Thunstrasse 101a, 3006 Bern, T 031 356 20 00 www.grolimund-partner.ch

CPX-Messungen Strassenbeläge

Messbericht 2021

Ihre Kontaktperson: Tina Saurer tina.saurer@grolimund-partner.ch, D 031 356 20 04

BAFU A5326 22. Dezember 2021

Impressum

Auftragnehmer

Grolimund + Partner AG

Auftraggeber

Bundesamt für Umwelt (BAFU)

Autoren

Erik Bühlmann Tina Saurer Björn Probst Lena Gafner

Version	Datum	Autoren	Beschrieb	Verteiler
V 0	07.12.2021	L. Gafner/B. Probst	Entwurf	BAFU D. Schneuwly, S. Steiner
V 1	22.12.2021	B. Probst	Endfassung	BAFU D. Schneuwly, S. Steiner

Diese Studie wurde im Auftrag des BAFU verfasst. Für den Inhalt ist allein der Auftragnehmer verantwortlich.

V1_A5326_CPX_2021_20211222.docx

Inhalt

1.	Ausgangslage	4
2.	Belagsbezeichnungen	5
3.	Durchführung der Messungen	6
3.1	CPX-Messungen	6
4.	Messstrecken	8
4.1	Übersicht Messstrecken 2018, 2019, 2020 und 2021	8
4.2	Messstrecken 2021	10
5.	Messresultate 2021	12
5.1	Langzeitwirkung SDA 4	12
5.2	Langzeitwirkung SDA 8	13
5.3	Einfluss Höhenlagen	13
5.4	Einfluss Verkehrslast	13
5.5	AC und Übergangsbeläge	14
6.	Übersicht Messresultate 2018-2021	15
7.	Analyse der Messresultate 2021	18
7.1	Analyse Langzeitwirkung SDA 4 / SDA 6	18
7.2	Analyse SDA 4 Höhenlage	19
7.3	Analyse SDA 4 Verkehrslast	20
7.4	Analyse Langzeitwirkung SDA 8	21
7.5	Analyse SDA 8 Höhenlage	22
7.6	Analyse SDA 8 Verkehrslast	23
7.7	Analyse AC und Übergangsbeläge	24
8.	Erkenntnisse Messjahre 2018-2021	25
9.	Ausblick Entscheidmatrix/Tool Empfehlung geeignete Bauweise	27

Anhang

separates Dokument

1. Ausgangslage

Um Lücken im Wissenstand zu Alterungsverhalten und Eignung von lärmarmen Strassenbelägen zu schliessen, werden im Auftrag des Bundesamts für Umwelt (BAFU) die akustische Wirkung von schweizweit bestehenden lärmarmen Belägen (LAB), AC und Übergangsbelägen untersucht. Ziel ist es, mit Hilfe der Erfahrung vorangegangener Belagsgütemessungen und den akustischen Daten der aktuellen Messkampagne eine Entscheidungsmatrix zu erarbeiten, welche es erlaubt auf einem spezifischen Strassenabschnitt eine geeignete Bauweise auszuwählen.

Die akustische Belagsgüte wird dabei mit dem normierten CPX-Verfahren (close proximity) bestimmt. Mit diesem Messverfahren wird die akustische Belagsgüte kontinuierlich über die ganze Länge einer Strecke erfasst werden. Mittels ergebnisorientierten Messkonzepten sollen verschiedene Fragestellungen beantwortet werden.

Folgende **Fragestellungen** standen im vorliegenden Projekt im Fokus:

- Wie verhält sich die akustische Langzeitwirkung von SDA 4 Belägen?
- Wie verhält sich die akustische Langzeitwirkung von SDA 8 Belägen?
- Wie verhält sich die akustische Wirkung von SDA 4 und SDA 8 Belägen in Abhängigkeit der Beanspruchung durch hohe Verkehrslasten?
- Wie verhält sich die akustische Wirkung von SDA 4 und SDA 8 Belägen in Abhängigkeit von klimatischen Bedingungen (Höhenlage)?
- Wie verhält sich die akustische Wirkung von AC und Übergangsbelägen?

Das Messkonzept und die damit verbundene Auswahl der Messstrecken zur Beantwortung der oben beschriebenen Fragestellungen wurden in Zusammenarbeit mit dem BAFU erarbeitet. Dabei wurde hauptsächlich auf die bestehende Best Practice-Liste des BAFU und der bei G+P AG vorhanden Daten zurückgegriffen.

Im vorliegenden Berichtsteil werden insbesondere die Ergebnisse der Messungen 2021 präsentiert sowie ein Fazit über die gesamte Projektdauer gezogen. Die Ergebnisse der Messungen aus den Jahren 2018 bis 2020 sind in den Auswertungen integriert und im Detail dem Anhang zu entnehmen.

2. Belagsbezeichnungen

In den folgenden Tabellen sind die in der Schweiz meistverbreiteten leisen und herkömmlichen Belagstypen und deren Bezeichnungen aufgelistet.

Tabelle 1: Übersicht Belagsbezeichnungen

Belagstyp	Bezeichnung	Bemerkung
SDA	Semi-dichter Asphalt	SDA 4 innerorts, SDA 8 alle Strassentypen
ACMR	Rauasphalt	Alle Strassentypen (wurde durch SDA abgelöst)
PA	Offenporiger Asphalt	Nur bei >80 km/h
Firmenprodukte	Nanosoft, Sapaphone, Famsiphonogrip, etc	innerorts
AC	Asphaltbeton	Alle Strassentypen
SMA	Splittmastix Asphalt	Alle Strassentypen
GA	Gussasphalt	Alle Strassentypen
DSK	Kaltmikro	Übergangsbelag
OB	Oberflächenbehandlung	Übergangsbelag

Tabelle 2: SDA - Charakteristischer Hohlraumgehalt und Grenzwerte der Marshall-Prüfkörper gemäss SNR 640 436

SDA	-12 <i>(B*)</i>	-16 <i>(C*)</i>	-20 <i>(D*)</i>							
		[Volumen-%]								
SDA 4	12	16	20							
SDA 8	12	16	-							
	Grenzwerte für den Hohlraumgehalt der Marshallprüfkörper									
SDA 4	1014	1418	1822							
SDA 8	1014	1418	-							

^{*}alte Bezeichnung gemäss Norm Version 2013. A = Volumen < 10%

3. Durchführung der Messungen

3.1 CPX-Messungen

Die Messungen wurden mit einer Referenzgeschwindigkeit von 50 km/h durchgeführt. Pro Reifentyp wurden mindestens zwei Messfahrten vorgenommen. Bei zwei Reifentypen (PW und LKW) entspricht dies mindestens vier Messfahrten pro Fahrspur.

3.1.1 Zeitpunkt der Messungen

Die Messfahrten wurden von Frühling bis Herbst 2021 durchgeführt. Strecken mit hohem Verkehrsaufkommen wurden nachts gemessen.

3.1.2 Witterung

Zum Zeitpunkt der Messungen war es im Bereich der Messstrecken windstill und niederschlagsfrei. Die Fahrbahnen waren trocken.

3.1.3 Störgeräusche

Besondere Störgeräusche, beispielsweise durch besonders laute Vorbeifahrten von LKWs, Traktoren oder durch verkehrende Flugzeuge etc., traten während den Messungen nicht auf.

3.1.4 Kalibrierung

Die akustischen Messgeräte wurden vor Beginn der Messungen mit dem Akustikkalibrator kalibriert. Die Kalibrierung wurde in Messpausen und am Ende der Messungen wiederholt und überprüft. Dabei ergaben sich keine Abweichungen.

3.1.5 Besonderheiten

Kurven

Es ist zu beachten, dass Kurvenfahrten gegenüber der Geradeausfahrt zu einer Verfälschung der Messergebnisse führen können. Der Einfluss von Kurven mit grossen Radien auf die Mittelwerte der einzelnen Belagsabschnitte ist in der Regel gering. Messsegmente, bei denen Kurveneinflüsse deutlich erkennbar sind, wurden bei der akustischen Beurteilung der Belagsabschnitte nicht berücksichtigt.

Kreisel

Im Nahbereich von Kreiseln und Streckenabschnitten mit Lichtsignalanlagen, Baustellen und Schwellen zur Temporeduktion waren gültige Messfahrten unter Einhaltung der Referenzgeschwindigkeit teilweise nicht möglich. Betroffene Streckenabschnitte, auf denen der normseitig vorgegebene Toleranzbereich für Geschwindigkeitsabweichungen nicht eingehalten werden konnte, wurden von der Beurteilung ausgeschlossen.

Belagsfremde Elemente

Fahrbahnsegmente auf denen Störeinflüsse durch das Überrollen von Schachtdeckel, Fahrbahnunebenheiten, Bahngleisen, Fussgängerstreifen und andere Fahrbahnmarkierungen auftraten, wurden von der Belagsbeurteilung ausgeschlossen.

Verschmutzung

Starke Verschmutzungen wurden während den Messungen gekennzeichnet. Texturverändernde Verschmutzungen können die lärmreduzierende Wirkung eines Belags massgebend beeinflussen. Abschnitte, die besonders von Verschmutzung betroffen waren, wurden von der Beurteilung ausgeschlossen.

4. Messstrecken

4.1 Übersicht Messstrecken 2018, 2019, 2020 und 2021

Im Jahr 2018 wurde auf 53 Strecken CPX-Messungen durchgeführt. 2019 und 2020 wurden 50 bzw. 51 und im Jahr 2021 23 Strecken untersucht. In Abbildung 1 sind alle CPX-Messtrecken 2018, 2019, 2020 und 2021 dargestellt. Weiter sind der Abbildung 2 die Anzahl Messungen pro Fragestellung in den Jahren 2018 bis 2021 zu entnehmen.

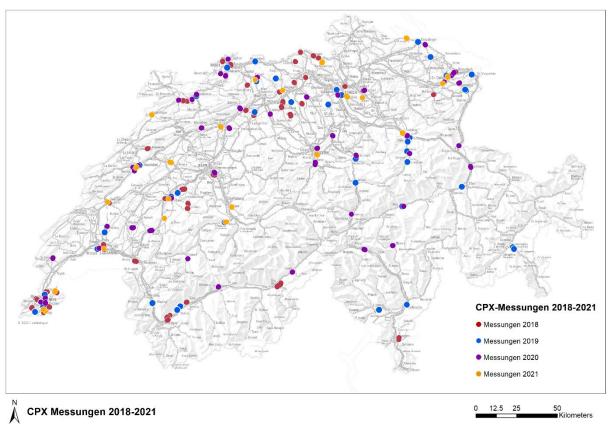


Abbildung 1: Übersicht CPX-Messungen 2018-2021

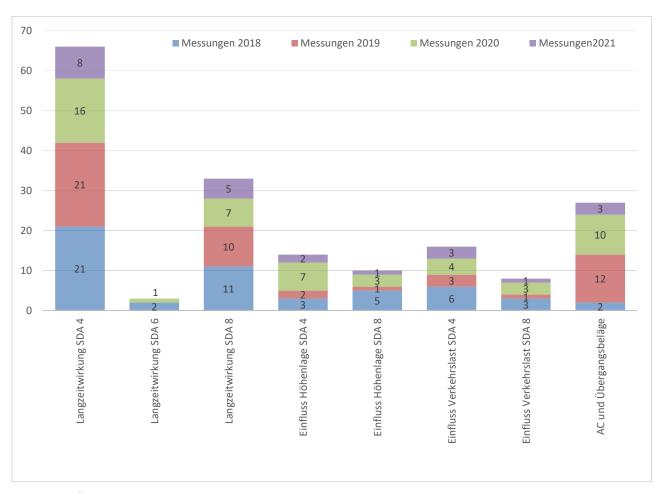


Abbildung 2: Übersicht Anzahl Messungen pro Fragestellung 2018-2021

4.2 Messstrecken 2021

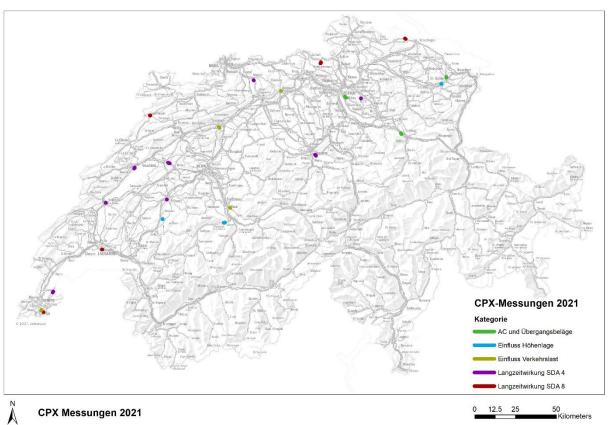


Abbildung 3: Übersicht Messstrecken 2021

Tabelle 3: Messstrecken 2021 – Langzeitwirkung SDA 4

Kan- ton	Ort	Strasse	Belag	Einbaujahr	Alter	Start		Ende	
						x	у	x	у
BE	Müntschemier	Insstrasse	SDA4-16	2015	6	577070	205299	578152	204944
BL	Thürnen	Hauptstrasse	SDA4-12	2016	5	629730	255662	629498	255987
FR	Villars-sur-Glâne	Route des Préalpes	SDA4	2018	3	576302	182617	576428	182796
GE	Anières	Route dHermance	Sapaphone4	2009	12	506293	125746	506715	126353
LU	Luzern	Langensandstrasse	SDA4	2016	5	667183	210219	667898	209540
NE	Colombier	RC5	Nanosoft4	2015	6	556296	201679	556746	202339
VD	Yverdon-les-Bains	Rue du midi	SDA4-12	2018	3	538992	180693	538766	180891
ZH	Uster	Sonnenbergstrasse	SDA4	2014	7	695454	244558	695427	244754

Tabelle 4: Messstrecken 2021 – Langzeitwirkung SDA 8

Kanton	Ort	Strasse	Belag	Einbau-	Alter	Start		Ende	
				jahr		x	у	х	у
AG	Siglistorf	Dorfstrasse	SDA8-12	2016	5	670557	266143	670837	266945
GE	Veyrier	Route de Marsillon	SDA8	2015	6	500827	113652	500840	113689
JU	Saignelégier	Rte de France	ACMR8	2019	2	565922	234271	566259	234249
TG	Ermatingen	Hauptstrasse	SDA8	2016	5	722353	281472	722933	281132
VD	Lausanne	Av. du Mont dOr	ACMR8	2018	3	536520	152068	536851	152067

Tabelle 5: Messstrecken 2021– Einfluss Höhenlage

Kanton	0rt	Strasse	Belag	Einbaujahr	m.ü.M.	Start		Ende	
						X	у	X	у
BE	Latterbach	Stalde- Usserlatterbach	SDA4	2019	680	611244	168442	612040	168579
FR	Pont-en-Ogoz	Route principale cantine	Nanosoft4	2012	738	573747	170598	573734	170781
SG	St. Gallen	Burgstrasse	SDA8-14	2018	670	744567	253437	744898	253645

Die Kategorie "Höhenlage" beinhaltet lärmarme Beläge, die mindesten 600 m.ü.M liegen.

Tabelle 6: Messstrecken 2021 – Einfluss Verkehrslast

Kanton	Ort	Strasse	Belag	Einbaujahr	DTV	Start		Ende	
						x	у	X	у
AG	Aarau	Bahnhofstrasse	SDA4-12	2017	>15'000	646348	249245	646518	249332
BE	Thun	Hofstettenstrasse	SDA4-16	2013	>15'000	615340	177480	615172	177796
GE	Carouge	Route de Saint-Julien	Nanosoft4	2017	>15'000	499190	114729	499596	115080
S0	Biberist	Engestrasse	SDA8-12	2016	>15'000	608672	226621	608238	227088

Die Kategorie "Verkehrslast" beinhaltet lärmarme Beläge mit einem DTV höher als 15'000 Fahrzeuge.

Tabelle 7: Messstrecken 2021 - AC und Übergangsbeläge

Kanton	Ort	Strasse	Belag	Einbau- jahr	Alter	Start		Ende	
						X	у	X	у
GL	Bilten	Hauptstrasse	AC8	2019	2	720304	222804	719949	223450
SG	Wittenbach	St.Gallerstrasse	DASK4	2014	7	747762	257346	747803	257904
ZH	Zürich	Forchstrasse	AC8	2015	6	686374	245099	685551	245908

5. Messresultate 2021

Das nachfolgende Kapitel beinhaltet die ermittelten akustischen Belagsgütewerte. Die Tabellen enthalten die mittels Regressionsmodell umgerechneten Belagsgütewerte in Abweichung zum Modell StL-86+. Es handelt sich hierbei um arithmetische Belagsgütemittelwerte, welche über alle Messwerte beider Fahrtrichtungen ermittelt werden

5.1 Langzeitwirkung SDA 4

Tabelle 8: CPX-Streckenmittelwerte pro Fahrzeugkategorie in Abweichung zum Modell StL-86+

Kanton	Ort	Belag	Einbau- jahr		gütewerte ·86+ [dB(A)]	Mischverkehr bei 8% Schwer- verkehrsanteil	
				PW (N1)	LKW (N2)	[dB(A)]	
BE	Müntschemier, Insstrasse	SDA4C	2015	-0.4	-4.3	-2.2	
BL	Thürnen, Hauptstrasse	SDA4-12	2016	-1.5	-5.3	-3.2	
FR	Villars-sur-Glâne, Route des Préalpes	SDA4	2018	-5.9	-8.1	-7.0	
GE	Anières, Route dHermance	Sapaphone4	2009	-0.9	-4.8	-2.6	
LU	Luzern, Langensandstrasse	SDA4	2016	-2.8	-3.8	-3.4	
NE	Colombier, RC5	Nanosoft4	2015	-1.9	-4.8	-3.2	
VD	Yverdon-les-Bains, Rue du midi	SDA4-12	2018	-2.5	-4.8	-3.6	
ZH	Uster, Sonnenbergstrasse	SDA4	2014	-1.3	-4.6	-2.8	

5.2 Langzeitwirkung SDA 8

Tabelle 9: CPX-Streckenmittelwerte pro Fahrzeugkategorie in Abweichung zum Modell StL-86+

Kanton	nton Ort Belag Einbaujahr		Einbaujahr	Belagso Abw. StL-	Mischverkehr bei 8% Schwer- verkehrsanteil	
				PW (N1)	LKW (N2)	[dB(A)]
AG	Siglistorf, Dorfstrasse	SDA8-12	2016	-0.5	-4.7	-2.3
GE	Veyrier, Route de Marsillon	SDA8	2015	-0.5	-4.8	-2.4
JU	Saignelégier, Rte de France	ACMR8	2019	-2.5	-6.0	-4.1
TG	Ermatingen, Hauptstrasse	SDA8	2016	-0.4	-4.0	-2.0
VD	Lausanne, Av. Du Mont dOr	ACMR8	2018	-0.7	-3.9	-2.1

5.3 Einfluss Höhenlagen

Tabelle 10: CPX-Streckenmittelwerte pro Fahrzeugkategorie in Abweichung zum Modell StL-86+

Kanton Ort		Belag Einbaujahr		m.ü.M.		jütewerte 86+ [dB(A)]	Mischverkehr bei 8% Schwer-ver-	
					PW (N1)	LKW (N2)	kehrsanteil [dB(A)]	
BE	Latterbach, Stalde- Usserlatterbach	SDA4	2019	680	-4.2	-7.9	-5.9	
FR	Pont-en Ogoz, Route principale cantine	Nanosoft4	2012	738	-1.8	-5.7	-3.6	
SG	St. Gallen, Burgstrasse	SDA8-14	2018	670	-0.4	-4.4	-2.2	

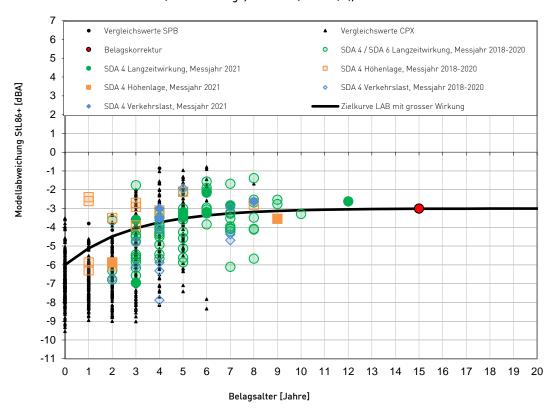
5.4 Einfluss Verkehrslast

Tabelle 11: CPX-Streckenmittelwerte pro Fahrzeugkategorie in Abweichung zum Modell StL-86+

Kanton	Ort	Belag	Einbau- jahr	DTV	Belagsgütewerte Abw. StL-86+ [dB(A)]		Mischverkehr bei 8% Schwer- verkehrsanteil
					PW (N1)	LKW (N2)	[dB(A)]
AG	Aarau, Bahnhofstrasse	SDA4-12	2017	21'000	-2.3	-4.8	-3.5
BE	Thun, Hofstettenstrasse	SDA4-16	2013	13'022	-0.8	-5.0	-2.6
GE	Carouge Route de Saint-Julien	Nanosoft4	2017	32'017*	-1.5	-4.9	-3.0
S0	Biberist, Engestrasse	SDA8-12	2016	15'982	+0.3	-3.7	-1.4

^{*}vier Fahrspuren, gemessen wurden die beiden Normalspuren

5.5 AC und Übergangsbeläge


Tabelle 12: CPX-Streckenmittelwerte pro Fahrzeugkategorie in Abweichung zum Modell StL-86+

Kanton	Ort	Belag	Einbaujahr	Belagsgütewerte Abw. StL-86+ [dB(A)]		Mischverkehr bei 8% Schwer-
				PW (N1)	LKW (N2)	verkehrsanteil [dB(A)]
GL	Bilten, Hauptstrasse	AC8	2019	-1.6	-3.2	-2.4
SG	Wittenbach, St.Gallerstrasse	DASK4	2014	-1.3	-4.8	-2.9
ZH	Zürich, Forchstrasse	AC8	2015	-1.2	-4.2	-2.6

6. Übersicht Messresultate 2018-2021

Um die Messergebnisse einzuordnen, wurde der Gesamtdatensatz aus dem Projekt *Aktualisierung Belagskennwerte 2016* beigezogen (schwarze Punkte). Die vorliegenden Messergebnisse wurden zum bestehenden Gesamtdatensatz 2016 hinzugefügt und gemäss ihrer Fragestellung unterschiedlich markiert. Es werden die Werte aus den Messjahren 2018-2020 und 2021 dargestellt. Die Messwerte aus den Jahren 2018-2020 sind etwas blasser dargestellt. Zur unterstützenden Einordnung und Interpretation der Messergebnisse sind in den Grafiken die Zielkurven (schwarze Linien) für lärmarme Beläge (Endwert -1 dB) und lärmarme Beläge mit grosser Wirkung (Endwert -3 dB) dargestellt. In der Grafik für AC und Übergangsbeläge wird keine Zielkurve dargestellt.

SDA 4 / SDA 6 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%

Abbildung 4: Übersicht von allen untersuchten SDA 4/SDA 6 Belägen während der Messkampagne 2018-2021.

- Insgesamt wurden 99 lärmarme Beläge mit Grösstkorn 4mm bzw. 6mm mit unterschiedlichem Belagsalter auf ihre akustische Wirkung untersucht (32 Beläge im Jahr 2018, 26 Beläge im Jahr 2019, 28 Beläge im Jahr 2020 und 13 Beläge im Jahr 2021)
- Rund zwei Drittel (63 von 99 Belägen) der untersuchten Beläge entsprechen in Abhängigkeit des Belagsalters den Erwartungen und liegen auf oder unter der Zielkurve LAB mit grosser Wirkung.

SDA 8 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%

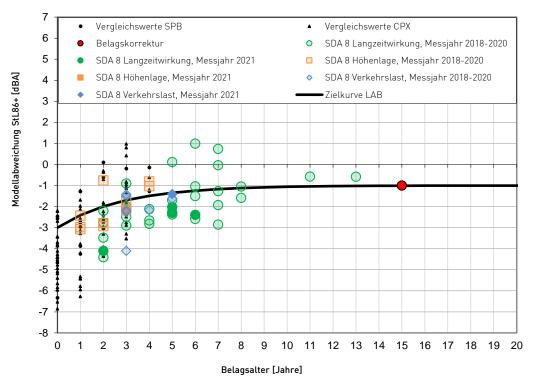


Abbildung 5: Übersicht von allen untersuchten SDA 8 Belägen während der Messkampagne 2018-2021.

- Insgesamt wurden 51 SDA 8 Beläge mit unterschiedlichem Belagsalter untersucht (19 Beläge im Jahr 2018, 12 im Jahr 2019, 13 Beläge im Jahr 2020 und 7 Beläge im Jahr 2021).
- Rund zwei Drittel (33 von 51 Belägen) der gemessenen Beläge entsprechen in Abhängigkeit des Belagsalters den Erwartungen und liegen auf oder unter der Zielkurve LAB.

AC und Übergangsbeläge, Innerorts (< 60 km/h), Mischverkehr 8%

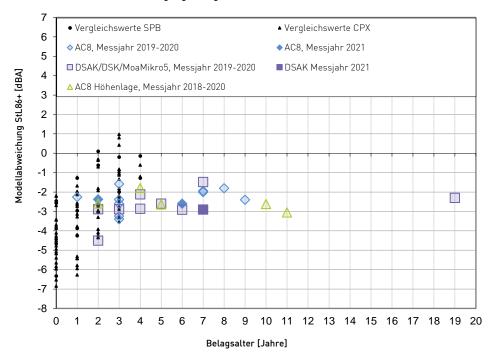


Abbildung 6: Übersicht von allen untersuchten AC- und Übergangsbelägen während der Messkampagne 2018-2021.

- Insgesamt wurden 27 AC und Übergangsbeläge mit unterschiedlichem Belagsalter auf ihre akustische Wirkung untersucht (2 Beläge im Jahr 2018, 12 Beläge im Jahr 2019, 10 Beläge im Jahr 2020 und 3 im Jahr 2021).
- Das Belagsalter liegt zwischen 1 und 19 Jahren. Alle Beläge erreichen in Abweichung zum Emissionsmodell StL-86+ im Streckenmittel akustische Belagsgütewerte kleiner als -1 dB(A) für Mischverkehr (N2 = 8%).

7. Analyse der Messresultate 2021

7.1 Analyse Langzeitwirkung SDA 4 / SDA 6

SDA 4 / SDA 6- Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Langzeitwirkung

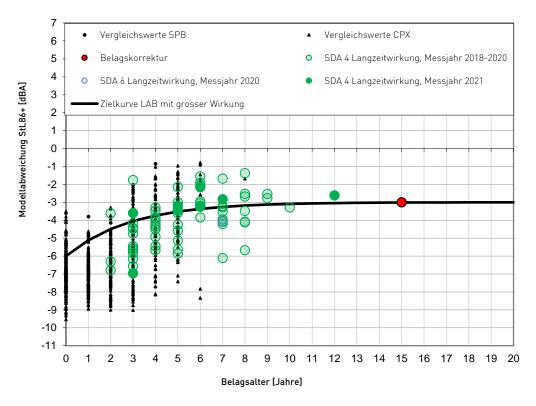


Abbildung 7: Übersicht aller SDA 4/SDA 6 Beläge der Messkampagne 2018–2021 mit Langzeitwirkung (Mischverkehr N2=8%).

- Im Jahr 2021 wurden insgesamt 8 lärmarme Beläge mit 4mm Grösstkorn für die Auswertung der Langzeitwirkung auf ihre akustische Wirkung in Abhängigkeit des Belagsalters untersucht.
- 7 Beläge entsprechen den Erwartungen und befinden unterhalb oder im Bereich der Zielkurve LAB mit grosser Wirkung.
- Auffällig ist der SDA 4 in Villars-sur-Glâne, Route des Préalpes, welcher 3 Jahre nach Einbau eine sehr gute akustische Wirkung von -7dB(A) aufweist.
- Auch 12 Jahre nach dem Einbau zeigt der Sapaphone 4 Belag in Anières, Route dHermance eine zufriedenstellende akustische Wirkung und liegt mit -2.6dB(A) nur knapp über der Zielkurve für LAB mit grosser Wirkung.
- Der SDA 4-16 in Müntschemier, Insstrasse liegt 6 Jahre nach Einbau mit einer Wirkung von -2.2dB(A) deutlich oberhalb der Zielkurve für LAB mit grosser Wirkung.

7.2 Analyse SDA 4 Höhenlage

SDA 4 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Höhenlage

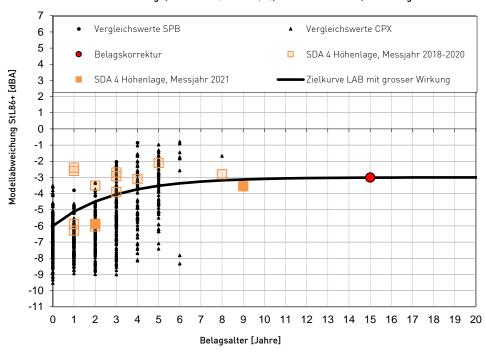


Abbildung 8: Übersicht aller SDA 4 Beläge der Messkampagne 2018-2021 mit einer Höhenlage >600m.ü.M (Mischverkehr N2=8%).

- Beide im Messjahr 2021 untersuchten Beläge mit 4mm Grösstkorn in Abhängigkeit der Höhenlage erfüllen die Erwartungen und befinden sich unterhalb der Zielkurve LAB mit grosser Wirkung.
- Besonders erfreulich ist der Nanosoft 4 Belag in Pont-en Ogoz, Route principale cantine, der mit -3.6dB(A) auch 9 Jahre nach dem Einbau eine akustische Belagswirkung unterhalb der Zielkurve aufweist.

7.3 Analyse SDA 4 Verkehrslast

7 Vergleichswerte SPB ▲ Vergleichswerte CPX 6 5 Belagskorrektur Zielkurve LAB mit grosser Wirkung 4 Modellabweichung StL86+ [dBA] SDA 4 Verkehrslast, Messjahr 2021 SDA 4 Verkehrslast, Messjahr 2018-2020 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 Belagsalter [Jahre]

SDA 4 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Verkehrslast

Abbildung 9: Übersicht aller SDA 4 Beläge der Messkampagne 2018-2021 mit hoher Verkehrslast (Mischverkehr N2=8%).

- Die 3 im Messjahr 2021 untersuchten Belägen mit 4mm Grösstkorn befinden sich knapp oberhalb der Zielkurve für LAB mit grosser Wirkung.
- Gesamthaft betrachtet sind die Erwartungen der akustischen Wirkung unter Berücksichtigung der Verkehrslast für die Messtrecken 2021 knapp erfüllt.

7.4 Analyse Langzeitwirkung SDA 8

SDA 8 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Langzeitwirkung

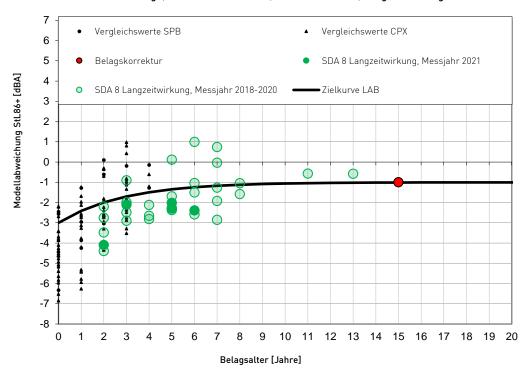


Abbildung 10: Übersicht aller SDA 8 Beläge der Messkampagne 2018-2021 mit Langzeitwirkung (Mischverkehr N2=8%).

- Insgesamt liegen 4 von 5 der im Messjahr 2021 untersuchten Beläge mit 8mm Grösstkorn deutlich unterhalb und ein Belag im Bereich der Zielkurve für LAB.
- Auffällig ist der ACMR 8 Belag in Saignelégier, Rte de France, welcher 2 Jahre nach Einbau eine sehr gute akustische Wirkung von -4.1dB(A) aufweist und deutlich unter der Zielkurve zu liegen kommt.
- Der SDA 8 Belag in Veyrier, Route de Marsillon, zeichnet sich auch 6 Jahre nach Einbau durch eine gute akustische Belagswirkung aus (-2.4dB(A)).

7.5 Analyse SDA 8 Höhenlage

SDA 8 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Höhenlage

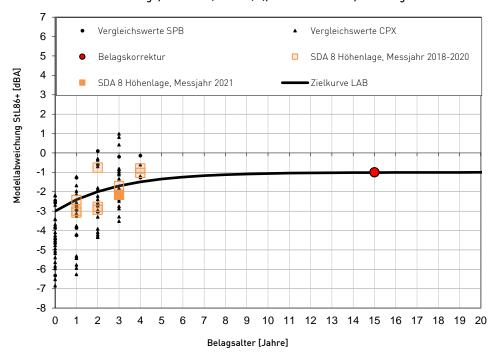


Abbildung 11: Übersicht aller SDA 8 Beläge der Messkampagne 2018-2021 mit einer Höhenlage >600m.ü.M (Mischverkehr N2=8%).

Kommentar:

■ Der einzige im Jahr 2021 untersucht SDA 8 Belag (St. Gallen, Burgstrasse) in Abhängigkeit der Höhenlage befindet sich mit -2.2dB(A) knapp unterhalb der Zielkurve für LAB.

7.6 Analyse SDA 8 Verkehrslast

SDA 8 - Beläge, Innerorts (< 60 km/h), Mischverkehr 8%, Verkehrslast

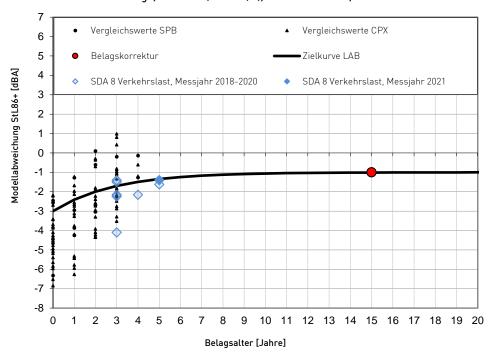


Abbildung 12: Übersicht aller SDA 8 Beläge der Messkampagne 2018-2021 mit hoher Verkehrslast (Mischverkehr N2=8%).

Kommentar:

 Der einzige im Messjahr 2021 untersuchte SDA 8 Belag in Abhängigkeit der Verkehrslast (Biberist, Engestrasse) befindet sich 5 Jahre nach Einbau mit einer Wirkung von -1.4dB(A) im Bereich der Zielkurve für LAB.

7.7 Analyse AC und Übergangsbeläge

AC und Übergangsbeläge, Innerorts (< 60 km/h), Mischverkehr 8%

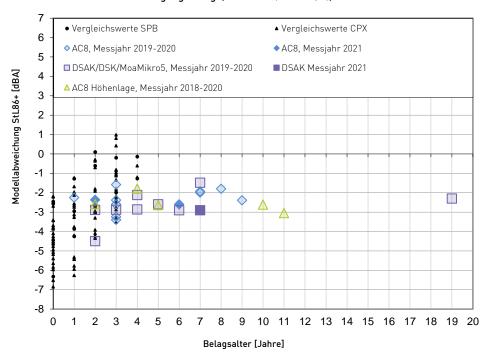


Abbildung 13: Übersicht aller AC- und Übergangsbeläge der Messkampagne 2018-2021 (Mischverkehr N2=8%).

- Alle der im Messjahr 2021 untersuchten AC und Übergangsbeläge weisen unabhängig des Belagsalters einen Belagsgütewert in Abweichung zum Modell StL-86+ kleiner -1dB(A) aus.
- Der DSAK Belag Wittenbach SG zeigt auch 7 Jahre nach Einbau gute akustische Belagsgütewerte auf (-2.9dB(A)).
- Auch der AC8 Belag in Zürich, Forchstrasse zeigt 6 Jahre nach Einbau für einen konventionellen Strassenbelag mit -2.6dB(A) eine gute akustische Wirkung auf.

8. Erkenntnisse Messjahre 2018-2021

Um Lücken im Wissenstand betreffend die langfristige akustische Wirkung von lärmarmen Belägen im Innerortsbereich zu schliessen, wurden in den vergangenen vier Jahren hauptsächlich Strecken mit SDA 4 und SDA 8 Belägen ausgewählt. Um zudem Aufschlüsse über spezifische Gegebenheiten, wie der Einfluss der Höhenlage und der Verkehrslast zu erhalten, wurden diese Kriterien bei der Messstreckenauswahl mitberücksichtigt. Zusätzlich wurden vielversprechende AC Beläge und lärmoptimierte Übergangsbeläge herbeigezogen.

Die bestehenden Tendenzen, die sich aus den vorangegangenen Messungen der Jahre 2018-2020 ableiten liessen konnten mit den aktuellen Messungen bestätigt werden. Im Folgenden wird ein kurzer Überblick der erzielten Erkenntnisse unter Berücksichtigung der unter Kapitel 1 beschriebenen Fragestellungen gegeben.

SDA Beläge mit Grösstkorn 4mm

Viele 4er Beläge weisen auch mit zunehmendem Alter gute akustische Wirkungen auf. Die ersten Ergebnisse deuten darauf hin, dass die meisten SDA4 Beläge in der Höhenlage unabhängig des Belagsalters die zu erwartende akustische Wirkung meistens nicht erreichen. Bei den wenigen Ausnahmen handelt es sich fast immer um jüngere Beläge. Die gemessenen 4er Beläge mit hoher Verkehrslast mögen die Erwartungen grösstenteils zu erfüllen. Auch ältere Beläge weisen teilweise eine akustische Wirkung auf, die deutlich unter oder im Bereich der Zielkurve liegt.

SDA Beläge mit Grösstkorn 8mm

Der Grossteil der im Rahmen dieser Studie gemessenen 8er Beläge zeigt eine gute akustische Langzeitwirkung. Die Ergebnisse zeigen, dass die meisten der untersuchten 8er Beläge mit Lage >600 m.ü.M im Bereich der Zielkurve zu liegen kommen. Innerhalb der Beläge mit gleichem Einbaujahr zeigen sich mit einer Ausnahme nur kleine Unterschiede in der Belägswirkung. Weitere Messungen werden zeigen, ob sich diese Tendenz bestätigen lässt. Die 8er Beläge mit hoher Verkehrslast erfüllen die Erwartungen und die Belagswirkung ist im Bereich oder unterhalb der Zielkurve.

AC und Übergangsbeläge

Die AC und Übergangsbeläge haben zu Beginn im Verhältnis zu neu eingebauten SDA Belägen eine deutlich schlechtere akustische Wirkung. Die Messergebnisse der letzten vier Jahre und zeigen jedoch, dass die anfängliche Belagswirkung dieser Beläge im Verlauf der Jahre nur geringfügig nachlässt. Insbesondere die AC8 Beläge in der Höhenlage, die im Rahmen des vorliegenden Projektes gemessen wurden, zeigen sich aus akustischer Sicht eher stabil. Aufgrund dessen werden diese Beläge auch im weiteren Verlauf des Projektes im Fokus bleiben und weitere Messungen werden zeigen, ob sich diese Tendenz bestätigen lässt.

Kommentare

Die Datenanalysen zeigen auch innerhalb der jeweiligen Fragestellung bei Belägen gleichen Alters teilweise eine grosse Variabilität in der Belagswirkung. Ob dies auf bautechnische Hintergründe (Zusammensetzung des Mischgutes, Verdichtung, etc), auf unterschiedliche mechanische Belastungen (DTV, Schwerverkehr) oder auf die Anzahl Frostzyklen in den Höhenlagen zurückzuführen ist, muss weiter abgeklärt werden.

Zur weiteren Vertiefung der aus den Messjahren 2018 bis 2021 erhaltenen Erkenntnisse zur langfristigen akustischen Wirkung von SDA Belägen und Übergangsbelägen, wird empfohlen, das Messkonzept in den kommenden Jahren in ähnlicher Weise fortzuführen. Weitere Messungen müssen zeigen, ob sich die oben festgestellten Tendenzen bestätigen lassen.

In der Schweiz haben sich lärmarme Beläge (LAB) vielerorts als Lärmschutzmassnahme etabliert. Wie die Messungen zeigen, stellen LAB eine effektive Lärmschutzmassnahme an der Quelle dar, um die Bevölkerung dauerhaft von übermässigen Lärmbelastungen zu schützen. Die zahlreichen schweizweit eingebauten LAB vermögen den Strassenlärm auch mit zunehmendem Alter deutlich zu reduzieren. Weiterhin gilt es, Erfahrungen zu sammeln und zu analysieren, um weitere situations- und technologieabhängige Optimierungen zu erzielen.

9. Ausblick Entscheidmatrix/Tool Empfehlung geeignete Bauweise

Wie in Kapitel 8 erläutert, variieren die Belagswirkungen der gemessenen Beläge auch innerhalb der jeweiligen Fragestellung bei Belägen gleichen Alters teilweise stark. Verlässliche Empfehlungen zur Wahl der geeigneten Bauweise (Typ LAB oder konventionell) auf einem spezifischen Strassenabschnitt können zum jetzigen Zeitpunkt aufgrund der Datenmenge und der Variabilität nicht herbeigeführt werden. Weitere Messungen und Analysen sind in den kommenden Jahren vorgesehen.

Die folgende Abbildung enthält eine schematische Darstellung der weiter zu erarbeitenden Entscheidungshilfe zur situationsspezifischen Auswahl geeigneter Bauweisen (Typ LAB oder konventionell).

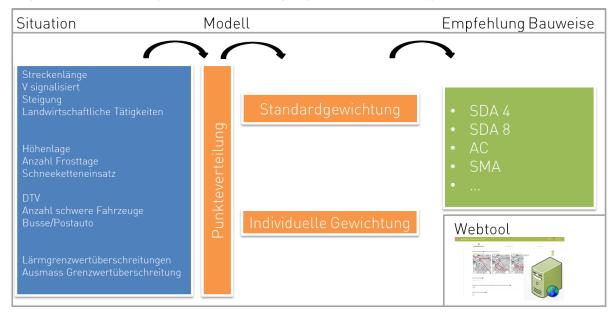


Abbildung 14: Schematische Darstellung Tool Empfehlung geeignete Bauweise

Mögliche Eingabeparameter und die dazugehörige Skala/Range sind in Abbildung 15 aufgezeigt. Es ist zu beachten, dass die Parameterliste nicht vollständig ist. Die Skala/Ranges dienen der Einordnung und sind nicht abschliessend fixiert. Die Parameter, Skala, Modellierung (Punktevergabe und Gewichtung) werden weiter ausgearbeitet und getestet.

Parameter	Skala/Range	Punkte	Gewichtung
DTV	hoch	XX	XX
	mittel	xx	xx
	tief	xx	xx
Anzahl schwere Fz	>1000 Überrollungen/Tag	XX	XX
	<1000 Überrollungen/Tag	xx	xx
√ signalisiert	>60	XX	XX
5	50	xx	XX
	40	xx	xx
	30	xx	xx
Steigung	<3	XX	XX
3 3	3.1 bis 6	xx	xx
	6.1 bis 9	xx	xx
	9.1 bis 12	xx	xx
	>12	xx	xx
Landwirtschaftliche Tätigkeiten	viel	xx	XX
	mittel	xx	xx
	wenig	xx	xx
Höhenlage	>600	xx	XX
Terremage	601-800	xx	xx
	801-1000	xx	xx
	>1000	xx	xx
Anzahl Tage mit Bodenfrost	< 120	XX	XX
mzant rage fint Boatim oot	> 120	xx	xx
Schneeketteneinsatz MIV	sehr selten	xx	XX
	selten	xx	xx
	oft	xx	xx
	sehr oft	xx	XX
Schneeketteneinsatz Busse/Postauto	sehr selten	XX	XX
Sermeenements Busseyr ostadio	selten	xx	xx
	oft	xx	XX
	sehr oft	XX	XX
_ärmgrenzwertüberschreitungen	ja	XX	XX
_ag. enzwer taber sem entangen	nein	XX	XX
Ausmass Grenzwertüberschreitung	>3 dB	XX	XX
addition of chizwer tuber semi-citality	2 dB	XX	xx
	1 dB	XX	xx

Empfohlene Mindestpunktzahl SDA 4	xx
Empfohlene Mindestpunktzahl SDA 8	XX
Empfohlene Mindestpunktzahl AC	xx
Empfohlene Mindestpunktzahl SMA	XX

Abbildung 15: beispielhafte Zusammenstellung möglicher Parameter und Skala (nicht abschliessend)

Die oben dargestellte schematische Darstellung und die Parameterliste zeigen beispielhaft den Ausblick zur Entscheidungshilfe auf und sind nicht abschliessend.

Die Entscheidungshilfe wird weiter ausgearbeitet und getestet. Der Mechanismus wird so aufgebaut, dass dieser zukünftig aufgrund neuer Erkenntnisse aktualisiert und in einem Webtool umgesetzt werden kann.

Grolimund + Partner AG

Erik Bühlmann

Tina Saurer

T. James

Lena Gafner