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grid_search_Archerella_sp.png

Ranked Archerella candidates from processing 1600
grid search images in the test set.

grid_and_active_Archerella_sp.png

Ranked Archerella candidates from processing 1872
grid + active search images in the test set.
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Ranked Amphitrema candidates from processing
1872 grid + active search images in the test set.

grid_and_active_Assulina_sp.png

Ranked Assulina candidates from processing 1872
grid + active search images in the test set.




Definitions and acronyms

Substrate
Growing media

We use substrate and growing media as synonyms. It is
used for plant growth in the professional sector (especially
for seedlings and potted plants) and can be bought in bags
for gardening.

Commercial peat

We use the term commercial peat for describing peat that
has been extracted and processed for the production of
growing media.

Testate amoebae

Unicellular microorganisms. Some species of testate amoe-
bae are specialized to the specific and extreme conditions
(low pH, low nutrients) of peatlands and uniquely live in peat
soils.

Sphagnum

Genus of mosses that occur preferentially in peatlands.
They have the capacity to store water in their living or dead
cells, to lower pH and are highly efficient in retaining nutri-
ents.

Acrotelm

The acrotelm is the living, actively growing upper layer of a
peat bog that consists of living plants and partially decom-
posed organic material. It overlies the catotelm, the lower
layer of dead, more decomposed peat.

YOLO v8

YOLO is an open-source deep learning model for object de-
tection in images. We use the version 8 (v8) of YOLO.

EMDS7 dataset

A public research dataset with microscopy images from En-
vironmental microorganism [60].

Crops

An automatically extracted rectangular region of an image.

Object detection

A process that identifies the position and class of object in-
side pictures.

Model

In this document this refers to a complex Deep Neural Net-
work of the YOLO family that can be trained with data to
perform object detection.

Prediction module

A process implemented in the Python programming environ-
ment that ingest multiple microscopy images and returns a
list of small images that should contain the target amoebae.

Score

A value between 0 and 1 that is automatically predicted by
an algorithm an tells how sure the algorithm is of its predic-
tion.

Ensemble score

A derived score obtained by combing the score of several
models. In our case the mean was used to compute the en-
semble score.

Precision Precision is the fraction of relevant instances among all the
retrieved instances.
Recall Recall is the fraction of relevant instances that were re-

trieved from all relevant instances.

Final training set

5121 images from 33 samples that were used to train all
models used in the Prediction module

Test Set 2415 images from 16 samples the are independent of Final
training set
Average Precision See AP

AP

Average Precision — The standard metric to measure detec-
tion performance of object detection algorithms.

DNN Deep Neural Network
DA Data Augmentation
loU Intersection over Union
ML Machine Learning

oD Object Detection
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1 Summaries

1.1 English

Peat is formed by the slow accumulation of organic material in water-saturated soils. Peat-
lands play a key role in the global carbon cycle, biodiversity conservation and hydrological
regulation. The degradation of peatlands through drainage and peat extraction contributes to
greenhouse gas emissions, biodiversity loss and affects water resources. Most extracted
peat is used for production of energy or in substrate for plants (growing media). Switzerland,
as well as other countries, aims to reduce the use of peat in substrates. This requires the de-
velopment of tools that measure the peat content of substrate.

We propose a method for peat detection based on the identification of peat-specific microor-
ganisms called testate amoebae. This group of unicellular microorganisms produce shells.
These shells can be preserved in peat for thousands to millions of years. The taxa (species
or group of species) of testate amoebae can be identified by experts based on microscopy
images thanks to the morphological characteristics of their shells. Some species of testate
amoebae are specialized for the conditions in peat soils and uniquely occur in peatlands.
These peat-specific species can be used as bioindicators for the detection of peat in sub-
strates.

Since identifying testate amoebae in microscopy images is tedious and few experts exist, we
propose a decision support system based on machine learning (ML). Our system detects tes-
tate amoebae in large collections of microscopy images. A specific dataset of images from
commercial substrates was acquired and annotated for the ML-system. A dedicated data
augmentation procedure was developed to mitigate the small training sample size. YOLOv8
models for object detection were trained and then evaluated with an independent test set
from commercial substrates.

We found that the shells of two peat-specific taxa (Archerella sp and Amphitrema sp) were
well preserved in peat and can serve as indicators of peat presence. With the test set, detec-
tion performance given as average precision* was good with values above 0.8 for Archerella
sp. and above 0.7 for Amphitrema sp. Our decision support system can process thousands
of images in a few minutes, helping a human operator to quickly decide if peat is present in a
sample. This method has the potential to be further developed for an estimation of the pro-
portion of peat in a substrate.

*The detection performance of an ML algorithm is typically measured using the average pre-
cision. A value close to zero indicates poor performance. Values between 0.5 and 1.0 indi-
cate useful to very good performance.



1.2 Deutsch

Torf entsteht durch die langsame Ansammlung von organischem Material in wassergesattig-
ten Boden. Torfgebiete spielen eine Schlisselrolle fir den globalen Kohlenstoffkreislauf, die
Erhaltung der Biodiversitat und die Regulierung des Wasserhaushalts. Die Degradierung von
Torfgebieten durch Entwasserung und Torfabbau tragt zu Treibhausgasemissionen und zum
Verlust der biologischen Vielfalt bei und beeintrachtigt die Pufferrolle in der hydrologischen
Regulierung. Torf wird am haufigsten zur Energiegewinnung oder zur Verwendung als Sub-
strat fur Pflanzen abgebaut. Die Schweiz und andere Lander wollen die Verwendung von
Torf fir Substrate reduzieren. Dies erfordert die Entwicklung von Methoden zur Messung des
Torfgehalts in Substraten.

Wir schlagen eine Methode zum Torfnachweis vor, die auf der Identifizierung von torfspezifi-
schen Mikroorganismen beruht, den so genannten Schalenamében. Diese Gruppe von ein-
zelligen Mikroorganismen produziert Schalen. Diese Schalen konnen im Torf Uber Tausende
bis Millionen von Jahren erhalten bleiben. Die Taxa (Arten oder Artengruppen) der Scha-
lenamdben kénnen von Fachleuten in Mikroskopie Bildern anhand der morphologischen
Merkmale bestimmt werden. Einige Arten von Schalenamoében sind auf die Bedingungen von
Torfbdéden spezialisiert und kommen nur in Torfgebieten vor. Diese torfspezifischen Arten
kdénnen als Bioindikatoren fur den Nachweis von Torf in Substraten verwendet werden.

Da die Identifizierung von Schalenamdben in Mikroskopie Bildern muhsam ist und es nur we-
nige Experten gibt, schlagen wir ein System zur Entscheidungshilfe vor, das auf maschinel-
lem Lernen (ML) basiert. Unser System erkennt Schalenamdben in grossen Sammlungen
von Mikroskopie Bildern. Ein spezieller Datensatz mit Mikroskopie-Bildern von kommerziellen
Substraten wurde fur die Entwicklung des ML-Systems erfasst und annotiert. Ein Verfahren
zur Bildtransformation wurde entwickelt, um die geringe Grosse der Trainingsstichprobe aus-
zugleichen. YOLOv8 Modelle fiir die Objekterkennung wurden trainiert und anschliessend
mit einem unabhangigen Testdatensatz aus kommerziellen Substraten evaluiert.

Unsere Untersuchung ergab, dass die Schalen von zwei torfspezifischen Taxa (Archerella
sp. und Amphitrema sp.) in Torf gut erhalten sind und als Indikatoren flr das Vorhandensein
von Torf dienen kénnen. Mit dem Testdatensatz war die durchschnittliche Prazision* (Erken-
nungsleistung) gut mit Werten Uber 0.8 fir Archerella sp. und tber 0.7 fuUr Amphitrema sp.
Unser System zur Entscheidungshilfe kann Tausende von Bildern in wenigen Minuten verar-
beiten und menschlichen Mitarbeiterinnen und Mitarbeiter helfen, schnell zu entscheiden, ob
in einer Probe Torf vorhanden ist. Diese Methode konnte weiterentwickelt werden, um den
Torfanteil in einem Substrat zu schatzen.

*Die Erkennungsleistung eines ML-Algorithmus misst man standardméassig mit der Durch-
schnittliche Prazision (aus dem English average precision). Ein Wert nahe Null weist auf eine
schlechte Leistung hin. Werte zwischen 0.5 und 1.0 zeigen eine nutzliche bis sehr gute Leis-
tung an.



1.3 Frangais

La tourbe se forme par I'accumulation lente de matiére organique dans des sols saturés
d'eau. Les tourbiéres jouent un réle clé dans le cycle du carbone, la conservation de la biodi-
versité et la régulation hydrologique. La dégradation des tourbiéres par le drainage et I'ex-
traction de tourbe contribue aux émissions de gaz a effet de serre, a la perte de biodiversité
et affecte les ressources en eau. La majorité de la tourbe extraite est utilisée pour la produc-
tion d'énergie ou comme substrat pour les plantes (milieux de culture). La Suisse, comme
d'autres pays, vise a réduire l'utilisation de la tourbe comme substrat. Pour ce faire, il est né-
cessaire de développer des outils permettant de mesurer la teneur en tourbe des substrats.

Nous proposons une méthode de détection de la tourbe basée sur l'identification de microor-
ganismes spécifiques a la tourbe appelés amibes a théque. Ce groupe de micro-organismes
unicellulaires produit des coquilles. Ces coquilles peuvent étre préservées dans la tourbe
pendant des milliers, voire des millions d'années. Les taxons (espéces ou groupes d'es-
péces) d'amibes a théque peuvent étre identifiés par des experts sur la base d'images de mi-
croscopie grace aux caractéristiques morphologiques de leurs coquilles. Certaines espéces
d'amibes sont spécialisées pour les conditions des sols tourbeux et ne se trouvent que dans
les tourbiéres. Ces espéces spécifiques a la tourbe peuvent étre utilisées comme bioindica-
teurs pour détecter la présence de tourbe dans les substrats..

Comme l'identification de ces amibes dans les images de microscopie est fastidieuse et qu'il
n'existe que peu d'experts, nous proposons un systéme d'aide a la décision basé sur I'ap-
prentissage automatique. Notre systeme détecte les amibes a théque dans de grandes col-
lections d'images. Un jeu de données spécifique provenant de substrats commerciaux a été
acquis et annoté. Une procédure d'augmentation des données a été développée pour per-
mettre de travailler avec la petite taille de I'échantillon d'entrainement. Les modéles YOLOv8
de détection d'objets ont été entrainés puis évalués a l'aide d'un jeu de donnée indépendants
provenant de substrats commerciaux.

Nous avons constaté que les coquilles de deux taxons spécifiques a la tourbe (Archerella sp
et Amphitrema sp) étaient bien conservées dans la tourbe et peuvent servir d'indicateurs de
la présence de tourbe. La performance de détection, exprimée en précision moyenne*, était
bonne avec des valeurs supérieures a 0.8 pour Archerella sp et supérieures a 0.7 pour Am-
phitrema sp. Notre systéme d'aide a la décision peut traiter des milliers d'images en
quelques minutes, aidant ainsi un opérateur humain a décider rapidement si de la tourbe est
présente dans un échantillon. Cette méthode pourrait étre développée pour estimer la teneur
en tourbe d'un substrat.

*La performance de reconnaissance d'un algorithme ML est généralement mesurée par la
précision moyenne (en anglais average precision). Une valeur proche de zéro indique une
mauvaise performance. Des valeurs entre 0.5 et 1.0 indiquent une performance utile a trés
bonne.



2 Introduction
2.1 Background

Peat is formed by the accumulation of more or less decomposed organic matter in mires
(peat-rich fens, raised bogs, or tropical swamps such as forested or papyrus swamps) under
hydromorphic and anaerobic conditions. Peatlands play a key role in the global carbon cycle
as they act as important carbon sinks. As such, peatlands store around 30% of the soil or-
ganic carbon worldwide, although they only cover around 3% of the Earth’s surface [1, 2].
However, this natural system of carbon storage is endangered by human activities. The deg-
radation of peatlands through drainage and peat extraction leads to aerobic mineralization of
the stored organic matter and thus to significant amounts of greenhouse gas emissions. It
has been estimated that the destruction of peatlands accounts for about 5% of the global an-
thropogenic greenhouse gas emissions which corresponds to around 2 Gigatons of CO; per
year [3, 4]. The conservation and rewetting of peatlands (and thus the restoration of their car-
bon storage capacity) are therefore among the most efficient actions to mitigate climate
change [5]. Peatlands also form ecosystems of major importance for biodiversity conserva-
tion, which support numerous rare species adapted to the specific site conditions. Addition-
ally, peatlands play key roles in hydrological regulation; by storing water during rainy periods,
they act as buffers against floods and help maintaining baseline water flow during dry peri-
ods. As such, peatlands and other wetlands also contribute to stabilizing regional climate by
reducing temperature extremes [6].

Thanks to the Rothenturm Initiative, peatlands are protected in Switzerland since 1987, and
thus peat extraction is prohibited in the country. However, an estimated 500'000 m? of peat is
imported into Switzerland every year [68]. This peat is used mostly in substrates for profes-
sional vegetable, fruit and ornamental plant cultivation. Several natural characteristics of peat
make it suitable for its use as a component of substrate or as soil enhancer: its important ca-
pacity to store water, its structural stability due to the poorly decomposed Sphagnum moss
debris, its low pH as well as its low levels of nutrients and pollutants [74]. With increasing
awareness that peat resources are finite and ecologically valuable, several substrate produc-
ers aim to reduce their use of peat.

In order to reduce the import of peat, the Swiss Federal Council adopted the Peat exit plan in
2012. In a first phase, peat imports are to be reduced through voluntary measures. In a sec-
ond phase, trade policy measures should be examined if necessary. Raising awareness
among the public, along with memorandums of understanding of relevant market partici-
pants, has led to a reduction in the peat content of substrates for hobby gardening of more
than 50% since 2015 [69].

The declaration and labelling of peat-free substrates is nowadays based on the traceability of
supply chains. However, it is currently impossible to scientifically certify the absence of peat
in a substrate. This is also true for the data collection of the peat import into Switzerland,
which is until now based on questionaries. The aim of this project was to fill this gap by de-
veloping and testing methods to detect peat in substrates.

2.2 Aim of this project

The objective of this study was to develop a method to detect peat in growing media. The pri-
mary focus was on the peat detection by the identification of peat-specific testate amoebae,
as a preliminary study had shown the potential of this approach. The automation of testate
amoeba identification should allow to batch-process images from multiple samples and ex-
tract small images (crops) of likely testate amoebae. This will be part of a decision support
system where highly digested summaries of the crops will be available to human experts who
take final decisions on peat presence with minimal time and effort. The method is expected
to enable large scale monitoring of commercial substrates to monitor the presence of peat.
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2.3 Secondary method: long-chain n-alkanes

A secondary peat-detection method based on long-chain n-alkanes was tested. Long-chain
n-alkanes occur in the epicuticular wax layer of plants and are chemically inert. They remain
in peat for a long time period without being decomposed. The composition of the n-alkane
chain length varies depending on the plant species and several studies have suggested that
Sphagnum mosses produce n-alkanes with characteristic chain lengths [70-72]. The aim was
to use this characteristic n-alkanes of Sphagnum for the detection of peat. Long-chain al-
kanes can be determined by GC-MS (gas chromatography — mass spectrometry) analysis.
As part of this project, the sample preparation as well as the GC-MS method were optimized.
Subsequently, 48 peat-containing and peat-free samples were measured using GC-MS anal-
ysis. The data was used to classify the samples according to their peat presence both by cal-
culating an alkane score and by applying a machine learning system.

From the chromatograms, we extracted 23 values as the areas of the peaks detected for the
alkanes C11 to C33. A principal component analysis of these 23 values suggests that al-
kanes would be suitable for peat detection, as peat-containing and peat-free samples were
mapped on different regions of the first two components (Fig. 2). By calculating the p-values
of the individual alkanes, it was possible to show that the n-alkane chain lengths C31 and
C33 in particular occur in statistically higher proportions in samples containing peat. A sum of
the peak area ratios of the signals for C31 and C33 was therefore calculated to classify the
samples. Using a decision threshold of 0.5 on this score (Fig. 1), 13 out of 17 pure peat sam-
ples and 2 out of 9 mixed samples could be distinguished from peat-free products (Fig. 1).
As an outlook, a machine learning system was created by calculating a linear discriminant
analysis, which has not yet been evaluated on a test set due to the small size of the data set
(Fig. 3). It shows promising results, but they would have to be confirmed with an independent
test set.

To conclude, we showed that peat detection through n-alkanes may be feasible. But to
demonstrate it, more resources should be invested to gather and analyse a much larger da-
taset representative of all potential peat-substitution products. However, the n-alkanes
method requires time-consuming sample preparation and the availability of expensive instru-
ments (GC-MS). The microscopy method is based on highly specific testate amoeba bi-
omarkers which allows to develop a predictive model without need of a large dataset with all
potential peat-substitution products. For the above reason, the further development of the n-
alkanes method was therefore not prioritized.
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Figure 1. lllustration of the alkane score (C31+C33) from the data points. Soil samples (blue),
mixed samples (orange), substitution samples (green), peat samples (red).
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Figure 2. Two-dimensional PCA (76 % of the total variance) of the four sample groups: peat-free
soil samples (E, blue), peat-free substitution samples (S, green), mixed samples containing peat (M,
orange), pure peat (T, red).
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Figure 3. LDA of alkane proportions from 48 samples, including 12 soil samples (blue), 10 substitu-
tion samples (green), 9 mixed samples (orange) and 17 pure peat samples (red). A possible bound-
ary (gray line) was manually drawn between the peat-containing and peat-free samples.

2.4 Testate amoebae

Testate amoebae are a common and diverse group of free-living amoeboid protists. The
shell (called test) is either secreted (SiO., calcite, or protein) or built from recycled organic or
mineral particles glued together with an organic cement and allows identification to species
level [8, 9]. The shells remain after the death of the amoeba and under some conditions (an-
oxia, volcanic deposition) may preserve for millennia [10] to millions of years [11, 12] and
even hundreds of millions of years [13, 14, 15]. Testate amoebae are commonly used as bio-
indicators of present and past environmental conditions, especially in peatlands where they
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are mostly used as hydrological indicators (water table depth) but also for pH and nutrient
status [16, 17, 18], freshwater habitats [19, 20, 21, 22] and estuaries [23]. Testate amoebae
are also used as bioindicators in lakes where they respond to nutrients, and heavy metal pol-
lution [16, 22]. Testate amoebae are increasingly used to monitor peatland functioning [24,
25] and restoration success [26, 27, 28, 29, 30, 31, 32] as well as to assess the impact of for-
est management [33]. Peatlands are home to a high diversity of testate amoebae [34]. In a
recent monograph, Bankov and Todorov [35] listed 175 testate amoeba species living in
Sphagnum in Bulgaria. There are no compilations for testate amoeba diversity across
broader regions or globally at high taxonomic resolution, but it is very likely that the total di-
versity of testate amoebae existing in peatlands worldwide is well over 200 species. How-
ever, not all species listed as occurring in Sphagnum or in peatlands are restricted to these
habitats. Many species found in peatlands may also be found in acidic forest litter or freshwa-
ter habitats. This may in part be due to the existence of several morphologically similar spe-
cies within a given morphotype. A detailed analysis of such a species complex (Nebela tincta
group) in the Jura Mountains revealed that closely related species differed in their ecology,
some being specific to forested peatlands while others occurred preferentially in wetter and
more nutrient rich habitats [36]. Still several taxa are clearly specific to Sphagnum-dominated
peatlands, being frequent in Sphagnum and rare or absent from other habitats. This includes
several mixotrophic taxa (i.e. the genera Archerella and Amphitrema, and the species Hele-
opera sphagni and Placocista spinosa) that harbour endosymbiotic green algae (Chlorella)
[62]. This metabolism allows them the thrive in the nutrient-depleted habitats of peatlands.

2.5 Related deep learning work

Deep learning algorithms for image processing have seen a steep development in the past
few years. Many mature algorithms are now available and have proven to achieve low error
rates on difficult tasks. Deep learning algorithm have been successfully applied to micros-
copy images in a variety of health-related domains such as histopathology [37, 38, 39, 40],
bacterial cultures [41] and blood parasites [42, 43, 44, 45]. Many deep learning methods
have been developed for processing microscopy images in general (See [46, 47, 48] for re-
views). A few studies have applied deep learning specifically to detect environmental micro-
organisms in microscopy images [49, 50, 51, 52]. We found only one study that focused on
testate amoebae, but this was on activated sludge and not peatlands [53]. In many applied
scenarios object detection (OD) models have proven their usefulness. A trained OD model
can automatically predict rectangular regions of an image that contain the target together
with a confidence value. The YOLO family of models for OD was introduced in 2016 [54] and
has undergone a steep evolution since then ([55] for a review). YOLO models were originally
developed to detect usual objects on photos (humans, dogs, cars, apples). They have
proven to be very general and have been used in diverse scenarios, including microscopy. A
detailed description of the model architecture can be found in [56]. For this study we used
YOLOVS, which is well integrated in the Python ecosystem. Models from the YOLO family
have been applied to microscopy images in various domains such as: microbes in industrial
sludge [53], bacterial solutions in micro-fluidic chips [57], malaria parasites in blood [42, 43,
44, 45], small algae and diatoms [58, 59].
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3 Method
3.1 Selection of peat-indicator testate amoebae

For the detection of peat, we are interested in species that occur exclusively in peatlands.
We selected species characteristic for peat based on extensive data sets of testate amoebae
community from Holarctic peatlands [63, 64]. We identified a set of species that together are
found in most samples. Species were combined into classes (species group) that could be
unambiguously identified by several experts. These classes were then used to annotate the
data and to train the deep learning models. Taking into consideration the ease of identifica-
tion, frequency of occurrence, and specificity of habitat, we selected 10 classes (Table 1).
We also included species that are commonly found in peatlands but that are not peat indica-
tors for an assessment of the method's more general ability to detect testate amoebae based
on their morphology.

Archerella flavum was by far the most frequent taxon found in commercial peat samples.
This genus also has a very typical shape, color, and appearance (Fig. 4 and 5A, and Fig. A1
and A2 in appendix). Due to its overall high frequency, degraded, folded or heavily masked
Archerella shells were also observed. Thus, we defined an additional class for these (class
Archerella degraded (Fig. 5B, Fig. A3 in appendix). This allowed us to train and validate
models with the subset of clear examples (class Archerella sp). The trained model will there-
fore predict clear Archerella which will be easier to understand for end users in the proposed
decision support process. For the other eight classes this distinction was not done due to
their lower frequency in commercial samples.
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Figure 4. One image obtained with 20x magnification from a commercial peat sample. A
shell of Archerella sp. is shown with a red arrow. Many plant residues are present all over
the image. However, none of the plant debris can be recognised as belonging to Sphag-

num mosses.
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Figure 5. Individuals from the 10 testate amoeba species groups used in this study. (A)
Archerella sp (B) Archerella degraded (C) Assulina sp (D) Amphitrema sp (E) Hyalo-
sphenia elegans aggr (F) Hyalosphenia papilio (G) Heleopera sphagni (H) Planocarina
carinata () Euglypha sp (J) Nebela combined

3.2 Image acquisition
3.2.1 Sample preparation

A small volume (ca. 5-10 cm?) of substrate was mixed with water, shaken for 1 minute in a
wide screw-capped jar and filtered through a tea strainer. The material was then passed
through an 80 um mesh, which removes coarse particles with only marginal loss of testate
amoebae, except for the largest species such as Planocarina carinata. The filtrate was left to
settle overnight after which the clear supernatant was carefully poured off. The concentrate
was then transferred to a tube. One drop of this concentrate was placed on a slide with a pi-
pette and mixed with one drop of glycerol. Images were acquired under brightfield micros-
copy at 20x magnification with a camera mounted on the microscope and stored in TIFF for-
mat. For this project, as an automated microscope was not available, images were manually
acquired. An early exploration showed that commercial peat samples contained a low density
of testate amoeba shells. Thus, we defined two complementary image acquisition proce-
dures: grid search and active search.

3.2.2Grid search

A 5 by 10 grid of adjacent images are manually taken (Fig. 6 A). For each sample, 2 or 3
slides were imaged resulting in 100 or 150 images per sample. Most images typically do not
contain any testate amoeba (only plant remains) and, when present, testate amoebae are
generally not centred. The grid search mimics a realistic application scenario where data is
acquired by an automatic scanning microscope (Fig. 6 C).

3.2.3 Active search

The whole slide is visually explored, but pictures are only taken when target amoebae are
found and the amoebae are centred in the picture (Fig. 6 B). Therefore, all images contain at
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least one individual. This procedure was designed to capture all target amoebae present un-
der a slide. In addition, additional images were taken with each observed amoeba placed ei-
ther close to the bottom-left or top-right corner of the image.

e m
i
B
ok
Manual grid search Manual active search Automated grid search
(this study) (this study) (proposed for future)

A

Figure 6. Schematics of how images were obtained via manual grid search (A) and active search
(B) and how they could be acquired via automated scanning in the future (C). Each red box sche-
matically represents a single image.

3.3 Image preparation

A standard image width of 1728 pixels was defined. The target magnification was 20x, which
corresponds to approximately 0.32 ym/pixel. All validation and test images were acquired
with a 20x magnification by-design but some training images that had been acquired prior to
project start had 40x magnification. The latter images were downsized to obtain a resolution
of 0.32 um/pixel and they were then padded to reach the standard width of 1728 pixels. For
padding we used images from the EMDS?7 dataset [60]. The original EMDS7 images were
greenish, so we converted them to black and white and then to a variety of soft colors to
make them more diverse. All images were scrutinized by testate amoeba experts with a dedi-
cated tool (Roboflow) and the position of the testate amoebae in the images was annotated
in the form of bounding boxes. No distinction was made between dead or alive individuals
because our focus was on detecting the shells. All amoeba that could be recognized were
annotated even if they were degraded or masked. The annotated images were exported as
JPG files in the YOLO format. A summary of classes is shown in Table 1.
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Table 1. Taxonomic definition of the classes. *1 Nebela tincta, N. pechorensis, N. guttata, N. gimlii, N.

rotunda, N. bohemica, N. collaris, N. minor, Planocarina marginata

Peat Approx. Length
Class name Taxa indicator um (long axis)
Amphitrema_sp Amphitrema sp. strict 75
Archerella_degraded Archerella sp. strict 60
Archerella_sp Archerella sp. strict 60
Assulina_sp Assulina sp. false 45 -100
Euglypha_sp Euglypha sp. false 50 - 100
Heleopera_sphagni Heleopera sphagni strict 110-130
Hyalosphenia_elegans_aggr H. elegans, H. insecta strong 80-110
Hyalosphenia_papilio Hyalosphenia papilio strict 110- 140
Nebela_combined All taxa listed in *1 strong 70 - 150
Planocarina_carinata Planocarina carinata strict 150-240

3.4 Data
3.4.1 Data sets

Training: The training set was derived from 16 acrotelm samples collected in peatlands with
different vegetations (peatland types that were sampled: bog hollow, bog lawn, bog hum-
mock, poor fen hummock, poor fen hollow, fen with carex and fen with eriophorum vagina-
tum) in Switzerland,France and Finnland). Samples were taken from the living vegetal part,
as well as from the layer just below it (still within the acrotem). The rationale for this choice is
that natural samples contain the highest possible diversity and abundance of testate amoe-
bae. The species of testate amoebae found in these samples are representative of those
preserved in the peat that is extracted for horticultural substrates. These data were available
prior to the study as part of the image repository of the Laboratory of Soil Biodiversity. These
images were rich as they contained testate amoeba of many species (Table 3, Table A1).
Often the amoebae were alive and presented in diverse natural colors. Note that these im-
ages are not representative of commercial peat and were therefore used exclusively for train-
ing and not for validation or test.

Validation and test: The validation and test sets were derived exclusively from commercial
peat as well as commercial peat-free substrates and components. They were sequentially
acquired during this study (first validation set, second test set). In these images, the shells
were often empty, more or less degraded and the coloration was less vivid than living speci-
men.

Validation: The validation set was derived from 17 samples taken from commercial peat (11
peat samples, including 1 Sphagnum moss sample) as well as commercial peat-free sub-
strates and components (6 non-peat) (Table 2, Table A3). These data were either added to
the training set or used for validation in a cross-validation procedure. From each sample, we
prepared one suspension that was used to make 5 slides (2 for active search, 3 for grid
search).

Test: The test set was derived from 16 samples taken from commercial substrates (12 peat,
4 non-peat, Table 2, Table A4). From each sample we prepared one suspension that was
used to make 2 slides that were imaged with active search and with grid search. The test set
was used only to assess the final performance. It was never used for training.
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3.4.2 Data splitting

In the initial explorations, we used a 4-fold cross validation to train models and obtain perfor-
mance estimates (Fig. A8). For a training run, the training set and 3 folds of validation set
were pooled while the fourth validation fold was left out. Images from the same sample have
similar properties and are not independent. Therefore, the split was stratified by sample so
that images from a particular sample were either all used for training or all for validation. For
training of the final models, which were included in the final prediction module, the training
and validation sets were pooled. In this way we use the rich data from the training set and all
the representative data of the validation set. This will be referred to as the final training set
(5121 images from 33 independent samples). The final estimation of detection performance
was then obtained with the test set (2415 images from 16 independent samples).

Table 2. Overview of all samples and images. Comm: Commercial; L: Left; C: Center; R: Right

Role Type Source Nb Nb imgs Nb imgs Nb imgs Nb imgs
samples grid active L active C active R
Training Peat Direct 16 1666
Validation  Peat Comm. 11 1705 283 283 283
Validation  Non-peat Comm. 6 901
Test Peat Comm. 12 1200 272 272 271
Test Non-peat Comm. 4 400
Table 3. Detailed overview of the number of manually annotated individuals per class
Training Validation Test
active peat active peat
(center) grid peat (center) grid peat
Nb samples 16 11 11 12 12
Nb slides per sample 2 3 2 2
Tot slides . 22 33 24 24
Nb images 1666 283 1705 272 1200
Amphitrema_sp 80 15 5 19 5
Archerella_degraded 0 57 17 43 2
Archerella_sp 145 109 45 149 17
Assulina_sp 263 22 7 19 0
Euglypha_sp 405 8 1 1 0
Heleopera_sphagni 36 3 0 0 0
Hyalosphenia_elegans_aggr 121 1 0 4 0
Hyalosphenia_papilio 201 6 1 7 0
Nebela_combined 221 0 0 0 0
Planocarina_carinata 27 0 0 0 0

3.5 Model training

3.5.1 Preparation of training data

In the training and validation sets the classes were unbalanced (Table 3). For instance, we
note that Amphitrema was underrepresented compared to Archerella. Prior to training, the
class balance was improved by making multiple copies of images from less frequent classes.
This was a static transform performed prior to training the actual models. This improves
learning by the network because all classes are seen approximately the same number of
times during training and it reduces the risk that the network is biased towards the more

18



frequent classes. Then, static data augmentation was applied to all images of a training set,
namely: random crop from 0 to 20 pixels, random rotation -3 to 3 degrees, random mixing
with EMDS7 images weighted from 0.0 to 0.5, application of a small amount of elastic trans-
form (local distortion). This adds some diversity to multiple copies of the same image. Note
that training-time data-augmentation was also used (see below). Neither the left-out valida-
tion sets nor the test set were modified.

3.5.2Models and training sessions

We chose YOLOvV8 models. In one training session, the final training set was used to train
one model. We performed several replications for each session with different random initiali-
zation of model weights. This allowed to assess the between session variability and serves
as a basis for ensemble prediction. During training, images were resized to a width of 512
pixels. Training-time data augmentation was applied. The defaults augmentation of YOLOv8
are designed for photo images and performed poorly with our images. Thus, we increased
random rotation to a range between -180 and +180 degrees, reduced random re-scaling to
0.2, and increased mix-up probability to 0.5. Models were trained for 500 epochs and we
used the last value of the weights for prediction (no early stopping). Label smoothing was ap-
plied. All 10 classes (Table 1) were used for training. A well-established principle of ensem-
bles is that the base predictors should be as diverse as possible (for a recent review see
[61]). Therefore, the random seed was different in each session: this leads to different values
of the initial weights (except for pretrained models) and different realizations of the random
data augmentation. This is expected to give trained models that behave differently on individ-
ual items but similarly on average. We assessed four model sizes (NANO, SMALL, MEDIUM,
LARGE) crossed with two weight initialization procedures (random initialization vs. weights
pretrained with COCO dataset).

3.6 Performance evaluation

Performance was assessed exclusively with the test set by comparing the true bounding
boxes with the predicted boxes. An Intersection over Union (loU) value >0.5 was used to de-
clare a positive detection. Precision-recall curves were constructed by incorporating the con-
fidence value. The Average Precision (AP) was then obtained with the trapezoidal rule. PR-
curves and AP were computed for each class separately, but only for classes with sufficient
validation or test data.

3.7 Final prediction module via ensemble

Based on the model comparison (Fig. A9 in appendix), final models were from YOLOv8 ME-
DIUM trained with random initialization of the weights. In the final prediction module, we used
eight models trained in independent sessions with the final training set (pooled training and
validation data). Each model predicts boxes and confidence values for each class. When the
confidence from individual models was < 0.01 the prediction was suppressed to avoid clutter-
ing the process with many irrelevant boxes. Note that predicted boxes from different models
that detected the same object are never perfectly aligned and there is no in-built way to iden-
tify them as belonging to the same object. Therefore, we developed a post processing
method to associate several predictions that detected the same object. First, the Intersection
over Union (loU) of all predicted boxes of the same class were computed for all pairs of
boxes in each image. A between-box distance metric was defined as D =1-loU such that per-
fectly overlapped boxes have D=0 while non-overlapped boxes have D=1. Second, predicted
boxes that were sufficiently close on the image were aggregated via agglomerative hierar-
chical clustering (AHC) using D as the distance metric. This was done separately for each
class and image. Therefore, only a small number of boxes at a time were processed with
AHC. Confidence values of 0.0 were imputed for missing predictions (i.e. less than eight
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predictions associated to an object). The value of 0.0 is the lowest possible and a natural
choice when an object was not detected at all. Finally, the mean of the eight predicted confi-
dence values (incl. imputed zeros) was used as ensemble score and the corresponding crop
was extracted from the prediction with max confidence value. To allow efficient decision by a
human expert, the crops were plotted on a single summary image ranked by their ensemble
score (highest value first, left to right and then top to bottom). Additionally, the ensemble
score was color-coded with a fixed mapping such that high scores are in blue and low scores
in red. In this way low score crops can be easily spotted. Examples of summary images are
shown in Fig. 10, 11, 13 and 15.
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4 Results
4.1 Testate amoebae in commercial peat samples

For the descriptive analysis of commercial peat samples (including one commercial Sphag-
num moss sample) (this subsection), the separation between the validation and test sets was
not needed; the two sets were therefore pooled. The training set was not included because it
was obtained from acrotelm samples directly extracted from peatland by scientific personnel
which were not commercially processed.

Archerella active: With active search, where the full slides were scrutinized, well-preserved
Archerella sp shells were found in 22 out of 23 commercial peat samples from the pooled
validation and test set (Fig. 7). The one sample in which no Archerella sp shell was found, is
the Sphagnum moss sample. The between-sample variability was considerable, with
Archerella sp counts ranging from 0 to 23. Overall, 258 shells (Validation 109, Test 149) in
good state of Archerella sp were found in 46 slides with active search (Validation 22, Test 24
slides). From this we can estimate a frequency of 5.61 shells per slide in commercial sam-
ples (Table 4).

Archerella grid: With grid search, well-preserved Archerella sp shells were found in 17 out
of 23 samples from the pooled validation and test set (Fig. 7). Note that with the manual grid
search only a small part of the slides was scrutinized (Fig. 6 A) which explains the smaller
counts. Overall, 62 well-preserved Archerella sp shells (Validation 45, Test 17) were found in
2902 grid search images (Validation 1705, Test 1200 images). From this we can estimate a
frequency of 0.021 shells per image (Table 5) when automated scanning will be applied to
commercial samples. Archerella was by far the most frequent testate amoeba taxon found in
commercial samples. Masked or degraded shells (Archerella degraded) were less frequently
found than well-preserved Archerella sp. shells.

Other frequently observed taxa active: Two other genera, Amphitrema sp. and Assulina
sp., were consistently found in many commercial samples but both were clearly less frequent
than Archerella. With active search, shells from Amphitrema were found in 13 out of 23 and
shells from Assulina in 19 out of 23 commercial samples from the pooled validation and test
set (Fig. 7). For both species the counts were low with 0 to 5 individuals per sample. For Am-
phitrema and Assulina we estimate a frequency in commercial samples of 0.74 and 0.89
shells per slide respectively (Table 4).

Other frequently observed taxa grid: With grid search, shells from Amphitrema or Assulina
were found but less often (Fig. 7). The grid size of 100 or 150 image was clearly insufficient
to catch enough shells of these two species. However, with the higher acquisition rate of au-
tomated microscopes, higher counts can be expected.

Rarer taxa: A total of 13 shells of Hyalosphenia papillo, a strict peat indicator, were found
overall with active search. Again, with the higher acquisition rate of automated microscopes,
higher counts can be expected. Finally, shells of the five other species were rarely found in
commercial samples (Table 4, bottom rows).

4.2 Testate amoebae in commercial non-peat samples

All 10 samples (1301 images, see Tables 2, A3, A4) of peat-free substrates and compo-
nents were searched for testate amoebae. Only a small number of testate amoeba shells
were found and they were generally degraded or masked and thus more difficult to identify
as compared to most shells found in the peat samples. The following potential testate
amoeba morpho-taxa were found: Centropyxis aerophila-type (N=10), Euglypha sp. (N=1),
Assulina sp. (N=1), and Difflugia lucida-type (N=1). However, these identifications are partly
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tentative as the shells were either partly degraded or not clearly visible in the images (e.g.,
due to their position or masked by other particles). None of these testate amoebae taxa
found in the non-peat samples is a strict peat indicator. This result illustrates how using an
automated microscope to increase the number of images will improve the assessment of the
testate amoeba diversity and abundance in samples.

Table 4. Active search: Testate amoeba shell counts from all commercial peat
sample (validation and test set) and resulting estimates of the number of
shells per slide for each class.

Active search peat Validation Test Shells per
(center only) slide
Nb samples 11 12

Nb slides per sample 2 2

Total nb slides 22 24 46
Amphitrema_sp 15 19 0.739
Archerella_degraded 57 43 2.174
Archerella_sp 109 149 5.609
Assulina_sp 22 19 0.891
Euglypha_sp 8 1 0.196
Heleopera_sphagni 3 0 0.065
Hyalos_elegans_aggr 1 4 0.109
Hyalosphenia_papilio 6 7 0.283
Nebela_combined 0 0 0.000
Planocarina_carinata 0 0 0.000

Table 5. Grid search: Testate amoeba shell counts from all commercial peat
sample (validation and test set) and resulting estimates of the number of

shells per image for each class.

Grid search peat Validation Test Shells per
image
Nb images 1705 1200 2905
Amphitrema_sp 5 5 0.003
Archerella_degraded 17 2 0.007
Archerella_sp 45 17 0.021
Assulina_sp 7 0 0.002
Euglypha_sp 1 0 0.000
Heleopera_sphagni 0 0 0.000
Hyalos_elegans_aggr 0 0 0.000
Hyalosphenia_papilio 1 0 0.000
Nebela_combined 0 0 0.000
Planocarina_carinata 0 0 0.000
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Figure 7. Matrix view of testate amoeba distribution of all commercial peat
samples (one sample per row, validation: 11 samples, test 12 samples). Val-
ues are the count of individual shells found with active and grid search. Vali-
dation set: Grid and active search images from different slides. Test set: Grid
and active search images from same slides.

4.3 Model comparison from cross validation

For comparison of model sizes and training procedures the validation data was used. Only
four classes had a count large enough to estimate the average precision (AP) and were re-
ported. We found that the larger models MEDIUM and LARGE performed better than the
smaller models NANO and SMALL (supplement). For the classes Archerella and Am-
phitrema (both peat specific), we found that the models initialized with random weights per-
formed equal or better than the models initialized with pre-trained weights (Fig. A9 in appen-
dix). Notably for Archerella, size and training procedure had virtually no impact on perfor-
mance, with all models resulting in AP around 0.80 (Fig. A9 in appendix). Based on these
findings, the MEDIUM model initialized with random weights was chosen as final model and
used in the final prediction module.
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Figure 8. (A) Precision-recall curves obtained by predicting all test images with the 8 models indi-
vidually (blue lines) and the ensemble (red line). Test data from grid and active search pooled (2415
images). Nbox (GT): number of annotated ground truth boxes. (B) Average Precision (AP) obtained
from the curves on the left with the 8 models individually (blue dots) and the ensemble (red dots)

4.4 Performance with test data

The final models (MEDIUM, random initialization of weights) were trained with the final train-
ing set (pooled training and validation data; 5121 images). Then, performance estimates
were obtained by predicting the complete test data (2415 images: grid search and active
search C, L, R). See Table 2 for details. The estimates for the three classes with sufficient
instance in the test data are given in Fig. 8 B. The performance of individual models was
high with APs above 0.8 for Archerella, around 0.6 for Amphitrema, and around 0.8 for As-
sulina. The performance of individual models was stable over the eight sessions. Noticeably,
the behaviour of the score, represented by the shape of the PR curves, was also stable
across individual models (Fig. 8 A). The performance of the ensemble model was higher
than the individual models for the three classes. The AP metric is valuable for ML experts to
compare several models. However, it is not very telling in terms of practical usefulness be-
cause prediction successes and errors are summarized in a single number. Therefore, a
practical illustration of the performance obtained with the test data is given below. In this il-
lustration correct and wrong predictions are reported in detail and this gives a concrete sense
of the practical usefulness.

4.5 lllustration of module with test data

This section shows the summaries that were automatically generated by the prediction mod-
ule together with estimates of the detection performance given as precision and recall. It is
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meant to illustrate a possible practical application of the module. More conventional perfor-
mance metric obtained from the test set are reported in the previous section. The whole pro-
cess, including prediction by an ensemble of eight models and post processing, took 581
seconds for 1872 images on a GPU accelerated desktop computer (HP Z4 workstation with
NVIDIA-A6000 GPU). This corresponds to 0.31 seconds per image; thus for 1000 images it
would take approximately 5 minutes.

4.5.1 Archerella grid only

In the first evaluation, 1600 test images, only from grid search, were passed through the pre-
diction module. In these images the frequency of occurrence of Archerella shells was low at
1% (17 individuals in 1600 images). The 17 true Archerella shells are shown in Fig. 9. We
consider this to be a realistic scenario because the images result from a grid search. It also
represents a difficult challenge with only 17 targets hidden in 1600 images containing many
objects of different shapes and sizes (mostly more or less degraded plant remains). The pre-
diction modules detected a total of 208 crops (Archerella candidates).

With the usual detection threshold of 0.5, 71% (12 out of 17) individuals were detected (Re-
call: 12/17 = 0.71). All 12 detected crops were correct detection (Precision: 12/12 = 1.00).
Using the lowest detection threshold of 0.0, 88% (15 out of 17) individuals were detected
(Recall: 15/17 = 0.88) at the cost of a lower precision of 0.07. The first row of the summary
(12 crops) contains exclusively true Archerella (Fig. 10). Looking at the second to fourth
rows, we found that three more crops were true Archerella. All other crops from the fifth line
to the bottom were not Archerella and most had an ensemble score close to 0. See supple-
mentary file for full image.

4.5.2 Archerella grid and active

In the second evaluation, the grid and active search (centre only) test data, were passed
through the prediction module. The frequency of occurrence of individuals per image of
Archerella was higher with 9% (166 individuals in 1872 images). The prediction modules de-
tected a total of 450 crops (candidates), each with a value of the ensemble score on which a
decision threshold can be applied. Using a detection threshold of 0.5 on the ensemble score,
we obtained a recall of 0.76 and a precision of 0.91. Using the lowest detection threshold of
0.0 resulted in a recall of 0.96 at the cost of a lower precision of 0.35. Looking at the 6 first
rows of the summary (Fig. 11), we see that all top-ranked crops clearly belong to Archerella.
Note that two item marked with a yellow frame were labelled as Archerella degraded be-
cause they were partially masked. For all practical purpose these are not false positives. See
supplementary file for full image.

4.5.3 Amphitrema grid and active

The frequency of occurrence of Amphitrema shells per image was low with only 1.3% of im-
ages containing an Amphitrema (24 individuals in 1872 images) which represents a difficult
detection challenge. The 24 true Amphitrema shells are shown in Fig. 12. The prediction
modules detected a total of 135 crops (candidates). Using a detection threshold of 0.5, we
obtained a recall of 0.33 and a precision of 0.88. Using the lowest detection threshold of 0.0
we obtained a recall of 0.79 at the cost of a lower precision of 0.14. In the first row of the
summary, 8 out of 9 crops were true Amphitrema and looking at the three top rows, we found
that 16 out of 28 crops were true Amphitrema (Fig. 13). See supplementary file for full image.

4.5.4 Assulina grid and active

The frequency of occurrence of Assulina per image was low with only 1.0% of images con-
taining a shell (19 individuals in 1872 images), which represents a difficult detection chal-
lenge. The 24 true Assulina shells are shown in Fig. 14. The prediction modules detected a
total of 92 crops (Assulina candidates). Using a detection threshold of 0.5, we obtained a re-
call of 0.79 and a precision of 0.94. Using the lowest detection threshold of 0.0 we obtained
recall of 1.00 at the cost of a lower precision of 0.21. In the first row of the summary, 8 out of
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11 crops were true Assulina and looking at the first three rows, we found that 17 out of 34
crops were true Assulina (Fig. 15). See supplementary file for full image.

Grid search

Figure 9. Ground truth in test set for N=17 Archerella sp from grid search. The order is arbitrary. The 15 indi-
vidual that were detected (Fig. 10) are framed in green.

Figure 10. Automatically detected candidates of Archerella sp ranked by ensemble score (only top rows
shown) obtained from 1600 grid search images of test set. The correctly detected shells are framed in green.
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Figure 11. Automatlcally detected candidates of Archerella sp ranked by ensemble score (only top rows
shown) obtained from 1600 grid and 272 active search images of test set. Two items that were labelled as
Archerella degraded due to masking are framed in yellow; the remaining 73 crops are correctly detected
shells.
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Figure 12. Ground truth in test set for N=24 Amphitrema sp from grid search (top) and active search (bot-
tom). The order is arbitrary. The 19 individual that were detected (Fig. 13) are framed in green.
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Figure 13. Automatically detected candidates of Amphitrema sp ranked by ensemble score (only top rows
shown) obtained from 1600 grid and 272 active search images of test set. The correctly detected crops are
framed in green.

28




Active search
7 '.} b !] wlelel ™
\ A “ |
- h 4

r‘ ﬂrj N

Figure 14. Ground truth in test set for N=19 Assulina sp active search (zero individuals were found with grid
search). The order is arbitrary. All 19 individual were detected (Fig. 15) and are framed in green.
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Figure 15. Automatically detected candidates of Assulina sp ranked by ensemble score (only top 5 rows
shown) obtained from 1600 grid and 272 active search images of test set. The correct detections are framed
in green.
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5 Discussion
5.1 Shells preserved in commercial peat products

The shells of several peat-specific testate amoeba taxa were present in commercial peat. For
two of the smaller peat-specific taxa (Archerella and Amphitrema), well-preserved specimens
were found in many samples. These two species can therefore be used as indicators of peat
in substrate. Another taxon (Assulina) which is common in peatlands but also frequent in
acidic soils outside of peatlands (e.g., coniferous forest) was also frequently found in com-
mercial peat. This further confirms the resistance of small testate amoeba shells to industrial
processes. This observation is not surprising as Assulina is among the most resistant testate
amoeba taxon to degradation; it is not even destroyed by hydrofluoric acid treatment used for
pollen preparation [65]. While a few shells of larger species were found (Hyalosphenia sp),
they were infrequent and often degraded. For this reason, they seem less optimal as indica-
tors of peat in commercial products. However, if a larger number of images can be automati-
cally acquired, we can expect to find enough shells in good state from Hyalosphenia sp to be
used as indicators. Based on the above findings, we are confident that the automated detec-
tion of peat-specific testate amoebae is a valid method to detect peat in substrate. The re-
sults from Archerella and Amphitrema have already been turned into an actionable solution
presented here.

The Sphagnum moss sample was the only one in this category, in which no peat-specific
taxa (such as Archerella and Amphitrema) were found. This Sphagnum moss product was
purchased online as a terrarium accessory and no information about its origin is available. As
this study only considers European testate amoebae taxa, it is necessary to know on which
continent this sample was grown for any data interpretation. Therefore, no further conclu-
sions can be drawn about this Sphagnum moss sample.

5.2 Commercial peat-free substrates and components

A total of 1301 images from commercial peat-free substrates and components (listed in table
A2) were carefully checked. Several specimens of Centropyxis aerophila-type and one Dif-
flulgia lucida-type were found. Although these species can be found in peatlands, they are
also frequent in other habitats including caves [66]. The samples also included many fungal
spores and some conifer pollen. The fact that several specimens of testate amoeba species
were found is positive as it shows that they can be found in such samples. The absence of
the typical peat indicators can be interpreted as proof that the samples were indeed peat-
free. In addition, the absence of Assulina further demonstrates that the samples were not
even from acidic litter collected e.g. in coniferous forests. If the substrate is not acidic this
taxon would indeed not be expected to be found as it is clearly an indicator of low pH [67].

5.3 Strengths and limitations

Our method is strong in demonstrating the presence of peat. That is, if shells of peat-specific
testate amoebae were found, this represents strong evidence that peat is in the substrate. In
addition, the method automatically provides supporting evidence in the form of crops, which
can be interpreted by human experts (Fig. 10, 11, 13, 15 and images in supplement). There
is a between-sample variability in the frequency of peat-specific amoebae. It remains possi-
ble that the species could be absent in peat from certain provenances. In this case our
methodwill naturally not work. The method is thus weaker to rule-out the presence of peat.
That is, if peat-specific shells were not found, a substrate could still contain peat. This possi-
ble limitation however needs to be further evaluated.
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Growing media may contain recycled peat. Such substrates are less problematic from a sus-
tainability point of view. We noted that two indicator species are robust to commercial pro-
cessing. These shells might also be conserved through the recycling process and thus our
method might detect them. Fundamentally, this would not be a limitation of the method per-
se but rather a consequence of its good detection performance. Note also that any detection
method for peat will probably suffer the same limitation. Again, this possibility should be
tested, ideally experimentally.
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6 Outlook
6.1 Large-scale analysis with an automated microscope

In commercial samples only 2% of images contained an Archerella shell (Table 5). When
present, the shell covered much less than 1% of the image and was often embedded in resi-
dues (example in Fig. 4). To obtain a clear statement regarding peat presence in each sam-
ple, we propose that at least 1000 images per sample should be searched (thus we expect to
catch approximately 20 Archerella shells in pure peat). For substrates containing peat we
would need even larger numbers of images to capture approximately 20 Archerella. Perform-
ing this manually is simply not realistic for a large-scale analysis with hundreds of samples.
Our proposed decision support system automates the tedious detection and extraction pro-
cess and produces a concise summary as a ranked list of Archerella candidates where the
most promising items are shown first. The final step, manual confirmation and counting by a
human operator, is expected to take at most a few minutes per sample. The proposed deci-
sion support process significantly reduces the amount of human effort required.

Our decision support system is an important step to enable the large-scale monitoring of
commercial substrates from multiple sources. Let’'s assume for instance a scenario with 100
samples, each with 1000 images. We would need around 8.3 hours to process all 100’000
images on a single GPU accelerated computer. In addition, the process is reproducible and
reliable because the final prediction module incorporates the expertise of very specialized
domain experts (CV, EM, CD) via highly curated datasets. This would allow the decision sup-
port process to be safely performed by less experienced staff who underwent a short train-
ing. The process is also transparent because the generated crops can be stored for each
sample as evidence and allow independent review by third parties if needed.

6.2 Need for automated microscope

The decision support system requires many images per sample that must be acquired by
systematically scanning all the material under the slide. In this study we did this manually,
but for a large-scale analysis as proposed above this is simply not feasible. Thus, an auto-
mated scanning microscope will be needed. However, note that this would only accelerate
the image acquisition per-se but not the preliminary lab work to obtain sample material, pro-
cess the samples, and prepare the microscopy slides.

6.3 Development of a method to quantify peat percentage

Horticultural substrate often contains a mix of peat and other components (e.g., compost). It
would be useful to estimate the proportion of peat in such mixtures. The present results (Ta-
ble 4 and Fig. 7) show that Archerella was consistently present in natural peat from Europe.
Another strict peat indicator, Amphitrema was found in half of the peat samples despite the
small number of images available per sample. If a larger number of images per sample can
be gathered via automated microscopy techniques, we can expect to find sufficient shells of
peat indicator taxa to estimate the shell density in each sample accurately: e.g., number of
shells per mg substrate. Provided that the shell density in pure peat and its natural variation
is known, this could be used to estimate the proportion of peat in substrates. The natural var-
iation will obviously add uncertainty to this estimate. The results obtained here with a rather
small number of images are promising. Thus, as a next step, it would be interesting to as-
sess the variation in natural frequency, especially of Archerella and Amphitrema, in peat ex-
tracted from many European provenances.
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6.4 Cultivated Sphagnum moss

As previously mentioned, the results of the single sample of Sphagnum moss tested in this
study cannot be interpreted further, as information about its origin is missing. It would however
be interesting to test our method on Sphagnum moss issued from Sphagnum farming in Eu-
rope. If cultivated Sphagnum moss from other continents is to be tested, the taxa of naturally
present testate amoebae in peatlands in this region of the world have to be taken into account
(see also next paragraph). This type of farming describes the cultivation of Sphagnum moss
on wet soils (often degraded peat soils that are rewetted). Sphagnum can be harvested every
few years and is used as peat-alternative in substrates. As the Sphagnum is only cut superfi-
cially, the wet soils can act as important carbon storages. Sphagnum farming is being devel-
oped and commercial production exists in some countries such as Germany and Chile. It is
also considered as a sustainable alternative to peat extraction in Europe. Germany for example
promotes Sphagnum farming on degraded peat soils [73]. As cultivated Sphagnum moss is
seen as a sustainable alternative to peat, our method should ideally be able to distinguish
these two products in growing media.

6.5 Geographical scope of the method

The present study was based on samples from European provenances. We have shown that
Archerella and Amphitrema were frequently found in these samples. We are therefore confi-
dent that our method will be applicable for sample originating from Europe. The species com-
position and morphological features of testate amoeba are probably different for other conti-
nents and especially for region in the southern-hemisphere. Therefore, we do not expect the
current version of our method to be applicable for samples originating from outside of Europe.
Fortunately, the data and models could be extended with peat-indicator species from other
continents.

6.6 Extension to other applications

The present results show that deep neural networks could be adapted to effectively detect
soil microorganisms in a very specific setting. The task was challenging due to the degraded
state of the amoeba shells in commercial products and to their low frequency of occurrence.
Adding to the difficulty, the shells were embedded in plant residues and particles with diverse
shapes and textures. This is likely to be the case in similar applications involving images
from natural soil samples or products derived thereof. Despite these complications, well per-
forming models could be trained without dependence on pre-trained models and with a rather
small development dataset of a few thousand images. A big workload was the manual acqui-
sition of images. Fortunately, in future applications, this can be achieved with automated mi-
croscopy devices, which is expected to considerably reduce the human workload. The data
annotation (bounding boxes) could be done efficiently thanks to the availability of user-
friendly tools that can be used collaboratively via the web. We have also shown that a few
thousand images together with a carefully tuned data augmentation strategy are sufficient to
obtain actionable and useful models. We believe that this will translate to future projects and
thus it will keep the annotation burden within reasonable boundaries. Finally, model selection
and fine-tuning of the training procedure was time consuming. Fortunately, the developed
procedure can be used for new classes, thus this work must not be repeated. Based on the
above insights, the extension of the model to more microorganism classes seems a feasible
endeavour. For instance, we could make models that detect many taxa from direct soil
probes. This would open new possibilities for large scale assessments of soil biodiversity or
the continuous monitoring of soil health at restoration sites.
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8 Conclusions

o Peat-specific testate amoebae were recovered from peat. Two taxa, Archerella and
Amphitrema, are robust indicators of peat presence.

o Deep neural networks were successfully trained and tested with a small application-
specific data set. This illustrates the maturity of these algorithms for real-world appli-
cations.

o We propose a decision process where large image collections are automatically
batch processed and human experts can quickly review a ranked list of small crops to
take the final decision.

e Our method is the first step towards a large-scale monitoring of peat presence in
commercial substrate from multiple sources.

e An automated image acquisition procedure will be needed to render the method prac-
tical and to test substrates with a low peat content.
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10 Appendix
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| L o T OO
Figure A3. Shells of the class Archerella degraded from images of commercial peat samples (Test
set).
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Figure AS5. Shells of Amphitrema sp from images of commercial peét samples (Test set).
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Figure A6. Shells of Assulina sp from images of acrotelm samples (Training set)

i |

Figure A7. Shells of Assulina sp from images of commercial peat samples (Test set).
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TRAINING: Acrotelm samples

il

VALIDATION : Commercial samples

TEST : Commercial samples

Description Sample-ID Description Sample-ID | CV-split Description Sample-1D
4454 5868 fold 0 6241
4457 5871 fold 0 6242
4459 6000 fold 0 6243
PEAT
4460 . 5875 fold 1 PEAT 6244
2554 images .
4461 grid 1705 6041 fold 1 2015 images 6251
4463 . 6158 fold 1 grid 1200 6252
active C 283 .
4542 active R 283 5996 fold 2 active C 272 6253
PEAT 4551 active L 283 5998 fold 2 active R 271 6254
1666 images A555 5874 fold 2 active L 272 6267
4558 5872 6268
4559 5873 6273
4572 6150 fold 0 6282
4573 5997 fold 1 6160
NON-PEAT NOMN-PEAT
4574 . 5863 fold 2 . 6164
901 images 400 images
4575 only grid 6040 fold 2 only erid 6169
4579 Ve 5864 vE 6171
5999

O

{?:igure A8. Overview off all samples used in the S?udy and their role. C: Center; R: Right; L: Left

O
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Figure A8.

Overview of all samples used in the study and their role. C: Center; R: Right; L: Left
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Figure A9. Comparison of detection performance (map_50) for several YOLO model sizes (NANO,
SMALL, MEDIUM, LARGE) and weight initialization methods (PRETRAINED, RANDOMINIT).
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Table A1. Detailed testate amoeba individual counts of the Training
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propor-

dataset | Sample- tion of geograph-
name ID Type peat Type detail ical site
5868 peat 100% bagged peat N.D.
5871 peat 100% peat (fraction 7 —20 mm) N.D.
5872 peat 100% peat (fraction 0 — 30 mm) N.D.
5873 peat 100% peat (fraction > 50 mm) N.D.
5874 peat 100% peat (fraction 10 — 30 mm) N.D.
6875 peat 100% peat (fraction 0 —5 mm) N.D.
5996 peat 100% bagged peat (white peat) Estonia
5998 peat 100% bagged peat N.D.
6000 peat 100% black peat N.D.
E 6041 peat 100% compressed peat tablets N.D.
'(% 6158 peat 100% sphagnum moss for terrarium N.D.
©
3 5863 O 0%  compost (100 %) N.D.
= peat
non- )
5864 peat 0% wood fibres (coloured) (100%) N.D.
non- 0 substrate without peat (compost,
2997 peat 0% Landerde, plant fibres) N.D.
non- substrate without peat (compost,
5999 0% bark compost, coco peat, wood fi- N.D.
peat . .
bres, organic fertilizers)
6040 non- 0% substrate without Peat (plant fibres, N.D.
peat compost, wood chips, Landerde)
6150 non- 0%  substrate without peat N.D.
peat
6241 peat 100%  white peat N.D.
6242 peat 100%  black peat N.D.
6243 peat 100% black peat Estonia
6244 peat 100%  white peat (milled peat) Estonia
o white peat (milled and sod peat) . .
6251 peat 100% (fraction 10 — 20 mm) Lithuania
., White peat (sod peat)
6252 peat 100% (fraction 0 — 7 mm) Germany
., peat (milled and sod peat) Lithuania /
6253 peat  100% ¢t tion 15— 40 mm) Latvia
. Lithuania /
6254 peat 100% peat (fraction 0 — 30 mm) .
Latvia
3 6267 peat 100% white peat Germany /
b East. Eur.
()
[t i -
6268  peat 100% white peat Baltic coun
tries
6273 peat 100% black peat Lithuania
6282 peat 100%  black peat Germany
6160 non- 0% substrate without Peat (woot:! flbre..s, N.D.
peat compost, wood chips, gardening soil)
6164 non- 0% substra.te without peat (wood chips, N.D.
peat wood fibres, compost, sand)
non- substrate without peat (gardening
6169 0% soil, compost, wood fibres, crushed N.D.
peat
clay pebbles)
non- .
6171 peat 0% compost (100 %) Switzerland

Table A2. Details on all commercial samples used in this study
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Table A3. Detailed testate amoeba individual counts of the Validation set.
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Table A4. Detailed testate amoeba individual counts of the Test set.
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