Dipartimento federale dell'ambiente, dei trasporti, dell'energie e delle comunicazioni DATEC

Ufficio federale dell'ambiente UFAM

Osservazione nazionale delle acque sotterranee NAQUA

Ufficio federale dell'ambiente UFAM

Elementi di traccia nelle acque sotterranee

Periodo 2018

Stazioni di misurazione Modul TREND e SPEZ

Statistica Valore massimo per stazione di misurazione

Sostanza		Stazioni di misurazione [numero]					Stazioni di misurazione [%]		Valore massimo ^[1]	Valore indicativo[2]
		LQ	Concentrazione [µg/l]				Concentrazione [µg/l]		I	
		[µg/l]	prelievi	≥LG	> Valore massimo ^[1]	>Valore indicatore ^[2]	> Valore massimo ^[1]	>Valore indicativo[2]	[µg/l]	[µg/l]
Métaux alcalins et al										
₅₆ Ba	Baryum	1	524	514	1	-	1	-	1	500**
₃ Li	Lithium	0.5	503	454	1	1	1	/	1	1
37Rb	Rubidium	0.2	524	406	1	1	1	/	1	/
38Sr	Strontium	27	524	510	1	1	1	/	1	1
Métaux (de transition										
13AI	Aluminium	4	430	385	5	1	1.2	/	200	1
₄₈ Cd	Cadmium	0.01	524	89	-	29	-	5.5	3	0.05*
₂₄ Cr	Chrome	0.04	524	444	-	23	-	4.4	50	2
₂₇ Co	Cobalt	0.01	524	258	1	1	1	1	1	1
₂₆ Fe	Fer	1	519	438	12	9	2.3	1.7	200	300**
₂₉ Cu	Cuivre	0.3	524	323	-	94	-	17.9	1000	2*
₂₅ Mn	Manganèse	0.2	524	138	2	2	0.4	0.4	50	50**
₄₂ Mo	Molybdène	0.06	524	471	1	1	1	/	1	1
₂₈ Ni	Nickel	0.1	524	366	1	5	0.2	1.0	20	5*
82Pb	Plomb	0.02	524	301	-	22	-	4.2	10	1*
74W	Tungstène	0.03	516	138	1	1	1	/	1	1
23V	Vanadium	0.02	524	473	1	1	1	/	1	1
39Y	Yttrium	0.02	524	91	1	1	1	/	1	1
₃₀ Zn	Zinc	1	515	263	-	145	-	28.2	5000	5*
Semi-métaux										
₅₁ Sb	Antimoine	0.06	524	114	-	1		1	5	1
₃₃ As	Arsenic	0.02	524	523	2	7	0.4	1.3	10	5
₅ B	Bore	7	524	457	-	15	-	2.9	1000	50**
₃₄ Se	Sélénium	0.04	524	523	1	1	0.2	0.2	10	5
Actinides										
₉₂ U	Uranium	0.2	524	445	-	1	-	1	30	1
Halogènes										
35Br	Brome	4	524	471	1	23	1	4.4	1	50**[3]

LQ limite di quantificazione

[1] Ordinanza del DFI sull'acqua potabile e sull'acqua per piscine e docce accessibili al pubblico (OPPD)

[2] Istruzioni pratiche per la protezione delle acque sotterranee (UFAFP 2004)

* in forma solubile

** valore superiore a una situazione vicina allo stato naturale

[3] valore relativo al bromuro (Br-)

/ Nessun valore massimo o valore indicativo disponibile