumbildung oder eine kolmatierte Gewässersohle, an anderen Stellen trat die Beeinträchtigung regelmässig jedes Jahr auf und an anderen Stellen wurden die Beeinträchtigungen nur zeitweise festgestellt.

In Tabelle 4.3 sind für dieselben jährlich untersuchten 20 Stellen die Anzahl beeinträchtigte Parameter pro Stelle und Erhebungen aufgeführt. Keine der 20 Stellen wies nie eine Beeinträchtigung auf. Demgegenüber gab es mehrere Stellen mit jährlich mehr als zwei Beeinträchtigungen pro Jahr. Ein Trend der Verbesserung zeichnet sich möglicherweise bei der Töss (ID 66, ZH), der Lorze (ID 76, ZG), der Areuse (ID 85, NE), dem Doubs (ID 88, JU), dem Talent (ID 127, VD) und bei der Steinach (ID 23, SG) ab. Ein Trend der Verschlechterung ist möglicherweise bei der Chise (ID 58, BE) und bei der Sarine (ID 107, FR) ersichtlich.

Tab. 4.1: Beeinträchtigungen Äusserer Aspekt pro Stelle der Untersuchungsjahre 2012-2023. Oben: Anzahl Beeinträchtigungen. Unten: Prozentuale Verteilung Beeinträchtigungen. Unterteilung in Parameter der fliessenden Welle (Schaum, Trübung, Geruch, Verfärbung) und Parameter der Gewässersohle (Kolmation, Abfälle, Feststoffe, Verschlammung, Eisensulfid, heterotropher Bewuchs) sowie für alle Parameter des Äusseren Aspektes. Datensatz NAWA TREND 2012 (n=89, davon bei n=3 Daten Äusserer Aspekt nicht vorhanden), NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104), NAWA TREND 2023 (n=113).

	Anzahl Beeinträchtigungen [Stellen]											
		0	1	2	3	4	5	6	7	8	9	10
	Fliessende Welle	46	33	3	4	-	-	-	-	-	-	
NAWA TREND 2012	Gewässersohle	26	26	22	9	2	1	-	-	-	-	-
	Fliess. Welle + Sohle	17	21	22	15	6	3	2	-	-	-	-
	Fliessende Welle	55	28	5	-	-	-	-	-	-	-	-
NAWA TREND 2015	Gewässersohle	19	28	28	11	2	-	-	-	-	-	-
	Fliess. Welle + Sohle	14	23	31	8	6	6	-	-	-	-	-
	Fliessende Welle	53	35	11	4	1	-	-	-	-	-	-
NAWA TREND 2019	Gewässersohle	17	36	27	17	6	1	-	-	-	-	-
	Fliess. Welle + Sohle	13	24	26	15	13	10	1	2	-	-	-
	Fliessende Welle	58	45	10	-	-	-	-	-	-	-	-
NAWA TREND 2023	Gewässersohle	28	30	30	20	3	2	-	-	-	-	-
	Fliess. Welle + Sohle	20	25	25	16	23	2	2	-	-	-	-

Lesebeispiel: Bei NAWA TREND wiesen im Jahr 2012 in der fliessenden Welle 46 der total 86 Stellen keine Beeinträchtigung auf.

		Anteil Beeinträchtigungen [%]												
		0	1	2	3	4	5	6	7	8	9	10		
	Fliessende Welle	53	38	3	5	-	-	-	-	-	-	-		
NAWA TREND 2012	Gewässersohle	30	30	26	10	2	1	-	-	-	-	-		
	Fliess. Welle + Sohle	20	24	26	17	7	3	2	-	-	-	-		
NAWA TREND 2015	Fliessende Welle	63	32	6	-	-	-	-	-	-	-	-		
	Gewässersohle	22	32	32	13	2	-	-	-	-	-	-		
	Fliess. Welle + Sohle	16	26	35	9	7	7	-	-	-	-	-		
	Fliessende Welle	51	34	11	4	1	-	-	-	-	-	-		
NAWA TREND 2019	Gewässersohle	16	35	26	16	6	1	-	-	-	-	-		
	Fliess. Welle + Sohle	13	23	25	14	13	10	1	2	-	-	-		
NAWA TREND 2023	Fliessende Welle	51	40	9	-	-	-	-	-	-	-	-		
	Gewässersohle	25	27	27	18	3	2	-	-	-	-	-		
	Fliess. Welle + Sohle	18	22	22	14	20	2	2	-	-	-	-		

Lesebeispiel: Bei NAWA TREND wiesen im Jahr 2012 in der fliessenden Welle 53 % der total 86 Stellen keine Beeinträchtigung auf.

Tab. 4.2: Bewertung ausgewählter Parameter Äusserer Aspekt im Zeitverlauf. Links: Stabiler Schaum (Parameter der fliessende Welle). Rechts: Kolmation (Parameter der Gewässersohle). Datensatz kontinuierlich beprobter Stellen NAWA TREND 2011-2023 (jeweils n=20).

Gewässer	ID	KT	Schaum								Ко	lmat	ion			
			2011	2012	2013	2014	2015	2019	2023	2011	2012	2013	2014	2015	2019	2023
Drance	18	VS	1	1	1	1	1	1	1	3	3	3	3	3	3	3
Steinach	23	SG	2	2	2	2	2	1		1	1	2	2	2	1	2
Necker	27	SG	2	1	1	2	2	1	1	1	1	1	1	1	1	1
Bünz	34	AG	2	2	2	2	1	2	2	2	2	2	2	2	3	2
Furtbach	49	ZH	2	1	1	2	1	1	1	1	1	1	1	1	2	2
Engstlige	56	BE	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Chise	58	BE	1	2	1	2	1	2	2	1	1	2	2	1	3	
Sense	60	BE	1							1						
Töss	66	ZH	2	2	2	2	1			2	2	1		2	1	
Murg	70	TG	2	2	2	2	1			1	2	2	2	1	2	2
Salms. Aach*	73	TG	2	2	2	2	2	2	-	1	1	1	1	1	1	-
Lorze	76	ZG	2	2	1					1					2	1
Areuse	85	NE	2	2	1					2	1					2
Doubs	88	JU	1					2	2	2	2	2	2	1		
Muota	100	SZ	2	1	2	2	2	2	2	1	2	2	2	2	2	2
Sarine	107	FR	1						2	1			2	1	2	2
Sitter	115	Αl	1		2	1				1						
Talent	127	VD	2	2	2	2	2	2	1	2	3	2	3	2	2	2
Aubonne	130	VD	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Simme	133	BE	1	1	1	1	1	1	1	1	1	1	2	2	1	1

Legende

1 Klasse 1 erfüllt*
2 Klasse 2 fraglich*
3 Klasse 3 nicht erfüllt*

Tab. 4.3: Anzahl Beeinträchtigungen Äusserer Aspekt im Zeitverlauf. Links: Anzahl Beeinträchtigungen pro Stelle. Rechts: Visualisierung Beeinträchtigungen zur Erkennung eines Trends. Die Dicke der Säulen entspricht der Anzahl der Beeinträchtigungen pro Aufnahme, wobei Säulen mit Höchstwerten in Schwarz hervorgehoben sind. Datensatz kontinuierlich beprobter Stellen NAWA TREND 2011-2023 (jeweils n= 20).

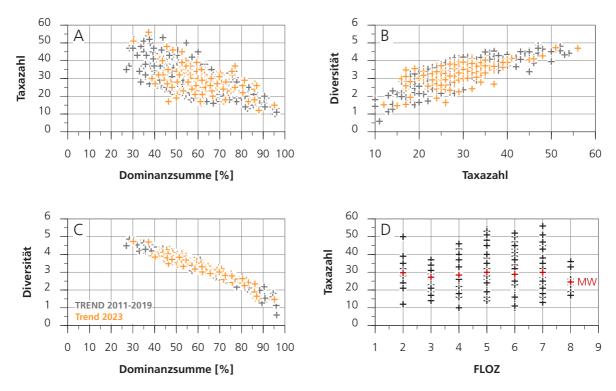
^{*} Stelle Salmsacher Aach (ID 073, TG) wurde im 2019 im Rahmen eines Zusatzauftrages das letzte Mal beprobt.

Gewässer	ID K	(T	Anzahl Beeinträchtigungen								Visu	alisie	rung	J		
			2011	2012	2013	2014	2015	2019	2023	2011	2012	2013	2014	2015	2019	2023
Drance	18 V	/S	3	3	4	2	5	5	4	_	_	_	_	_		_
Steinach	23 S	G	1	5	6	5	3	0	1					_		
Necker	27 S	G	2	0	0	1	2	0	0	_				_		
Bünz	34 A	۸G	6	5	5	6	2	5	4					_		
Furtbach	49 Z	Ή	2	3	3	5	2	4	3	_	_	_		_	_	_
Engstlige	56 B	BE.	0	0	0	0	0	1	0							
Chise	58 B	BE.	0	1	1	2	1	4	4				_		_	
Sense	60 B	BE.	1	0	0	0	0	0	1	_						
Töss	66 Z	Ή	3	2	1	1	2	0	0		_			_		
Murg	70 T	G	3	3	3	5	2	2	2	_	_	_		_	_	
Salms. Aach*	73 T	G	3	4	4	4	5	3	-	_	_	_	_		_	
Lorze	76 Z	.G	2	4	1	1	1	1	1	_						
Areuse	85 N	ΙE	5	2	1	1	2	1	1		_			_		
Doubs	88 J	U	9	2	3	3	1	2	1		_	_	_		_	
Muota	100 S	δZ	3	4	5	5	5	4	4	_	_				_	_
Sarine	107 F	R	1	0	0	2	1	1	3				_			_
Sitter	115 A	41	0	0	1	0	0	1	0			_				
Talent	127 V	/D	3	4	5	2	2	3	2	_	_		_	_	_	
Aubonne	130 V	/D	1	2	1	0	0	1	0	_	_					
Simme	133 B	BE.	0	0	0	1	1	1	0				_	_	_	

^{*} Anforderungen GSchV

5 Kieselalgen

Mit den folgenden Kapiteln werden die vorgefundenen Kieselalgen-Lebensgemeinschaften charakterisiert, die biologisch indizierte Wasserqualität, die Standortgerechtigkeit sowie die Qualitätssicherung besprochen. Im Weiteren werden taxaspezifische Hinweise gemacht. Dabei wird jeweils wo möglich und sinnvoll mit den Datensätzen früherer Perioden von NAWA TREND verglichen.


5.1 Charakterisierung Lebensgemeinschaft

Taxazahl

In den 113 Proben des Jahres 2023 wurden 273 verschiedene Taxa bestimmt. Im Jahr 2023 reichte die Taxazahl pro Probe von 12 (Ruisseau Gi, ID 150, VD) bis 56 Taxa (Reuss, ID 14, LU). Der Median der Taxazahl aller Proben des Jahres 2023 betrug 29 Taxa (Jahr 2011-2013: Min 13, Max 45, Median 29; Jahr 2015: Min 14, Max 53, Median 31; Jahr 2019: Min 10, Max 52, Median 26). *Achnanthidium minutissimum var. minutissimum* war das Taxon mit der grössten Verbreitung. Es kam in allen 113 Zählungen vor. Dieses Taxon ist in der Schweiz wie auch in ganz Mitteleuropa sehr weit verbreitet. Es tritt sowohl bei Hofmann et al. (2013) wie auch in der Datenbank BIS der Firma AquaPlus AG als Taxon auf, welches am häufigsten und am weitesten verbreitet ist. Das Taxon ist gegenüber vielen Umweltfaktoren sehr tolerant, meidet aber starke organische Belastungen, wie es z.B. Abwassereinleitungen bewirken können.

Kennwerte

Gemäss Abbildung 5.1 hängen sowohl die Taxazahl als auch die Diversität nach Shannon & Weaver (1949; Logarithmus Basis 2) stark von den drei häufigsten Taxa in einer Probe ab, auch bekannt als Dominanzsumme. Wenn diese Dominanzsumme der drei häufigsten Arten mehr als 70 % ausmacht, dann weist eine Lebensgemeinschaft im Rahmen der Zählung von 500 Schalen selten mehr als 30 Taxa auf. Diese Abhängigkeit von der Dominanzsumme ist bekannt und resultiert aus der Zählmethode. Da bei der Ermittlung des Indexwertes DI-CH 500 Schalen gezählt werden, haben in einer Probe seltener vorkommende Arten eine geringere Chance innerhalb der Zählung erfasst zu werden, je höher der Anteil der häufigsten Arten ist. Nimmt der Anteil der häufigsten drei Arten mehr als 90 % ein, so fällt die Taxazahl mit grosser Wahrscheinlichkeit unter 20. Bei der Diversität ist die Abhängigkeit von dieser Dominanzsumme noch ausgeprägter als bei der Taxazahl. So fällt die Diversität pro rund 20 % zusätzliche Dominanzsumme um eine Einheit. Es wurde kein Zusammenhang zwischen der Gewässergrösse (Flussordnungszahl FLOZ) und der Taxazahl festgestellt (Abbildung 5.1). Die Situation könnte sich jedoch ändern, sobald die Daten über alle FLOZ-Stufen hinweg etwa gleich gross sind. Es ist zu erwarten, dass in grossen Flüssen, Seeausflüssen und kleinen Bächen, deren Uferbereiche einen grösseren Flächenanteil einnehmen als die fliessende Welle, generell mehr Arten vorkommen als in normalen watbaren Bächen mit einer Breite von etwa 2 bis 5 Metern. Die Analyse der Taxazahlen zeigte im weiteren, dass keine offensichtlichen Abhängigkeiten von der Meereshöhe, der Einzugsgebietsfläche, der Biogeographie, der Ökomorphologie, des Abwasseranteiles, der Grossvieheinheiten oder der Landnutzung (Wald, Siedlung, Landwirtschaft, Unproduktive Flächen) vorhanden sind. Daher wird auf graphische Darstellungen und weitere Erläuterungen verzichtet.

Abb. 5.1: Abhängigkeiten verschiedener Kennwerte. A: Taxazahl mit Dominanzsumme (Summe der prozentualen Häufigkeiten rH der drei häufigsten Taxa), B: Taxazahl mit Diversität H (Shannon & Weaver, 1949; Log mit Basis 2), C: Diversität H mit Dominanzsumme, D: Taxazahl mit Flussordnungszahl FLOZ (Flussordnungszahl nach Strahler, 1952). Datensatz NAWA TREND 2011-2019 (graue Kreuze, n=349), NAWA TREND 2023 (n=113, orange Kreuze), NAWA TREND 2011-2023 (schwarze Kreuze, n=462), Mittelwert MW (dunkelrote Kreuze).

In Abbildung 5.2 sind wichtige Kennwerte der Kieselalgen-Lebensgemeinschaften (Taxazahl, Dominanzsumme, Diversität, Teratologie, DI-CH-Wert) für die Jahre 2012, 2015, 2019 und 2023 grafisch dargestellt. Es ist ersichtlich, dass die Ganglinien der verschiedenen Perioden hinsichtlich Median recht ähnlich sind. Im Jahr 2019 war die Taxazahl trotz des Hinzukommens von 18 neuen Messstellen durch den niedrigsten Median gekennzeichnet. Dies ist auf eine höhere Dominanz (Summe der prozentualen Häufigkeiten rH der drei häufigsten Taxa) im Vergleich zu den anderen Perioden zurückzuführen. Teratologien ≥ 0.5 % traten in den Jahren 2012, 2015 und 2023 häufiger auf als im Jahr 2019. Zudem zeichnen sich die oberen Werte durch einen höheren prozentualen Anteil an Teratologie aus. Die Verteilung der DI-CH-Werte ist in allen Perioden sehr ähnlich. Die Heterogenität der Messstellen in Bezug auf EZG-Fläche, Abfluss, FLOZ, Abwasserkategorie und Landnutzung beeinflusst die Variationen der Taxazahl, Dominanzsumme, Diversität, Teratologie und des DI-CH-Werts.

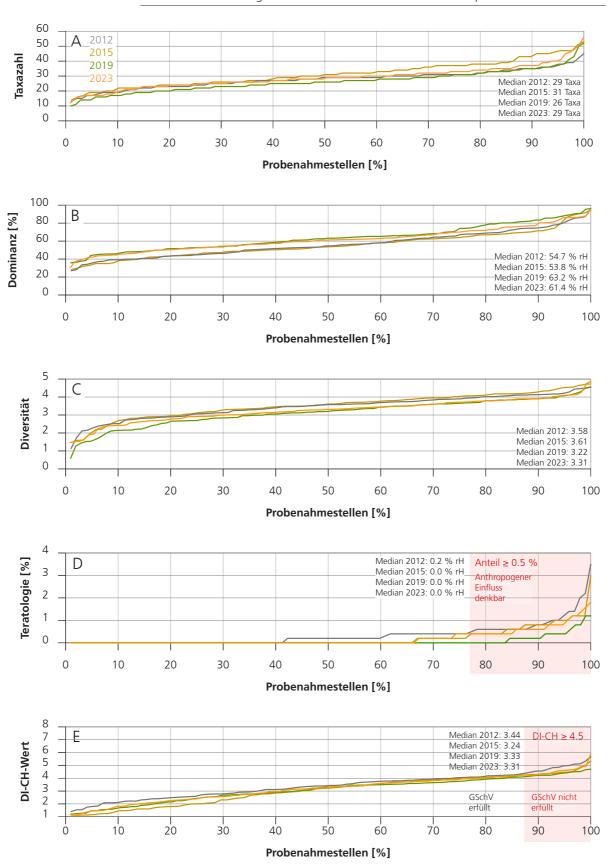


Abb. 5.2: Grafische Darstellung von Kennwerten zur Charakterisierung der Kieselalgen-Lebensgemeinschaften der Untersuchungsjahre 2012, 2015, 2019 und 2023. A: Taxazahl, B: Dominanzsumme (Summe der prozentualen Häufigkeiten rH der drei häufigsten Taxa), C: Diversität H (Shannon & Weaver, 1949; Log mit Basis 2), D: Teratologie, E: DI-CH-Wert. Anteil Probenahmestellen in Prozent [%]. Datensatz NAWA TREND 2012 (n=89), NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104), NAWA TREND 2023 (n=113).

5.2 Artenzusammensetzung

Allgemein

In den 113 Proben des Jahres 2023 wurden 273 Taxa nachgewiesen, von denen 35 (13 %) zu den Hauptarten gehörten (Tabelle 5.1). Hauptarten sind Arten, die mindestens einmal eine relative Häufigkeit (rH) von 10 % oder mehr aufweisen. Von diesen Hauptarten traten 28 bereits in den früheren Untersuchungsperioden 2011-2019 auf. Als Begleitarten, also Arten mit einer rH von 5 bis unter 10 %, galten 28 Taxa (10 %). Haupt- und Begleitarten sind wichtige Taxa, insbesondere für die Berechnung des DI-CH-Wertes.

Tab. 5.1: Hauptarten der Kieselalgen-Lebensgemeinschaften des Untersuchungsjahres 2023. Sortierung absteigend nach Anzahl Vorkommen. Hauptarten (HA) sind Taxa mit mindestens einem Vorkommen von ≥ 10 % relative Häufigkeit (rH). DVNR: Eindeutige ID gemäss Liste Deutschlands. DVNR > 100'000 sind eigene Taxabezeichnungen, die in Deutschland nicht geführt werden. D- und G-Werte gemäss BAFU Modul Kieselalgen (BAFU 2007a). Datensatz NAWA TREND 2023 (n=113).

Taxaliste	НА	DVNR	D-Wert G		Vorko	
Hauptarten HA (Vorkommen ≥ 10 % rH)	2011- 2019	ID	für DI-CH	-Index	Anzahl Stellen	Maximum % rH
Achnanthidium minutissimum var. minutissimum (KUETZING) CZARNECKY	ja	26060	3	0.5	113	73.8
Nitzschia dissipata (KUETZING) GRUNOW	ja	36151	3.5	1	103	22.2
Amphora pediculus (KUETZING) grunow	ja	6983	5	0.5	100	76.6
Gomphonema olivaceum var. olivaceum (HORNEMANN) BREBISSON	ja	6867	3	0.5	100	24.6
Navicula cryptotenella LANGE-BERTALOT	ja	6889	4	0.5	96	26.4
Navicula tripunctata (O.F.MUELLER) BORY DE SAINT-VINCENT	ja	6831	4	1	91	18.0
Achnanthidium pyrenaicum (ниsтерт) ковачаsı	ja	26005	1.5	1	90	65.2
Navicula gregaria DONKIN	ja	6015	5.5	1	78	23.0
Achnanthidium delmontii peres, le cohu & Barthes	ja	100244	3.5	1	69	76.8
Nitzschia fonticola grunow	ja	36154	3.5	1	69	46.8
Cocconeis placentula var. euglypta sensu Krammer & Lange-Bertalot 1991	ja	6726	5	1	62	23.2
Encyonema ventricosum (C.AGARD) GRUNOW	ja	26318	2.5	2	60	15.2
Nitzschia sociabilis низтерт	ja	6961	3.5	2	59	33.8
Achnanthidium rostropyrenaicum лüттмек & сох	ja	100247	1.5	1	54	31.6
Sellaphora nigri (DE NOTARIS) C.E. WETZEL et ECTOR	ja	100271	7	1	45	13.4
Rhoicosphenia abbreviata (C.AGARDH) LANGE-BERTALOT	ja	6224	4.5	1	44	13.4
Encyonema silesiacum var. silesiacum (BLEISCH) D.G.MANN	ja	16993	3	1	36	19.6
Nitzschia recta var. recta намтгэсн	ja	6029	3.5	2	36	11.0
Gomphonema pumilum (grunow) reichardt & lange-bertalot	ja	36095	2	4	34	10.4
Achnanthidium lineare sensu lato	ja	100246	1	8	33	55.8
Gomphonema tergestinum (grunow) м. schmidt	ja	6897	3	2	33	31.0
Achnanthidium atomoides MONNIER, LANGE-BERTALOT & ECTOR	ja	26003	3	2	33	25.6
Navicula lanceolata (CAGARDH) EHRENBERG	ja	6864	4.5	1	27	10.4
Fallacia subhamulata (GRUNOW) D.G.MANN	nein	26636	4	2	25	11.4
Gomphonema pumiloide-Kleinformen Arbeitsname E. Reichardt 2002	ja	100147	2	4	24	11.2
Achnanthidium nanum (MEISTER) NOVAIS et JUETTNER 2015	nein	100280	1	4	22	10.4
Amphora indistincta LEVKOV	ja	36245	3.5	1	19	10.4
Achnanthidium sieminskae witkowski, kulikowskiy et RIAUX-GOBIN 2012	nein	100371	1	8	13	16.0
Achnanthidium saprophilum (ковауаsı & мауама) round & викнтіуаrova	nein	26065	7.5	4	10	15.8
Fragilaria capucina var. rumpens (kuetzing) lange-bertalot	nein	6396	2	2	7	14.8
Achnanthidium gracillimum (MEISTER) LANGE-BERTALOT	ja	26061	1	1	4	70.0
Aulacoseira granulata (EHRENBERG) SIMONSEN	nein	6785	4.5	1	3	27.2
Achnanthidium rivulare POTAPOVA & PONADER	ja	100265			3	13.6
Cymbella parva (w.smith) kirchner	nein	6064	2	2	3	11.2
Diatoma tenuis c.agardh	ja	6210	3.5	2	1	10.0

5.3 Planktische Arten

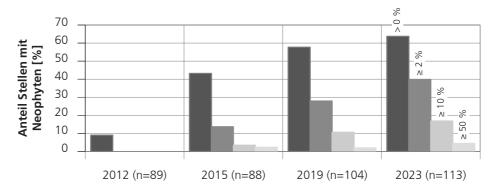
Allgemein

Stellen mit planktischen Arten sind typischerweise Ausflüsse von Seen oder enthalten Staustufen, Stauseen oder Kleinseen im Einzugsgebiet. Zahlreiche Untersuchungen der Kieselalgen-Lebensgemeinschaften zeigten, dass in Seeausflüssen Anteile an planktischen Arten von rund 2 bis 13 % rH aufwiesen. Die Distanz der Verfrachtung planktischer Arten flussabwärts ist unterschiedlich gross und hängt von verschiedenen Faktoren ab (Trophiegrad des Sees, Planktondichte, Fliessverhalten, Abfluss, Verdünnung durch Zuflüsse, Staustufen, etc.).

Im Jahr 2023 wurden insgesamt 19 planktische Arten an 31 von 113 Messstellen nachgewiesen. Dabei traten häufig Vertreter der Gattungen *Cyclotella* (7 Arten) und *Stephanodiscus* (4 Arten) sowie 8 weitere Arten auf (*Asterionella formosa, Aulacoseira granulata, Cyclostephanos dubius, Diatoma tenuis, Discostella pseudostelligera, Fragilaria acus, Fragilaria delicatissima, Nitzschia acicularis* var. acicularis). Der höchste prozentuale Anteil an planktischen Arten wurde in der Glatt (ID 044, Abfluss Greifensee, Entfernung 1 km) mit 38 % festgestellt. *Aulacoseira granulata* und *Diatoma tenuis* machten dabei mit 27.2 % bzw. 10 % die grössten Anteile aus. Den zweithöchsten prozentualen Anteil wies die Saane (ID 106, Abfluss Schiffenensee, Enfernung 13 km) mit 4.6 % auf. Alle anderen Stellen wiesen niedrigere Anteile auf. Von den insgesamt 31 Stellen mit Plankton zeigten 21 eine relative Häufigkeit (rH) von planktischen Arten von ≤ 1 %.

5.4 Gebietsfremde Arten (Neophyta)

Allgemein


Da es auch bei Algen biogeografische Verbreitungsmuster gibt, werden einzelne Kieselalgentaxa als gebietsfremd betrachtet. Derzeit sind die Schadenspotentiale von gebietsfremden Kieselalgen in der Schweiz noch unklar. Es gibt jedoch bekannte Fälle wie *Didymosphenia geminata*, die beispielsweise in Neuseeland durch die Bildung gewaltiger Biomassen ökologische Probleme verursacht. Gebietsfremde Taxa können durch ihr Vorkommen einheimische Arten verdrängen und etablierte Biozönosen des Phytobenthos stören (AquaPlus & PhycoEco, 2020).

Zeitverlauf

Tabelle 5.2 zeigt das Vorkommen der gebietsfremden Kieselalgen der Untersuchungsperioden 2011 bis 2023. Während in der ersten Kampagne 2012 nur neun Vorkommen registriert wurden, stieg die Zahl in der zweiten Kampagne 2015 bereits auf 45 an. In der dritten Kampagne 2019 wurden mit 64 Vorkommen noch etwas mehr als in der Vorperiode beobachtet und in der vierten Kampagne 2023 wurden 86 Vorkommen gezählt. Ebenso nahm die Zahl von gebietsfremden Kieselalgen im Laufe der Zeit zu. Waren es im Jahr 2012 und 2015 drei Arten, stieg die Zahl im 2019 auf sechs Arten und im 2023 auf 7 Arten an. Insgesamt konnten im Rahmen der NAWA TREND Kampagnen neun gebietsfremde Kieselalgen nachgewiesen werden. Die Beurteilung der gebietsfremden Arten basiert auf dem Bericht von AquaPlus & PhycoEco (2020). Zusätzlich zu den dort aufgeführten gebietsfremden Arten wurde Eolimna comperei einbezogen, welche im Jahr 2020 in Frankreich neu beschrieben wurde (Coste & Ector, 2020). In den NAWA TREND Proben wurden zudem die Arten Achnanthidium subatomus, Amphora indistincta, Navicula veneta und Reimeria uniseriata gefunden. Diese Arten wurden in der Tabelle nicht aufgeführt, da unklar ist, ob sie als gebietsfremd betrachtet werden können, da sie vermutlich schon lange in der Schweiz vorkommen (AquaPlus & PhycoEco 2020).

Tab. 5.2: Auftreten von gebietsfremden Kieselalgenarten pro Untersuchungsjahr und insgesamt pro Taxon der Untersuchungsjahre 2011-2023. Da eine Stelle mehrere gebietsfremde Arten aufweisen kann, entspricht die Anzahl der Vorkommen nicht der Anzahl der Stellen mit gebietsfremden Arten, sondern der Gesamtzahl der registrierten Vorkommen. Datensatz NAWA TREND 2011-2023 (n=462).

Gebietsfremde Art	2011	2012	2013	2014	2015	2019	2023	Anzahl Vorkommen
Anzahl Stellen	20	89	20	20	88	104	113	462
Achnanthidium catenatum		1						1
Achnanthidium delmontii			7	6	32	54	69	168
Achnanthidium druartii		1				2	1	4
Achnanthidium rivulare						3	3	6
Achnanthidium subhudsonis var. kraeuselli						1		1
Didymosphenia geminata	3	7	1	1	12	3	10	37
Eolimna comperei							1	1
Gomphoneis transsilvanica					1	1	1	3
Navicula jakovljevicii							1	1
Anzahl Vorkommen	3	9	8	7	45	64	86	
Anzahl Arten	1	3	2	2	3	6	7	

Abb. 5.3: Auftreten gebietsfremder Kieselalgenarten der Untersuchungsjahre 2012-2023. Anteil der Stellen mit gebietsfremden Kieselalgenarten sowie Anteil der Stellen mit einer Summe der relativen Häufigkeiten (rH) der gebietsfremden Kieselalgenarten von > 0 %, \geq 2 %, \geq 10 % und \geq 50 %. Datensatz NAWA TREND 2012 (n=89), NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104) und NAWA TREND 2023 (n=113). Lesebeispiel: Im Jahr 2023 wurden an etwa 65 % der 113 untersuchten Stellen gebietsfremde Kieselalgen festgestellt. An 40 % der Stellen erreichten gebietsfremde Kieselalgen eine relative Häufigkeit (rH) von \geq 2 % pro Taxon. An 4 % der Stellen erreichten die gebietsfremden Kieselalgen sogar einen rH-Wert von \geq 50 %.

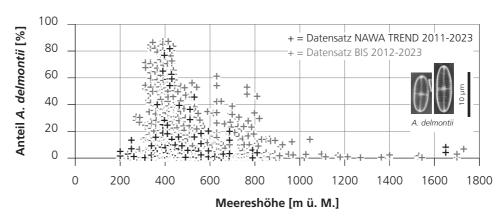


Abb. 5.4: Vorkommen der gebietsfremden Kieselalge *Achnanthidium delmontii* in Abhängigkeit von der Meereshöhe der Untersuchungsjahre 2011-2023 im Vergleich mit anderen Datensätzen. Datensatz NAWA TREND 2011-2023 (n=462), Datensatz BIS 2012-2023 (Datenbank Firma AquaPlus) (n=1280).

Relative Häufigkeiten

In Abbildung 5.3 ist ersichtlich, dass gebietsfremde Kieselalgen bei der ersten Kampagne im Jahr 2012 an rund 9 % der insgesamt 89 untersuchten Stellen vorkamen. Die aufsummierten Anteile der gebietsfremden Arten pro Stelle erreichten jedoch nie ≥ 2 % relative Häufigkeit (rH). In den folgenden Kampagnen stieg der Anteil der Stellen mit gebietsfremden Arten stark an (2015: 43 %, 2019: 58 %, 2023: 64 %). Parallel dazu nahmen auch die relativen Anteile gebietsfremder Kieselalgen deutlich zu.

A. delmontii

In Tabelle 5.2 ist zu erkennen, dass *Achnanthidium delmontii* im Zeitverlauf stark zunimmt. Dieses Taxon wurde 2012 in Frankreich neu beschrieben (Pérès et al., 2012). Vor ihrer Erstbeschreibung wurde die Art möglicherweise der ähnlichen Art *Achnanthidium pyrenaicum* zugeordnet. *A. delmontii* kann sehr hohe relative Anteile erreichen und kann somit durch ihr Vorkommen einheimische Arten verdrängen (Abbildung 5.4). Aufgrund ihres häufigen Auftretens und der hohen relativen Anteile, die diese Art erreichen kann, kommt ihr in der Schweiz eine grosse ökologische Bedeutung zu.

In Abbildung 5.4 ist das Vorkommen von *A. delmontii* in Abhängigkeit von der Meereshöhe dargestellt. Das Taxon kommt bisher vor allem in tieferen Lagen (< 800 m ü. M.) vor, häufig auch mit sehr hohen Anteilen von über 20 %. Im Alpenraum trat das Taxon ebenso auf, jedoch mit Anteilen unter 20 % relativer Häufigkeit (rH), meistens sogar unter 10 % rH. Ob die relativen Anteile im Alpenraum im Laufe der Zeit zunehmen oder ob die Bedingungen die Art dort nicht begünstigen, wird sich zeigen.

5.5 Teratologie

Allgemein

Missbildungen der Kieselalgenschalen traten vermehrt im Mittelland und im Jura auf. In alpinen Gewässern waren die Schalen, wie bereits in den Perioden 2011-2013, 2015 und 2019, seltener missgebildet und zeigten geringere Anteile an Missbildungen. In den NAWA TREND Proben der Jahre 2011 bis 2023 wiesen insgesamt etwa ein Drittel aller Stellen (169 von 462 Stellen) Teratologien auf. Unter diesen zeigten 73 Stellen einen Teratologie-Anteil von ≥ 0.5 % rH, 29 Stellen einen Anteil von ≥ 1 % und 7 Stellen einen Anteil von ≥ 2 %. Der höchste gemessene Wert betrug 4.7 % rH (Talent, ID 127, VD, 11.03.2011). Im Jahr 2023 wurden bei 38 Stellen insgesamt 112 Teratologien bei 24 Taxa festgestellt (Min: 0.2 %, Max: 1.8 %, Mittelwert: 0.6 %). Der Anteil an Missbildungen betrug im Jahr 2023, gemessen an allen gezählten Schalen, 0.2 % (2011-2013: 0.4 %, 2015: 0.2 %, 2019: 0.1 %).

Teratologie-Typen

Die Tabelle 5.3 zeigt die Häufigkeit des Auftretens der Teratologie-Typen der Jahre 2011 bis 2023. Am häufigsten wurde der Teratologie-Typ 4.1 (Schalenumriss defekt und Strukturen im Inneren nicht gestört) beobachtet, während Typ 4.2 (Schalenumriss gomphoid) am seltensten vorkam. Bemerkenswert ist die Häufigkeit der Typen 2 (Schalenumriss intakt, Strukturen im Innern der Schale stark gestört) und 3 (Schalenumriss defekt und Strukturen im Innern der Schale gestört), welche schwerwiegende Missbildungen aufweisen. Insgesamt wurden bei 45 verschiedenen Taxa Teratologien identifiziert. Die fünf Taxa, bei denen am meisten Teratologien festgestellt wurden, waren Achnanthidium delmontii, A. minutissimum var. minutissimum, A. pyrenaicum, Diatoma vulgaris und Fragilaria capucina var. vau-

cheriae. Typ 4.2 war bei den drei Achnanthidium-Arten am häufigsten vertreten, während bei *D. vulgaris* vor allem Missbildungen des Typs 1 auftraten. *F. capucina var. vaucheriae* zeigte insgesamt die meisten Teratologien über alle Typen hinweg. Auf Gattungsebene wies *Achnanthidium* (einschliesslich *Achnanthes*) im Zeitraum von 2011 bis 2023 mit 99 Vorkommen das höchste Auftreten an Missbildungen auf, gefolgt von den Gattungen *Fragilaria* (n=56) und *Diatoma* (n=51).

Tab. 5.3: Auftreten von Teratologien pro Teratologietyp und insgesamt pro Taxon der Untersuchungsjahre 2011-2023. Dargestellt sind die fünf Taxa mit den meisten Teratologien. Da eine Stelle mehrere Teratologietypen aufweisen kann, entspricht die Anzahl der Vorkommen nicht der Anzahl der Stellen mit Teratologie, sondern der Gesamtzahl der registrierten Vorkommen. Teratologie-Typen vgl. Abbildung 2.1. Datensatz NAWA TREND 2011-2023 (n=462).

	1ур 1	Typ 2	Typ 3	Typ 4.1	Typ 4.2	Anzahl Vorkommen
Achnanthidium delmontii	0	1	1	18	1	21
Achnanthidium minutissimum var. minutissimum	1	1	4	31	5	42
Achnanthidium pyrenaicum	5	2	8	12	2	29
Diatoma vulgaris	14	6	2	3	0	25
Fragilaria capucina var. vaucheriae	8	8	12	13	0	41
Anzahl Vorkommen	48	38	34	95	10	

Zeitverlauf

Die Abbildung 5.5 zeigt die Verteilung der Teratologien auf die Zustandsklassen des DI-CH-Wertes. Der Datensatz umfasst die Jahre 2012, 2015, 2019 und 2023 mit den Stellen, die über die gesamte Periode hinweg kontinuierlich beprobt wurden. Der Anteil der Messstellen mit Teratologien nahm bis 2019 ab, stieg jedoch im Jahr 2023 wieder an. Ein eindeutiger Trend im zeitlichen Verlauf ist daher nicht erkennbar. Zudem ist ersichtlich, dass das Auftreten von Teratologien über alle Zustandsklassen hinweg verteilt ist. Untersuchungen in 42 Kläranlagenausläufen des Kantons Zürich haben jedoch gezeigt, dass gereinigtes Abwasser in den meisten Fällen viele Missbildungen aufweist. Nur sechs von 42 Proben aus Kläranlagen wiesen keine Teratologien oder einen geringen Anteil (< 0.5 %) auf. Daher ist anzunehmen, dass (toxische) Stoffe wahrscheinlich häufig für Missbildungen verantwortlich sind.

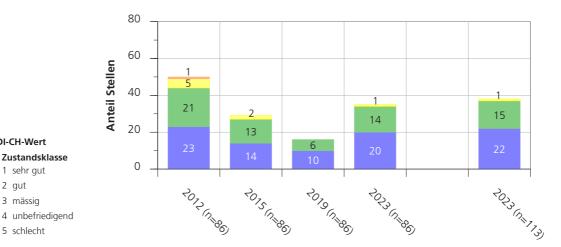


Abb. 5.5: Auftreten von Teratologien pro Zustandsklasse des DI-CH-Wertes der kontinuierlich beprobten Stellen der Untersuchungsjahre 2012-2023 und Gesamtdatensatz Untersuchungsjahr 2023.

Lesebeispiel: Im Jahr 2011 wiesen insgesamt 60 % der 20 untersuchten Stellen eine Teratologie auf. Die Teratologien verteilten sich folgendermassen auf die Zustandsklassen: Klasse 1: 30 % der Stellen, Klasse 2: 20 %, Klasse 3: 5 %, Klasse 4: 5 %, Klasse 5: 0 %.

Datensatz kontinuierlich beprobte Stellen bestehend aus NAWA TREND 2012, NAWA TREND 2015, NAWA TREND 2019 und NAWA TREND 2023 (jeweils n=86). Dies ermöglicht einen direkten Vergleich der Datensätze dieser Jahre. Zusätzlich wird der kontinuierlich beprobte Datensatz dem vollständigen Datensatz NAWA TREND 2023 (n=113) gegenübergestellt. Der kontinuierliche Datensatz reduzierte sich von 88 auf 86 Stellen, da die Salmsacher Ach (ID 73, TG) und die Ron (ID 116, LU) im Jahr 2023 nicht mehr beprobt wurden.

5.6 Zelldichte

Allgemein

Legende DI-CH-Wert

Zustandsklasse

1 sehr gut

5 schlecht

2 gut 3 mässig

Stufe

4

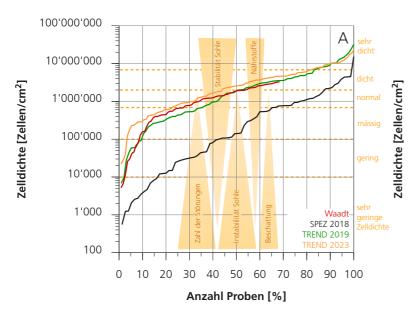
Die Zelldichte erreicht Werte von 0.023 bis 23 Millionen Zellen/cm², wobei Zelldichten von 0.7 bis 2 Millionen Zellen/cm² erfahrungsgemäss als normal angesehen werden. Die Zelldichte wird durch verschiedene Faktoren beeinflusst und dient als guter Indikator für Veränderungen wichtiger Einflussgrössen im Fliessverlauf eines Gewässers. Geringe Zelldichten werden oft beobachtet, wenn die Häufigkeit von Störungen, die Instabilität der Gewässersohle und die Beschattung hoch sind. Im Gegensatz dazu führen stabile Bedingungen und erhöhte Konzentrationen wachstumsfördernder Stoffe häufig zu hohen Zelldichten. In Abbildung 5.6 sind exemplarisch Steine mit unterschiedlichen Zelldichten abgebildet.

Einflussfaktoren

Der vermutlich wichtigste Faktor ist die Häufigkeit von Störungen wie Abfluss, Strömung, Geschiebetrieb und Trübungen. Diese können durch die Spülung von Stauseen, Schwall-Sunk-Betrieb, Kiesabbau, Gewitterereignisse, Gletscherschmelze sowie andere anthropogene oder natürliche Ereignisse verursacht werden. Ein weiterer zentraler Faktor ist die Stabilität des Gewässers bzw. der Gewässersohle. Feinsubstrate, die schon bei geringen Abflussverhältnissen bewegt werden, weisen tendenziell niedrigere Zelldichten auf, während stabile Sohlsubstrate hohe Zelldichten begünstigen. Auch die Beschattung durch Ufergehölz, Wald oder Trübstoffe spielt eine wichtige Rolle und führt tendenziell zu niedrigeren Zelldichten. Die verschiedenen Pigmente der Kieselalgen ermöglichen es diesen jedoch, auch bei schlechten Lichtverhältnissen, wie sie im Winterhalbjahr vorkommen, zu gedeihen, sodass selbst an beschatteten Orten hohe Zelldichten erreicht werden können. Toxizitäten können die Zelldichte ebenfalls reduzieren, wenn zellschädigende Toxine vorhanden sind. Nährstoffe oder organische Verunreinigungen können beispielsweise unterhalb von Kläranlagen eine erhöhte Zelldichte verursa-

chen, müssen dies aber nicht zwangsläufig tun. Weitere Einflussgrössen, die auf die Zelldichten wirken können, sind biologischer Art, wie zum Beispiel Frass, Konkurrenz, Krankheiten, Lebensformen und der Status der Lebensgemeinschaft. Jegliche Auswertungen mit Landnutzungsdaten, Grossvieheinheiten oder anderen Wasserqualitätsindizes wie dem DI-CH-Wert erzeigten bei NAWA TREND in den Jahren 2019 und 2023 keine klaren Zusammenhänge mit der Zelldichte.

Zeitverlauf


In Abbildung 5.7 sind die Zelldichten der Datensätze NAWA TREND 2023, NAWA TREND 2019, NAWA SPEZ 2018 und Waadt 2005-2013 dargestellt. Der Datensatz Waadt 2005-2013 umfasst Stellen aus den biogeografischen Regionen Jura, Mittelland und Voralpen, wobei alle Gewässer ständig fliessend waren. Diese Ähnlichkeit zu den TREND-Stellen deutet darauf hin, dass die angewandten Verfahren zur Abschätzung der Zelldichten vergleichbar sind. Trotz dieser Ähnlichkeiten überrascht der sehr ähnliche Verlauf der Zelldichten zu denen von NAWA TREND, was vermutlich zu einem gewissen Grad zufällig ist. Die vier Datenserien umfassen Proben aus verschiedenen Gewässern, was die Interpretation der einzelnen Zelldichten pro Stelle erschwert. Im Vergleich dazu ist die Analyse von Zelldichten entlang des Fliessverlaufs eines Gewässers leichter interpretierbar als die von Stellen aus unterschiedlichen Gewässern.

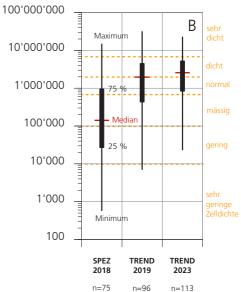


Abb. 5.6: Exemplarische Visualisierung von Steinen mit unterschiedlichen Zelldichten bzw. Besiedelungsdichten der Kieselalgen-Lebensgemeinschaft. Fotos NAWA SPEZ 2018 (Aquabug, Neuenburg) und NAWA TREND 2019 (Ambio, Zürich).

Kennwerte

In Abbildung 5.7 (A, B) sind die Zelldichten statistisch ausgewertet und grafisch dargestellt. Die Datenserien NAWA TREND 2019, NAWA TREND 2023 und Waadt 2005-2013 zeigen sehr ähnliche Ergebnisse, während der Datensatz NAWA SPEZ 2018 stark abweicht. Bei NAWA SPEZ 2018 wiesen fast 70 % der Proben weniger als 700'000 Zellen/cm² auf (sehr gering bis mässig dicht), während bei NAWA

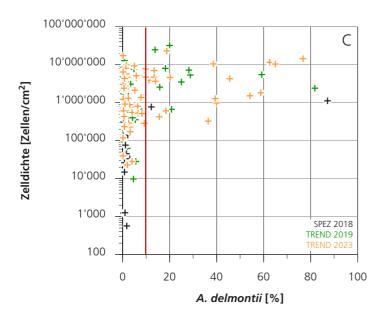


Abb. 5.7: Zelldichte der Kieselalgen-Lebensgemeinschaften der Untersuchungsjahre 2019 und 2023 im Vergleich mit anderen Datensätzen.

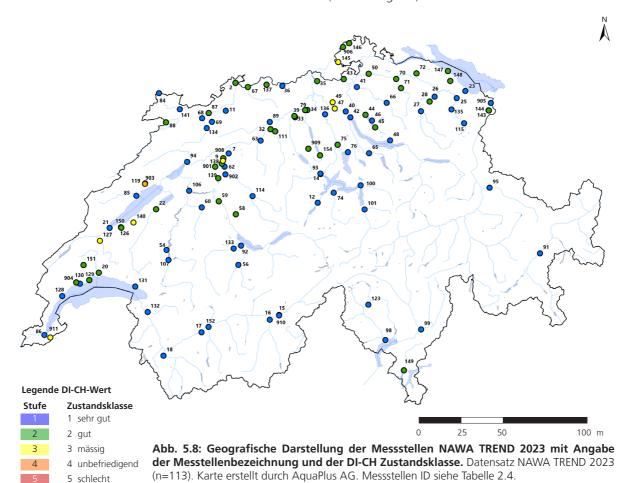
Zelldichte bzw. Besiedelungsdichte (= Anzahl Zellen pro Fläche in cm²). Datensatz NAWA SPEZ 2018 (n=83, davon bei n=8 Daten Zelldichte nicht vorhanden), NAWA TREND 2019 (n=104, davon bei n=8 Daten Zelldichte nicht vorhanden), NAWA TREND 2023 (n=113), Waadt 2005-2013 (n=110).

A: Verteilung der Datensätze NAWA TREND 2023, NAWA TREND 2019 (AquaPlus & PhycoEco, 2021a), NAWA SPEZ 2018 (AquaPlus & PhycoEco, 2021b) und Waadt 2005-2013 (Straub et. al., 2014) unter Verwendung einer logarithmischer Skala für die Zelldichte. Die Zahl der Proben ist auf 100 % normiert. Braune Keile markieren wichtige Faktoren, die sich auf die Zelldichte auswirken, basierend auf den langjährigen Erfahrungen von François Straub, PhycoEco, La Chaux-de-Fonds. Die Unterteilung der Zelldichte in Klassen basiert ebenfalls auf den Erfahrungswerten von François Straub. Lesebeispiel: Geringe Zelldichten werden oft beobachtet, wenn die Häufigkeit der Störungen, die Instabilität der Gewässersohle und die Beschattung hoch sind. Im Gegensatz dazu führen stabile Bedingungen und erhöhte Konzentrationen von wachstumsfördernden Stoffen häufig zu einer hohen Zelldichte.

B: Statistische Kennwerte (Minimum, 25 % Perzentil, Median, 75 % Perzentil, Maximum) der Zelldichte der Datensätze NAWA SPEZ 2018, NAWA TREND 2019 und NAWA TREND 2023.

C: Relative Häufigkeit der gebietsfremden Alge *Achnanthidium delmontii* und die Zelldichte der Probe. Wenn dieses Taxon in einer Probe vorkommt und der relative Anteil grösser ist wie 10 % erreicht die Zelldichte rund \geq 1 Mio Zellen/cm².

TREND 2019 und 2023 knapp 70 % der Proben Zelldichten von mehr als 700'000 Zellen/cm² hatten (normal bis sehr dicht). Die Heterogenität der Messstellen in Bezug auf EZG-Fläche, Abfluss, FLOZ, Abwasserkategorie und Landnutzung beeinflusst die Variationen der Zelldichte.


Abhängigkeiten

In Abbildung 5.7 (C) wird anhand der gebietsfremden Alge *Achnanthidium del-montii* gezeigt, dass diese Alge eine Kieselalgen-Lebensgemeinschaft sehr individuenreich dominieren und einheimische Kieselalgen verdrängen kann. Wenn der Anteil dieses Taxons mehr als 10 % der relativen Häufigkeit erreichte, wiesen die Proben häufig rund 1 Million Zellen/cm² oder mehr auf. Das gebietsfremde Taxon verdrängt dabei je nach Situation 10 bis über 80 % der einheimischen Individuen.

5.7 Biologisch indizierte Wasserqualität (Indexwert DI-CH)

Allgemein

Von den 113 im Jahr 2023 untersuchten Stellen wiesen 57 % (64 Stellen) eine sehr gute, 36 % (41 Stellen) eine gute, 6 % (7 Stellen) eine mässige und 1 % (1 Stelle) eine unbefriedigende Zustandsklasse der DI-CH-Werte auf. Die schlechteste Zustandsklasse wurde an keiner Stelle festgestellt. Bezüglich der Kieselalgen erfüllten somit 93 % der Stellen basierend auf dem DI-CH-Wert in Bezug auf die Nährstoffbelastung die Anforderungen an die Wasserqualität gemäss GSchV Anhang 2. Sämtliche Stellen, welche die Anforderungen nicht erfüllten, befanden sich im Mittelland und im Jura (Abbilldung 5.8).

Zeitverlauf

In Abbildung 5.9 sind die Häufigkeit der Zustandsklassen der DI-CH-Werte pro Jahr dargestellt. Der Datensatz umfasst die Jahre 2012, 2015, 2019 und 2023 mit den Stellen, die über die gesamte Periode hinweg kontinuierlich beprobt wurden. Die Verteilung zeigte über die vier Untersuchungsjahre hinweg nur geringe Unterschiede. Der jährliche Anteil der Zustandsklassen mässig, unbefriedigend und schlecht betrug an den untersuchten Stellen stets ≤ 10 %. Die Zustandsklasse 4 (unbefriedigend) trat nur in den Jahren 2012 und 2023 auf. Über alle Stellen und Jahre hinweg erreichten 5 % der Stellen weder die ökologischen Ziele (Anhang 1) noch die numerischen Anforderungen an die Wasserqualität (Anhang 2) gemäss GSchV (1998). Die Zustandsklassen 1 (sehr gut) und 2 (gut) haben im Laufe der Jahre zugenommen, während die Zustandsklassen 3 (mässig) und 4 (unbefriedigend) abgenommen haben. Eine Ausnahme bildet das Jahr 2023, in dem die Zustandsklasse 2 leicht zurückging und die Zustandsklassen 3 und 4 geringfügig zunahmen. Dies spiegelt sich auch in der Erfüllung der ökologischen Ziele gemäss GSchV (1998) Anhang 1 wider: 2012 erreichten 9 % die Anforderungen nicht, 2015 waren es 5 %, 2019 sank der Anteil auf 1 %, und 2023 lag er wieder bei

Kennwerte

In Abbildung 5.10 werden die Untersuchungsjahre 2012, 2015, 2019 und 2023 auf Basis der DI-CH-Werte verglichen. Der Vergleich zeigt, dass sich bei 11 der 113 Stellen (rund 10 %) der DI-CH-Wert stark verändert hat. Dabei verbesserte sich der DI-CH-Wert bei 5 Stellen deutlich und verschlechterte sich bei 6 Stellen deutlich (± 1 Einheit) (Abbildung 5.10, A). Die stellenspezifischen DI-CH-Werte für die Jahre 2012, 2015, 2019 und 2023 sind in Anhang C aufgeführt. Veränderungen im Vergleich zur Vorperiode führten höchstens zu einer Änderung der Zustandsklasse um eine Klasse. Vergleicht man den kontinuierlichen Datensatz der Jahre 2012, 2015, 2019 und 2023, zeigt sich eine geringfügige Tendenz zur Verbesserung des DI-CH-Wertes (Median DI-CH; 2012: 3.40, 2015: 3.21, 2019: 3.23, 2023: 3.16) (Abbildung 5.10, B). Die 25 %-Perzentile der Jahre 2015, 2019 und 2023 zeigten im Vergleich zum Jahr 2012 eine deutliche Verbesserung. Ein möglicher Hinweis für die Verbesserung des Zustands könnte das Taxon Achnanthidium lineare sensu lato sein. Dieses sehr kleine Taxon indiziert eine sehr gute Wasserqualität. A. lineare sensu lato trat im Jahr 2012 an 14 Stellen auf (rH zwischen 0.2 % und 9.2 %, nie als Hauptart), im Jahr 2015 an 42 Stellen (rH zwischen 0.2 % und 39.2 %, 11-mal als Hauptart), im Jahr 2019 an 36 Stellen (rH zwischen 0.2 % und 36.2 %, 6-mal als Hauptart) und im Jahr 2023 an 33 Stellen (rH zwischen 0.4 % und 55.8 %, 7-mal als Hauptart). Das Taxon trat seit 2015 vor allem vermehrt in tieferen Lagen < 500 m ü. M. auf (2012: 9 Stellen, 2015: 26 Stellen, 2019: 26 Stellen, 2023: 21 Stellen), was Auswirkungen auf den DI-CH-Wert haben könnte. Möglicherweise indiziert das Taxon mit den D- und G-Werten von 1 und 8 eine etwas zu gute Wasserqualität. Eine gezielte Nacheichung dieses Taxons erscheint daher sinnvoll, da es bei der Zweiteichung die Dund G-Werte des damals morphologisch sehr ähnlich eingestuften Taxon Achnanthes minutissima var. jackii erhielt.

Biogeografie

Abbildung 5.11 zeigt die Anteile der DI-CH-Zustandsklassen pro biogeografischer Region für die Jahre 2012, 2015, 2019 und 2023. Die Verteilung der Zustandsklassen blieb über die verschiedenen Perioden hinweg ähnlich. Sämtliche Stellen, welche die Anforderungen gemäss GSchV Anhang 1 nicht erfüllten, befanden sich im Mittelland und im Jura. Die Zustandsklasse 4 (unbefriedigend) wurde jeweils an einer Stelle im Mittelland im Jahr 2012 (Talent, ID 127, VD) und im Jura

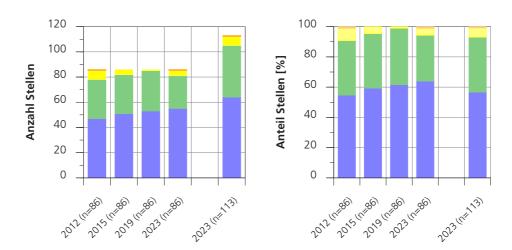
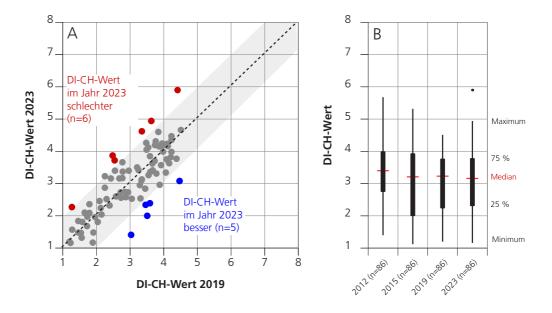
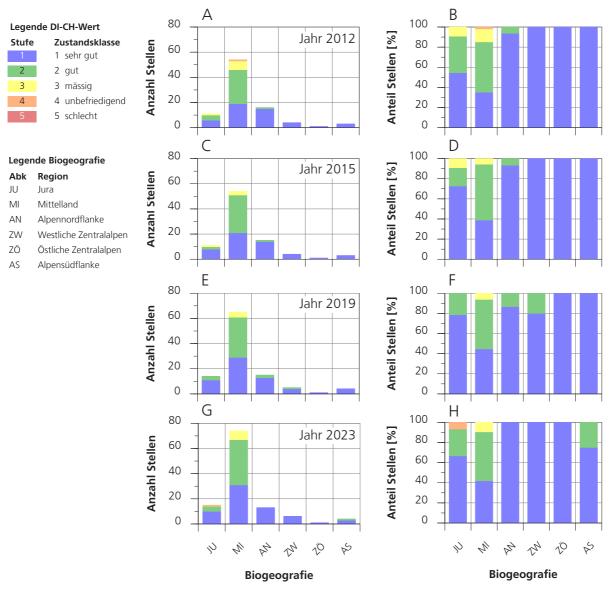




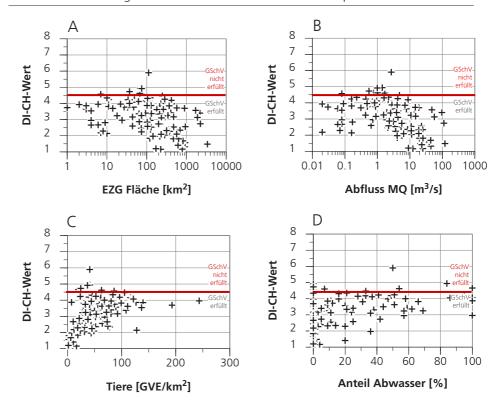
Abb. 5.9: Verteilung der Kieselalgen-Zustandsklassen der kontinuierlich beprobten Stellen der Untersuchungsjahre 2012-2023 und Gesamtdatensatz Untersuchungsjahr 2023. Links: Absolute Anzahl Stellen pro Zustandsklasse DI-CH-Wert. Rechts: Prozentuale Verteilung Stellen pro Zustandsklasse DI-CH-Wert. Datensatz kontinuierlich beprobte Stellen bestehend aus NAWA TREND 2012, NAWA TREND 2015, NAWA TREND 2019 und NAWA TREND 2023 (jeweils n=86). Dies ermöglicht einen direkten Vergleich der Datensätze dieser Jahre. Zusätzlich wird der kontinuierlich beprobte Datensatz dem vollständigen Datensatz NAWA TREND 2023 (n=113) gegenübergestellt. Der kontinuierliche Datensatz reduzierte sich von 88 auf 86 Stellen, da die Salmsacher Ach (ID 73, TG) und die Ron (ID 116, LU) im Jahr 2023 nicht mehr beprobt wurden.

Abb. 5.10: Verteilung der Kieselalgen-Zustandsklassen der kontinuierlich beprobten Stellen der Untersuchungsjahre 2012-2023. Datensatz kontinuierlich beprobte Stellen bestehend aus NAWA TREND 2012, NAWA TREND 2015, NAWA TREND 2019 und NAWA TREND 2023 (jeweils n=86). A: Vergleich der DI-CH-Werte Datensatz NAWA TREND 2019 und NAWA TREND 2023 mit Darstellung der Messstellen mit den grössten Abweichungen (≥ ± 1 Einheit). B: Statistische Kennwerte zur Verteilung der DI-CH-Werte der Untersuchungsjahre 2012, 2015, 2019 und 2023.

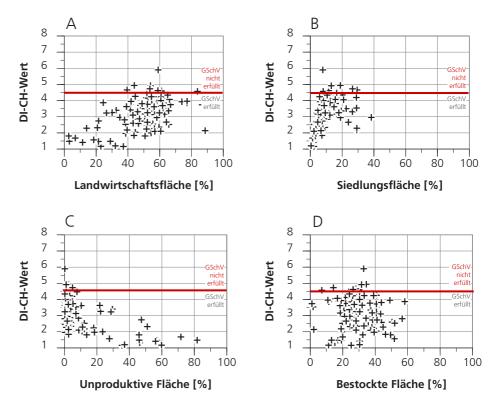
im Jahr 2023 (Seyon, ID 119, NE) festgestellt. Aufgrund der geringen Anzahl an Stellen in den meisten biogeografischen Regionen ausser im Mittelland (JU: 14, AN: 13, ZW: 6, ZÖ: 1, AS: 4) hat eine Veränderung an einer Stelle einen starken Einfluss auf die prozentuale Darstellung. Im Mittelland sowie im Jura indizierten über die vier Perioden hinweg etwa 90 % aller Stellen die Zustandsklasse 1 (sehr gut) oder Zustandsklasse 2 (gut). In den vier alpin geprägten Regionen hingegen dominierte über alle Perioden hinweg fast ausschliesslich die Zustandsklasse 1 (sehr gut). Der alpine Raum zeichnet sich durch eine geringe Bevölkerungsdichte und eine niedrige Intensität der Landwirtschaft aus. Zudem handelt es sich bei den untersuchten Gewässern meist um grössere Gewässer, wodurch stoffliche Einträge stark verdünnt werden und der Einfluss auf die Kieselalgen-Lebensgemeinschaften, die durch die chemische Wasserqualität geprägt sind, gering ist.

Abb. 5.11: Verteilung der Kieselalgen-Zustandsklassen basierend auf dem DI-CH-Wert pro biogeografischer Region der Untersuchungsjahre 2012-2023. Links: Absolute Anzahl Stellen pro Zustandsklasse DI-CH-Wert (A, C, E, G). Rechts: Prozentuale Verteilung Stellen pro Zustandsklasse DI-CH-Wert (B, D, F, H). Datensatz NAWA TREND 2012 (n=89), NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104) und NAWA TREND 2023 (n=113).

Abhängigkeiten


Der Datensatz NAWA TREND 2023 zeigt keine klaren Zusammenhänge zwischen dem DI-CH-Wert und der Einzugsgebietsfläche oder dem Abflusskennwert MQ (Abbildung 5.12, A, B). An Stellen mit einer Einzugsgebietsfläche über 100 km² wurden, abgesehen von einer Ausnahme, keine DI-CH-Werte über 4.5 festgestellt (Seyon, ID 119, NE). Ein ähnliches Muster wurde beim Abflusskennwert MQ beobachtet. Bei Stellen mit einem Abfluss über 2 m³/s blieben die DI-CH-Werte, mit Ausnahme der Stelle Seyon (ID 119, NE), immer unter 4.5. Der Abflusskennwert MQ hängt einerseits von der Grösse der Einzugsgebietsfläche ab und dient andererseits als Indikator für die Verdünnung potenzieller Stoffbelastungen. Unter Berücksichtigung aller Datensätze der NAWA TREND Kampagnen 2011-2023 zeigen sich DI-CH-Werte über 4.5 üblicherweise nur dann, wenn der Abflusskennwert MQ unter 5 m³/s (selten unter 10 m³/s) liegt. In Abbildung 5.12 (C, D) sind die DI-CH-Werte in Bezug auf die Anzahl der Grossvieheinheiten und den Abwasseranteil am Niederwasser Q₃₄₇ dargestellt. Im Allgemeinen zeigt sich, dass je höher die Anzahl Grossvieheinheiten oder je höher der Abwasseranteil war, desto höher kann der DI-CH-Wert sein. Abwasseranteile über 20 % führten, mit wenigen Ausnahmen, in den meisten Fällen zu DI-CH-Werten von mindestens 3 oder schlechter. Ähnliches gilt für die Anzahl der Grossvieheinheiten: Ab etwa 100 Tieren wurde häufig ein DI-CH-Wert von 3 oder schlechter festgestellt. Allerdings können erhöhte DI-CH-Werte auch bei geringerem Abwasseranteil oder weniger Grossvieheinheiten auftreten. Vermutlich spielen dann andere Faktoren wie die Landwirtschaftsfläche, die Siedlungsfläche und/oder andere Faktorenkombinationen eine Rolle.

In Abbildung 5.13 sind wichtige Landnutzungen im Einzugsgebiet der untersuchten Stellen zusammen mit dem DI-CH-Wert grafisch dargestellt. Auch hier lässt sich grob ableiten, dass ein höherer Anteil an Landwirtschaftsfläche oder Siedlungsfläche mit höheren DI-CH-Werten einhergeht. Im Gegensatz dazu verbessert sich der DI-CH-Wert tendenziell, je grösser der Anteil an unproduktiver Fläche im Einzugsgebiet der untersuchten Stelle ist. Bezüglich bestockter Fläche (Wald) ist kein klarer Trend ersichtlich.


Zusammenfassend wird der DI-CH-Wert hauptsächlich durch Parameter geprägt, die die klassische chemische Wasserqualität bestimmen, wie die Landwirtschaftsfläche, die Siedlungsfläche, die Abwasserbelastung und die Anzahl Grossvieheinheiten.

Zeitverlauf

Für die Analyse der Variabilität des DI-CH-Wertes im Zeitverlauf wurden 20 Stellen in den Jahren 2011 bis 2015 sowie 2019 und 2023 untersucht (Tabelle 5.4). Von den 20 untersuchten Stellen zeigten die Drance (ID 18, VS) und die Steinach (ID 23, SG) über die sechs Untersuchungsjahre hinweg einen Trend zur stetigen Verbesserung. An keiner Stelle wurde eine kontinuierliche Verschlechterung festgestellt. Alle anderen Stellen wiesen über die Jahre hinweg kleinere Änderungen auf, die entweder in die gleiche oder in entgegengesetzte Richtungen gingen. Es ist nicht ungewöhnlich, dass der DI-CH-Wert von Jahr zu Jahr schwankt, teilweise sogar in entgegengesetzte Richtungen. Inwieweit eine allfällige Änderung im DI-CH-Wert eine Entwicklung oder Reaktion auf veränderte Umweltbedingungen (Wasserqualität, Hochwasser etc.) darstellt oder auf eine methodische Variabilität (Probenahme, Präparation, Bestimmungen) zurückzuführen ist, kann bei kleinen Änderungen nicht abschliessend beurteilt werden. Ringtests mit Mehrfachzählun-

Abb. 5.12: Abhängigkeiten ausgewählter Parameter mit dem DI-CH-Wert. A: Flächenanteil des gesamten Einzugsgebietes EZG (inkl. Auslandsanteil), B: Mittlerer jährlicher Abfluss (MQ), C: Anzahl Tiere (Grossvieheinheiten GVE pro km² EZG), D: Abwasseranteil am Niederwasser Q₃₄₇. Stellen mit einem Auslandanteil des EZG > 20 % wurden in die Analyse nicht miteinbezogen (ID 086 GE, ID 088 JU). Datensatz NAWA TREND 2023 (n=113).

Abb. 5.13: Abhängigkeiten ausgewählter Parameter mit dem DI-CH-Wert. A: Landwirtschaftsfläche (bestehend aus Grünflächen, Acker, Obst- und Rebbau), B: Siedlungsfläche, C: Unproduktive Fläche, D: Bestockte Fläche. Stellen mit einem Auslandanteil des EZG > 20 % wurden in die Analyse nicht miteinbezogen (ID 086 GE, ID 088 JU). Datensatz NAWA TREND 2023 (n= 113).

gen derselben Probe oder Mehrfachbeprobungen derselben Stelle zeigen, dass eine Schwankung des DI-CH-Wertes um ≥ 0.4 Einheiten auf eine Änderung der Kieselalgen-Lebensgemeinschaft schliessen lässt. Schwankungen des DI-CH-Wertes im Bereich von ≤ 0.4 Einheiten müssen nicht zwingend ökologisch begründet, sondern können auch methodisch bedingt sein. Ein Trend zur Verbesserung oder Verschlechterung kann oft erst nach Jahren eindeutig erkannt werden. Änderungen des Gewässerzustandes können mögliche Reaktionen auf Massnahmen im Einzugsgebiet (wie Sanierung von Kläranlagen, Extensivierung der Landwirtschaft usw.), schweizweite Änderungen in der Gesetzgebung (Gewässerschutz, Landwirtschaft, Stoffverordnungen usw.) oder regionale/globale Umweltveränderungen (Niederschlagsmuster, Temperaturen, Klimawandel usw.) widerspiegeln.

Tab. 5.4: Biologisch indizierte Wasserqualität im Zeitverlauf. Links: DI-CH-Werte pro Stelle. Rechts: Visualisierung DI-CH-Werte zur Erkennung eines Trends. Der rote Punkt entspricht dem höchsten und der blaue Punkt dem tiefsten DI-CH-Wert im Zeitverlauf. Datensatz kontinuierlich beprobter Stellen NAWA TREND 2011-2023 (jeweils n=20).

Legende DI-CH-Wert										
Stufe	Zı	ustandsklasse								
1	1	sehr gut								
2	2	gut								
3	3	mässig								
4	4	unbefriedigend								
5	5	schlecht								

* Stelle Salmsacher Aach (ID 073, TG) wurde im 2019 im Rahmen eines Zusatzauftrages das letzte Mal beprobt.

Gewässer	ID	KT				-CH-V				Visualisierung
			2011	2012	2013	2014	2015	2019	2023	2012 2013 2013 2014 2012 2015 2019 2019
Drance	18	VS	3.1	2.1	1.2	1.6	1.1	1.5	1.5	•
Steinach	23	SG	6.0	5.1	4.9	5.3	3.9	3.9	3.0	
Necker	27	SG	2.7	3.7	3.1	2.2	4.1	3.6	2.4	
Bünz	34	AG	3.4	4.1	4.1	4.2	3.9	4.2	4.4	
Furtbach	49	ZH	4.3	3.8	4.4	4.4	4.4	4.5	4.7	-
Engstlige	56	BE	2.5	1.8	1.9	1.4	1.8	2.3	2.5	
Chise	58	BE	3.6	4.1	4.1	3.2	4.4	4.0	4.2	
Sense	60	BE	2.5	4.1	2.8	2.7	3.4	1.8	2.4	-
Töss	66	ZH	2.0	2.8	2.5	1.7	1.5	3.0	2.5	
Murg	70	TG	3.4	4.0	3.7	4.1	3.9	4.2	3.8	•
Salms. Aach*	73	TG	4.2	4.3	4.4	4.2	4.1	3.9	-	
Lorze	76	ZG	2.9	2.9	2.7	2.6	2.1	3.5	2.8	
Areuse	85	NE	2.7	3.1	3.0	1.6	1.6	1.3	2.3	-
Doubs	88	JU	3.7	4.0	4.2	3.6	3.2	2.8	3.7	-
Muota	100	SZ	2.3	2.3	2.2	2.0	2.4	2.4	2.3	
Sarine	107	FR	2.1	1.8	1.7	1.6	1.8	2.0	1.8	•
Sitter	115	Al	2.4	2.5	1.7	2.1	2.3	2.1	2.2	•
Talent	127	VD	4.9	5.7	4.7	4.7	5.3	3.4	4.6	-
Aubonne	130	VD	3.0	2.6	3.2	2.2	1.2	2.9	2.6	
Simme	133	BE	1.9	1.5	1.3	1.3	1.2	1.7	2.1	• •

In Tabelle 5.5 sind die DI-CH-Werte des Kantons Aargau für die Periode von 1996 bis 2023 für jede der NAWA-Stellen aufgeführt. Jede dieser Stellen wurde seit 1996 mehrfach untersucht, wobei hauptsächlich ein Zweijahres- oder Vierjahresrhythmus eingehalten wurde. Die Probenahmen erfolgten von 1996 bis 2010 meist im Sommer (vorwiegend im August) und ab 2011 im Frühjahr (März). Es ist ersichtlich, dass sich der Zustand an jeder Messstelle deutlich verbessert hat und der jährliche Mittelwert aller Stellen von einem DI-CH-Wert von 5.6 auf 4 gesunken ist. Bis auf die Bünz (ID 34, AG) wiesen alle Stellen ab dem Jahr 2008 einen DI-CH-Wert von < 4.5 auf, was Zustandsklasse 2 (gut) oder 1 (sehr gut) entspricht. Dies zeigt deutlich, dass die getroffenen Massnahmen zum Schutz der Gewässer, wie beispielsweise die Sanierung von Kläranlagen, positive Auswirkungen auf die Kieselalgen und somit auf einen Teil der Gewässerbiologie hatten. Die

Erhebungen im Kanton Aargau verdeutlichen sehr gut, dass die Entwicklung von Lebensgemeinschaften (Trendbiologie) zur Erkennung eines Trends Langzeituntersuchungen erfordert. Kurzfristige Abweichungen vom Langzeittrend sind in der Trendbiologie bekannte Phänomene. Diese Abweichungen können durch Naturereignisse (wie Hochwasser, Geschiebetrieb, langanhaltende Hitze- oder Kälteperiode, usw.) sowie durch biologische Prozesse (wie erhöhter Frassdruck, Parasitenbefall, Krankheiten, usw.) ausgelöst werden.

Tab. 5.5: Biologisch indizierte Wasserqualität der NAWA TREND-Stellen im Zeitverlauf im Kanton Aargau. DI-CH-Werte pro Stelle im Zeitverlauf der kontinuierlich beprobten NAWA TREND-Stellen (1996-2023) im Kanton Aargau (n=8), ohne Küntenerbach (ID 136, AG) und Möhlinbach (ID 137, AG) aufgrund ihrer Erstbeprobung 2019. Daten vor 2011 gemäss AquaPlus (2010). Saison (S: Sommer, F: Frühling).

Gewässer	ID	KT								Z	eitv	erlaı	uf uı	nd S	aisc	n							
			1996	1997	1998	1999	2001	2002	2003	2004	2005	2006	2008	2009	2010	2011	2012	2012	2013	2014	2015	2019	2023
			S	S	S	S	S	S	S	S	S	S	S	S	S	F	F	F	F	F	F	F	F
Pfaffnern	32	AG		5.0		3.8				4.2		3.4		4.1			3.9				4.0	4.4	3.8
Wyna	33	AG	6.0		4.8		4.3		4.6		4.3		3.8				3.7				4.1	4.0	4.2
Bünz	34	AG	6.1		5.9		5.0		3.4		3.9			4.8		3.4	4.1	4.6	4.1	4.2	3.9	4.2	4.4
Surb	35	AG	5.2		4.4		4.6		3.9		4.5		4.1				4.3				3.8	3.9	4.2
Sissle	36	AG	5.2		4.3		4.0		4.4			3.4		3.8			3.8				3.7	3.3	3.0
Suhre	39	AG		5.0		5.2		4.4		4.9		4.9		4.1			4.2				3.9	4.2	4.5
Aabach	79	AG		4.9		4.9		5.1		4.9		4.7	4.5				3.8				3.3	3.7	3.6
Wigger	111	AG	5.4		5.0		4.6		5.3			3.9		3.7			4.2				3.9	3.6	3.9
Mittelwert pro Jahr			5.6	5.0	4.9	4.6	4.5	4.3	4.3	4.6	4.2	4.1	4.1	4.1			4.0				3.8	3.9	4.0

Generell ist anzumerken, dass die jährliche Beprobung die saisonale Variabilität nicht abdeckt, obwohl diese eine wichtige Rolle spielt. Untersuchungen an denselben Stellen im Frühjahr und Herbst zeigen, dass im Herbst bei etwa 75 % von 613 Vergleichen (Paare derselben Stelle) der DI-CH-Wert schlechter war als im Frühjahr (BAFU 2007a). Diese Aussage gilt für Stellen unterhalb von 1000 m ü. M. Weiter gilt es zu beachten, dass die Eichung des DI-CH-Wertes anhand chemischer Parameter (BAFU 2007a) erfolgte und mit der epilithischen Lebensgemeinschaften (Steinaufwuchs) der fliessenden Welle durchgeführt wird. Aufgrund dieser spezifischen Methodik spielen ökomorphologische Faktoren keine beziehungsweise eine untergeordnete Rolle, da epilithische Lebensgemeinschaften im dauerbenetzten Bereich der fliessenden Welle untersucht werden. Andere Substrate wie Schlamm, Sand, Feinkies, Holz, Moose oder Wasserpflanzen sowie der amphibische Uferbereich werden nicht berücksichtigt. Zudem ist darauf hinzuweisen, dass die Methode zur Bestimmung des DI-CH-Wertes entwickelt wurde, nicht jedoch zur vollständigen Erfassung der gesamten Artenvielfalt. Dafür müssten neben Steinaufwuchs auch andere Substrate beprobt und mehr als 500 Schalen gezählt werden.

Die detaillierte Bewertung der einzelnen Stellen kann den Kurzkommentaren entnommen werden (vgl. elektronische Beilagen zum Bericht). Im Anhang A und B befindet sich die Liste aller Messstellen sowie im Anhang C die wichtigsten Resultate der Untersuchungskampagne 2023.

5.8 Standortgerechtigkeit

Standortgerechtigkeit

Abbildung 5.15 zeigt die Anzahl der Stellen pro DI-CH-Zustandsklasse sowie die Standortgerechtigkeit pro DI-CH-Zustandsklasse für die Jahre 2012 (n=89), 2015 (n=88), 2019 (n=104) und 2023 (n=113). In allen vier Untersuchungsjahren deuten 96 % (2015, 2019), 93 % (2023) bzw. 91 % (2012) aller Stellen auf einen guten bis sehr guten Zustand hin, während nur 27 % (2015), 28 % (2012), 18 % (2019) und 16 % (2023) eine standortgerechte Lebensgemeinschaft aufweisen. Insbesondere bei der Zustandsklasse 2 (gut) sind fast alle Lebensgemeinschaften nicht standortgerecht. Bei Stellen mit einer nicht standortgerechten Lebensgemeinschaft ist entweder der DI-CH Wert zu hoch, der relative Anteil an Belastungszeigern zu gross, der relative Anteil an Sauberwasserarten zu gering, die Struktur der Lebensgemeinschaft atypisch und/oder der relative Anteil an gebietsfremden Arten zu hoch (Abbildung 5.14). Die in den NAWA-Datensätzen gefundenen Lebensgemeinschaften entsprechen somit basierend auf dem DI-CH-Wert in Bezug auf die Nährstoffbelastung weitgehend den Anforderungen an die Wasserqualität gemäss GSchV Anhang 2. Die ökologischen Zielen gemäss GSchV Anhang 1, welche naturnahe und standorttypische Lebensgemeinschaften zum Ziel hat, werden jedoch grösstenteils nicht erreicht.

Abb. 5.14: Beeinträchtigungen Standortgerechtigkeit der Lebensgemeinschaft Kieselalgen im Untersuchungsjahr 2023. Dargestellt ist die prozentuale Verteilung der Stellen nach Beeinträchtigung, unterteilt in die Kategorien "gegeben", "unklare Verhältnisse" und "nicht gegeben" der Standortgerechtigkeit. Kennwerte Standortgerechtigkeit vgl. Tabelle 2.3. Datensatz NAWA TREND 2023 (n=113).

5.9 Kieselalgen und Äusserer Aspekt

Allgemein

Der Äussere Aspekt umfasst die Parameter der fliessenden Welle, die Momentanzustände erfassen und der Gewässersohle, die einen eher aggregierenden Charakter haben. Zur Untersuchung der Kieselalgen-Lebensgemeinschaften werden gezielt faust- bis kopfgrosse Steine der fliessenden Welle entnommen, um einen Zusammenhang zur Wasserqualität herzustellen. Einflussfaktoren wie die Be-

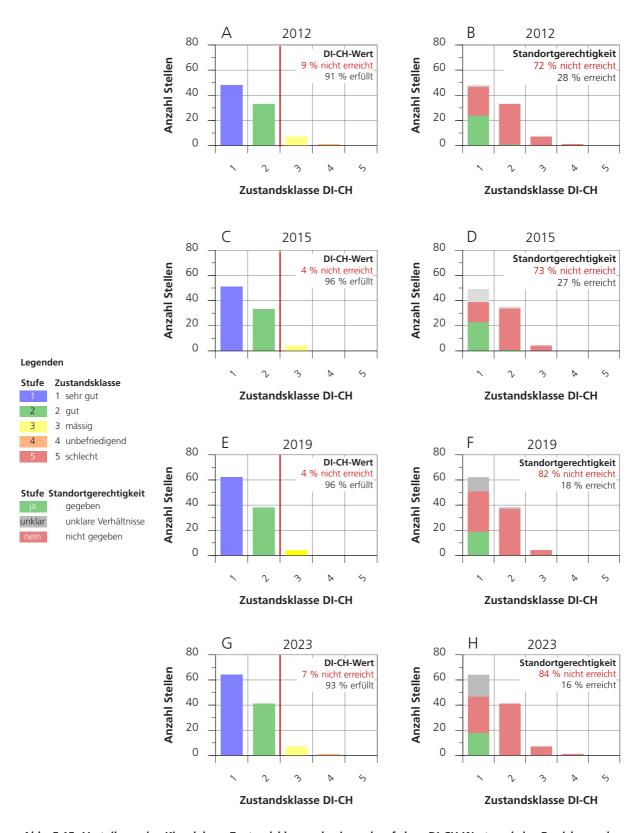
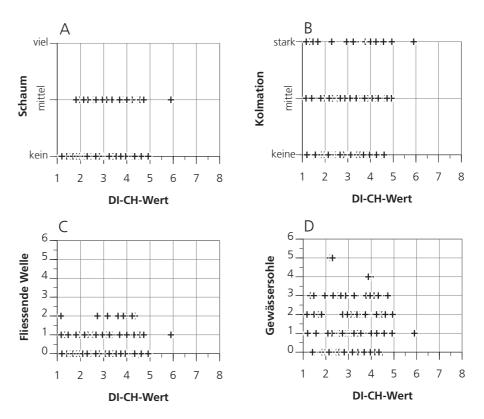



Abb. 5.15: Verteilung der Kieselalgen-Zustandsklassen basierend auf dem DI-CH-Wert und der Erreichung der Standortgerechtigkeit der Untersuchungsjahre 2012, 2015, 2019 und 2023. Links: Anzahl Stellen pro Zustandsklasse DI-CH-Wert (A, C, E, G). Rechts: Anzahl Stellen mit Angabe der Standortgerechtigkeit (ja, unklar, nein) pro Zustandsklasse DI-CH-Wert (B, D, F, H). Datensatz NAWA TREND 2012 (n=89), Datensatz NAWA TREND 2015 (n=88), NAWA TREND 2019 (n=104) und NAWA TREND 2023 (n=113).

schaffenheit der Sohle, des Ufers oder die Substratvielfalt werden bis auf eine beispielsweise stark verschlammte Sohle weniger berücksichtigt. Im Vergleich zum Äusseren Aspekt deuten Kieselalgen eher auf einen Zusammenhang mit der Beschaffenheit der fliessenden Welle hin. Da sie als aggregierende Bioindikatoren fungieren und auf Veränderungen der Wasserqualität über Wochen oder Monate reagieren, ist anzunehmen, dass die Parameter des Äusseren Aspektes nur begrenzt ähnliche Indikationen wie die Kieselalgen liefern.

Abhängigkeiten

In Abbildung 5.16 (A, B) sind die Abhängigkeiten eines Parameters der fliessenden Welle (Schaum) und eines Parameters der Gewässersohle (Kolmation) mit dem DI-CH-Wert dargestellt. Diese Parameter repräsentieren die am häufigsten beeinträchtigten Aspekte des benetzten Bereichs. Ebenfalls in Abbildung 5.16 (C, D) sind die Abhängigkeiten der Anzahl beeinträchtigter Parameter der fliessenden Welle und der Gewässersohle mit dem DI-CH-Wert dargestellt. Es zeigt sich, dass im Datensatz NAWA TREND 2023 auf Indexebene kaum Zusammenhänge oder Abhängigkeiten zum Äusseren Aspekt bestehen (Parameter Schaum und Kolmation, Anzahl Beeinträchtigungen fliessende Welle und Gewässersohle).

Abb. 5.16: Abhängigkeiten ausgewählter Parameter und Anzahl Beeinträchtigungen des Äusseren Aspektes mit dem DI-CH-Wert. A: Bewertung stabiler Schaum (Parameter der fliessenden Welle), B: Bewertung Kolmation (Parameter der Gewässersohle), C: Anzahl Beeinträchtigungen Parameter fliessende Welle, D: Anzahl Beeinträchtigungen Parameter Gewässersohle. Datensatz NAWA TREND 2023 (n=113).

Kolmation

Dass es keine offensichtlichen Zusammenhänge mit der Kolmation gab entspricht den Erwartungen, da faust- bis kopfgrosse Steine, die zur Kieselalgenbeprobung verwendet werden, bereits stabile Verhältnisse aufweisen. Der Parameter Kolmati-

on wird zudem durch viele natürliche und anthropogene Einflüsse geprägt. Natürliche Ursachen wie Gletschertrübe, Seeausflüsse, Erosion und chemisch oder biologisch bedingte Kalkausfällungen können ebenso zu einer kolmatierten Sohle führen wie Stauseen, Schlammausträge aus Kläranlagen, Drainagen, Strassenentwässerung oder eine Sohlpflästerung. Eine kolmatierte Gewässersohle ist somit Ausdruck verschiedener ökologischer Prozesse. Bei Aufwuchsorganismen wie Kieselalgen haben Silt-, Feinsand- und Schlammablagerungen auf den Steinoberflächen einen stärkeren Einfluss auf die Lebensgemeinschaften als die Kolmation der Gewässersohle selbst. Bei wasserwirbellosen Tieren, die je nach Organismengruppe auf das Lückensystem angewiesen sind, dürfte die Kolmation hingegen direkt die Zusammensetzung der Lebensgemeinschaft beeinflussen.

Weitere Parameter

Andere Parameter des Äusseren Aspekts, wie der Geruch des Wassers nach Abwasser, der heterotrophe Bewuchs, das Vorhandensein von Eisensulfid oder die Verschlammung der Gewässersohle, die eher auf die Wasserqualität hinweisen, sind im Datensatz NAWA TREND 2023 zu selten vertreten. Daher lassen sich derzeit keine eindeutigen Zusammenhänge zu diesen Parametern erkennen.

Ausblick

Eine weitere Möglichkeit, Zusammenhänge zwischen dem Äusseren Aspekt und den Kieselalgen-Lebensgemeinschaften zu identifizieren, besteht auf Artebene. Es ist sehr wahrscheinlich, dass bestimmte Arten vermehrt auftreten, wenn beispielsweise die Gewässersohle verschlammt ist (Abwasserarten, Arten des Epipelon) oder das Wasser über längere Zeit getrübt ist und eine abrasive sowie abdunkelnde Wirkung auf den Aufwuchs hat (schwachlichtadaptierte Arten, flächig auf dem Substrat haftende Arten). Eine solche Analyse erfordert jedoch umfangreiche Datensätze mit vielen entsprechenden Beeinträchtigungen.

5.10 Qualitätssicherung Kieselalgen

Qualitätssicherung

Die zehn Doppelzählungen umfassten bei den regulären Zählungen DI-CH-Werte von 1.2 bis 5.9. Die absoluten Abweichungen zu den QS-Zählungen betrugen 0.02 bis 0.54 DI-CH-Einheiten (Tabelle 5.6). Der Mittelwert der Abweichungen betrug 0.26, der Median 0.24 und die Standardabweichung 0.18 DI-CH-Einheiten. Die Kennwerte, die bei den Doppelzählungen des Projekts NAWA TREND 2023 ermittelt wurden, sind vergleichbar mit den absoluten Differenzen aus den Vorperioden und entsprachen den Erwartungen (Tabelle 5.7). Das Bestimmtheitsmass der Probenserie NAWA TREND 2023 lag bei $r^2 = 0.945$ (Regression reguläre Zählung versus QS-Zählung). Aufgrund dieser sehr guten Korrelationen wurden die Originalzählungen belassen. Die detaillierte Liste mit allen Angaben zu den Doppelzählungen befindet sich in Anhang C und Anhang D.

Tab. 5.6: Resultate Doppelzählungen zehn ausgewählter Proben des Projektes NAWA TREND 2023. Aufgeführt sind die DI-CH-Werte der regulären Zählung und der QS-Zählung sowie die Differenz dieser Werte. Die Farben entsprechen den Zustandsklassen gemäss BAFU Modul Kieselagen (BAFU 2007a).

ID ¹	Zählung	g QS	-Zählung	Differenz ²	Auftraggeber
28	4.2		4.0	0.16	BAFU
47	4.9		5.0	0.02	BAFU
74	1.2		1.1	0.05	Kanton
85	2.3		1.9	0.37	Kanton
86	3.1		3.6	0.54	Kanton
119	5.9		5.6	0.32	Kanton
138	3.6		3.8	0.16	BAFU
140	4.6		5.0	0.45	BAFU
151	3.9		3.8	0.11	BAFU
901	4.0		4.4	0.43	BAFU

¹ Stelleninformationen siehe Anhang A. ² Absolute Differenz der DI-CH-Werte.

Tab. 5.7: Kennwerte der Qualitätssicherung des Projektes NAWA TREND 2011-2013, 2015, 2019 und 2023 sowie NAWA SPEZ 2018 und Vergleich mit Ringtests der Jahre 2008-2018. Stabw = Standartabweichung.

Kennwerte	Ringtest 8-18 ¹	NAWA 11-13 ²	NAWA 15 ³	NAWA 18/19 ⁴	NAWA 23
Anzahl	76	17	11	10	10
Median	0.23	0.24	0.14	0.13	0.24
Stabw	0.19	0.21	0.15	0.07	0.18

 $^{^1}$ Arbeitsgemeinschaft Mikroflora (2018), 2 AquaPlus & PhycoEco (2014a), 3 AquaPlus & PhycoEco (2017), 4 AquaPlus & PhycoEco (2021a und b).

6 Fazit und Ausblick

Allgemein

Der Fachbericht NAWA TREND Biologie 2023 des Teilprogramms Kieselalgen (Diatomeen) und Äusserer Aspekt liefert wichtige Erkenntnisse über den aktuellen Zustand der Fliessgewässer in der Schweiz. Der Vergleich der Daten mit früheren Untersuchungskampagnen dokumentiert Entwicklungen und Trends, fördert das Verständnis der Langzeitentwicklung und ermöglicht die frühzeitige Identifizierung potenzieller Herausforderungen.

Äusserer Aspekt

Die Untersuchungen des Äusseren Aspekts im Jahr 2023 zeigen, dass die Parameter der fliessenden Welle im Vergleich zur Gewässersohle weniger Beeinträchtigungen aufweisen. Hauptursachen für die Beeinträchtigungen waren Abfälle, Kolmation und stabile Schaumbildung. Im Vergleich zu früheren Perioden hat sich der Äusseren Aspekt nicht wesentlich verändert.

Kieselalgen

Die Kieselalgenuntersuchungen zeigen, dass 93 % der untersuchten Stellen hinsichtlich der biologisch indizierten Wasserqualität bezogen auf die Nährstoffbelastung einen guten bis sehr guten Zustand bezüglich des DI-CH-Werts aufweisen, mit einem leichten Verbesserungstrend über die Kampagnen hinweg. Trotz dieser positiven Entwicklung bestehen erhebliche Defizite in Bezug auf die Standortgerechtigkeit. Lediglich 16 % der untersuchten Stellen erfüllen die Anforderungen an eine standortgerechte Lebensgemeinschaft. Ein weiteres Problem stellt die zunehmende Verbreitung gebietsfremder Kieselalgenarten in der Schweiz dar.

Ausblick

Der Fachbericht zeigt, dass bisherige Bemühungen zur Überwachung und Verbesserung der Fliessgewässerqualität wichtige Erfolge erzielt haben. Dennoch sind weitere Anstrengungen im Gewässerschutz notwendig, um die ökologischen Ziele vollständig zu erreichen. Die kontinuierliche Fortführung des NAWA TREND Biologie Projekts trägt wesentlich zur Zustandsüberwachung und langfristigen Sicherung der Gewässerqualität in der Schweiz bei. Angesichts der durch den Klimawandel bedingten Veränderungen, wie beispielsweise sinkenden Wasserständen, veränderten Abwasserverdünnungsverhältnissen und temporär trockenfallenden Gewässern, ist die kontinuierliche Überwachung von Kieselalgen als Bioindikatoren unerlässlich. Während sich die Nährstoffsituation in den Schweizer Fliessgewässern über die NAWA-Kampagnen hinweg geringfügig verbessert hat, könnten diese klimabedingten Veränderungen den Trend künftig beeinflussen. Gleichzeitig breitet sich die gebietsfremde Art Achnanthidium delmontii aus, die durch hohe relative Anteile einheimische Arten verdrängt und die ökologische Dynamik verändert. Daher sollten Kieselalgen weiterhin integraler Bestandteil zukünftiger Monitoring-Kampagnen bleiben.

7 Literaturverzeichnis

- Arbeitsgemeinschaft Mikroflora (2018): Ringtest Workshop Kieselalgen 2008-2018, Schweizerische Arbeitsgemeinschaft Mikroflora S.A.M. / A.S.E.M., La Chaux-de-Fonds, nicht publizierte Ringtests.
- AquaPlus (2010): Kieselalgen in Fliessgewässern des Kantons Aargau. Zusammenfassende Auswertungen. Orientierungsuntersuchungen der Jahre 2002 bis 2010 sowie periodische Bestandesaufnahmen an grösseren Bächen der Jahre 1996 bis 2009. Bericht erstellt im Auftrag des Kantons Aargau, Abteilung für Umwelt. 43 S.
- AquaPlus & PhycoEco (2014a): Nationale Beobachtung Oberflächengewässerqualität (NAWA). NAWA TREND Biologie 2011-2013, Teil Diatomeen Fachbericht, Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 54 S.
- AquaPlus & PhycoEco (2014b): Nationale Beobachtung Oberflächengewässerqualität (NAWA). Messprogramm TREND – Biologie / Teil Diatomeen. Methodik. Kurzbericht in deutscher und französischer Sprache, Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 11 S.
- AquaPlus & PhycoEco (2017): Nationale Beobachtung Oberflächengewässerqualität (NAWA). NAWA TREND Biologie 2015, Teil Diatomeen Fachbericht, Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 59 S.
- AquaPlus & PhycoEco (2020): Gebietsfremde Algen in der Schweiz Grundlagen und Situationsanalyse. Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 61 S.
- AquaPlus & PhycoEco (2021a): Nationale Beobachtung Oberflächengewässerqualität (NAWA). NAWA TREND Biologie 2019, Teil Diatomeen Fachbericht, Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 62 S.
- AquaPlus & PhycoEco (2021b): Nationale Beobachtung Oberflächengewässerqualität (NAWA). NAWA SPEZ Biologie 2018, Teil Diatomeen Fachbericht, Bericht im Auftrag des BAFU, Bundesamt für Umwelt, Bern, 56 S.
- BAFU (2007a): Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Kieselalgen Stufe F (flächendeckend). Bundesamt für Umwelt, Bern, Umwelt-Vollzug Nr. 0740, 130 S.
- BAFU (2007b). Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Äusserer Aspekt. Bundesamt für Umwelt, Bern, Umwelt-Vollzug Nr. 0701, 43 S.
- BAFU (2013): NAWA Nationale Beobachtung Oberflächengewässerqualität. Konzept Fliessgewässer. Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1327: 72 S.
- Coste, M., Ector, L. (2020): Diatomées invasives exotiques ou rares en France: Principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants. Vol. 70, No. 2: 373-400.
- Douglas, B. (1958): The ecology of the attached diatoms and other algae in a small stony stream. J. Ecol. 46: 295-322.
- Falasco, E., Bona, F., Ginepro, M., Hlúbikova, D., Hoffmann, L., Ector, L. (2009): Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35 (5): 595-606.

- GSchV (1998): Gewässerschutzverordnung vom 28. Oktober 1998 (Stand vom 1. Februar 2023), Gesetzes-Nr. 814.201.
- Pérès, F., Barthès, A., Ponton, E., Coste, M., Ten-Hage, L., Le Cohu, R. (2012): *Achnanthidium delmontii* sp. nov., a new species from French rivers. Fottea 12: 189–198.
- Rimet, F., Ector, L. (2006): Impacts d'un hydrocarbure, le fluoranthène, sur les assemblages de diatomées benthiques et la morphologie de leur frustule en microcosme. Diatomania 10: 42-47.
- Rimet, F., Heudre D., Matte J.L., Mazuer P. (2006): Qualité de l'eau des rivières du bassin houiller en 2006, évaluée au moyen des diatomées : estimation de la pollution organique, trophique, minérale et toxique. Rapport DIREN Lorraine, 57 S.
- Shannon, C., Weaver, W. (1949): The mathematical theory of communication. Univ. Illinois Press. Urbana.
- Strahler, A.N. (1952): Dynamic basis of geomorphology. In: Geological Society of America Bulletin 63/1952, Seiten 923–938.
- Straub, F. (1981): Utilisation des membranes filtrantes en téflon dans la préparation des Diatomées épilithiques. Cryptogamie Algol. 2: 153.
- Straub, F., Derleth-Sartori, P., Lods-Crozet, B. (2014). Les diatomées (algues silicatées), indicatrices de la qualité des cours d'eau vaudois : synthèse 2005 à 2013. Bulletin de la Société vaudoise des Sciences naturelles 94 (1): 73-106.

Bestimmungsliteratur

- Hofmann, G., Lange-Bertalot, H., Werum, M. (2013): Diatomeen im Süsswasser-Benthos von Mitteleuropa. 2. korrigierte Auflage. Koeltz Scientific Books, Königstein. 908 S.
- Krammer K., Lange-Bertalot H. (1986): Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl, H., Gerloff J., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Band 2/1. Gustav Fisher Verlag, Jena. 876 S.
- Krammer K., Lange-Bertalot H. (1991a): Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gerloff J., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Band 2/3. Gustav Fisher Verlag, Stuttgart, Jena. 576 S.
- Krammer K., Lange-Bertalot H. (1991b): Bacillariophyceae. 4. Teil: Achnanthaceae, kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis Teil 1-4. In: Ettl, H., Gerloff J., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Band 2/4. Gustav Fischer Verlag, Stuttgart, New York. 436 S.
- Krammer K., Lange-Bertalot H. (2007): Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff J., Heynig H., Mollenhauer D. (Eds.). Süsswasserflora von Mitteleuropa. Band 2/2. Gustav Fisher Verlag, Stuttgart, New York. 596 S.

Lange-Bertalot, H., Metzeltin, D. (1996): Oligotrophie-Indikatoren. 800 Taxa repräsentativ für drei diverse Seen-Typen. Kalkreich - Oligodystroph - schwach gepuffertes Weichwasser. Iconographia Diatomologica Volume 2, Koeltz Scientific Books, Königstein. 390 S.

Weitere Bestimmungsliteratur siehe BAFU Modul Kieselalgen (BAFU 2007a). Neuere Literatur siehe Bücher und Publikationen der folgenden Serien und Fachjournals:

- Diatoms of Europe
- Bibliotheca Diatomologica
- Iconographia Diatomologica
- Fottea
- Diatom Research

8 Glossar und Abkürzungen

Aufwuchs Auch bekannt als Periphyton, bezeichnet den Bewuchs von Substraten wie bei-

spielsweise Steinen (Epilithon) oder Schlamm (Epipelon).

Diatomeen Kieselalgen, siliziumhaltige pflanzliche Einzeller (Algen).

DI-CH Kieselalgenindex zur Beurteilung der biologisch indizierten Wasserqualität in Be-

zug auf die Nährstoffbelastung gemäss Modul-Stufen-Konzept des Bundes (BAFU 2007a). Zur Berechnung des DI-CH-Wertes werden pro Art der Lebensgemeinschaft die relative Häufigkeit (rH) sowie die artspezifischen D- und G-Werte benö-

tigt.

D-Wert Artspezifischer Indikationswert zwischen 1 und 8. 1= die Art kommt in sehr sau-

berem Wasser vor, 8 = die Art toleriert auch sehr stark belastetes Wasser (BAFU,

2007a).

G-Wert Artspezifischer Indikationswert (Gewichtung) zur Charakterisierung der Aussage-

kraft einer Art als Indikatororganismus. Werte zwischen 0.5 und 8.

Evenness Ausgewogenheit der Arten einer Lebensgemeinschaft oder Artengleichheit. Je

höher die Evenness, desto ausgewogener sind die Individuenzahlen zwischen den Arten verteilt. Der Wert für die Evenness liegt dabei zwischen 0 (völlig ungleiche Verteilung der Individuen auf die einzelnen Arten) und 1 (totale Gleichverteilung).

Berechnung: $E = H / log_2$ (S).

E = Evenness, H = Diversität nach Shannon-Weaver (log_2), S = Gesamtartenzahl.

Fliessende Welle Der Teil des Wassers eines Fliessgewässers, welcher ständig fliesst, also nicht ste-

hendes oder sehr langsam fliessendes Wasser im Ufer- oder Hinterwasserbereich.

Gebietsfremde Arten Arten, die in der Schweiz natürlicherweise nicht heimisch sind.

Plankton Organismen, die im Wasser eines stehenden Gewässers leben und deren

Schwimmrichtung von den Wasserströmungen vorgegeben wird.

rH Relative Häufigkeit einer Art in Prozent, Werte zwischen 0 und 100 %. Berech-

nung = Anzahl Schalen einer Art geteilt durch total gezählte Anzahl Schalen der ausgezählten Probe mal 100. Die Anzahl Schalen beträgt im vorliegenden Bericht

500 Schalen.

Teratologie Missbildungen der Schalenstruktur, verursacht durch natürliche (z.B. erhöhte UV-

Strahlung im Gebirge, Siliziummangel, etc.) oder anthropogen bedingte Faktoren (z.B. Abwasser, hohe Schwermetallkonzentrationen, Mikroverunreinigungen, ho-

her Salzgehalt, Radioaktivität, etc.).

9 ANHANG

A Übersicht Messstellen

Messstelle, Gewässer, Koordinaten, Meereshöhe, ProbenehmerIn, Probenahmedatum

B Charakterisierung Messstellen

Messstelle, Gewässer, Einzugsgebietsfläche, Abflussregimetyp, MQ, FLOZ, Abwasserkategorie

C Kieselalgen Resultate

Messstelle, Gewässer, Taxazahl, Diversität, Dominanzsumme, Teratologie, DI-CH-Wert (inkl. Vorperioden)

D Kieselalgen Qualitätssicherung

Messstelle, Gewässer, Taxazahl, Diversität, Dominanzsumme, Teratologie, DI-CH-Wert

Die Datenzusammenstellung des Projektes NAWA TREND 2023 mit den Rohdaten des Äusseren Aspektes und der Kieselalgen wurden dem BAFU in elektronischer Version übergeben. Die Daten der Kieselalgenzählungen wurden zudem an MIDAT+ DIA übermittelt.

Tabelle A: Übersicht Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Messstelle	Gewässer	X-Koord	Y-Koord	Meereshöhe	ProbenehmerIn	Datum
CH_002_BS	Birs	613496	267409	250	Haberthür Markus	06.03.2023
CH_007_BE	Emme	609445	225330	444	Imesch Christian	01.03.2023
CH_009_SO	Limpach	605997	220876	464	Schmidlin Stephanie	01.03.2023
CH_011_SO	Lüssel	607744	250786	390	Haberthür Markus	06.03.2023
CH_012_OW	Sarner Aa	662647	195819	461	Schmidlin Stephanie	21.02.2023
CH_014_LU	Reuss	664315	212930	430	Schmidlin Stephanie	22.02.2023
CH_015_VS	Rhône	639626	128790	659	Bernard Régine	18.04.2023
CH_016_VS	Vispa	634030	125900	650	Bernard Régine	18.04.2023
CH_017_VS	Rhône	593300	118455	489	Bernard Régine	17.03.2023
CH_018_VS	Dranse	570614	104466	495	Bernard Régine	16.03.2023
CH_020_VD	Venoge	532024	154048	381	Gremaud Jérôme	17.03.2023
CH_021_VD	Thièle	538389	180827	432	Gremaud Jérôme	31.03.2023
CH_022_VD	Broye	566183	191947	440	Sarbach Nadine	07.03.2023
CH_023_SG	Steinach	750755	262628	409	Fässler Sarah	07.03.2023
CH_025_SG	Sitter	745537	258250	535	Fässler Sarah	07.03.2023
CH_026_SG	Thur	732383	259206	475	Fässler Sarah	03.03.2023
CH_027_SG	Necker	724298	250473	560	Fässler Sarah	03.03.2023
CH_028_SG	Glatt	729400	256250	495	Fässler Sarah	03.03.2023
CH_032_AG	Pfaffnern	634515	239649	405	Birnstiel Emil	06.03.2023
CH_033_AG	Wyna	649071	246917	400	Birnstiel Emil	08.03.2023
CH_034_AG	Bünz	656434	251249	380	Birnstiel Emil	23.03.2023
CH_034_AG	Surb	662285	268508	335	Birnstiel Emil	23.03.2023
CH_035_AG	Sissle	641500	265545	310	Birnstiel Emil	07.03.2023
	Suhre	648700		380	Birnstiel Emil	
CH_039_AG	Limmat	679330	247570 250317	397	Steinmann Patrick	08.03.2023 07.03.2023
CH_040_ZH		685998	264982	358	Steinmann Patrick	24.03.2023
CH_041_ZH CH_042_ZH	Töss Sihl	682105	246843	410	Steinmann Patrick	21.03.2023
CH_042_ZH	Glatt	678123	269619	339	Steinmann Patrick	20.03.2023
CH_043_ZH	Glatt	691163	248330	436	Steinmann Patrick	20.03.2023
	Aabach	696928	240330	440	Steinmann Patrick	20.03.2023
CH_045_ZH						
CH_046_ZH	Aa	694950	244939	441	Steinmann Patrick	21.03.2023
CH_047_ZH	Reppisch	672809	252051	385	Steinmann Patrick	07.03.2023
CH_048_ZH	Jona	705817	232990	428	Steinmann Patrick	29.03.2023
CH_049_ZH	Furtbach	671505	255848	420	Steinmann Patrick	13.03.2023
CH_050_ZH	Thur	693065	272893	359	Steinmann Patrick	24.03.2023
CH_054_FR	Sionge	572353	167639	684	Gremaud Jérôme	05.04.2023
CH_056_BE	Engstlige	615246	158704	810	Schmidlin Stephanie	06.04.2023
CH_058_BE	Chise	613807	188906	616	Imesch Christian	14.04.2023
CH_059_BE	Gürbe	603555	196625	511	Sarbach Nadine	07.03.2023
CH_060_BE	Sense	593370	193000	549	Sarbach Nadine	07.03.2023
CH_062_BE	Urtenen	606960	217380	486	Gremaud Jérôme	01.03.2023
CH_063_BE	Langete	628600	232897	434	Sarbach Nadine	21.03.2023
CH_065_ZH	Sihl	693293	225364	687	Steinmann Patrick	05.04.2023
CH_066_ZH	Töss	703828	255510	530	Steinmann Patrick	24.03.2023
CH_067_BL	Ergolz	620950	264930	261	Haberthür Markus	06.03.2023
CH_068_JU	Sorne	593577	246286	410	Haberthür Markus	07.03.2023
CH_069_JU	Scheulte	599461	244150	465	Haberthür Markus	07.03.2023
CH_070_TG	Murg	709510	269793	391	Fässler Sarah	02.03.2023
CH_071_TG	Lauche	712330	264343	445	Fässler Sarah	02.03.2023
CH_072_TG	Chemmenbach	721604	273121	419	Uhlmann Viviane	20.03.2023
CH_074_NW	Engelbergeraa	672138	201829	456	Schmidlin Stephanie	21.02.2023
CH_075_ZG	Lorze	674516	230487	390	Schmidlin Stephanie	02.03.2023
CH_076_ZG	Lorze	680595	226069	421	Schmidlin Stephanie	02.03.2023
CH_079_AG	Aabach	655159	251068	365	Birnstiel Emil	09.03.2023

Tabelle A: Übersicht Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Messstelle	Gewässer	X-Koord	Y-Koord	Meereshöhe	ProbenehmerIn	Datum
CH_084_JU	Allaine	567887	261272	365	Haberthür Markus	08.03.2023
CH_085_NE	Areuse	554430	199950	445	Stucki Pascal	24.03.2023
CH_086_GE	Arve	499460	116790	375	Cordonier Arielle	02.03.2023
CH_087_JU	Birs	597523	249370	386	Haberthür Markus	07.03.2023
CH_088_JU	Doubs	572188	244219	417	Haberthür Markus	08.03.2023
CH_089_SO	Dünnern	634000	244025	404	Sarbach Nadine	21.03.2023
CH_091_GR	Inn	795320	165548	1650	Jann Beatrice	22.05.2023
CH_092_BE	Kander	616905	170230	620	Schmidlin Stephanie	06.04.2023
CH_093_LU	Kleine Emme	664207	213237	432	Schmidlin Stephanie	29.03.2023
CH_094_BE	La Suze	584763	220291	430	Haberthür Markus	22.03.2023
CH_095_GR	Landquart	765245	204813	560	Uhlmann Viviane	06.03.2023
CH_098_TI	Maggia	703084	113851	200	Jann Beatrice	16.03.2023
CH_099_TI	Moesa	724346	120161	235	Jann Beatrice	30.03.2023
 CH_100_SZ	Muota	688257	206189	436	Birnstiel Emil	01.03.2023
 CH_101_UR	Reuss	690654	191880	445	Schmidlin Stephanie	24.02.2023
CH_106_BE	Saane	585905	203017	463	Rohr Sarah	29.03.2023
 CH_107_FR	Sarine	573540	161640	685	Gremaud Jérôme	14.04.2023
CH_111_AG	Wigger	637194	238503	420	Birnstiel Emil	06.03.2023
CH_114_BE	Emme	623712	199785	640	Sarbach Nadine	14.04.2023
CH_115_AI	Sitter	750019	243282	790	Fässler Sarah	06.04.2023
CH_119_NE	Seyon	559534	207117	635	Stucki Pascal	14.04.2023
CH_123_TI	Maggia	692818	134910	622	Jann Beatrice	29.03.2023
CH_126_VD	Mentue	545390	180900	448	Sarbach Nadine	06.03.2023
CH_127_VD	Talent	532670	173050	439	Gremaud Jérôme	31.03.2023
CH_128_VD	Promenthouse	510084	140075	394	Gremaud Jérôme	15.03.2023
CH_129_VD	Boiron de Morges	526273	149580	372	Gremaud Jérôme	20.03.2023
CH_130_VD	Aubonne	520715	147440	395	Gremaud Jérôme	21.03.2023
CH_131_VD	Veveyse	553755	145728	376	Sarbach Nadine	18.03.2023
CH_132_VD	Grande Eau	561082	130535	386	Sarbach Nadine	18.03.2023
CH_133_BE	Simme	612505	168441	640	Schmidlin Stephanie	06.04.2023
CH_134_BE	La Birse	596389	240411	475	Haberthür Markus	07.03.2023
CH_135_AR	Urnäsch	742503	251590	593	Uhlmann Viviane	06.03.2023
CH_136_AG	Küntenerbach	666969	248640	388	Birnstiel Emil	09.03.2023
CH_137_AG	Möhlinbach	632055	266359	330	Birnstiel Emil	07.03.2023
CH_138_BE	Chrümmlisbach	605723	218782	464	Haberthür Markus	22.03.2023
CH_139_BE	Ballmoosbach	603217	210481	547	Haberthür Markus	22.03.2023
CH_140_FR	Le Bainoz	552620	184072	566	Sarbach Nadine	20.03.2023
CH_141_JU	Ervaratte	580504	251627	490	Haberthür Markus	08.03.2023
CH_143_SG	Zapfenbach	764793	250889	400	Uhlmann Viviane	13.03.2023
CH_144_SG	Mittlerer Seegraben	764600	251002	400	Uhlmann Viviane	13.03.2023
CH_144_30 CH_145_SH	Landgrabe	674870	279824	404	Uhlmann Viviane	20.03.2023
CH_146_SH	Beggingerbach	681330	291094	526	Wüthrich Remo	02.03.2023
CH_147_TG	Eschelisbach	740300	274478	400	Uhlmann Viviane	07.03.2023
CH_148_TG	Salmsacher Aach	740300	268543	418	Haberthür Markus	29.03.2023
CH_149_TI	Vedeggio	714110	95680	274	Jann Beatrice	26.03.2023
CH_150_VD	Ruisseau Gi	545151	181272	452	Sarbach Nadine	20.03.2023
CH_150_VD	Le Combagnou	522923	158664	620	Sarbach Nadine	06.04.2023
	Canal D'Uvrier			491	Bernard Régine	
CH_152_VS		597501	121662			16.03.2023
CH_154_LU	Ron	664050	224110	468	Schmidlin Stephanie	27.04.2023
CH_901_SO	Limpach	601442	217355	466	Imesch Christian	22.03.2023
CH_902_BE	Urtenen	607586	212703	501	Imesch Christian	22.03.2023
CH_903_NE	Sorge	559630	207341	645	Stucki Pascal	14.04.2023
CH_904_VD	Eau Noire de Perroy	518490	148185	437	Gremaud Jérôme	21.03.2023

Tabelle A: Übersicht Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Messstelle	Gewässer	X-Koord	Y-Koord	Meereshöhe	ProbenehmerIn	Datum
CH_905_SG	Äächeli	765893	255377	400	Uhlmann Viviane	13.03.2023
CH_906_SH	Zwärenbach	677768	288829	464	Wüthrich Remo	02.03.2023
CH_908_SO	Mülibach	606241	222405	471	Imesch Christian	22.03.2023
CH_909_LU	Wyna	657021	228067	641	Schmidlin Stephanie	27.04.2023
CH_910_VS	Canal de Brig	639634	128536	659	Bernard Régine	18.04.2023
CH_911_GE	La Seymaz	503069	115384	393	Gremaud Jérôme	15.03.2023

Tabelle B: Charakterisierung Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Fläche: Flächenanteil des gesamten Einzugsgebietes EZG (inkl. Auslandsanteil)

MQ: FLOZ: Mittlerer jährlicher Abfluss

Flussordnungszahl nach Strahler (1952)

AbwKat: Abwasserkategorie, Anteil Abwasser bei Niederwasser Q₃₄₇; keine Angabe (k.A.)

Messstelle	Gewässer	Fläche [km²]	Abflussregimetyp	MQ [m³/s]	FLOZ [≥19]	AbwKat.
		[KIII]		[111 /3]	[=]	[,0]
CH_002_BS	Birs	897	pluvial jurassien	18.85	6	20-50
CH_007_BE	Emme	938	pluvial supérieur	22.73	7	10-20
CH_009_SO	Limpach	72	pluvial inférieur	1.68	5	0-10
CH_011_SO	Lüssel	44	pluvial jurassien	0.64	4	0
CH_012_OW	Sarner Aa	284	nivo-pluvial préalpin	11.33	5	0
CH_014_LU	Reuss	2243	nival de transition	111.53	7	0
CH_015_VS	Rhône	909	a-glacio-nival	44.45	6	0
CH_016_VS	Vispa	786	b-glaciaire	25.03	6	0-10
CH_017_VS	Rhône	3372	a-glacio-nival	120.27	7	0
CH_018_VS	Dranse	676	a-glacio-nival	24.11	6	0-10
CH_020_VD	Venoge	228	nivo-pluvial jurassien	3.94	4	20-50
CH_021_VD	Thièle	476	nivo-pluvial jurassien	10.97	5	10-20
CH_022_VD	Broye	429	pluvial inférieur	8.20	6	10-20
CH_023_SG	Steinach	24	pluvial supérieur	0.72	4	>50
CH_025_SG	Sitter	289	nivo-pluvial préalpin	11.16	6	20-50
CH_026_SG	Thur	690	nivo-pluvial préalpin	24.90	7	10-20
CH_027_SG	Necker	125	nivo-pluvial préalpin	4.57	6	0-10
CH_028_SG	Glatt	90	pluvial supérieur	2.27	6	20-50
CH_032_AG	Pfaffnern	47	pluvial inférieur	0.87	4	0
CH_033_AG	Wyna	120	pluvial inférieur	2.15	4	20-50
CH_034_AG	Bünz	123	pluvial inférieur	2.20	5	20-50
CH_035_AG	Surb	65	pluvial inférieur	1.03	4	20-50
CH_036_AG	Sissle	123	pluvial jurassien	1.91	5	>50
CH_039_AG	Suhre	247	pluvial inférieur	4.76	5	20-50
CH_040_ZH	Limmat	2186	nivo-pluvial préalpin	96.52	8	0-10
CH_041_ZH	Töss	405	pluvial inférieur	9.16	6	>50
CH_042_ZH	Sihl	343	nivo-pluvial préalpin	13.47	7	0-10
CH_043_ZH	Glatt	417	pluvial inférieur	8.78	6	20-50
CH_044_ZH	Glatt	166	pluvial inférieur	4.33	6	20-50
CH_045_ZH	Aabach	45	pluvial inférieur	1.16	4	>50
CH_046_ZH	Aa	63	pluvial inférieur	1.83	5	20-50
CH_047_ZH	Reppisch	69	pluvial inférieur	1.41	4	>50
CH_048_ZH	Jona	64	pluvial supérieur	2.60	5	>50
CH_049_ZH	Furtbach	38	pluvial inférieur	0.78	4	>50
CH_050_ZH	Thur	1707	pluvial supérieur	47.52	7	10-20
CH_054_FR	Sionge	44	nivo-pluvial préalpin	0.90	4	0
CH_056_BE	Engstlige	136	nival alpin	5.35	5	0-10
CH_058_BE	Chise	49	pluvial supérieur	1.46	4	>50
CH_059_BE	Gürbe	129	pluvial supérieur	2.80	5	10-20
CH_060_BE	Sense	351	nivo-pluvial préalpin	8.52	7	0-10
CH_062_BE	Urtenen	94	pluvial inférieur	1.95	4	20-50
CH_063_BE	Langete	131	pluvial inférieur	2.54	5	0-10
CH_065_ZH	Sihl	259	nivo-pluvial préalpin	10.77	7	0-10
CH_066_ZH	Töss	129	pluvial supérieur	3.40	6	0-10
CH_067_BL	Ergolz	285	pluvial jurassien	4.24	6	>50
CH_068_JU	Sorne	214	nivo-pluvial jurassien	5.69	5	
CH_069_JU	Scheulte	73	nivo-pluvial jurassien	2.09	5	0
CH_069_J0	Murg	213	pluvial inférieur	4.11	6	>50
CH_070_TG	Lauche	62	pluvial inférieur	0.95	5	20-50
	Chemmenbach	33	pluvial inférieur	0.43		0-10
CH_072_TG		226			<u>4</u> 5	0-10
CH_074_NW	Engelbergeraa		b-glacio-nival	12.37		
CH_075_ZG	Lorze	262	pluvial inférieur	7.80	6	>50
CH_076_ZG	Lorze	103	pluvial supérieur	3.11	6	0 10
CH_079_AG	Aabach	180	pluvial inférieur	3.46	4	0-10

Tabelle B: Charakterisierung Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Fläche: Flächenanteil des gesamten Einzugsgebietes EZG (inkl. Auslandsanteil)

MQ: FLOZ: Mittlerer jährlicher Abfluss

Flussordnungszahl nach Strahler (1952)

AbwKat: Abwasserkategorie, Anteil Abwasser bei Niederwasser Q₃₄₇; keine Angabe (k.A.)

Messstelle	Gewässer	Fläche	Abflussregimetyp	MQ	FLOZ	AbwKat.
		[km²]	-	[m ³ /s]	[≥19]	[%]
611 004 111	A II	242		4.44	_	20.50
CH_084_JU	Allaine	212	pluvial jurassien	4.11	5	20-50
CH_085_NE	Areuse	378	nivo-pluvial jurassien	11.05	4	0-10
CH_086_GE	Arve	1979	nival de transition	0.72	4	k.A.
CH_087_JU	Birs	573	nivo-pluvial jurassien	14.69	6	10-20
CH_088_JU	Doubs	1275	nivo-pluvial jurassien	8.63	5	k.A.
CH_089_SO	Dünnern	234	pluvial jurassien	4.29	5	20-50
CH_091_GR	lnn	616	b-glacio-nival	21.32	6	0-10
CH_092_BE	Kander	487	b-glacio-nival	21.37	6	0-10
CH_093_LU	Kleine Emme	477	nivo-pluvial préalpin	15.00	7	0-10
CH_094_BE	La Suze	216	nivo-pluvial jurassien	6.10	3	0-10
CH_095_GR	Landquart	614	nival alpin	23.30	6	10-20
CH_098_TI	Maggia	927	nival pluvial méridional	39.41	7	0
CH_099_TI	Moesa	472	nivo-pluvial méridional	19.70	5	0
CH_100_SZ	Muota	317	nival de transition	18.69	6	0-10
CH_101_UR	Reuss	820	b-glacio-nival	43.78	6	0
CH_106_BE	Saane	1893	nivo-pluvial préalpin	56.64	8	10-20
CH_107_FR	Sarine	636	nival de transition	25.26	7	0-10
CH_111_AG	Wigger	368	pluvial inférieur	7.05	6	0-10
CH_114_BE	Emme	231	nivo-pluvial préalpin	6.40	6	0
CH_115_AI	Sitter	74	nival de transition	3.64	5	0
CH_119_NE	Seyon	112	nivo-pluvial jurassien	2.67	4	20-50
CH_123_TI	Maggia	171	nival méridional	9.01	5	0
CH_126_VD	Mentue	105	pluvial jurassien	1.60	4	10-20
CH_127_VD	Talent	67	pluvial jurassien	1.01	4	>50
CH_128_VD	Promenthouse	120	nivo-pluvial jurassien	4.10	4	0
CH_129_VD	Boiron de Morges	34	nivo-pluvial jurassien	0.44	3	20-50
CH_130_VD	Aubonne	105	nivo-pluvial jurassien	2.20	4	20-50
CH_131_VD	Veveyse	65	nivo-pluvial préalpin	2.32	5	0
CH_132_VD	Grande Eau	144	nival de transition	4.06	5	20-50
CH_133_BE	Simme	569	nival de transition	18.76	6	0-10
CH_134_BE	La Birse	199	nivo-pluvial jurassien	5.63	5	20-50
CH_135_AR	Urnäsch	94	nivo-pluvial préalpin	3.89	5	0-10
CH_136_AG	Küntenerbach	4	pluvial inférieur	0.08	3	0
CH_137_AG	Möhlinbach	27	pluvial jurassien	0.49	3	0
CH_138_BE	Chrümmlisbach	3	unbest.	0.06	1	0
CH_139_BE	Ballmoosbach	3	pluvial inférieur	0.09	2	0
CH_140_FR	Le Bainoz	7	pluvial jurassien	0.08	3	0
CH_141_JU	Ervaratte	9	pluvial jurassien	0.17	3	0
CH_143_SG	Zapfenbach	4	unbest.	0.08	2	0
CH_144_SG	Mittlerer Seegrabei	10	pluvial inférieur	0.16	2	0
CH_145_SH	Landgrabe	75	pluvial inférieur	0.99	4	0
CH_146_SH	Beggingerbach	11	pluvial inférieur	0.16	3	20-50
CH_147_TG	Eschelisbach	2	unbest.	0.02	2	0
CH_148_TG	Salmsacher Aach	43	pluvial inférieur	0.70	4	>50
CH_149_TI	Vedeggio	102	pluvio-nival méridional	4.05	5	>50
CH_150_VD	Ruisseau Gi	6	pluvial jurassien	0.08	2	0
CH_151_VD	Le Combagnou	6	nivo-pluvial jurassien	0.09	3	0
CH_152_VS	Canal D'Uvrier	7	pluvial inférieur	0.02	2	0
CH_154_LU	Ron	22	pluvial inférieur	0.02	3	0
CH_901_SO	Limpach	37	pluvial inférieur	0.40	4	>50
CH_902_BE	Urtenen	74	pluvial inférieur	1.55	3	>50
CH_902_BE	Sorge	18	nivo-pluvial jurassien	0.43	3	>50
CH_904_VD	Eau Noire de Perro	10	unbest.	0.43	3	
CI1_204_VD	Lau None de Feilo	ı	unidest.	0.05	ر	U

Tabelle B: Charakterisierung Messstellen NAWA TREND Biologie 2023.

Datensatz NAWA TREND 2023 (n=113). Stellenverschiebungen werden im Fachbericht Makrozoobenthos abgehandelt.

Fläche: Flächenanteil des gesamten Einzugsgebietes EZG (inkl. Auslandsanteil)

Mittlerer jährlicher Abfluss

MQ: FLOZ: Flussordnungszahl nach Strahler (1952)

Abwasserkategorie, Anteil Abwasser bei Niederwasser Q₃₄₇; keine Angabe (k.A.) AbwKat:

Messstelle	Gewässer	Fläche [km²]	Abflussregimetyp -	MQ [m³/s]	FLOZ [≥19]	AbwKat. [%]
CH 905 SG	Äächeli	4	pluvial inférieur	0.06	2	0
CH_905_3G	Zwärenbach	11	pluvial inférieur	0.06	3	0
CH_908_SO	Mülibach	10	pluvial inférieur	0.23	3	0
CH_909_LU	Wyna	14	pluvial inférieur	0.31	3	0
CH_910_VS	Canal de Brig	8	unbest.	0.07	3	10-20
CH_911_GE	La Seymaz	37	nivo-pluvial jurassien	0.55	3	0

Tabelle C: Resultate Kieselalgen NAWA TREND Biologie 2023.

Taxazahl: Zahl der Taxa (Arten, Variationen).

Diversität H: Diversität H nach Shannon & Weaver (1949), Berechnung als log mit Basis 2. Je höher der Wert, desto

grösser die Diversität.

DS [%]: Dominanzsumme der relativen Häufigkeit der drei Taxa mit den höchsten Anteilen.

Teratologie T [%]: Prozentualer Anteil an Teratologien (missbildete Schalen, 100 % = Anzahl total gezählte Schalen).

DI-CH-Wert: Indexwert Kieselalgen gemäss BAFU Modul Kieselalgen Stufe F (BAFU 2007a) der Jahre 2012-2023.

Farben = Zustandsklassen gemäss BAFU Modul-Stufen-Konzept in BAFU (2007a).

Messstelle	Gewässer	Taxa -	H	DS [%]	T [%]	DI-CH				
		2023	2023	2023	2023	2012	2015	2019	2023	
CH_002_BS	Birs	33	3.8	44	0.4	3.9	3.7	3.7	3.7	
CH_007_BE	Emme	34	3.2	70	0.0	3.0	2.8	2.7	2.6	
CH_009_SO	Limpach	33	3.1	70	0.0	5.1	4.5	3.8	4.6	
CH_011_SO	Lüssel	20	3.0	67	0.4	2.5	2.8	2.6	2.6	
CH_012_OW	Sarner Aa	33	3.4	63	0.4	2.1	1.8	2.2	2.0	
CH_014_LU	Reuss	56	4.7	37	0.4	2.1	1.8	2.9	2.7	
CH_015_VS	Rhône	17	2.4	83	0.0	2.8	1.5	1.6	1.3	
CH_016_VS	Vispa	24	2.4	76	0.4	2.4	1.5	1.9	1.2	
CH_017_VS	Rhône	23	3.0	63	0.0	2.4		1.9	1.5	
CH_018_VS	Dranse	29	3.3	61	0.6	2.1		1.5	1.5	
CH_020_VD	Venoge	36	3.6	55	0.6	5.0	3.6	4.0	4.0	
CH_021_VD	Thièle	48	4.3	46	0.6	2.6	3.0	3.3	2.5	
CH_022_VD	Broye	37	2.7	77	0.2	4.5	4.1	4.2	4.0	
CH_023_SG	Steinach	26	2.7	72	0.2	5.1	3.9	3.9	3.0	
CH_025_SG	Sitter	31	3.8	51	0.2	3.9	3.7	2.4	3.2	
CH_026_SG	Thur	21	3.4	50	0.0	3.4	4.0	3.5	2.3	
CH_027_SG	Necker	23	2.9	75	0.0	3.6	4.1	3.6	2.4	
CH_028_SG	Glatt	23	2.7	73	0.2	3.9	4.4	4.1	4.2	
CH_032_AG	Pfaffnern	41	4.1	42	0.0	3.9	4.0	4.4	3.8	
CH_033_AG	Wyna	34	3.6	59	0.4	3.7	4.1	4.0	4.2	
CH_034_AG	Bünz	30	3.3	57	0.4	4.1	3.9	4.2	4.4	
CH_035_AG	Surb	23	3.3	53	0.6	4.3	3.8	3.9	4.2	
CH_036_AG	Sissle	35	3.8	51	0.0	3.8	3.7	3.3	3.0	
CH_039_AG	Suhre	45	4.1	53	0.0	4.2	3.9	4.2	4.5	
CH_040_ZH	Limmat	17	1.5	86	8.0	2.5	2.0	3.0	3.4	
CH_041_ZH	Töss	31	3.5	63	0.4	3.6	3.5	3.3	3.4	
CH_042_ZH	Sihl	25	2.5	77	1.2	2.8	2.9	3.5	3.3	
CH_043_ZH	Glatt	30	3.5	57	1.2	4.3	4.5	3.7	4.2	
CH_044_ZH	Glatt	39	3.6	59	0.4	3.3	3.4	3.2	3.5	
CH_045_ZH	Aabach	46	4.1	48	0.8	4.0	4.2	3.5	4.1	
CH_046_ZH	Aa	28	3.1	65	0.6	3.8	3.8	3.8	3.3	
CH_047_ZH	Reppisch	37	3.5	56	0.0	3.8	4.0	3.6	4.9	
CH_048_ZH	Jona	18	1.9	86	0.8	3.4	3.0	3.6	3.4	
CH_049_ZH	Furtbach	40	4.1	44	0.6	3.8	4.4	4.5	4.7	
CH_050_ZH	Thur	35	3.3	62	0.2	3.8	4.1	3.9	3.6	
CH_054_FR	Sionge	22	2.6	81	0.0	3.4	2.5	2.7	3.2	
CH_056_BE CH_058_BE	Engstlige Chise	33 24	3.7	55 67	0.0	1.8 4.1	1.8 4.4	2.3 3.9	2.5 4.2	
CH_059_BE	Gürbe	29	3.4	62	0.0	3.2	3.7	2.5	3.9	
CH_060_BE	Sense	29	3.4	65	0.0	4.1	3.4	1.8	2.4	
CH_062_BE	Urtenen	37	3.5	56	0.0	3.4	4.5	3.7	3.4	
CH_063_BE	Langete	32	3.9	45	0.0	4.0	2.7	2.8	3.4	
CH_065_ZH	Sihl	32	4.1	44	0.0	2.9	2.9	2.2	3.4	
CH_066_ZH	Töss	15	1.5	95	0.0	2.8	1.5	3.0	2.5	
CH_067_BL	Ergolz	29	3.2	71	0.0	4.2	5.0	3.5	4.3	
CH_068_JU	Sorne	31	3.3	62	0.0	3.4	2.8	2.0	2.0	
CH_069_JU	Scheulte	28	2.8	73	0.0	2.6	2.0	2.1	2.5	
CH_070_TG	Murg	32	3.3	63	0.0	4.0	3.9	4.2	3.8	
CH_071_TG	Lauche	40	3.9	54	0.0	3.7	3.4	3.5	4.1	
CH_072_TG	Chemmenbach	25	2.9	72	1.4	3.7	4.0	4.1	3.8	
CH_074_NW	Engelbergeraa	24	2.7	76	0.0	2.2	1.7	1.2	1.2	
CH_075_ZG	Lorze	32	2.4	76	0.0	4.8	3.6	4.2	3.6	
CH_076_ZG	Lorze	26	2.4	80	1.0	2.9	2.1	3.5	2.8	
CH_079_AG	Aabach	25	2.9	69	0.0	3.8		3.7	3.6	

Tabelle C: Resultate Kieselalgen NAWA TREND Biologie 2023.

Taxazahl: Zahl der Taxa (Arten, Variationen).

Diversität H: Diversität H nach Shannon & Weaver (1949), Berechnung als log mit Basis 2. Je höher der Wert, desto

grösser die Diversität.

DS [%]: Dominanzsumme der relativen Häufigkeit der drei Taxa mit den höchsten Anteilen.

Teratologie T [%]: Prozentualer Anteil an Teratologien (missbildete Schalen, 100 % = Anzahl total gezählte Schalen).

DI-CH-Wert: Indexwert Kieselalgen gemäss BAFU Modul Kieselalgen Stufe F (BAFU 2007a) der Jahre 2012-2023.

Farben = Zustandsklassen gemäss BAFU Modul-Stufen-Konzept in BAFU (2007a).

CH_084_JU Allaine	Messstelle	Gewässer	Taxa -	н	DS [%]	T [%]	DI-CH			
CH 085 NE Areuse 26 29 68 0.0 31 16 13 23 CH 086 NE Areuse 28 38 50 0.0 28 38 45 31 CH 087 JU Bis 35 37 52 0.4 32 35 25 37 CH 088 JU Doubs 32 39 42 0.0 40 32 28 37 CH 088 JU Doubs 32 39 42 0.0 40 32 28 37 CH 089 SO Dünnern 24 27 72 0.0 41 33 33 33 31 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				2023			2012	2015	2019	2023
CH 085 NE Areuse 26 29 68 0.0 3.1 16 13 23 CH 087 JU Birs 35 3.7 52 0.4 32 35 2.5 3.7 CH 087 JU Birs 35 3.7 52 0.4 32 3.5 2.5 3.7 CH 088 JU Doubs 32 3.9 42 0.0 4.0 3.2 3.5 2.5 3.7 CH 088 JU Doubs 32 3.9 42 0.0 4.0 3.2 2.8 3.7 CH 0.99 SO Dünnern 24 2.7 72 0.0 4.1 3.3 3.3 3.3 3.1 CH 0.91 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 0.91 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH 0.93 ER Kander 17 2.6 72 0.0 2.9 1.6 3.5 2.0 CH 0.93 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 2.6 CH 0.93 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 2.7 CH 0.95 GR Landquart 26 3.3 61 0.0 3.1 2.5 3.0 1.4 CH 0.98 JI Maggia 25 3.1 62 0.0 1.4 1.1 1.3 1.6 CH 0.99 JI Maggia 25 3.1 62 0.0 1.4 1.1 1.3 1.6 CH 0.99 JI Maggia 25 3.1 3.4 62 0.0 1.4 1.1 1.3 1.6 CH 0.99 JI Maggia 25 3.1 62 0.0 2.3 2.4 2.4 2.3 CH 1.10 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR Reuss 3.2 3.9 66 0.8 3.1 2.7 3.4 3.1 CH 1.10 LUR Reuss 3.2 3.9 66 0.8 3.1 2.7 3.4 3.3 1.6 LUR 1.11 LUR 1.1 1.3 1.6 CH 1.11 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 LUR 1.10 LUR 1	CH 084 JU	Allaine	26	2.6	80	1.8	4.2	4.3	4.1	3.3
CH_086_GE										
CH. 088 JU Doubs 32 3.9 42 0.0 4.0 3.2 2.8 3.7 CH. 098 SO Dünnern 24 2.7 7.2 0.0 4.1 3.3 3.3 3.1 CH. 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH. 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH. 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH. 093 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 093 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 093 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 095 GR Landquart 26 3.3 61 0.0 3.3 2.2 7. 2.7 CH. 095 GR Landquart 26 3.3 61 0.0 3.1 2.5 3.0 11.4 CH. 098 JL Mosea 28 3.4 59 0.0 2.8 1.2 1.6 1.8 CH. 099 JL Mosea 28 3.4 59 0.0 2.8 1.2 1.6 1.8 CH. 100 SZ Muota 31 3.4 62 0.0 2.3 2.4 2.4 2.3 CH. 101 LUR Reuss 32 3.6 56 0.6 2.2 1.1 1.7 1.7 CH. 106 BE Saane 23 2.9 66 0.8 3.1 2.7 3.4 3.1 CH. 101 JL Mosea 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH. 111 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 111 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 114 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 5.5 3.1 4.7 4.4 5.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 5.5 3.1 4.7 4.4 5.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 5.5 3.1 4.7 4.4 5.9 CH. 115 JAG Wigger 3.7 3.8 55 0.0 5.5 3.5 3.3 4.7 4.4 4.5 5.0 CH. 115 JAG Wigger 3.7 3.8 5.0 0.0 5.5 3.5 3.3 4.7 4.4 4.5 5.		Arve					2.8	3.8		
CH. 088 J.U Doubs 32 3.9 42 0.0 4.0 3.2 2.8 3.7 CH. 089 J.G Dünnern 24 2.7 72 0.0 4.1 33 3.3 3.1 CH. 091 GR Inn 34 3.9 50 0.0 1.7 1.9 1.5 1.5 CH. 092 BE Kander 17 2.6 72 0.0 2.9 1.6 3.5 2.0 CH. 094 J.E Kander 17 2.6 72 0.0 3.4 3.2 2.8 3.2 CH. 094 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 17 3.5 46 0.0 3.3 3.2 2.7 2.7 CH. 0.95 J.E La Suze 18 3.4 59 0.0 2.8 1.2 1.6 1.8 CH. 0.99 J.E La Suze 18 3.4 59 0.0 2.8 1.2 1.6 1.8 CH. 0.99 J.E La Suze 18 3.4 59 0.0 2.8 1.2 1.6 1.8 CH. 0.99 J.E La Suze 18 3.4 62 0.0 1.4 1.1 1.3 1.6 CH. 0.99 J.E La Suze 18 3.4 62 0.0 2.3 2.4 2.4 2.3 CH. 101 U.R Reuss 3.2 3.6 56 0.6 2.2 1.1 1.7 1.7 CH. 10.6 Saane 23 2.9 66 0.8 3.1 2.7 3.4 3.1 CH. 107 J.F R. Sarine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH. 111 J.B Widger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 114 J.E Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH. 115 J.B Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH. 119 NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH. 122 J.E Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 127 V.D Talentue 30 3.5 56 0.0 5.7 5.3 3.4 4 4.6 CH. 128 V.D Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH. 129 V.D Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH. 139 J.D Promenthouse 25 2.6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 139 J.D Promenthouse 25 3.6 6 0.0 5.7 5.3 3.4 4.6 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0 4.7 3.4 4.1 4.2 CH. 130 J.D Promenthouse 25 3.6 6 0.0 0.0		Birs			52					3.7
CH. 098 - SO Dünnern 24 2.7 7.2 0.0 4.1 3.3 3.3 3.3 3.1 CH. 0.1 1.9 1.5 1.5 1.5 CH. 092 - BE Kander 17 2.6 7.2 0.0 2.9 1.6 3.5 2.0 CH. 093 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 0.93 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 0.93 LU Kleine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH. 0.95 GR Landquart 26 3.3 61 0.0 3.3 2.5 3.0 1.4 CH. 0.98 LU Mosa 28 3.3 61 0.0 3.1 2.5 3.0 1.4 CH. 0.98 LU Mosa 28 3.4 5.9 0.0 2.8 1.2 1.6 1.8 CH. 0.99 LU Mosa 31 3.4 5.9 0.0 2.8 1.2 1.6 1.8 CH. 0.99 LU Mosa 31 3.4 5.9 0.0 2.8 1.2 1.6 1.8 CH. 0.99 LU Mosa 31 3.4 62 0.0 2.3 2.4 2.4 2.3 CH. 10.1 UR Reus 32 3.6 56 0.6 2.2 1.1 1.7 1.7 CH. 10.6 ES Saane 23 2.9 66 0.8 3.1 2.7 3.4 3.1 CH. 10.7 FR Sarine 2.9 2.3 81 0.4 1.8 1.8 2.0 1.8 CH. 11.1 AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 11.1 AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 11.1 AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH. 11.1 AG Wigger 37 3.8 55 0.0 3.2 3.2 2.1 2.2 CH. 11.5 AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH. 11.5 AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH. 11.5 AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH. 11.5 AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH. 11.5 AI Sitter 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 12.7 VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 12.7 VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH. 12.7 VD Mentue 30 3.5 57 0.0 4.6 4.3 3.8 4.3 CH. 12.7 VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH. 13.0 VD Weveyse 51 4.7 30 0.0 3.5 5.0 2.3 2.9 2.6 CH. 13.2 VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH. 13.0 VD Weveyse 51 4.7 30 0.0 3.5 5.0 0.3 3.5 3.8 CH. 13.7 AG Möhlinbach 28 3.6 55 0.0 4.1 3.1 2.9 2.7 CH. 13.5 BB Billimosbach 37 3.7 54 0.0 4.7 3.4 4.1 4.2 CH. 13.0 VD Weveyse 51 4.7 30 0.0 3.5 5.0 0.0 3.5 3.5 3.8 CH. 14.1 JU Evarate 30 3.2 60 0.0 4.1 3.1 2.9 2.7 CH. 13.5 MB Beggingerbach 27 3.9 40 0.0 3.5 5.0 0.0 3.5 3.8 3.8 CH. 14.7 TG Exchelisbach 24 3.4 57 0.0 Keine Date 4.7 4.9 4.9 4.9 4.1 4.9 TH. 4.1 JU Evarate 30 3.2 60 0.0 4.1 3.1 3.9 4.4 4.1 4.2 4.2 4.3 3.3 3.9 5.0 0.0 4.4 5.4 4.1 4.2 4.2 4.3 5.9 4.0 4.4 5.9 4.1 4.1 4.2 4.2 4.3 5.9 4.0 4.		Doubs		3.9			4.0			
CH, 091, GR CH, 093, LB Kander The CH, 093, LB Keine Emme 29 2.9 65 0.0 CH, 093, LB Keine Emme 29 2.9 65 0.0 3.4 3.2 2.8 3.2 CH, 094, BE La Suze Landquart 26 3.3 61 0.0 3.1 2.5 3.0 1.4 CH, 098, TI Maggia 25 3.1 62 0.0 1.4 11 13 16 CH, 099, TI Moesa 28 3.4 59 0.0 2.8 1.2 16 1.8 CH, 100, SZ Muota 31 3.4 62 0.0 2.8 1.2 16 1.8 CH, 100, SZ Muota 31 3.4 62 0.0 2.8 1.2 16 1.8 CH, 100, SZ Muota 31 3.4 62 0.0 2.8 1.2 16 1.8 CH, 100, SZ Muota 31 3.4 62 0.0 2.3 2.4 2.4 2.3 CH, 101, LR Reuss 32 3.6 56 0.6 2.2 11, 17, 17, 17, 17, 17, 17, 17, 17, 17,		Dünnern			72	0.0	4.1	3.3		3.1
CH, 092_BE										
CH. 093_LU Kleine Emme		Kander		2.6	72	0.0	2.9			
CH_095_GR Landquart 26 3.3 61 0.0 3.1 2.5 3.0 1.4 CH_095_GR Landquart 26 3.3 61 0.0 3.1 2.5 3.0 1.4 CH_098_TII Maggia 25 3.1 62 0.0 1.4 1.1 1.3 1.6 CH_099_TII Moesa 28 3.4 59 0.0 2.8 1.2 1.6 1.8 CH_099_TII Moesa 28 3.4 62 0.0 2.3 2.4 2.4 2.3 CH_101_UR Reuss 32 3.6 56 0.6 2.2 1.1 1.7 1.7 1.7 CH_105_CR Moisa 28 3.4 59 0.0 3.3 1.8 2.5 1.6 1.8 CH_101_UR Reuss 32 3.6 56 0.6 2.2 1.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		Kleine Emme	29	2.9	65			3.2	2.8	
CH_ 095_CR			17	3.5	46	0.0	3.3			
CH			26		61					
CH 099 TI Moesa 28 3.4 59 0.0 2.8 1.2 1.6 1.8 CH_100_SZ Muota 31 3.4 62 0.0 2.3 2.4 2.3 CH_101_JR Reuss 32 3.6 56 0.6 0.8 2.1 1.7 1.7 CH_101_FR Sarine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH_111_AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH_114_BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_119_ME Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1		•				0.0			1.3	
CH_100_SZ Muota 31 3.4 62 0.0 2.3 2.4 2.4 2.3 CH_101_UR Reuss 32 3.6 56 0.6 0.2 2.1 1.7 7.7 CH_107_ER Saine 23 2.9 66 0.8 3.1 2.7 3.4 3.1 CH_107_ER Saine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH_111_AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH_118_B Emme 25 3.3 63 0.0 3.0 2.5 2.3 2.1 2.2 CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 2.0 CH_118_DNE Seyon 26 3.5 56 0.0 5.3 4.4 4.9 5.9 2.1 2.2 2.2 2.2 2.2 2.2				3.4	59	0.0	2.8	1.2	1.6	1.8
CH 101 LUR Reuss 32 3.6 56 0.6 2.2 1.1 1.7 1.7 CH 107 FR Sarine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH 111 AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH 114 BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH 115 AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH 117 MIN BE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH 123 TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH 128 VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH 129 VD Boiron de Morges 28 3.9 47 0.0		Muota	31	3.4	62			2.4	2.4	2.3
CH_106_BE Saane 23 2.9 66 0.8 3.1 2.7 3.4 3.1 CH_107_FR Sarine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH_111_AG Wigger 37 3.8 55 0.0 4.2 3.9 3.6 3.9 CH_114_BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH_115_AL Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_115_AL Mister 35 3.7 53 0.0 2.5 2.3 2.1 1.2 2.2 CH_113_MIR Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 2.2 CH_128_TVD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_128_DVD Promenthouse 25 2.6		Reuss	32	3.6	56					
CH_107_FR Sarine 29 2.3 81 0.4 1.8 1.8 2.0 1.8 CH_111_AG Wigger 37 3.8 55 0.0 3.0 2.3 1.8 2.1 CH_114_BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_119_NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_128_UD Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 2.1 1.1 1.2 1.2 2.1 1.1 1.2 1.2 2.1 1.1 1.2 1.2 2.1 1.1 1.2 1.2 2.1 1.1 1.2 1.2 2.1 1.1 1.2 1.2 1.2 1.7 1.2 1.2 1.1 1.5 <td< td=""><td></td><td></td><td></td><td></td><td>66</td><td></td><td></td><td></td><td>3.4</td><td>3.1</td></td<>					66				3.4	3.1
CH_114_BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_119_NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_132_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH_131_VD Veveyse 51 4.7 30 0.0 2.6 1.2 2.9 2.6 CH_131_VD Grande Eau 30 3.9 39 0.0 </td <td></td> <td>Sarine</td> <td>29</td> <td>2.3</td> <td>81</td> <td>0.4</td> <td>1.8</td> <td>1.8</td> <td>2.0</td> <td>1.8</td>		Sarine	29	2.3	81	0.4	1.8	1.8	2.0	1.8
CH_114_BE Emme 25 3.3 63 0.0 3.0 2.3 1.8 2.1 CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_119_NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_132_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH_131_VD Veveyse 51 4.7 30 0.0 2.6 1.2 2.9 2.6 CH_131_VD Grande Eau 30 3.9 39 0.0 </td <td></td> <td>Wigger</td> <td></td> <td>3.8</td> <td>55</td> <td>0.0</td> <td></td> <td>3.9</td> <td>3.6</td> <td>3.9</td>		Wigger		3.8	55	0.0		3.9	3.6	3.9
CH_115_AI Sitter 35 3.7 53 0.0 2.5 2.3 2.1 2.2 CH_119_NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_127_VD Talent 29 3.9 44 0.0 5.7 5.3 3.4 4.6 CH_132_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0	CH_114_BE				63					2.1
CH_119_NE Seyon 26 3.5 56 0.0 5.3 4.7 4.4 5.9 CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_127_VD Talent 29 3.9 44 0.0 5.7 5.3 3.4 4.6 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_128_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.6 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 2.6 CH_132_VD Grande Eau 30 3.5 6									2.1	
CH_123_TI Maggia 24 1.9 86 0.0 1.6 1.1 1.2 1.2 CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_127_VD Talent 29 3.9 44 0.0 5.7 5.3 3.4 4.6 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_129_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_132_VD Grande Eau 30 3.5 61										
CH_126_VD Mentue 30 3.5 57 0.4 4.6 4.3 3.8 4.3 CH_127_VD Talent 29 3.9 44 0.0 5.7 5.3 3.4 4.6 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_133_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_132_BE La Birse 19 3.6 50 0.0										
CH_127_VD Talent 29 3.9 44 0.0 5.7 5.3 3.4 4.6 CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_129_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_132_VD Grande Eau 30 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_132_VB Grande Grande 30 3.5										
CH_128_VD Promenthouse 25 2.6 77 0.2 3.1 2.1 1.5 1.8 CH_129_VD Boiron de Morges 28 3.9 47 0.0 4.7 3.4 4.1 4.2 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 16 1.7 2.0 CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_137_AG Möhlinbach 28 3.6 55										
CH_129_VD Boiron de Morges 28 3.9 47 0.0 4,7 3.4 4.1 4.2 CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_132_AR Urnäsch 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_132_AR Möhlinsch 28 3.6 55 0										
CH_130_VD Aubonne 28 3.1 64 0.0 2.6 1.2 2.9 2.6 CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_132_RD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_138_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_137_C Möhlinbach 28 3.6 5.5 0										
CH_131_VD Veveyse 51 4.7 30 0.0 3.5 2.0 2.3 2.9 CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 3.5 3.6 3.0 CH_137_C Ballmoosbach 35 4.0 46 0.0										
CH_132_VD Grande Eau 30 3.9 39 0.0 2.2 1.6 1.7 2.0 CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_137_AG Möhlinbach 28 3.6 55 0.0 3.6 3.0 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 3.5 3.8 CH_140_FR Le Bainoz 37 3.7 54 0.0 2.9 2.8 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 2.9 2.8 2.1 CH_145_										
CH_133_BE Simme 16 3.0 61 0.0 1.5 1.2 1.7 2.1 CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 2.8 2.9 2.5 3.4 CH_137_AG Möhlinbach 28 3.6 55 0.0 3.6 3.0 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 3.5 3.8 CH_140_FR Le Bainoz 37 3.7 54 0.0 4.5 4.6 CH_141_JU Ervaratte 30 3.2 60 0.0 2.9 2.8 2.8 2.1 CH_145_SH Landgrabe 26 3.3 59 0.0 2.8 2.8 2.1 CH_145_TG										
CH_134_BE La Birse 19 3.6 50 0.0 4.1 3.1 2.9 2.7 CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 3.6 3.0 CH_137_AG Möhlinbach 28 3.6 55 0.0 3.5 3.8 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 3.5 3.6 3.9 CH_140_FR Le Bainoz 37 3.7 54 0.0 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.7 4.9 2.8 2.8										
CH_135_AR Urnäsch 30 3.5 61 0.0 2.8 2.9 2.5 3.4 CH_136_AG Küntenerbach 17 3.1 61 0.0 3.6 3.0 CH_137_AG Möhlinbach 28 3.6 55 0.0 3.5 3.8 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 3.5 3.6 CH_139_BE Ballmoosbach 35 4.0 46 0.0 3.1 3.9 CH_140_FR Le Bainoz 37 3.7 54 0.0 4.5 4.6 CH_141_JU Ervaratte 30 3.2 60 0.0 2.9 2.8 CH_143_SG Zapfenbach 39 3.9 53 0.0 2.9 2.8 2.1 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 2.8 2.8 2.1 CH_145_SH Beggingerbach 27 3.9 40 0.0 3.5 <td></td>										
CH_136_AG Küntenerbach 17 3.1 61 0.0 3.6 3.0 CH_137_AG Möhlinbach 28 3.6 55 0.0 3.5 3.8 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 3.5 3.6 CH_139_BE Ballmoosbach 35 4.0 46 0.0 3.1 3.9 CH_140_FR Le Bainoz 37 3.7 54 0.0 0.0 4.5 4.6 CH_141_JU Ervaratte 30 3.2 60 0.0 2.9 2.8 4.5 4.6 CH_143_SG Zapfenbach 39 3.9 53 0.0 2.8 3.5 3.5 3.5 3.5 3.5 3.5 4.6 0.0 2.8 3.5 3.5 4.6 0.0 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5										
CH_137_AG Möhlinbach 28 3.6 55 0.0 CH_138_BE Chrümmlisbach 23 3.3 59 0.0 CH_139_BE Ballmoosbach 35 4.0 46 0.0 CH_140_FR Le Bainoz 37 3.7 54 0.0 CH_141_JU Ervaratte 30 3.2 60 0.0 CH_143_SG Zapfenbach 39 3.9 53 0.0 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 </td <td></td> <td></td> <td></td> <td>3.1</td> <td>61</td> <td>0.0</td> <td></td> <td></td> <td></td> <td>3.0</td>				3.1	61	0.0				3.0
CH_138_BE Chrümmlisbach 23 3.3 59 0.0 CH_139_BE Ballmoosbach 35 4.0 46 0.0 CH_140_FR Le Bainoz 37 3.7 54 0.0 4.5 4.6 CH_141_JU Ervaratte 30 3.2 60 0.0 2.9 2.8 CH_143_SG Zapfenbach 39 3.9 53 0.0 2.8 2.9 2.8 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 2.8 2.1 CH_145_SH Landgrabe 26 3.3 59 0.0 4.7 4.9 CH_146_SH Beggingerbach 27 3.9 40 0.0 3.5 3.8 CH_147_TG Eschelisbach 24 3.4 57 0.0 Keine Daten 3.5 3.9 CH_149_TI Vedeggio 28 3.8 50 0.0 2.7 3.9 CH_150_VD Ruisseau Gi 12										
CH_139_BE Ballmoosbach 35 4.0 46 0.0 CH_140_FR Le Bainoz 37 3.7 54 0.0 CH_141_JU Ervaratte 30 3.2 60 0.0 CH_143_SG Zapfenbach 39 3.9 53 0.0 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_153_NE Doubs - - - - -		Chrümmlisbach			59					3.6
CH_140_FR Le Bainoz 37 3.7 54 0.0 CH_141_JU Ervaratte 30 3.2 60 0.0 CH_143_SG Zapfenbach 39 3.9 53 0.0 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_153_NE Doubs - - - - CH_154_LU Ron 26 2.9 66 0.0		Ballmoosbach								
CH_141_JU Ervaratte 30 3.2 60 0.0 CH_143_SG Zapfenbach 39 3.9 53 0.0 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 CH_153_NE Doubs - - - - CH_901_SO Limpach 18 2.8 73 0.0	CH_140_FR	Le Bainoz	37	3.7	54	0.0				4.6
CH_143_SG Zapfenbach 39 3.9 53 0.0 CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 CH_153_NE Doubs - - - - CH_901_SO Limpach 18 2.8 73 0.0 CH_902_BE Urtenen 32 3.8 51 0.0	CH 141 JU		30	3.2	60	0.0			2.9	
CH_144_SG Mittlerer Seegraben 30 3.0 66 0.0 CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 CH_153_NE Doubs - - - - CH_154_LU Ron 26 2.9 66 0.0 CH_901_SO Limpach 18 2.8 73 0.0 CH_902_BE Urtenen 32 3.8 51 0.0			39		53					
CH_145_SH Landgrabe 26 3.3 59 0.0 CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 CH_153_NE Doubs - - - - CH_154_LU Ron 26 2.9 66 0.0 CH_901_SO Limpach 18 2.8 73 0.0 CH_902_BE Urtenen 32 3.8 51 0.0 CH_903_NE Sorge 27 3.8 46 0.2		<u>'</u>			66					
CH_146_SH Beggingerbach 27 3.9 40 0.0 CH_147_TG Eschelisbach 24 3.4 57 0.0 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 CH_153_NE Doubs - - - - CH_154_LU Ron 26 2.9 66 0.0 CH_901_SO Limpach 18 2.8 73 0.0 CH_902_BE Urtenen 32 3.8 51 0.0 CH_903_NE Sorge 27 3.8 46 0.2			26							
CH_147_TG Eschelisbach 24 3.4 57 0.0 Keine Daten 3.5 3.9 CH_148_TG Salmsacher Aach 33 3.7 52 0.0 3.4 4.1 CH_149_TI Vedeggio 28 3.8 50 0.0 2.7 3.9 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 4.3 2.7 CH_151_VD Le Combagnou 27 2.3 86 0.4 4.7 4.0 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - - - - - - 3.7 - CH_154_LU Ron 26 2.9 66 0.0 2.9 4.0 CH_901_SO Limpach 18 2.8 73 0.0 3.3 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge										
CH_148_TG Salmsacher Aach 33 3.7 52 0.0 Reine Daten CH_149_TI Vedeggio 28 3.8 50 0.0 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 CH_151_VD Le Combagnou 27 2.3 86 0.4 4.7 4.0 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - - - - - 3.7 - CH_154_LU Ron 26 2.9 66 0.0 2.9 4.0 CH_901_SO Limpach 18 2.8 73 0.0 4.0 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge 27 3.8 46 0.2 3.2								Б.,		
CH_149_TI Vedeggio 28 3.8 50 0.0 2.7 3.9 CH_150_VD Ruisseau Gi 12 1.5 88 1.6 4.3 2.7 CH_151_VD Le Combagnou 27 2.3 86 0.4 4.7 4.0 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - - - - - 3.7 - CH_154_LU Ron 26 2.9 66 0.0 2.9 4.0 CH_901_SO Limpach 18 2.8 73 0.0 4.0 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge 27 3.8 46 0.2 3.2							Keine	vaten		
CH_150_VD Ruisseau Gi 12 1.5 88 1.6 4.3 2.7 CH_151_VD Le Combagnou 27 2.3 86 0.4 4.7 4.0 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - - - - - 3.7 - CH_154_LU Ron 26 2.9 66 0.0 2.9 4.0 CH_901_SO Limpach 18 2.8 73 0.0 4.0 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge 27 3.8 46 0.2 3.2										
CH_151_VD Le Combagnou 27 2.3 86 0.4 4.7 4.0 CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - - - - - 3.7 - CH_154_LU Ron 26 2.9 66 0.0 2.9 4.0 CH_901_SO Limpach 18 2.8 73 0.0 4.0 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge 27 3.8 46 0.2 3.2										
CH_152_VS Canal D'Uvrier 21 3.0 62 0.0 4.0 2.2 CH_153_NE Doubs - <td></td>										
CH_153_NE Doubs - <										
CH_154_LU Ron 26 2.9 66 0.0 CH_901_SO Limpach 18 2.8 73 0.0 CH_902_BE Urtenen 32 3.8 51 0.0 CH_903_NE Sorge 27 3.8 46 0.2										
CH_901_SO Limpach 18 2.8 73 0.0 4.0 CH_902_BE Urtenen 32 3.8 51 0.0 3.3 CH_903_NE Sorge 27 3.8 46 0.2 3.2			26	2.9	66	0.0				4.0
CH_902_BE Urtenen 32 3.8 51 0.0 CH_903_NE Sorge 27 3.8 46 0.2 3.2 3.2 3.2 3.2 3.2										
CH_903_NE Sorge 27 3.8 46 0.2 3.2										
	CH_904_VD	Eau Noire de Perroy	34	2.8		0.0				3.7

Tabelle C: Resultate Kieselalgen NAWA TREND Biologie 2023.

Taxazahl: Zahl der Taxa (Arten, Variationen).

Diversität H: Diversität H nach Shannon & Weaver (1949), Berechnung als log mit Basis 2. Je höher der Wert, desto

grösser die Diversität.

DS [%]: Dominanzsumme der relativen Häufigkeit der drei Taxa mit den höchsten Anteilen.

Teratologie T [%]: Prozentualer Anteil an Teratologien (missbildete Schalen, 100 % = Anzahl total gezählte Schalen).

DI-CH-Wert: Indexwert Kieselalgen gemäss BAFU Modul Kieselalgen Stufe F (BAFU 2007a) der Jahre 2012-2023.

Farben = Zustandsklassen gemäss BAFU Modul-Stufen-Konzept in BAFU (2007a).

Messstelle	Gewässer	Taxa -	H	DS [%]	T [%]	DI-CH			
		2023	2023	2023	2023	2012	2015	2019	2023
CH_905_SG	Äächeli	27	3.1	69	0.0		2.7		
CH_906_SH	Zwärenbach	25	3.7	48	0.0	Keine Daten			4.2
CH_908_SO	Mülibach	21	3.2	59	0.0				4.3
CH_909_LU	Wyna	29	3.3	62	0.0				3.7
CH_910_VS	Canal de Brig	31	3.0	70	0.0				2.3
CH_911_GE	La Seymaz	26	1.7	87	0.0		4.7		

Tabelle D: Resultate Qualitätssicherung Kieselalgen NAWA TREND Biologie 2023 (Doppelzählungen). Reguläre Zählung (oben) und QS-Zählung (unten).

Taxazahl: Zahl der Taxa (Arten, Variationen).

Diversität H: Diversität H nach Shannon & Weaver (1949), Berechnung als log mit Basis 2. Je höher der Wert, desto

grösser die Diversität.

DS [%]: Dominanzsumme der relativen Häufigkeit der drei Taxa mit den höchsten Anteilen.

Teratologie T [%]: Prozentualer Anteil an Teratologien (missbildete Schalen, 100 % = Anzahl total gezählte Schalen). DI-CH-Wert: Indexwert Kieselalgen gemäss BAFU Modul Kieselalgen Stufe F (BAFU 2007a) des Jahres 2023.

Farben = Zustandsklassen gemäss BAFU Modul-Stufen-Konzept in BAFU (2007a).

Messstelle	Gewässer	Taxa -	H -	DS [%]	T [%]	DI-CH
CH_028_SG	Glatt	23	2.7	73	0.2	4.2
CH_047_ZH	Reppisch	37	3.5	56	0.0	4.9
CH_074_NW	Engelbergeraa	24	2.7	76	0.0	1.2
CH_085_NE	Areuse	26	2.9	68	0.0	2.3
CH_086_GE	Arve	28	3.8	50	0.0	3.1
CH_119_NE	Seyon	26	3.5	56	0.0	5.9
CH_138_BE	Chrümmlisbach	23	3.3	59	0.0	3.6
CH_140_FR	Le Bainoz	37	3.7	54	0.0	4.6
CH_151_VD	Le Combagnou	27	2.3	86	0.4	3.9
CH_901_SO	Limpach	18	2.8	73	0.0	4.0

Messstelle	Gewässer	Taxa -	H -	DS [%]	T [%]	DI-CH
CH_028_SG	Glatt	23	2.9	71	1.0	4.0
CH_047_ZH	Reppisch	36	3.5	58	1.4	5.0
CH_074_NW	Engelbergeraa	21	2.3	83	0.2	1.1
CH_085_NE	Areuse	28	2.2	77	0.4	1.9
CH_086_GE	Arve	37	3.6	54	0.0	3.6
CH_119_NE	Seyon	31	3.5	49	0.0	5.6
CH_138_BE	Chrümmlisbach	35	3.7	52	0.2	3.8
CH_140_FR	Le Bainoz	27	3.5	57	0.0	5.0
CH_151_VD	Le Combagnou	28	3.0	72	0.0	3.8
CH_901_SO	Limpach	22	2.7	76	0.8	4.4