

Charges d'azote consécutives aux émissions d'ammoniac produites dans les étables

Outil d'estimation et d'évaluation des charges d'azote occasionnées par les étables dans les écosystèmes proches de l'état naturel

Rapport relatif à l'outil Excel « Estimation de la charge d'azote due aux étables »

Mandant:

Office fédéral de l'environnement (OFEV) Division Protection de l'air et produits chimiques 3003 Berne

Berne, 06.03.2017, actualisé le 27.02.2019

Impressum

Auteurs

Beat Rihm, Meteotest Simon Albrecht-Widler, Meteotest

Direction du projet à l'OFEV

Beat Achermann / Reto Meier

L'outil Excel et le rapport explicatif qui l'accompagne ont été discutés dans le Groupe de travail « Émissions d'ammoniac » de Cercl'Air.

Traduction

Pierre Grandjean

Remarque

Le présent rapport a été rédigé sur mandat de l'Office fédéral de l'environnement (OFEV). Le mandataire est seul responsable de son contenu.

Meteotest garantit à ses clients un traitement diligent et compétent des mandats. Toute responsabilité, notamment pour des dommages indirects, est exclue dans les limites de la recevabilité juridique.

Mise à jour du rapport 2019 par la division protection de l'air et produits chimiques de l'OFEV.

Table des matières

Obj	ectif	et utilisation de l'outil	5
1	Défi	nition du problème, questionnement	6
2	Outi	il de calcul des émissions et des immissions	7
	2.1	Teneur de l'outil Excel	7
	2.2	Feuille de calcul « Émissions »	7
	2.3	Feuilles de calcul « Immissions dans [type d'écosystème] »	8
3	Émi	ssions critiques et distances aux écosystèmes	13
4		quence des immissions excessives consécutives aux émission ploitations individuelles	
5		séquences pour une réduction ciblée des émissions dans l'options liminuer les immissions excessives	-
6	Réfé	érences bibliographiques	18

Tableaux

Tableau 1 : Tableau 2 :	Charges/niveaux critiques d'écosystèmes typiques
Tableau 3 :	deux exploitations agricoles fictives et de la direction du vent14 Distances minimales (m) au-delà desquelles il n'y a pas de dépassement de la charge critique d'azote dans des écosystèmes caractéristiques, en fonction du taux d'émission de deux exploitations agricoles fictives et de la direction du vent (consécutivement aux seuls dépôts d'azote induits par l'ammoniac gazeux émis par l'installation)
Figures	
Figure 1 :	Calcul des émissions d'ammoniac de l'installation agricole « étable et stock d'engrais de ferme » selon l'option 2 (saisie des effectifs de bêtes par type d'installation).
Figure 2 :	Calcul des immissions d'ammoniac d'une installation (concentration et dépôt) et des dépassements des niveaux et des charges critiques pour différentes distances à des écosystèmes proches de l'état naturel
Figure 3 :	Les trois profils de dispersion utilisés pour décrire la diminution de la concentration de NH ₃ avec l'accroissement de la distance à la source des émissions11
Figure 4 :	À gauche : dispersion symétrique selon le profil 1. À droite : matrice de dispersion asymétrique pour le Plateau suisse avec le profil 2 (parallèle à la direction des vents dominants) et le profil 3 (perpendiculaire à la direction des vents dominants)

Objectif et utilisation de l'outil

Cet outil permet d'estimer les immissions d'azote dans un écosystème proche d'une étable, qui résultent uniquement des dépôts gazeux des émissions d'ammoniac de l'installation. Pour calculer les immissions, on utilise des conditions de propagation généralisées. Le calcul simplifié des émissions d'ammoniac disponible dans l'outil se base sur des conditions typiques en Suisse et prend en compte les émissions de l'étable, y compris l'aire d'exercice et le stockage des engrais de ferme.

En comparant avec les charges et les niveaux critiques spécifiques à l'écosystème, il faut noter que les émissions réelles sur le site sont plus élevées que celles calculées par l'outil, car les émissions d'ammoniac provenant des pâturages et de l'épandage d'engrais de ferme ainsi que les émissions d'autres exploitations agricoles situées à proximité ne sont pas prises en compte. En outre, d'autres composants azotés contribuent aux dépôts d'azote, qui sont parfois transportés sur de longues distances (dépôts humides d'ammonium et de nitrate, dépôts secs d'aérosols contenant de l'ammonium et du nitrate, dépôts gazeux d'oxydes d'azote).

Cet outil ne remplace pas les prévisions d'immission prévues par l'article 28 de l'OPair. Pour une analyse précise d'un cas concret, il faut calculer les émissions d'ammoniac spécifiques à l'exploitation (par exemple à l'aide d'Agrammon) et tenir compte des conditions locales pour le calcul de la dispersion.

1 Définition du problème, questionnement

Les valeurs limites d'émission pour l'ammoniac (NH₃) inscrites dans l'annexe I de l'ordonnance sur la protection de l'air (OPair) à titre de mesures préventives pour les installations industrielles ne s'appliquent pas aux installations agricoles. Par conséquent, dans des cas individuels les mesures pour réduire les émissions doivent être examinées et définies en fonction de l'état de la technique (OFEV et OFAG 2012).

Les charges critiques (critical loads) applicables à l'azote et les niveaux critiques (critical levels) fixés pour l'ammoniac sont dépassés en maints endroits. Il importe donc de considérer de plus près le rapport entre émissions et immissions. Cela revient à calculer la dispersion de l'ammoniac à partir d'une émissivité donnée. Le but est ainsi de déterminer jusqu'à quelles distances d'une installation (étable, y c. cour extérieure et stocks d'engrais de ferme) les immissions résultantes pourraient devenir critiques dans les écosystèmes sensibles, et cela uniquement à cause des émissions de la seule installation considérée.

Il s'agit d'étudier les questions suivantes :

- 1. Quelle est la concentration de NH₃ en fonction de la distance à la source et de l'intensité de celle-ci pour les différents systèmes de stabulation et les différentes catégories d'animaux ?
- 2. Quelle est la concentration de NH₃ et quel est le dépôt d'azote qui en résulte (dépôt sec de NH₃ gazeux), en fonction de la distance et de l'intensité de la source ?
- 3. À quelle distance la source de NH₃ provoque-t-elle à elle seule des immissions excessives pour un type d'écosystème donné (dépassements des niveaux critiques d'ammoniac et des charges critiques d'azote) ?
- 4. Quelle est, en Suisse, la fréquence des cas dans lesquels une source de NH_3 induit à elle seule des immissions excessives ?

Un outil Excel a été développé pour traiter les questions 1 et 2. Les principaux paramètres décrivant les émissions et les immissions peuvent y être saisis et configurés (voir chapitre 2).

Pour répondre à la question 3, l'outil Excel est appliqué à titre d'exemple dans différents cas de figure (voir chapitre 3).

La question 4 a été abordée au travers de l'analyse de l'émissivité des installations et des distances entre les exploitations agricoles existantes et les écosystèmes sensibles. Ces travaux ont été accomplis en vue de l'élaboration de données de base destinées au rapport de la Commission fédérale de l'hygiène de l'air (CFHA) relatif aux clarifications liées à l'appréciation des charges

excessives de concentrations d'ammoniac et de dépôts de composés azotés (CFHA 2014). Le chapitre 4 présente une brève synthèse de cette analyse.

2 Outil de calcul des émissions et des immissions

2.1 Teneur de l'outil Excel

L'outil Excel « Estimation de la charge d'azote due aux étables » comporte essentiellement deux parties, la feuille de calcul « Émissions » et les feuilles de calcul « Immissions dans [type d'écosystème] ».

La feuille de calcul « Émissions » comprend le paramétrage et le calcul du taux d'émission de l'installation agricole considérée, exprimée en kg d'ammoniac et d'azote émis par année (kg NH₃-N a⁻¹). Le taux d'émission de l'installation peut être calculé en détail au moyen du modèle de simulation « Agrammon » (www.agrammon.ch), et sa valeur, reportée dans l'outil (option 1). Il est recommandé d'utiliser cette première option. Il est également possible de faire une estimation approximative du taux d'émission sur la seule base de l'indication de l'effectif des différentes catégories de bêtes présentes dans l'étable (option 2). Ce mode de calcul repose sur des valeurs typiques en Suisse.

La valeur d'émission calculée est ensuite utilisée dans les feuilles de calcul « Immissions dans [type d'écosystème] ». Celles-ci déterminent la concentration de NH₃ qui en résulte ainsi que le dépôt de NH₃-N induit pour différents écosystèmes (haut-marais, bas-marais, prairie sèche, forêt de feuillus et forêt de résineux). Les cellules que l'utilisateur peut modifier ont un fond orange. Il est ainsi possible de faire varier le nombre de bêtes, le niveau critique d'ammoniac, etc.

Enfin, la feuille de calcul « Info » ainsi que les différentes cellules de saisie renferment des indications relatives à l'utilisation de l'outil de même que des commentaires et des informations générales portant sur la méthode de calcul.

À noter que les cellules et les feuilles de calcul ne sont pas protégées en écriture. Il est donc recommandé de faire une sauvegarde du fichier Excel.

2.2 Feuille de calcul « Émissions »

Une installation comprend l'étable, la cour extérieure et les stocks d'engrais de ferme. La surface agricole utile (SAU) sur laquelle sont produites les émissions de NH₃ résultant de la pâture et de l'épandage des engrais de ferme n'est pas prise en compte dans la suite du calcul des immissions. Ce dernier s'effectue selon deux options, dont une doit être choisie.

Option 1 : Si l'exploitation agricole a une structure connue, il est possible d'effectuer un calcul des émissions de cette exploitation à l'aide d'Agrammon (www.agrammon.ch). Le résultat peut ensuite être reporté dans la feuille de calcul « Émissions », après déduction des émissions produites par la pâture et l'épandage des engrais de ferme et des engrais minéraux sur la SAU. Il est recommandé d'utiliser l'option 1.

Option 2 : L'utilisateur de l'outil inscrit dans les cellules orange l'effectif des différentes catégories de bêtes présentes dans l'étable, ce qui permet d'en calculer les émissions (figure 1). Les coefficients d'émission typiques utilisés à cet effet (Efakt) par type d'installation ont été calculés à l'aide d'Agrammon (Kupper 2017)¹, qui les différencie selon le type de bête et le système de stabulation. Comme il n'est pas possible d'y intégrer d'autres paramètres que l'effectif des bêtes et que, de plus, les coefficients d'émission utilisés dans l'outil sont des valeurs typiques pour des exploitations agricoles suisses, l'option 2 permet uniquement une estimation approximative des émissions de l'installation.

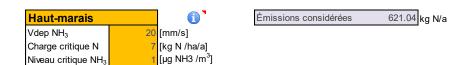
		Efakt étable/cour ext.	Efakt stocks	Nbre animaux	Émissions NH ₃
Description	Info	[kg N/a animal]	[kg N/a animal]	<u> </u>	[kg N/a]
Vache laitière, étable à stabulation libre, pas de pâturage, stock de lisier pas couvert		13.49	13.87	30	820.93
Vache laitière, étable à stabulation libre, pas de pâturage, stock de lisier couvert		13.49	1.39	0	0.00
Vache laitière, étable à stabulation entravée, pas de pâturage, stock de lisier pas couvert		6.38			0.00
Vache laitière, étable à stabulation entravée, pas de pâturage, stock de lisier couvert		6.38	1.39	0	0.00
Porc à l'engrais, étable conventionnelle, aliments fourragers NPr; stock de lisier pas couvert		1.98	1.29	0	0.00
Porc à l'engrais, étable conventionnelle, aliments fourragers NPr; stock de lisier couvert		1.98	0.13	0	0.00
Porc à l'engrais, étable labellisée, aliments fourragers NPr; stock de lisier pas couvert		3.96	1.29	0	0.00
Porc à l'engrais, étable labellisée, aliments fourragers NPr; stock de lisier couvert		3.96	0.13	0	0.00
Truies allaitantes, une unité de reproduction (y c. porcelet jusqu'à 8 kg + 4 truies gestantes + 13 porcelets sevrés), étable conventionnelle, aliments fourragers NPr, stock de lisier pas couvert	1	28.52	25.63	0	0.00
Truies allaitantes, une unité de reproduction (y c. porcelet jusqu'à 8 kg + 4 truies gestantes + 13 porcelets sevrés), étable conventionnelle, aliments fourragers NPr, stock de lisier couvert	1	28.52	2.56	0	0.00
Truies allaitantes, une unité de reproduction (y c. porcelet jusqu'à $8 \text{ kg} + 4 \text{ truies gestantes} + 13 porcelets sevrés), étable labellisée, aliments fourragers NPr; stock de lisier pas couvert$	1	57.03	25.63	0	0.00
Truies allaitantes, une unité de reproduction (y c. porcelet jusqu'à 8 kg + 4 truies gestantes + 13 porcelets sewés), étable labellisée, aliments fourragers NPr; stock de lisier couvert	(i)	57.03	2.56	0	0.00
Poules pondeuses, élevage au sol, pas de pâturage		0.24	0.06	0	0.00
Poules pondeuses, tapis d'évacuation du fumier sans séchage sur tapis à fiente,		0.10	0.10	0	0.00
pas de pâturage		0.10	0.10	0	0.00
Poules pondeuses, tapis d'évacuation du fumier avec séchage sur tapis à fiente, pas de pâturage		0.04	0.11	0	0.00
Poulets de chair, poules pondeuses, élevage au sol, pas de pâturage		0.05	0.02	0	0.00
			Total	30	820.93

Figure 1 : Calcul des émissions d'ammoniac de l'installation agricole « étable et stock d'engrais de ferme » selon l'option 2 (saisie des effectifs de bêtes par type d'installation).

Comme le montre la figure 1, il existe différents types d'installations pour chaque espèce animale (combinaison de systèmes de stabulation, de la couverture du stock de lisier et d'affouragement). S'agissant des vaches laitières, des porcs à l'engrais, des poules pondeuses et des poulets de chair, on peut directement en inscrire l'effectif. En revanche, les « truies allaitantes » sont groupées en unités

La mise à jour des principes de la fertilisation des cultures agricoles en Suisse (PRIF 2017) a conduit à une adaptation des facteurs d'émission pour le bétail. Cet ajustement n'a qu'une influence négligeable sur l'estimation des émissions d'ammoniac disponibles selon l'option 2. Pour cette raison, les facteurs d'émission de cet outil d'estimation n'ont pas été modifiés.

de reproduction : pour chaque truie allaitante, une unité de reproduction comprend les porcelets (jusqu'à 8 kg), quatre truies gestantes et 13 porcelets sevrés. Dans ce cas de figure, dans la cellule « nombre d'animaux », on n'indiquera donc que le nombre de telles unités de reproduction, soit le nombre des truies allaitantes de l'exploitation.


Les paramètres du modèle sur lesquels se basent les facteurs d'émissions de l'option 2 sont indiqués dans les tableaux en annexe. La documentation technique d'Agrammon livre de plus amples informations sur les paramètres qui ont une incidence sur les facteurs d'émission : https://agrammon.ch/fr/documentation/description-technique-du-modele/

2.3 Feuilles de calcul « Immissions dans [type d'écosystème] »

Les feuilles « Immissions dans [type d'écosystème] » calculent les immissions (concentration et dépôt) induites par l'émission d'ammoniac ainsi que les dépassements des niveaux critiques d'ammoniac et des charges critiques d'azote à des distances variant entre 50 et 1000 m de la source (figure 2).

L'outil dispose d'une feuille de calcul des immissions pour chacun des écosystèmes suivants : hauts-marais, bas-marais, prairies sèches, forêts de feuillus et forêts de résineux. L'utilisateur peut adapter les propriétés de ces écosystèmes (champs orange) ou créer de nouvelles feuilles de calcul pour d'autres écosystèmes. Il peut, en particulier, faire varier la vitesse de dépôt de l'ammoniac gazeux (Vdep NH₃), le niveau critique d'ammoniac et la charge critique d'azote.

Le dépôt d'azote et les dépassements des niveaux et des charges critiques sont calculés sur la base des paramètres choisis. Seul est représenté le dépassement de la charge critique d'azote résultant du dépôt sec d'ammoniac gazeux. Le dépassement réel sur le site considéré est sensiblement plus élevé étant donné que d'autres composés azotés y contribuent (dépôts humides d'ammonium et de nitrate, dépôts secs d'aérosols contenant de l'ammonium et du nitrate, dépôts secs d'azote gazeux).

Concentrations produites uniquement par l'installation analysée

	Concentra	tion NH₃ [μṭ	g NH ₃ /m ³]	Dépassen	nent du niveau critiqu	e [µg/m³]
Distance [m]	Profil 1	Profil 2	Profil 3	Profil 1	Profil 2	Profil 3
50	3.75	5.81	2.81	2.75	4.81	1.81
60	2.99	4.63	2.24	1.99	3.63	1.24
70	2.44	3.78	1.83	1.44	2.78	0.83
80	2.02	3.13	1.52	1.02	2.13	0.52
90	1.70	2.63	1.27	0.70	1.63	0.27
100	1.45	2.25	1.09	0.45	1.25	0.09
120	1.09	1.59	0.75	0.09	0.59	-0.25
140	0.84	1.18	0.54	-0.16	0.18	-0.46
160	0.67	0.91	0.41	-0.33	-0.09	-0.59
180	0.55	0.73	0.32	-0.45	-0.27	-0.68
200	0.45	0.59	0.26	-0.55	-0.41	-0.74
250	0.30	0.39	0.16	-0.70	-0.61	-0.84
300	0.22	0.27	0.11	-0.78	-0.73	-0.89
400	0.13	0.16	0.06	-0.87	-0.84	-0.94
600	0.06	0.07	0.03	-0.94	-0.93	-0.97
800	0.03	0.04	0.01	-0.97	-0.96	-0.99
1000	0.02	0.03	0.01	-0.98	-0.97	-0.99

Dépôts générés uniquement par l'installation analysée

	Dépôt de	NH ₃ [kg N	/ha/a]	Dépassemen	t de la charge critique	[kg N /ha/a]
Distance [m]	Profil 1	Profil 2	Profil 3	Profil 1	Profil 2	Profil 3
50	19.47	30.17	14.60	12.47	23.17	7.60
60	15.51	24.04	11.63	8.51	17.04	4.63
70	12.65	19.61	9.49	5.65	12.61	2.49
80	10.50	16.27	7.87	3.50	9.27	0.87
90	8.81	13.66	6.61	1.81	6.66	-0.39
100	7.52	11.69	5.65	0.52	4.69	-1.35
120	5.64	8.23	3.87	-1.36	1.23	-3.13
140	4.39	6.12	2.82	-2.61	-0.88	-4.18
160	3.48	4.74	2.14	-3.52	-2.26	-4.86
180	2.84	3.78	1.67	-4.16	-3.22	-5.33
200	2.36	3.08	1.35	-4.64	-3.92	-5.65
250	1.58	2.01	0.85	-5.42	-4.99	-6.15
300	1.13	1.41	0.58	-5.87	-5.59	-6.42
400	0.65	0.81	0.32	-6.35	-6.19	-6.68
600	0.30	0.37	0.14	-6.70	-6.63	-6.86
800	0.17	0.21	0.08	-6.83	-6.79	-6.92
1000	0.11	0.14	0.05	-6.89	-6.86	-6.95

Figure 2 : Calcul des immissions d'ammoniac d'une installation (concentration et dépôt) et des dépassements des niveaux et des charges critiques pour différentes distances à des écosystèmes proches de l'état naturel.

La concentration de NH₃ dans l'air (C, moyenne annuelle en μg NH₃ m⁻³) est déterminée compte tenu d'un profil de dispersion lié à la distance à la source (D, en m) et du taux d'émission de la source (E, en kg NH₃). Les valeurs de base considérées dans le profil de dispersion « Profil 1 NH₃ : moyenne » (voir figure 3) correspondent au tableau original d'Asman & Jaarsveld (1990). Cette « courbe normale » résulte d'une source ponctuelle placée à 3 m au-dessus du sol, d'une émission de 1 kg de NH₃ par an et d'un récepteur situé à 1,5 m au-dessus du sol.

On trouvera d'autres applications de ce profil de dispersion dans Thöni et al. (2004) et Rihm et al. (2009).

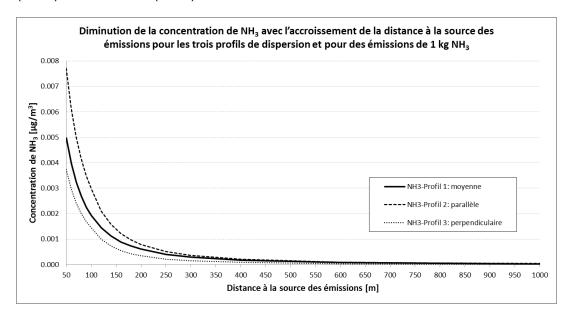


Figure 3 : Les trois profils de dispersion utilisés pour décrire la diminution de la concentration de NH₃ avec l'accroissement de la distance à la source des émissions.

À partir du profil de dispersion moyen à symétrie de rotation (profil 1, figure 4 à gauche), on a établi, par analogie à la modélisation des NO_x (FOEN 2011), une matrice de dispersion supplémentaire qui prend en considération la direction des vents dominants dans le nord-est de la Suisse (surtout sur le Plateau et dans le Jura ; figure 4 à droite). Les profils de dispersion correspondants, le profil 2 (parallèle au vent dominant) et le profil 3 (perpendiculaire au vent dominant) sont également intégrés dans l'outil Excel (figure 2 et figure 3). Le calcul des concentrations s'effectue toujours compte tenu des trois profils, et les résultats sont indiqués pour chacun d'eux. Dans le cas où aucune information météorologique n'est connue pour le site considéré, le calcul aboutit à une estimation grossière de la fourchette de valeurs à l'intérieur de laquelle les charges sont probables.

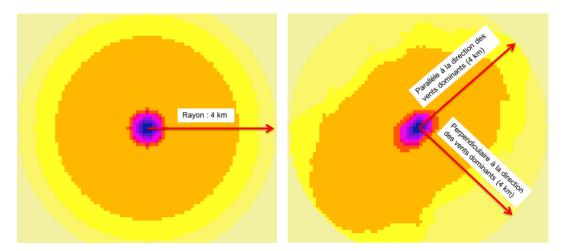


Figure 4 : À gauche : dispersion symétrique selon le profil 1. À droite : matrice de dispersion asymétrique pour le Plateau suisse avec le profil 2 (parallèle à la direction des vents dominants) et le profil 3 (perpendiculaire à la direction des vents dominants).

À l'origine, la matrice de dispersion asymétrique a été établie avec un maillage hectométrique. Pour les distances inférieures à 100 m, les profils 2 et 3 ont donc été déterminés de manière simplifiée par extrapolation (rapport constant au profil 1). Il s'agit là d'une approximation grossière à laquelle il faut être attentif dans l'interprétation des résultats.

Les facteurs d'influence locaux (p. ex. flux d'air froid) ne sont pas considérés dans les calculs de dispersion. Ils peuvent influencer la direction de la propagation et la distribution de l'ammoniac émis et, suivant les cas, générer des concentrations plus ou moins élevées que les valeurs modélisées. Lorsque de tels facteurs sont jugés dominants dans un cas précis, il y a lieu d'entreprendre des clarifications qui dépassent le cadre de l'outil d'évaluation exposé ici.

D'une part, les immissions sont exprimées par la concentration d'ammoniac dans l'air, et l'outil montre jusqu'à quelle distance de la source des dépassements du niveau critique d'ammoniac sont probables compte tenu de l'écosystème considéré et des émissions de l'installation. À cet égard, l'utilisateur doit être conscient que la concentration d'ammoniac modélisée ne représente que la part induite par les émissions de l'installation considérée. Or la concentration d'ammoniac réelle dans l'écosystème sera toujours plus élevée puisqu'elle résulte de l'impact de l'ensemble des installations plus ou moins proches de l'écosystème ainsi que du pâturage des bêtes et de l'épandage des engrais de ferme et des engrais minéraux.

D'autre part, l'outil calcule le dépôt d'azote à partir de la concentration d'ammoniac modélisée et des vitesses de déposition, que l'utilisateur peut faire varier. Ce dépôt d'azote est exclusivement un dépôt sec de l'ammoniac gazeux produit par l'installation considérée. D'autres composants du dépôt total présent dans l'écosystème, tels les dépôts humides d'ammonium et de nitrate consécutifs à des précipitations, le dépôt sec d'aérosols contenant de

l'ammonium et du nitrate ainsi que le dépôt sec d'oxydes d'azote gazeux, ne sont donc pas pris en compte. Dans l'outil Excel, le dépôt sec d'ammoniac gazeux calculé est finalement comparé à la charge critique d'azote que l'utilisateur définit pour l'écosystème considéré, cela afin d'établir si, à lui seul, le dépôt sec d'ammoniac gazeux entraîne un dépassement de la charge critique d'azote.

Ces dépassements de la charge critique sont automatiquement mis en évidence en rouge grâce à la « mise en forme conditionnelle » des cellules Excel (figure 2). Cela permet à l'utilisateur de repérer les situations potentiellement critiques en testant diverses variantes d'émissions et d'immissions. Il devra toutefois être conscient que, notamment pour apprécier les dépassements réels de la charge critique d'azote, il lui faudra prendre en compte les dépôts totaux d'azote dans le périmètre de l'écosystème, à savoir, en plus du dépôt sec d'azote dû à l'ammoniac gazeux, tous les autres composants qui contribuent au dépôt total.

3 Émissions critiques et distances aux écosystèmes

La question de savoir si les émissions d'une seule installation sont critiques pour des écosystèmes sensibles voisins dépend notamment des facteurs suivants :

- Taux annuel des émissions de NH₃ de l'étable, de la cour extérieure et des stocks (EECES). Le pâturage et l'épandage ne sont pas considérés ici ; en moyenne, ils constituent cependant plus de 40 % des émissions totales.
- Distance à l'écosystème considéré.
- Direction des vents dominants (les autres facteurs climatiques et les paramètres topographiques influant sur les conditions de dispersion ne sont pas pris en compte).
- Niveau critique d'ammoniac (UNECE 2015) défini pour l'écosystème.
- Vitesse de déposition du NH₃ gazeux (Vdep) dans l'écosystème.
- Charge critique d'azote (UNECE 2015) définie pour l'écosystème.

On peut considérer ce faisceau de facteurs sous différents angles. Une option consiste à définir un nombre limité d'exploitations et d'écosystèmes caractéristiques. Pour illustrer notre propos, nous proposons deux exploitations fictives avec les émissions des installations suivantes :

- Installation A : EECES = 1000 kg N a⁻¹.
- Installation B : EECES = 2000 kg N a⁻¹.

Les écosystèmes typiques que sont les hauts-marais, les bas-marais (rich fen), les prairies sèches (mountain hay meadow) et les forêts de feuillus sont définis selon le tableau 1. Les charges critiques (CLN) sont des valeurs moyennes tirées de la fourchette de valeurs fixée pour la charge critique empirique d'azote applicable à des écosystèmes sensibles et entérinée par le Groupe de travail sur les effets (WGE) de la Convention CEE-ONU sur la pollution atmosphérique transfrontière à longue distance (UNECE 2010, Bobbink & Hettelingh 2011). Les niveaux critiques (CLe) d'ammoniac sont des valeurs tirées du Mapping Manual (UNECE 2015), la valeur de 1 μg NH₃ m⁻³ pour les hauts-marais correspondant au niveau critique pour les écosystèmes dans lesquels les mousses occupent une place importante. Pour les autres écosystèmes, on prend la valeur moyenne de la marge d'incertitude du niveau critique de 2–4 μg NH₃ m⁻³ applicable aux plantes supérieures.

Tableau 1 : Charges/niveaux critiques d'écosystèmes typiques.

Paramètre	Unités	Hauts- marais	Bas- marais	Prairies sèches	Forêts de feuillus
Charge critique	kg N ha ⁻¹ a ⁻¹	7	20	15	15
V _{dep} NH ₃	mm s ⁻¹	20	20	12	22
Niveau critique	µg NH₃ m⁻³	1,0	3,0	3,0	3,0

Il en résulte ainsi – compte tenu du fait que les charges et les niveaux critiques ne doivent pas être dépassés en raison des seules émissions d'ammoniac des deux exploitations fictives mentionnées – les distances minimales pour ces exploitations telles qu'indiquées dans le tableau 2 et le tableau 3.

Tableau 2 : Distances minimales (m) au-delà desquelles il n'y a pas de dépassement du niveau critique d'ammoniac dans des écosystèmes caractéristiques, en fonction du taux d'émission de deux installations agricoles fictives et de la direction du vent.

Émission kg N a ⁻¹	Position par rapport au vent dominant	Hauts- marais	Bas-marais	Prairies sèches	Forêts de feuillus
1000	perpendiculaire	130	70	70	70
	parallèle	200	110	110	110
2000	perpendiculaire	200	110	110	110
	parallèle	300	160	160	160

Tableau 3 : Distances minimales (m) au-delà desquelles il n'y a pas de dépassement de la charge critique d'azote dans des écosystèmes caractéristiques, en fonction du taux d'émission de deux installations agricoles fictives et de la direction du vent (consécutivement aux seuls dépôts d'azote induits par l'ammoniac gazeux émis par l'installation).

Émission kg N a ⁻¹	Position par rapport au vent dominant	Hauts- marais	Bas-marais	Prairies sèches	Forêts de feuillus
1000	perpendiculaire	120	60	50	80
	parallèle	160	100	90	120
2000	perpendiculaire	160	100	80	120
	parallèle	250	140	120	160

À noter qu'un non-dépassement du niveau critique d'ammoniac ou de la charge critique d'azote, calculé sur la base des seules émissions d'une installation unique située à proximité d'un écosystème, ne signifie pas que, dans la réalité, ces niveaux et ces charges critiques ne seront pas dépassés dans le périmètre de l'écosystème étant donné que la charge totale d'azote dans ledit périmètre résulte toujours de la présence de multiples sources plus ou moins proches (CFHA 2014). L'outil Excel calcule uniquement l'apport de la source isolée considérée à la charge totale.

4 Fréquence des immissions excessives consécutives aux émissions d'exploitations individuelles

La question de savoir à quelle fréquence une installation agricole génère, à elle seule, des immissions excessives a été étudiée dans le rapport de la Commission fédérale de l'hygiène de l'air relatif aux clarifications liées à l'appréciation des charges excessives de concentrations d'ammoniac et de dépôts de composés azotés (CFHA 2014). On se bornera ici à en présenter un bref résumé.

L'étude (CFHA 2014) prend pour référence le cadastre des émissions d'ammoniac de l'année 2007 (Kupper et al. 2010). Celui-ci rassemble les sites des exploitations agricoles en coordonnées hectométriques (OFS 2010) avec leurs émissions respectives d'ammoniac calculées sur la base des nombres de bêtes en 2007. L'analyse des distances entre les exploitations et les écosystèmes sensibles repose sur l'utilisation des banques de données suivantes : inventaire des hauts-marais (HM), inventaire des bas-marais (BM), inventaire des prairies et des pâturages secs (PPS), stations forestières et

lisières de forêts (Statistique suisse de la superficie OFS, Vector25 de swisstopo).

La méthode appliquée a été la suivante :

- Choix des exploitations dont les étables ou les entrepôts produisent des émissions.
- 2. Recherche spécifique de l'écosystème le plus proche du site de chaque exploitation pour les HM, BM, PPS ainsi que les forêts. Le rayon de recherche a été limité à 300 mètres.
- 3. Calcul de la concentration de NH₃ sur le site de l'écosystème en fonction des émissions des étables et des entrepôts de l'exploitation considérée.

Le Recensement des exploitations agricoles 2007 comptabilise 61 764 exploitations, dont 53 134 produisent des émissions dues à la détention d'animaux. Sur ce nombre, 42 197 exploitations se situent à moins de 300 m de l'un des types d'écosystème considérés, à savoir haut-marais, bas-marais, prairie sèche et forêt.

Pour ces entreprises, on a calculé les immissions (concentration d'ammoniac) sur la partie de l'écosystème la plus proche, en utilisant le profil moyen de dispersion (Asman & van Jaarsveld 1990) et en fonction de la distance ainsi que des émissions d'ammoniac produites par l'étable et l'entrepôt d'engrais de ferme. Comme le Recensement des exploitations ne localise par précisément l'emplacement des sources, il existe une assez grande incertitude dans la détermination des distances.

Suivant l'hypothèse considérée dans la détermination des distances, le nombre d'exploitations à occasionner, à elles seules, des concentrations d'ammoniac trop élevées, c'est-à-dire un dépassement du niveau critique d'ammoniac, dans les hauts-marais, les bas-marais et les prairies sèches varie entre quelques unités et plus d'une centaine. Dans le cas des forêts, cette fourchette oscille entre quelques centaines et quelques milliers d'exploitations².

Meteotest 16

_

L'inventaire des émissions d'ammoniac a été mis à jour pour l'année 2015 (Kupper et al. 2018). Cependant, les clarifications décrites par la CFHA 2014 n'ont pas été répétées. Toutefois, en raison des émissions d'ammoniac constamment élevées, on peut supposer que les conclusions de la CFHA 2014 sont toujours d'actualité.

5 Conséquences pour une réduction ciblée des émissions dans l'optique de diminuer les immissions excessives

Force est de constater que la charge d'immissions (concentration d'ammoniac et dépôt d'azote consécutif) générée par une installation individuelle dans le périmètre d'un écosystème proche ne correspond jamais qu'à une partie de la concentration totale d'ammoniac et du dépôt total d'azote présent dans ce périmètre. Dans tous les cas, la charge totale est plus élevée que l'apport d'une source isolée et est déterminée par les apports de toutes les sources situées dans un voisinage plus ou moins proche de l'écosystème considéré. Les clarifications de la Commission fédérale de l'hygiène de l'air (CFHA 2014) montrent que, en moyenne suisse, les sources d'émissions d'ammoniac situées à une distance inférieure ou égale à un kilomètre des écosystèmes analysés contribuent pour à peine un quart à la concentration totale d'ammoniac présente sur les sites d'écosystèmes. Les sources situées entre 1 et 4 km y contribuent pour un autre quart. On peut donc imputer environ la moitié des immissions présentes dans des écosystèmes aux sources qui en sont éloignées de plus de 4 km. Le seul apport calculé d'une source isolée, située à proximité d'un écosystème, ne permet donc pas de tirer des conclusions sur la charge totale. Par conséquent, si l'on veut réduire les immissions excessives de manière ciblée et en conformité avec l'OPair, il est impératif de prendre toujours en compte dans l'analyse l'ensemble des sources situées dans un voisinage plus ou moins proche de l'écosystème considéré.

6 Références bibliographiques

- Asman, W. A. H. and Van Jaarsveld, H. A., 1990: A Variable-resolution Statistical Transport Model Applied for Ammonia and Ammonium, National Institute of Public Health and Environmental Protection (RIVM), Bilthoven. The Netherlands.
- OFEV et OFAG 2012: Constructions rurales et protection de l'environnement. Un module de l'aide à l'exécution pour la protection de l'environnement dans l'agriculture. Etat mai 2012. Office fédéral de l'environnement, Berne. L'environnement pratique n° 1101: 123 p.
- OFS, 2008: Statistique suisse de la superficie 1992/97 74 catégories de base selon nomenclature 1992 (NOAS92), quadrillage hectométrique.

 Office fédéral de la statistique (OFS) GEOSTAT, Neuchâtel.
- OFS, 2010: Extrait du recensement des entreprises agricoles 2007. Office fédéral de la statistique (OFS), Neuchâtel.
- Bobbink R., Hettelingh JP (eds.), 2011: Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. Coordination Centre for Effects, National Institute for Public Health and the Environment, www.rivm.nl/cce
- DFI, 1991: Inventaire fédéral des hauts-marais et des marais de transition d'importance nationale. (Federal Inventory of Raised and Transitional Bogs of National Importance). Appendix to the Federal Ordinance on the Protection of Raised Bogs.

 Département fédéral de l'intérieur (DFI), Berne
- CFHA, 2014: Immissions d'ammoniac et dépôts de composés azotés.

 Clarifications de la CFHA au sujet des immissions excessives.

 Rapport de la Commission fédérale de l'hygiène de l'air (CFHA).

 62 pp. http://www.ekl.admin.ch/de/dokumentation/publikationen/.
- FOEN 2011: NO₂ ambient concentrations in Switzerland, Modelling results for 2005, 2010, 2015. UW-1123-E, 72 p. https://www.bafu.admin.ch/bafu/en/home/topics/air/publications-studies/publications/no2-ambient-concentrations-in-switzerland.html
- Kupper T., 2017: Berechnung NH3 Emissionen für Meteotest 20170301.xls.

 Datenlieferung per Mail vom 01. März 2017. Berner
 Fachhochschule. Hochschule für Agrar-, Forst- und
 Lebensmittelwissenschaften (HAFL). Zollikofen.
- Kupper T., Bonjour C., Achermann B., Zaucker F., Rihm B., Nyfeler-Brunner A., Leuenberger C., Menzi H., 2010: Ammoniakemissionen in der Schweiz: Neuberechnung 1990-2007. Prognose bis 2020.

- Kupper, T., Bonjour, C., Menzi, H., Bretscher, D., Zaucker, F., 2018:
 Ammoniakemissionen der schweizerischen Landwirtschaft 1990-2015. Hochschule für Agrar-, Forst- und
 Lebensmittelwissenschaften, Zollikofen. Disponible sur
 http://www.agrammon.ch
- PRIF 2017: Sinaj S. & Richner W., 2017. Principes de fertilisation des cultures agricoles en Suisse. Recherche Agronomique Suisse 8 (6), Publication spéciale, 276 p
- Rihm B., Urech M., Peter K., 2009: Mapping Ammonia Emissions and Concentrations for Switzerland Effects on Lichen Vegetation. In: Sutton M., Reis S., Baker S. (Eds.): Atmospheric Ammonia Detecting emission changes and environmental impacts. Results of an Expert Workshop under the Convention on Long-range Transboundary Air Pollution. Springer, ISBN: 978-1-4020-9120-9. p. 87-92.
- Thöni L., Brang P., Braun S., Seitler E., Rihm B., 2004: Ammonia Monitoring in Switzerland with Passive Samplers: Patterns, Determinants and Comparison with modelled Concentrations. Environmental Monitoring and Assessment, 98, 95-107.
- UNECE, 2010: Empirical critical loads and dose-response relationships.

 Prepared by the Coordination Centre for Effects of the
 International Cooperative Programme on Modelling and Mapping
 Critical Levels and Loads and Air Pollution Effects, Risks and
 Trends. Convention on Long-range Transboundary Air Pollution,
 Working Group on Effects. ECE/EB.AIR/WG.1/2010/14
- UNECE, 2015: Manual on methodologies and criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long-range Transboundary Air Pollution. Distributed and updated in the internet at http://www.icpmapping.org/Latest update Mapping Manual (06.03.2017)

Annexe

Paramètres du modèle sur lesquels se basent les facteurs d'émissions de l'option 2

Les valeurs pour les paramètres du modèle figurant dans les tableaux suivants se basent sur les moyennes suisses non pondérées selon Kupper et al. 2013.

Vaches laitières

Production laitière moyenne par vache	7156	kg/an
Proportion d'animaux recevant du foin en été	59	%
Proportion d'animaux recevant de l'ensilage de maïs en été	28	%
Proportion d'animaux recevant des pellets de maïs en été	17	%
Proportion d'animaux recevant de l'ensilage de maïs en hiver	42	%
Proportion d'animaux recevant de l'ensilage d'herbe en hiver	54	%
Proportion d'animaux recevant des pellets de maïs en hiver	15	%
Proportion d'animaux recevant des pommes de terre en hiver	0	%
Proportion d'animaux recevant des betteraves en hiver	0	%
Quantité moyenne de oncentrés par vache et par jour en été	1.7	kg/jour
Quantité moyenne de concentrés par vache et par jour en hiver	2.43	kg/jour
Type de stabulation (selon sélection)	- étable à stabulation libre avec production du lisier complet - étable à stabulation entravée avec production du lisier complet	
Mesures limitant les émissions sol das les stabulations pour		
vaches laitières	aucune	
Nombre de jours avec accès au parcours extérieur (par an)	184	jours/an
Parcours extérieur	disponible: sans fourrage à disposition dans le parcours	
Type de parcours extérieur	sol en dur	
Mesure supplémentaire limitant les émissions sur le parcours extérieur	0	%
Jours de pâturage par an	0	jours/an
Jours de pâturage par jour	0	heures/jour
Stockage: Fumier		
Par du fumier de bovins épandu directement sans stockage	0	%
Par du fumier de bovins stocké qui est couvert	0	%
Stockage: Lisier		
Volume du stock de lisier	19	m3
Profondeur du stock de lisier	3	m
Fréquence de brassage du stock de lisier par an	7 à 12 fois par an	
Type de couverture du stock de lisier (selon sélection)	- découvert - Couverture en dur	
Mesure supplémentaire limitant les émissions dues au stockage du lisier	0	%

Porcs à l'engrais (aliments NPr)

Teneur de la ration en matière azotée pendant la phase d'engraissement 1	158.0	4 g MA/kg
Teneur de la ration en matière azotée pendant la phase d'engraissement 2	158.0	4 g MA/kg
Teneur de la ration en matière azotée pendant la phase d'engraissement 3	158.0	4 g MA/kg
Teneur de la ration en énergie	13.7	2 MJ EDP/kg
Type de stabulation (selon sélection)	- Stabulation conventionnelle sans parcours - Stabulation labellisée à aires multiples et parcours	
Traitement des effluents gazeux	aucun	
Mesure supplémentaire limitant les émissions dans les stabulations	aucune	
Stockage: Fumier		
Par du fumier de porcs épandu directement sans stockage		0 %
Part du fumier de porcs stocké qui est couvert		0 %
Stockage: Lisier		
Volume du stock de lisier	1.3	3 m3
Profondeur du stock de lisier		3 m
Fréquence de brassage du stock de lisier par an	7 à 12 fois par an	
Type de couverture du stock de lisier (selon sélection)	- découvert - Couverture en dur	

Truies allaitantes (alimentation NPr)

Élevage avec des truies allaitantes, y compris porcelets, truies gestantes, porcelets sevrés jusqu' à 25 kg

Porcelets sevrés jusqu'à 25 kg		
Catégorie d'animaux	Porcelets sevrés jusqu'à 25 kg	
Nombre de places d'animaux	150)
Teneur de la ration en matière azotée	169.07	g MA/kg
Teneur de la ration en énergie	13.84	MJ EDP/kg
Type de stabulation (selon sélection)	- Stabulation conventionnelle sans parcours - Stabulation labellisée à aires multiples et parcours	
Traitement des effluents gazeux	aucun	
Mesure supplémentaire limitant les émissions dans les stabulations	aucune	
Truies gestantes		
Catégorie d'animaux	Truies gestantes	
Nombre de places d'animaux	48	3
Teneur de la ration en matière azotée	139.12	g MA/kg
Teneur de la ration en énergie	12.26	MJ EDP/kg
Type de stabulation (selon sélection)	- Stabulation conventionnelle sans parcours - Stabulation labellisée à aires multiples et parcours	
Traitement des effluents gazeux	aucun	
Mesure supplémentaire limitant les émissions dans les stabulations	aucune	
Truies allaitantes		
Catégorie d'animaux	Truies allaitantes	
Nombre de places d'animaux	12	2
Teneur de la ration en matière azotée	164.81	g MA/kg
Teneur de la ration en énergie	13.73	MJ EDP/kg
Type de stabulation (selon sélection)	- Stabulation conventionnelle sans parcours - Stabulation labellisée à aires multiples et parcours	
Traitement des effluents gazeux	aucun	
Mesure supplémentaire limitant les émissions dans les stabulations	aucune	
Stockage: Fumier		
Par du fumier de porcs épandu directement sans stockage		%
Part du fumier de porcs stocké qui est couvert		%
Stockage: Lisier		
Volume du stock de lisier	26.3	m3
Profondeur du stock de lisier	3	m
Fréquence de brassage du stock de lisier par an	7 à 12 fois par an	
Type de couverture du stock de lisier (selon sélection)	- découvert - Couverture en dur	

Volaille

Catégorie d'animaux (selon sélection)	- Poules pondeuses - Poulets à l'engrais
Les animaux ont-ils accès à un pâturage	non
Type de stabulation (selon sélection)	 Litière profonde Tapis d'évacuation du fumier sans séchage sur tapis à fiente Tapis d'évacuation du fumier avec séchage sur tapis à fiente
Fréquence d'évacuation du fumier par le tapis (selon sélection)	- pas de tapis d'évacuation - 3 à 4 fois par mois
Type d'abreuvoir	Abreuvoir à sucette
Traitement des effluents gazeux	aucun

L'épandage des engrais de ferme

Les émissions par l'épandage des engrais de ferme ne sont pas prises en compte dans la suite du calcul des immissions.

Epandage: Lisier		
Part de lisier épandu avec un déflecteur	79	%
Part de lisier épandu avec une rampe à tuyaux souples	21	%
Part de lisier épandu à l'aide d'un distributeur à tuyaux semi-rigides avex socs	0	%
Part de lisier épandu avec un système d'enfouissement	0	%
Part de lisier épandu avec injection en profondeur	0	%
Dilution du lisier (litres d'eau par litre de lisier non dilué)	1.17	1:x
Quantité moyenne épandue par application	25.9	m3/ha
Part de lisier épandu le soir après 18:00h	15.7	%
Epandez-vous du lisier les jours particulièrement chauds pour la saison?	parfois	-
Part de lisier épandu en été (de juin à août)(en %)	45	%
Part de lisier épandu de septembre à mai y.c. (en %)	55	%
Part de lisier issu de digestion	0	%