

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Umwelt BAFU

Abteilung Wasser

2021

Die erforderliche Geschiebefracht

Fachbericht zum Modul «Geschiebehaushalt – Massnahmen» der Vollzugshilfe Renaturierung der Gewässer

Impressum

Herausgeber

Bundesamt für Umwelt (BAFU) Abteilung Wasser Papiermühlestrasse 172 3003 Bern

Das BAFU ist ein Amt des Eidg. Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK).

Autoren

Dr. Ueli Schälchli, Flussbau AG SAH, 8008 Zürich; ueli.schaelchli@flussbau.ch Dr. Lukas Hunzinger, Flussbau AG SAH, 8008 Zürich, lukas.hunzinger@flussbau.ch

Kontakt

Manuel Nitsche 058 464 07 05 manuel.nitsche@bafu.admin.ch

Inhaltsverzeichnis

In	npress	ım		2
1	Ein	eitung		4
	1.1	Zweck des Fachberichts		4
	1.2	Motivation, Ziele und Konzept d	er Methodik «erforderliche Geschiebefracht»	4
	1.3	Inhalt des Fachberichts		6
2	Her	leitung		7
	2.1	•		
	2.1. 2.1.			
	2.2	Datengrundlage		10
	2.3	Erweiterung der Gerinneformklo	assen	12
	2.4	Einfluss der Geschiebefracht auf	f die Gerinnebreite	14
	2.4	1 Prozesse		14
	2.4	2 Korrekturfaktor für die Ger	rinnebreite nach Parker	15
	2.4	3 Berechnungsformeln		25
	2.5	Einfluss der Geschiebefracht auf	f die Gerinneform	26
	2.6	Ziele für Gerinneform und Anfor	derung an die Geschiebefracht	30
	2.7	Vergleich der Auswertungen mit	t HQ2 und HQ5	35
3	Ber	echnungsschritte und Eingangsp	arameter	39
4	Sen	sitivitätsanalyse		42
5	Anv	vendungsempfehlung		44
6	Lite	ratur		46
7		shole		ΔV
•	Jy11			

Anhang Datensatz Beispielgewässer

1 Einleitung

1.1 Zweck des Fachberichts

Der vorliegende Fachbericht enthält die wissenschaftliche Beschreibung der Methodik «erforderliche Geschiebefracht», welche als Bestandteil des Vollzugshilfemoduls «Geschiebehaushalt – Massnahmen» (Hunzinger et al., 2020, in Anhörung) der Vollzugshilfe Renaturierung der Gewässer des Bundesamts für Umwelt (BAFU) publiziert werden soll. Im Fachbericht wird die Methodik detailliert hergeleitet, es werden Berechnungsschritte und Eingangsparameter nachvollziehbar definiert und es werden mögliche Fehler der Methodik quantifiziert.

Die vorliegende Arbeit wurde im Auftrag der Abteilung Wasser des Bundesamtes für Umwelt erstellt, damit Anwender und die projektbegleitende Expertengruppe die Methodik nachvollziehen und beurteilen können.

1.2 Motivation, Ziele und Konzept der Methodik «erforderliche Geschiebefracht»

Die Motivation für die Entwicklung der vorliegenden Methodik gründet auf den konkreten Anforderungen des Gewässerschutzgesetzes: Darin wird verlangt, dass Anlagen den Geschiebehaushalt nicht so verändern dürfen, dass Tiere, Pflanzen und deren Lebensräume, der Grundwasserhaushalt und der Hochwasserschutz wesentlich beeinträchtigt werden (Artikel 43a Gewässerschutzgesetz, GSchG). Unter «wesentlicher Beeinträchtigung» von Tieren, Pflanzen und deren Lebensräumen durch einen veränderten Geschiebehaushalt versteht der Gesetzgeber eine nachteilige Veränderung von «morphologischen Strukturen oder morphologischer Dynamik» (Artikel 42a Gewässerschutzverordnung, GSchV).

In der Vollzugshilfe wird diese Zielsetzung präzisiert, indem u. a. Ziele für die Morphologie des Gewässers und die Sohlenlage formuliert werden. Die konkreten Ziele für die Morphologie heissen:

- Die Gerinneform des Gewässers ist ähnlich wie im Referenzzustand (gleicher Typ).
- Geschiebeablagerungen haben eine ähnliche Ausdehnung und Mächtigkeit wie im Referenzzustand.
- Die örtliche Verteilung des Substrattypen ist anteilsmässig ähnlich wie im Referenzzustand. Die Geschiebeablagerungen werden mehr als einmal im Jahr erneuert.

Daraus werden Anforderungen an die Geschiebefracht abgeleitet: Die Geschiebefracht ist so gross, dass sich in den naturnahen Abschnitten eine Morphologie und Dynamik wie oben beschrieben einstellen können.

Die Gesetzgebung bringt den Geschiebetransport als *Ursache* und morphologische Strukturen als *Wirkung* in einen Kausalzusammenhang. Auf diesen Zusammenhang hat beispielsweise Marti (2006) auf Basis von physikalischen Modellversuchen hingewiesen. In seiner Publikation erwähnt er in Kapitel 9.1.1 weitere Autoren, welche dieselbe Beobachtung beschreiben. Es existiert jedoch keine praxistaugliche Methode, die quantitativ beschreibt, wie sich eine veränderte Geschiebefracht auf morphologische Strukturen auswirkt. Für die konkrete, praxistaugliche Umsetzung der gesetzlichen Forderungen ist eine solche Methode aber zwingend.

Bild 1 Veränderung eines Gewässers mit verzweigter Gerinneform (a) zu einem gewundenen Gerinne (b) nach dem Durchgang einer Hochwasserwelle mit auf 20% reduzierter Geschiebezufuhr. Physikalischer Modellversuch von Marti an der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich (Marti und Bezzola, 2004).

Aus diesem Grund beauftragte das BAFU 2016 die Flussbau AG SAH mit der Entwicklung praktischer Ansätze. Die erarbeiteten Ansätze gehen von der zentralen Hypothese aus, dass naturnahe morphologische Strukturen und eine morphologische Dynamik, wie sie in naturnahen oder revitalisierten Gewässerabschnitten angestrebt werden, nur bei genügend Geschiebezufuhr zu erzielen sind und dass sich bei zu geringer Geschiebezufuhr das Gerinne unter Verlust der Strukturen einengt. Die Geschiebefracht, die zur Erreichung der gesetzlich geforderten naturnahen morphologischen Strukturen nötig ist, wird als «erforderliche Geschiebefracht» bezeichnet. Mit der vorliegenden Methodik wird allerdings nicht die «erforderliche Fracht» an sich ermittelt, sondern der Anteil der erforderlichen Geschiebefracht an der Fracht im Referenzzustand, der erforderlich ist (zur Erreichung der in der Gewässerschutzverordnung geforderten morphologischen Strukturen). Methoden zur Ermittlung der Geschiebefracht im Referenzzustand sind nicht Bestandteil der vorliegenden Methodik.

Die Autoren haben bewusst eine empirische Methode verfolgt, die konkret berücksichtigt, welche Gerinnestrukturen sich tatsächlich im naturnahen Zustand des jeweiligen Gewässers bilden. Die empirische Methode bietet damit entscheidende Vorteile gegenüber theoretischen und numerischen Ansätzen. Sie liefert aufgrund der inhärenten Unsicherheit von Frachtabschätzungen und empirischen Zusammenhängen keine abschliessend korrekte «erforderliche Geschiebefracht». Daher ist der Wert als beste Schätzung und damit als zentrale Planungsgrösse bei Sanierungs- und Wasserbauprojekten anzusehen. Mit einem geeigneten Monitoring kann das Ergebnis im Feld evaluiert und wenn notwendig angepasst werden.

1.3 Inhalt des Fachberichts

Der Fachbericht stellt eine Methode zur Ermittlung der «erforderlichen Geschiebefracht» dar, mit welcher das im Vollzugshilfemodul formulierte konkrete Ziel für die Gerinneform erreicht werden kann.

Das Kapitel 2 umfasst die Herleitung der Methode. In Kapitel 3 werden die einzelnen Berechnungsschritte zur Bestimmung der erforderliche Geschiebefracht und die dafür notwendigen Eingangsparameter beschrieben und in Kapitel 4 wird die Sensitivität der Berechnung auf Fehler an den Eingangsparametern aufgezeigt. Zum Schluss wird in Kapitel 5 eine Empfehlung zur Anwendung formuliert.

2 Herleitung

2.1 Ansätze der Regimetheorie

2.1.1 Gerinneform

Es bestehen verschiedene Ansätze der Regimetheorie, mit welchen die Gerinneform eines Gewässers beschrieben werden kann. In Bezzola (2003) werden beispielsweise folgende etablierte Ansätze beschrieben:

Parker (1976)

Anderson et al. (1975), Die Gerinneformen werden in Abhängigkeit der Parameter h/B und J/Fr abgegrenzt (h = Abflusstiefe, B = Gerinnebreite, J = Gefälle, Fr = Froude-Zahl). Es wird unterschieden zwischen geraden Gerinnen mit ebener Sohle, Mäandern, Gerinnen mit 1-2 Teilgerinnen, 2-3 Teilgerinnen sowie verzweigten Gerinnen mit bis über 10 Teilgerinnen.

Jäggi (1983)

Die Gerinneformen werden in Abhängigkeit von B/d_m und J abgegrenzt (d_m = mittlerer Korndurchmesser). Es wird unterschieden zwischen Gerinnen ohne Bänke sowie Gerinnen mit Bänken. Das Kriterium dient insbesondere zur Beurteilung des Auftretens von alternierenden Bänken.

da Silva (1991) Bild 2

Die Gerinneformen werden in Abhängigkeit der Parameter h/D^1 und B_w/h abgegrenzt (B_w = Wasserspiegelbreite). Es wird unterschieden zwischen folgenden drei Teilflächen:

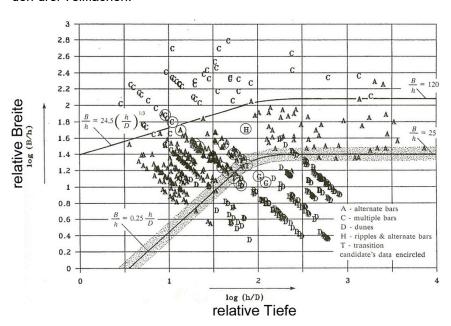


Bild 2 Einteilung der Gerinneform in der B/h zu h/D Ebene (Yalin / da Silva Diagramm). Figur 5.2 aus da Silva (1991).

D = d₅o des Sohlenmaterials. d₅o im angelsächsischen Raum entspricht gemäss Marti (2006) etwa d₅m nach Meyer-Peter und Müller.

- (1) Gerade Gerinne, Gerinne mit ebener Sohle / Dünen und mäandrierende Gewässer.
- (2) Alternierende Bänke.
- (3) Verzweigte Gerinne.

Zarn (1997) hat die Abgrenzung zwischen den Teilflächen (1) und (2) modifiziert.

Ahmari & da Silva (2011), Bild 3 In der Publikation von Ahmari & da Silva wird die Abgrenzung der Gerinneformen im sogenannten «Yalin/da Silva Diagramm» (Bild 2) anhand von physikalischen Modellversuchen und Naturbeobachtungen vertieft untersucht. Dabei werden folgende Bereiche unterschieden:

- (1) Gerinne mit ebener Sohle, graue Fläche.
- (2) Mäandrierende Gerinne, rot schraffierte Fläche. Im rot eingekreisten Bereich sind kaum Punkte vorhanden. In da Silva (1991) werden in diesem Bereich Gewässer mit Dünen angegeben (Bild 2).
- (3) Gerinne mit alternierenden Bänken, orange Fläche ("alternate bar region").
- (4) Verzweigte Gewässer mit 2 Teilgerinnen, grüne Fläche ("region of 2-row bars").
- (5) Verzweigte Gewässer mit mehr als 2 Teilgerinnen, blaue Fläche ("region of multiple bars having three or more rows").

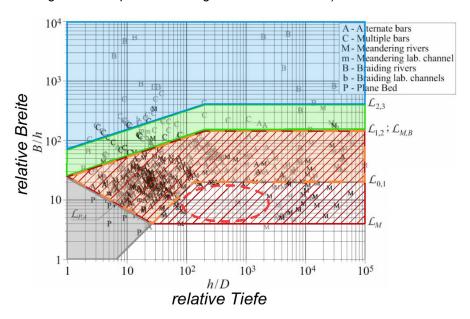


Bild 3 Yalin / da Silva Diagramm mit originalem Datensatz und Zuordnung der Gerinneform (Ahmari & da Silva 2011). Farben vgl. Text.

Wie die Literatur zeigt, wird die Gerinnebreite bei abnehmender Geschiebefracht kleiner.

Bei Ahmari & da Silva werden B_w/h und h/d_m als unabhängige Grössen betrachtet. Die Gerinneform ist die abhängige Grösse von $W = f(B_w/h; h/d_m)$. Nimmt B_w ab, so verändert sich die Gerinneform.

Wenn die Gerinnebreite (resp. die Wasserspiegelbreite B_w) von der Geschiebefracht abhängig ist und die Gerinneform von B_w , dann zeigt sich im Ahmari & da Silva Diagramm die Auswirkung einer veränderten Geschiebefracht.

Daher verwenden wir im Folgenden das Ahmari & da Silva Diagramm, um die Auswirkungen einer Abnahme der Geschiebefracht auf die Gerinneform aufzuzeigen.

2.1.2 Gerinnebreite

Empirische Formeln

Die Gerinnebreite eines Gewässers kann anhand von empirischen Formeln abgeschätzt werden. Als Eingangsgrössen benötigen die Formeln einen massgebenden Abfluss und einen charakteristischen Korndurchmesser des Sohlenmaterials (d_{50} , d_m). Die Formel von Parker (1979) hat die Form

$$BG_P = 4.4 \sqrt{\frac{Q}{\sqrt{(s-1) g d_m}}} \tag{1}$$

mit

 BG_P = Gerinnebreite (Parker)

Q = Massgebender Abfluss bei "bankfull or dominant conditions"

s = Verhältnis der Feststoffdichte zur Dichte des Wassers (2.65)

 $g = \text{Erdbeschleunigung } (9.81 \text{ m/s}^2)$

 d_m = mittlerer Korndurchmesser des Sohlenmaterials².

Mit der dimensionslosen Gerinnebreite

$$B^* = \frac{BG_P}{d_m} \tag{2}$$

und dem dimensionslosen Abfluss

$$\overline{Q} = \frac{Q}{\sqrt{\left((s-1)g \ d_m^5\right)}} \tag{3}$$

ergibt sich gemäss Parker (1979)

$$B^* = 4.4\sqrt{\overline{Q}} \tag{4}$$

Einige weitere Autoren (Ikeda *et al.* 1988, Ashmore 2001, Millar 2005) berücksichtigen in ihren Formeln zusätzlich das Gefälle und den Korndurchmesser d_{90} .

In der Originalliteratur wird d_{50} anstelle von d_m verwendet. Vergleiche Fussnote 1.

Gerinnebreite in Funktion des Geschiebetransports Eine weitere Formel von Parker (27c in Parker 1979) beschreibt die Gerinnebreite zusätzlich in Funktion der Geschiebetransportrate Q_b . Wird in der Formel Q_b zu Null gesetzt, so wird die Gerinnebreite auch Null.

Diese Formel ist für die vorliegende Fragestellung nicht geeignet, weil eine Übertragung der Transportrate auf eine jährliche Geschiebefracht nicht eindeutig machbar ist.

"bankfull or dominant conditions"

Die Wahl des Abflusses hat einen massgebenden Einfluss auf die Berechnung der Gerinnebreite. Der für die Gerinnegeometrie massgebende Abfluss wird je nach Studie als bordvoller (gerinnefüllender) oder als gerinnebildender Abfluss definiert. Der gerinnebildende oder effektive Abfluss wurde erstmals bei Wolman und Miller (1960) beschrieben: als Abfluss, bei dem das Produkt aus Geschiebetransportrate und Häufigkeit maximal ist. Der gerinnebildende Abfluss wird oft als Abfluss verstanden, der massgebend für den Erhalt der Gerinnegrösse und der Gerinneform ist.

Sowohl der bordvolle als auch der gerinnebildende Abfluss können als Jährlichkeit (HQ_x) angegeben werden – sie variieren aber zwischen Gewässern. Bei Talmäandern ist der bordvolle Abfluss kaum zu bestimmen und bei Gewässern mit grobem Sohlenmaterial dürfte der gerinnebildende Abfluss höher sein, als bei Gewässern, bei welchen Sohlenmaterial und Geschiebe identisch sind.

Als massgebender Abfluss wird oft ein Abfluss zwischen HQ_2 und HQ_5 angenommen. Im Folgenden werden diese zwei Abflüsse berücksichtigt.

Für die nachfolgende Herleitung der Methode zur Bestimmung der erforderlichen Geschiebefracht wird die Gerinnebreite nach Parker (Gleichung 1) als Referenzbreite aus folgenden Gründen verwendet:

- Die Formel ergibt einen plausiblen Mittelwert.
- Die Formel ist robust und unabhängig von sensitiven Parametern wie dem Gefälle.

2.2 Datengrundlage

Für die vorliegende Studie wurden 33 Gewässerabschnitte untersucht, die sich im natürlichen oder naturnahen Zustand befinden oder sich befunden haben (Tabelle 1). Im Anhang sind die Grundlagen dokumentiert.

Tabelle 1 Datensatz der ausgewerteten Gewässerabschnitte.

HQ2, HQ5: Bettbildende Abflüsse. GF: Geschiebefracht. BG: Gerinnebreite.

Geschiebefracht, Gerinnebreite und Gerinneform wurden für den Referenzzustand bestimmt.

Klassen Gerinneform (vgl. Kapitel 2.1.3): 5: Verzweigt mit mehr als 2 Gerinnen, 4: Verzweigt mit 2 Gerinnen, 3:

Gewunden mit Inseln und Bänken, 2: Gewunden mit Bänken, 1: Mäander.

Nr.	Gewässer	Abschnitt (Ort)	HQ ₂ [m ³ /s]	<i>H</i> Q₅ [m³/s]	<i>GF</i> [m³/a]	BG [m]	Ge- rinne- form
1	Alpenrhein	Mastrils	1'000	1'200	70'000	300	4
2	Alpenrhein	Kriessern	1'300	1'700	52'000	380	4

3	Alpenrhein	Rheineck	1'300	1'700	20'000	191	3
4	Aare	Grenchen	520	600	0	146	1
5	Aare	Wynau	720	860	13'500	93	2
6	Aare	Aarau-Biberstein	830	1'000	13'000	160	3
7	Aare	Wildegg-Brugg	460	640	7'000	78	2
8	Aare	Klingnau	1'520	1'800	16'000	240	3
9	Hinterrhein	Cazis	360	500	60'000	500	5
10	Ilfis	Kröschenbrunnen	105	125	2'000	45	3
11	Kleine Emme	Malters-Emmen	306	400	15'000	189	5
12	Limmat	Dietikon	410	500	2'800	120	3
13	Reuss	Rathausen-Perlen	480	560	14'000	98	3
14	Reuss	Perlen-Gisikon	480	560	13'000	170	4
15	Sihl	Adliswil	160	220	3'300	51	3
16	Sellenbodenbach	Neuenkirch	9	14	30	7.5	2
17	Suhre	Triengen	14.2	19.7	130	12	2
18	Wiese	Basel	103	142	3'000	85	4
19	Wigger	Altishofen	70	95	1'500	45	3
20	Brenno	Castro	141	200	12'500	66	4
21	Brenno	Marogno	177	251	14'000	100	4
22	Brenno	Loderio	259	368	19'000	225	5
23	Schwarzwasser	Heubach	25	34	3'200	48	4
24	Thur	Wattwil	175	230	4'000	45	2
25	Thur	Niederstetten	490	640	12'000	180	4
26	Thur	Bürglen	590	750	18'500	170	4
27	Thur	Frauenfeld	580	750	18'500	250	4
28	Thur	Niederneunforn	570	750	20'000	175	4
29	Töss	Kollbrunn	77	96	2'600	110	5
30	Töss	Leisental	89	118	2'800	100	4
31	Töss	Dättlikon	115	160	2'800	120	4
32	Simme	Niedermettlisau	87	122	12'300	52	3
33	Gadmerwasser	Chalenegg	25	37	4'300	21	3

2.3 Erweiterung der Gerinneformklassen

Datensatz Schweizer Gewässer In Bild 4 ist der in vorliegender Studie verwendete Datensatz von Schweizer Gewässern im natürlichen oder naturnahen Zustand im Diagramm von Ahmari & da Silva (2011) eingetragen. Der Datensatz verteilt sich auf die drei Bereiche "Verzweigte Gewässer mit mehr als 2 Gerinnen", "Verzweigte Gewässer mit 2 Gerinnen" und "Mäandrierende Gewässer und alternierende Bänke".

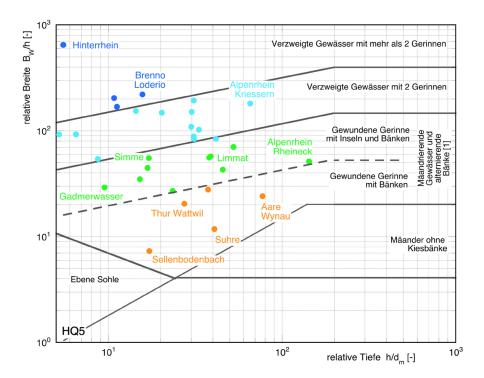


Bild 4 Datensatz von Schweizer Gewässern im modifizierten Ahmari & da Silva-Diagramm (2011). Der Bereich "mäandrierende Gewässer und alternierende Bänke" ist unterteilt in "Gewundene Gewässer mit Inseln und Bänken" sowie "Gewundene Gewässer mit Bänken". Die Punktfarbe entspricht der Gerinneform nach Feldbeurteilung.

Dunkelblaue Punkte: Verzweigte Gewässer mit mehr als 2 Gerinnen Hellblaue Punkte: Verzweigte Gewässer mit 2 Gerinnen Grüne Punkte: Gewundene Gewässer mit Inseln und Bänken Orange Punkte: Gewundene Gewässer mit Bänken

Berechnung der Wasserspiegelbreite Bw und der Abflusstiefe h mit HQ5 .

Verzweigte Gewässer

In den Bereichen mit verzweigten Gewässern stimmt die beobachtete Gerinneform mit der Zuordnung im Ahmari & da Silva Diagramm überein. Alle verzweigten Gewässer zeigen ein sehr dynamisches Flussbett mit Teilgerinnen und Bänken ohne Gehölz. Der Auenwald begrenzt den dynamischen Bereich seitlich. **Stark verzweigte Gewässer mit mehr als 2 Gerinnen** weisen die grössten Werte B_w/h auf und befinden sich oben links (Beispiele Hinterrhein bei Cazis, Brenno bei Loderio). **Verzweigte Gewässer mit durchschnittlich 2 Gerinnen** weisen ein etwas kleineres Verhältnis B_w/h auf (Beispiele: Alpenrhein Kriessern, Thur Frauenfeld, Reuss Perlen).

Mäandrierende Gewässer und alternierende Bänke Im Bereich "Mäandrierende Gewässer und alternierende Bänke" können folgende Gerinneformen identifiziert werden:

- Im oberen Bereich mit vergleichsweise grossen Werten B_w/h befinden sich vorwiegend Gewässer mit lokalen Verzweigungen, Inseln und Bänken. Die Inseln sind mit Gehölz bewachsen. Infolge der gegenüber den verzweigten Gewässern reduzierten morphologischen Dynamik wird der dynamische Bereich durch Gehölzstrukturen unterteilt. Diese Gerinneform bezeichnen wir als «Gewundene Gewässer mit Inseln und Bänken».
- Im unteren Bereich mit vergleichsweise kleinen Werten B_w/h befinden sich gewundene Gewässer mit Bänken. Die Bänke befinden sich entlang der Kurveninnenseiten und in gestreckten Abschnitten alternierend an den Ufern. Diese Gerinneform bezeichnen wir als «Gewundene Gewässer mit Bänken».

Unterteilung des Bereichs Mäandrierende Gewässer und alternierende Bänke Wird einem gewundenen Gewässer mit Inseln und Bänken Geschiebe entzogen, so verändert es sich zu einem gewundenen Gewässer mit Bänken. Dabei verlanden und verbuschen die trocken fallenden Teilgerinne. Gleichzeitig verschwinden charakteristische morphologische Strukturen und der Lebensraum verändert sich. Die morphologischen Strukturen und Prozesse sind deutlich differenzierbar, sodass wir die oben vorgeschlagene Unterteilung für die Vollzugshilfe als sinnvoll erachten.

Mäandrierende Gewässer Im Ahmari & da Silva Diagramm (Bild 3) befinden sich mäandrierende Gewässer zwischen den Linien $L_{\rm M}$ und $L_{0,1}$ mit $h/d_m > 2'000$. Entsprechend grosse Werte h/d_m können nur bei sehr feinem Sohlenmaterial erreicht werden. Solche Gewässer transportieren demnach kein Kies als Geschiebe.

Dem Bereich mit kleineren Werten h/d_m wurden in da Silva (1991) Gewässer mit Dünen zugeordnet (Bild 2). Entsprechende Gewässer verfügen nicht über Kiesbänke im engeren Sinne. Daher wird der Bereich (entspricht dem Bereich zwischen den Linien $L_{\rm M}$ und $L_{0,1}$ Bild 3) in der vorliegenden Arbeit als **Mäander ohne Kiesbänke** bezeichnet.

Im verwendeten Datensatz ist die Aare bei Grenchen das einzige Gewässer, das diesem Bereich zugeordnet werden kann. Bei einer feinkörnigen Sohle mit Dünen erreicht h/d_m einen Wert von 14'600. Der Datenpunkt liegt ausserhalb des in Bild 4 dargestellten Bereichs.

2.4 Einfluss der Geschiebefracht auf die Gerinnebreite

2.4.1 Prozesse

Wird aus einem geschiebeführenden Gewässer Kies entnommen, so nimmt dessen Gerinnebreite ab und die Gerinneform verändert sich hin zu einem gewundenen Gewässer mit Bänken. Wird einem Gewässer sämtliches Geschiebe entnommen, so wird eine minimale Breite erreicht, die Sohle pflästert sich stark ab und es bestehen keine sich regelmässig erneuernden Geschiebebänke mehr. Marti (2004, 2006) hat diese Zusammenhänge in physikalischen Modellversuchen untersucht und die Veränderung der Gerinneform infolge reduzierter Geschiebezufuhr aufgezeigt (Bild 1).

Beispiel Simme Niedermettlisau

Bild 5 zeigt die Simme bei der Niedermettlisau in den Jahren 1940 und 2015. Im Jahr 1940 war die Gerinneform gewunden mit Inseln und Bänken, die mittlere Geschiebefracht betrug 12'300 m³/a und die Gerinnebreite erreichte durchschnittlich 52 m. Im Jahr 2015 betrug die durchschnittliche Geschiebefracht 6'000 m³/a (Reduktion der Geschiebefracht aufgrund von Kiesentnahmen und dem Bau von Sammlern). Die Gerinneform war gewunden mit Bänken und die Gerinnebreite erreichte durchschnittlich noch 33 m. Das Abflussregime wurde nicht verändert und es sind keine bedeutenden Uferverbauungen vorhanden. Die Abnahme der Gerinnebreite ist alleine auf die reduzierte Geschiebefracht zurückzuführen.

Bild 5 Simme Niedermettlisau bei Därstetten.

Oben 1940, durchschnittliche Gerinnebreite 52 m, Geschiebefracht 12'300 m³/a.

Unten 2015, durchschnittliche Gerinnebreite 33 m, Geschiebefracht 6'000 m³/a.

Verlagerung im modifizierten Ahmari & da Silva Diagramm Bild 6 zeigt für das Beispiel Simme Niedermettlisau die Verlagerung der dimensionslosen Variablen h/d_m und B_w/h im modifizierten Ahmari & da Silva Diagramm infolge der Abnahme der Gerinnebreite von 1940 bis 2015. Die Reduktion der Geschiebefracht führte demnach zu einer sichtbaren Veränderung der Gerinneform vom oberen Rand des Bereichs der gewundenen Gewässer mit Inseln und Bänken in den Übergangsbereich zu den gewundenen Gewässern mit Bänken. Die beobachteten Gerinneformen passen gut mit den Gerinneformen gemäss Bild 4 überein.

Ebenfalls dargestellt ist die Verlagerung der dimensionslosen Variablen h/d_m und B_w/h des Alpenrheins bei Kriessern, wenn man die Variablen bei einer schrittweisen Abnahme der Gerinnebreite um je 50 m berechnet. Damit kann die theoretische Veränderung der Gerinneform bei einer Reduktion der Gerinnebreite veranschaulicht werden. Es zeigt sich, dass die Punkte in doppeltlogarithmischer Darstellung etwa auf einer Geraden liegen.

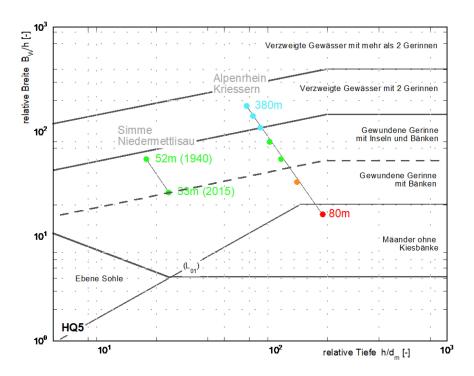


Bild 6 Veränderung der Gerinneform und Gerinnebreite der Simme Niedermettlisau zwischen 1940 und 2015. Dargestellt ist zudem die Veränderung der Gerinneform des Alpenrheins bei Kriessern bei einer schrittweisen Reduktion der Gerinnebreite um je 50 m.

2.4.2 Korrekturfaktor für die Gerinnebreite nach Parker

Die bisherigen Ausführungen haben gezeigt, dass die Geschiebeführung einen massgebenden Einfluss auf die Gerinnebreite hat, aber keine praxistauglichen Formeln bestehen, deren Einfluss zu quantifizieren.

Daher wird im Folgenden eine empirische Beziehung hergeleitet, mit welcher der Einfluss der durchschnittlichen jährlichen Geschiebefracht auf die Gerinnebreite berechnet werden kann.

Relative Geschiebefracht Als massgebender Parameter zur Berücksichtigung der Geschiebefracht wird die relative Geschiebefracht \overline{GF} verwendet, welche durch das dimensionslose Verhältnis zwischen der Geschiebefracht GF und dem gerinnebildenden Abfluss HQ_x definiert wird:

$$\overline{GF} = \frac{GF}{HQ_x} \tag{5}$$

Werden die Geschiebefracht in [m³/a] und der Abfluss in [m³/s] eingesetzt, so resultiert aufgrund des Verhältnisses zwischen Jahr und Sekunde ein Faktor von 31'536'000.

Die die relative Geschiebefracht \overline{GF} hat den Vorteil, dass die normierten Frachten unterschiedlicher Gewässer verglichen werden können und nicht von der Grösse des Gewässers abhängig sind.

Anwendung der Gerinnebreite nach Parker für Schweizer Gewässer In Bild 7 ist das Verhältnis der Gerinnebreite im Referenzzustand zur Gerinnebreite nach der Formel von Parker (Gleichung 1) in Funktion der relativen Geschiebefracht \overline{GF} dargestellt. Dabei zeigt sich Folgendes:

- Mit der Formel von Parker wird die beobachtete Gerinnebreite teilweise unter- und teilweise überschätzt.
- Unterschätzt wird die Gerinnebreite von Gewässern mit hoher Abflussund Geschiebedynamik (Beispiele Kleine Emme, Alpenrhein).
- Überschätzt wird die Gerinnebreite von wenig dynamischen Gewässern (Beispiele Aare Wynau, Sellenbodenbach).

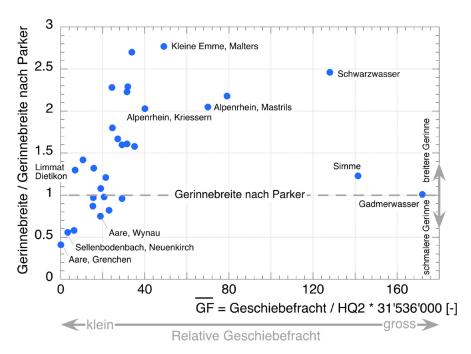


Bild 7 Verhältnis der beobachteten Gerinnebreite im Referenzzustand zur berechneten Gerinnebreite nach Parker in Funktion der relativen Geschiebefracht GF/HQ₂ für verschiedene Schweizer Gewässer.

Korrekturfaktor der Gerinnebreite nach Parker Dividiert man die beobachtete Gerinnebreite des Gewässers BG durch die Gerinnebreite BG_P des Gewässers, welche nach der Formel von Parker (Gleichung 1) berechnet wird, ergibt das einen Korrekturfaktor KF an der Gerinnebreite nach Parker:

$$KF = \frac{BG}{BG_P} \tag{6}$$

Hypothesen

Für die Berechnung des Korrekturfaktors an der Gerinnebreite nach Parker in Funktion der Geschiebefracht werden die zwei Hypothesen (1) und (2) aufgestellt, welche in einem Diagramm mit folgenden Achsen visualisiert werden (Bild 8):

Abszisse: Relative Geschiebefracht \overline{GF}

Ordinate: Korrekturfaktor KF an der Gerinnebreite nach Parker

(1) Ausgehend von einem Gewässer mit Geschiebefracht > 0 bewegt sich das Gewässer bei abnehmender Geschiebefracht auf einem linearen Pfad bis zum Schnittpunkt mit der Ordinate (0; b).

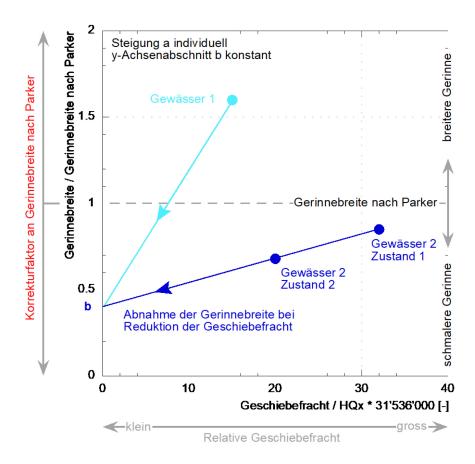


Bild 8 Korrekturfaktor an der Gerinnebreite nach Parker in Funktion der relativen Geschiebefracht.

Für zwei fiktive Gewässer dargestellt sind die linearen Pfade bei Abnahme der Geschiebefracht bis zum Erreichen des Korrekturfaktors b bei fehlender Geschiebefracht.

(2) Alle Geraden schneiden die Ordinate bei *b.* Der Schnittpunkt *b* ist unabhängig vom Gewässer. Daraus folgt, dass für jedes Gewässer die Steigung *a* der Geraden individuell ist.

Dieser lineare Pfad kann für ein Gewässer *i* durch folgende Geradengleichung beschrieben werden:

$$KF = a_i \, \overline{GF} + b \tag{7}$$

Kalibriergewässer

Für den Nachweis dieser Hypothese wurden Gewässer gesucht, bei denen die Gerinnebreite ausschliesslich durch Reduktion der Geschiebefracht abgenommen hat. Andere Einflussgrössen wie der Abfluss wurden nicht verändert und es bestehen auch keine Uferverbauungen. Die Verbindungslinie zwischen mehreren Zuständen desselben Gewässers sollte dann in Richtung des Punktes (0; b) zeigen (Bild 8). Es wurden folgende Gewässerabschnitte gefunden, auf welche diese Anforderungen zutreffen und für welche ausreichend gute Grundlagen bestehen:

- (1) Simme Niedermettlisau, Därstetten
- (2) Schwarzwasser, Heubach
- (3) Gadmerwasser, Chalenegg
- (4) Aare Wildegg Brugg (Zustand mit KW)
- (5) Alpenrhein Kriessern und Rheineck

Zusätzlich wurden Gewässer mit geringer oder fehlender Geschiebefracht gesucht. Trifft die Hypothese zu, so müssen die Wertepaare $(\overline{GF}; KF)$ dieser Gewässer nahe dem Ordinatenabschnitt b liegen. Es wurden folgende Gewässerabschnitte gefunden, auf welche diese Anforderungen zutreffen und für welche ausreichend gute Grundlagen bestehen:

- (6) Sellenbodenbach, Neuenkirch
- (7) Aare, Grenchen

Berechnungen mit HQ₂ und HQ₅

Für die Ermittlung der Wertepaare $(\overline{GF_i}; KF_i)$ werden folgende Grössen benötigt: HQ_X , d_m , BG_{RZ} , BG_i , GF_{RZ} , GF_i . Die Auswertungen werden für die Abflüsse HQ_2 und HQ_5 separat durchgeführt.

Nachfolgend sind die Gewässerabschnitte beschrieben und die Zustände in Bild 9 und Bild 10 eingezeichnet. Dazugehörende Grundlagen sind in Anhang 1 und Anhang 2 zu finden.

Simme Niedermettlisau, Därstetten, BE Referenzzustand um 1940:

Morphologie: Gewundenes Gewässer mit Inseln und Bänken

Dynamische Gerinnebreite 52 m

Flussbau AG et. al. (2013)

Durchschnittliche Geschiebefracht 12'300 m³/a Relative Geschiebefracht \overline{GF} = 141 (HQ_2); 101 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 1.2 (HQ₂); 1.0 (HQ₅)

Aktueller Zustand (2015):

Morphologie: Übergangsbereich Gewundenes Gewässer mit Inseln und

Bänken zu Gewundenem Gewässer mit Bänken

Dynamische Gerinnebreite 35 m

Durchschnittliche Geschiebefracht 6'000 m³/a Relative Geschiebefracht \overline{GF} = 69 (HQ_2); 49 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.83 (HQ₂); 0.66 (HQ₅)

Die reduzierte Geschiebefracht ist auf Kiesentnahmen im Oberwasser des betrachteten Abschnittes zurückzuführen.

Schwarzwasser

Referenzzustand um 1950:

Heubach, BE

Morphologie: Verzweigtes Gewässer mit 2 Gerinnen

Dynamische Gerinnebreite 48 m

Flussbau AG (2017)

Durchschnittliche Geschiebefracht 3'200 m³/a Relative Geschiebefracht \overline{GF} = 128 (HQ_2); 94 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 2.5 (HQ₂); 2.1 (HQ₅)

Aktueller Zustand (2015):

Morphologie: Verzweigtes Gewässer mit 2 Gerinnen und einzelnen bewach-

senen Inseln (Übergangsbereich der 2 morphologischen Typen)

Dynamische Gerinnebreite 38 m

Durchschnittliche Geschiebefracht 2'400 m³/a Relative Geschiebefracht \overline{GF} = 96 (HQ_2); 71 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 1.9 (HQ₂); 1.7 (HQ₅)

Die reduzierte Geschiebefracht ist auf Kiesentnahmen im Oberwasser des betrachteten Abschnittes zurückzuführen.

Gadmerwasser Cha-

Referenzzustand um 1960:

lenegg, BE

Morphologie: Übergangsbereich Gewundenes Gewässer mit Inseln und

Bänken zu Gewundenem Gewässer mit Bänken

KW Oberhasli (2017)

Dynamische Gerinnebreite 21 m

Durchschnittliche Geschiebefracht 4'300 m³/a

Relative Geschiebefracht \overline{GF} = 172 (HQ_2); 116 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 1.0 (HQ2); 0.83 (HQ5)

Zustand 1976 - 1993:

Morphologie: Gewundenes Gewässer mit Bänken

Dynamische Gerinnebreite 10 m

Durchschnittliche Geschiebefracht 300 m³/a Relative Geschiebefracht \overline{GF} = 12 (HQ_2); 8.1 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.48 (HQ₂); 0.39 (HQ₅)

Die reduzierte Geschiebefracht ist auf Kiesentnahmen im Oberwasser des betrachteten Abschnittes zurückzuführen.

Es ist nicht auszuschliessen, dass lokale Uferverbauungen die Abnahme der Gerinnebreite leicht förderten.

Aare Wildegg – Brugg, AG

Flussbau AG (2014)

Mit der Inbetriebnahme des KW Wildegg-Brugg 1945 wurde die Aare zur Restwasserstrecke, was zu einer starken Abnahme der Gerinnebreite führte. Luftbilder von 1961 und 1969 zeigen eine vergleichbare Gerinnebreite (Abschnitt Villnachern-Brugg). Infolge des Baus des Geschiebesammlers an der Emmemündung sowie weiterer Kiesentnahmen nahm die Geschiebefracht der Aare stark ab. Infolgedessen ist das Gerinne weiter eingewachsen. Es wird nur die Veränderung durch die reduzierte Geschiebefracht berücksichtigt.

Referenzzustand um 1970:

Morphologie: Gewundenes Gewässer mit Bänken nahe Übergangsbereich zu gewundenem Gewässer mit Inseln und Bänken

Dynamische Gerinnebreite 78 m

Durchschnittliche Geschiebefracht 7'000 m³/a Relative Geschiebefracht \overline{GF} = 15 (HQ_2); 11 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.87 (HQ₂); 0.73 (HQ₅)

Zustand 2012:

Morphologie: Gewundenes Gerinne mit Bänken

Dynamische Gerinnebreite 42 m

Durchschnittliche Geschiebefracht 1'000 m³/a

Relative Geschiebefracht \overline{GF} = 2.2 (HQ_2); 1.5 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.5 (HQ₂); 0.42 (HQ₅)

Es ist nicht auszuschliessen, dass lokale Uferverbauungen die Abnahme der Gerinnebreite leicht förderten.

Alpenrhein Kriessern und Rheineck, SG

Flussbau AG (2018)

Der Alpenrhein war im natürlichen Zustand eine Auflandungsstrecke. Mit dem Wachstum des Deltas in den Bodensee landete der Rhein langsam auf, womit die Geschiebefracht in Fliessrichtung abnahm. Im Folgenden werden die zwei Abschnitte bei Kriessern und bei Rheineck betrachtet. Weil es sich um zwei verschiedene Abschnitte desselben Gewässers handelt, sind andere Parameter nicht identisch (Korndurchmesser infolge Abrieb und Gefälle bei Rheineck leicht kleiner). Beide Abschnitte sind in historischen Karten gut dokumentiert.

Rhein Kriessern, Zustand 1770 - 1825:

Morphologie: Verzweigtes Gewässer mit 2 Gerinnen

Dynamische Gerinnebreite 380 m

Durchschnittliche Geschiebefracht 52'000 m³/a

Relative Geschiebefracht \overline{GF} = 40 (HQ_2); 31 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 2.0 (HQ₂); 1.8 (HQ₅)

Rhein Rheineck, Zustand 1770 - 1825:

Morphologie: Übergangsbereich Gewundenes Gewässer mit Inseln und

Bänken zu Gewundenem Gewässer mit Bänken

Dynamische Gerinnebreite 190 m

Durchschnittliche Geschiebefracht 20'000 m³/a

Relative Geschiebefracht \overline{GF} = 15 (HQ_2); 12 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.97 (HQ₂); 0.85 (HQ₅)

enkirch, LU

Flussbau AG (2016)

Sellenbodenbach Neu- Der Sellenbodenbach ist ein kleines Gewässer des Mittellandes mit geringer absoluter und relativer Geschiebefracht. Das Wertepaar (GF; KF) liegt daher nahe beim Ordinatenschnittpunkt b. Der Gewässerabschnitt wird wegen der guten Datenlage (Abflussmessstation, Geschiebefracht, Korndurchmesser) berücksichtigt.

Naturnaher Zustand (kurze Abschnitte):

Morphologie: Gewundenes Gewässer mit Bänken

Dynamische Gerinnebreite 8 m

Durchschnittliche Geschiebefracht 30 m³/a

Relative Geschiebefracht \overline{GF} = 3.3 (HQ_2); 2.1 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.45 (HQ₂); 0.38 (HQ₅)

Aare Grenchen, SO

VAW (1987)

Die Aare war zwischen Büren und Solothurn bereits vor der Juragewässerkorrektion ein Gewässer mit Sandsohle und ohne Geschiebetrieb (Kies). Dementsprechend kann die Gerinnebreite im natürlichen Zustand einen Hinweis auf den Ordinatenabstand b liefern.

Zustand Erstausgabe Siegfriedkarte:

Morphologie: Mäandrierendes Gewässer ohne Kiesbänke

Dynamische Gerinnebreite 146 m

Durchschnittliche Geschiebefracht 0 m³/a

Relative Geschiebefracht $\overline{GF} = 0$ (HQ_2); 0 (HQ_5)

Korrekturfaktor an Gerinnebreite nach Parker 0.4 (HQ₂); 0.38 (HQ₅)

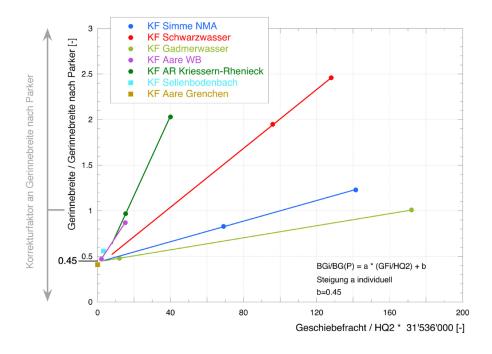


Bild 9 Korrekturfaktor für die Gerinnebreite nach Parker in Funktion der relativen Geschiebefracht unter Berücksichtigung des Abflusses HQ2. Dargestellt sind alle Kalibriergewässer.

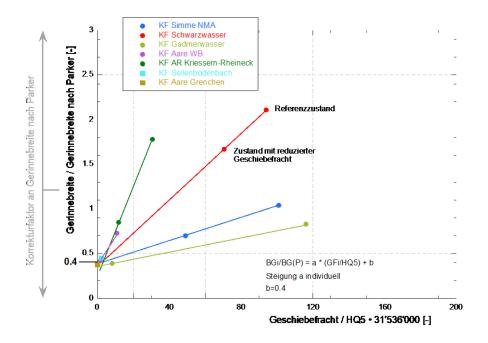


Bild 10 Korrekturfaktor für die Gerinnebreite nach Parker in Funktion der relativen Geschiebefracht unter Berücksichtigung des Abflusses HQ5. Dargestellt sind alle Kalibriergewässer.

Zusammenfassung Bild 9, Bild 10 Werden die zwei Zustände der 5 Gewässer je mit einer Geraden verbunden, so schneiden diese Geraden die Ordinate bei den Werten gemäss Tabelle 2. Die Werte variieren für HQ_2 zwischen 0.41 und 0.44 und für HQ_5 zwischen 0.35 und 0.38. Der Alpenrhein wird zur Bestimmung des Ordinatenabschnitts nicht berücksichtigt, weil zwei verschiedene Gewässerabschnitte verglichen wurden.

Bei der Aare Grenchen (kein Geschiebetrieb) beträgt der Ordinatenabschnitt 0.41 (HQ_2), resp. 0.38 (HQ_5).

Der Ordinatenschnittpunkt b kann für den Sellenbodenbach nicht bestimmt werden. Da die relative Geschiebefracht \overline{GF} aber sehr klein ist, liegt der Punkt zumindest in der Nähe der Ordinate mit Werten für KF von 0.56 (HQ_2) und 0.45 (HQ_5).

Ausgehend von einem konstanten Ordinatenabschnitt für alle Gewässer im Bereich von 0.4 sowie den 2 zusätzlichen Punkten für jedes Beispielgewässer ist ein linearer Zusammenhang zwischen relativer Geschiebefracht und dem Korrekturfaktor wahrscheinlich.

Tabelle 2 Ordinatenabschnitte b der 5 Beispielgewässer.

	Simme	Schwarzwas- ser	Gadmerwas- ser	Aare WB	Alpenrhein
HQ ₂	0.44	0.41	0.44	0.43	0.30
HQ₅	0.38	0.37	0.35	0.38	0.26

Verifikation mit anderen Datensätzen

Bild 11 und Bild 12

In Bild 11 (Berechnung mit HQ₂) und Bild 12 (Berechnung mit HQ₅) ist die dimensionslose Gerinnebreite B* nach Parker (Gleichung 2) in Funktion des dimensionslosen Abflusses (Gleichung 3) für die von Parker verwendeten Naturdaten dargestellt. Zusätzlich sind Daten von Marti (2006) sowie der vorliegenden Studie eingezeichnet (blaue Punkte). Dabei zeigt sich Folgendes:

- Bei Bild 11 befinden sich alle Punkte auf oder über einer Geraden 0.45 B* (rote Linie). Das heisst, die Gerinnebreite aller Gewässer ist gleich breit oder breiter als 0.45 mal die Breite nach Gleichung 1. Sowohl einzelne Punkte aus dem Datensatz aus Parker (1979), als auch Punkte aus dem vorliegenden Datensatz liegen auf der roten Linie.
- Bei Bild 12 befinden sich alle Punkte auf oder über einer Geraden 0.40 B* (rote Linie). Das heisst, die Gerinnebreite aller Gewässer ist gleich breit oder breiter als 0.40 mal die Breite nach Gleichung 1.
- Mehrere blaue Punkte liegen deutlich über Gleichung 2 und den Datenpunkten aus Parker (1979). Das heisst, es wurden Gewässer ausgewertet, welche deutlich grössere dimensionslose Breiten aufweisen. Dabei handelt es sich um stark verzweigte Gewässer mit grosser Dynamik (Beispiel Hinterrhein bei Cazis).

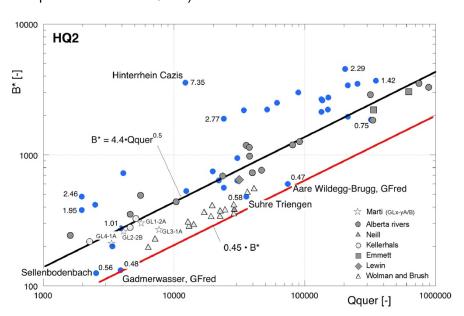


Bild 11 Dimensionslose Gerinnebreite B* in Funktion des dimensionslosen Abflusse \bar{Q} gemäss Potenzfunktion (2), den Datenpunkten aus Parker 1979, den Modellversuchen von Marti 2006 und gemäss vorliegender Studie (blaue Punkte, Berechnung mit HQ₂; Zahlen: KF = BG/BG_P). Rote Linie = 0.45•B*

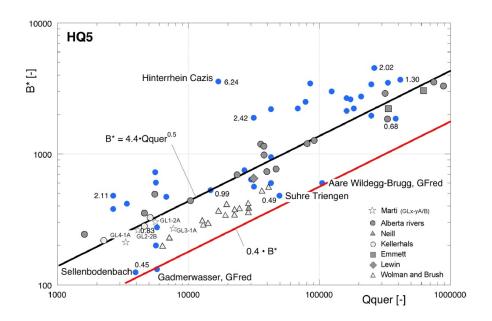


Bild 12 Dimensionslose Gerinnebreite B^* in Funktion des dimensionslosen Abflusses \bar{Q} gemäss Potenzfunktion (2), den Datenpunkten aus Parker 1979, den Modellversuchen von Marti 2006 und gemäss vorliegender Studie (blaue Punkte, Berechnung mit HQ $_5$; Zahlen: KF = BG/BG $_P$. Rote Linie = 0.40•B *

Fazit:

Die zu Beginn des Kapitels aufgestellten Hypothesen können durch folgende Nachweise bestätigt werden:

- (1) Die Verbindungslinien der 2 Wertepaare der fünf Kalibriergewässer mit unterschiedlicher Geschiebefracht und Gerinnebreite schneiden die Ordinate im Bereich von 0.45 (Auswertung mit HQ_2), resp. 0.40 (Auswertung mit HQ_5).
- (2) Die Verbindungslinien weisen individuelle Steigungen auf.
- (3) Gewässer mit sehr kleiner oder fehlender Geschiebefracht weisen einen Ordinatenwert im Bereich von 0.45 (Auswertung mit HQ_2), resp. 0.40 (Auswertung mit HQ_5) auf.
- (4) Daten anderer Autoren weisen ebenfalls minimale Breiten von 0.45 B* auf (Bild 12). Es ist jedoch nicht bekannt, mit welchen charakteristischen Abflüssen die Auswertungen durchgeführt wurden ("bankfull or dominant conditions", vgl. Abschnitt 2.1.2).

2.4.3 Berechnungsformeln

Die Geradensteigung a_i von Gleichung 7 lässt sich bestimmen, wenn für ein Zustand des Gewässers i der Korrekturfaktor KF und \overline{GF} bekannt sind:

$$a_i = \frac{KF - b}{\overline{GF}} \tag{8}$$

Weil für ein Gewässer die Steigung *ai* konstant ist, können die Steigungen zweier Zustände gleichgesetzt werden:

$$\frac{KF_1 - b}{\overline{GF}_1} = \frac{KF_2 - b}{\overline{GF}_2} \tag{9}$$

Mit den Gleichungen 5 und 6 ergibt sich

Gerinnebreite in Funktion der Geschiebefracht

$$BG_i = b BG_P + \frac{GF_i}{GF_{RZ}} (BG_{RZ} - b BG_P)$$
 (10)

Gleichung 10 nach GFi aufgelöst, ergibt

Geschiebefracht in Funktion der Gerinnebreite

$$GF_i = GF_{RZ} \frac{BG_i - b \ BG_P}{BG_{RZ} - b \ BG_P} \tag{11}$$

Darin bedeuten

 BG_P = Gerinnebreite nach Parker (Gleichung 1)

 BG_{RZ} = Gerinnebreite in einem bekannten Referenzzustand

 BG_i = Gerinnebreite bei Geschiebefracht GF_i

 GF_{RZ} = Geschiebefracht in einem bekannten Referenzzustand

 GF_i = Geschiebefracht im Zustand i

Der Ordinatenabstand b nimmt folgende Werte an

b = 0.40 (Abfluss HQ_5)

b = 0.45 (Abfluss HQ_2)

Als Referenzzustand ist ein in der Breite nicht eingeschränkter Zustand mit bekannter Geschiebefracht zu berücksichtigen.

Gültigkeitsbereich

Die Formeln sind anwendbar für geschiebeführende Gewässer mit einem Gefälle bis ca. 3 % (Beispielgewässer: Schwarzwasser 2.6 %, Brenno bei Castro 2.7 %).

2.5 Einfluss der Geschiebefracht auf die Gerinneform

Vorgehen

Für den Datensatz der vorliegenden Studie (Anhänge 1 und 2) wurde untersucht, zu welcher Verschiebung der Wertepaare (B_w/h ; h/d_m) im modifizierten Ahmari & da Silva Diagramm es bei fehlender Geschiebefracht kommt. Dabei wurde die in Kapitel 2.4.2 hergeleitete Gerinnebreite von $b \cdot BG_P$ berücksichtigt mit

b = 0.45 für einen gerinnebildenden Abfluss HQ_2 b = 0.40 für einen gerinnebildenden Abfluss HQ_5

Eingabegrössen

Für die Berechnung der Wertepaare (B_w/h ; h/d_m) werden folgende Eingabegrössen benötigt. Zudem wird eine Angabe zur Genauigkeit der Daten gemacht.

Abfluss HQ2, HQ5

Genauigkeit abhängig von der Verfügbarkeit einer Messstation und der Güte der Messdaten.

Korndurchmesser d_m, d₉₀

Genauigkeit abhängig von der Güte und der Anzahl der Probenahmen.

Uferrauheit

Erfahrungswert, abhängig von Bestockung.

Längsgefälle3 Js

In der Regel zuverlässig zu ermitteln. Bei Kiesentnahmen wird eine Eintiefungstendenz ausgelöst, deren Ausmass bei Gewässern mit grober Sohle (latente Erosion) schwer abzuschätzen ist.

Parameter Breite

Es sind folgende Begriffe zu unterscheiden:

Gerinnebreite

Entspricht der Breite zwischen den Böschungsoberkanten. Die Gerinnebreite ist in der Regel mehr oder weniger identisch mit der Wasserspiegelbreite beim gerinnebildenden Abfluss (natürlicher Zustand). Dabei ist ein Teil des Ufergehölzes benetzt.

Dynamische Gerinnebreite

Die dynamische Gerinnebreite betrifft den gehölzfreien Bereich des Gerinnes (Niederwasserbereich zuzüglich Bänke, inkl. Pioniervegetation). Die dynamische Gerinnebreite dürfte etwa der Wasserspiegelbreite bei einem Q_9 entsprechen (Schälchli, Abegg + Hunzinger, 2000). Aus historischen Karten und Luftbildern wird oft die dynamische Gerinnebreite bestimmt.

Wasserspiegelbreite bei Mittelwasserabfluss

Bei gewundenen Gewässern mit Bänken wird in historischen Karten in der Regel der benetzte Bereich dargestellt. Es ist davon auszugehen, dass dies etwa dem Mittelwasserabfluss entspricht.

Sohlenbreite

Die Sohlenbreite ist um die Böschungsbereiche schmaler als die Gerinnebreite.

³ Gefälle im Istzustand; bei Vorhandensein von Schwellen wird das Bruttogefälle berücksichtigt.

In der vorliegenden Studie wird vereinfachend von einem Rechteckgerinne ausgegangen, das heisst, dass alle erwähnten Breiten identisch sind⁴.

Datensatz im modifizierten Ahmari & da Silva Diagramm mit HQ₂, resp. HQ₅, Rechteckgerinne In Bild 13 und Bild 14 sind im modifizierten Ahmari & da Silva Diagramm alle Wertepaare (B_w/h ; h/d_m) des verwendeten Datensatzes der Schweizer Gewässer im Referenzzustand sowie im Zustand ohne Geschiebe bei hydraulischer Berechnung mit einem Rechteckgerinne eingezeichnet⁵. In Bild 13 sind die Punkte für HQ_2 und eine minimale Gerinnebreite mit einem Korrekturfaktor von 0.45 und in Bild 14 die Punkte für HQ_5 und eine minimale Gerinnebreite mit einem Korrekturfaktor von 0.40 eingezeichnet.

Im Referenzzustand (blaue Punkte) liegen alle Wertepaare verstreut über die vier Gerinneformen mit Geschiebetransport (Verzweigte Gewässer mit mehr als 2 Gerinnen bis Gewundene Gewässer mit Bänken).

Im Zustand ohne Geschiebe (rote Punkte) verlagern sich alle Wertepaare in den Übergangsbereich zwischen gewundenen Gewässern mit Bänken und Mäandern ohne Kiesbänke. Die Punktewolke kann durch eine Linie angenähert werden, die parallel zu den anderen Linien, welche die verschiedenen Gerinneformen gegeneinander abgrenzen, verläuft.

Bestätigung Ordinaten- schnittpunkt b Die ausgewerteten Kalibriergewässer und die empirische Datenanalyse in Kapitel 2.4.2 haben gezeigt, dass bei fehlender Geschiebefracht die Gerinnebreite auf 40 % (HQ_5), resp. 45 % (HQ_2) der Gerinnebreite nach Parker abnimmt.

Gleichung 7 mit b=0.40 / 0.45 wurde unabhängig vom Ahmari & da Silva Diagramm entwickelt. Kommen nun die Punkte bei fehlender Geschiebefracht in den Übergangsbereich zwischen den gewundenen Gewässern mit Bänken und den Mäandern zu liegen, so bestätigt dies die ermittelten b-Werte (rote Punkte in Bild 13 und Bild 14): Wäre der b-Wert grösser, so kämen die Punkte in die Gerinneform «gewundene Gewässer mit Bänken» zu liegen. In diesem Bereich ist aber immer Geschiebe verfügbar (GF > 0). Wäre der b-Wert kleiner, so kämen die Punkte in einen Bereich der Gerinneform «Mäander» zu liegen, in welchem sich gemäss Bild 2 Dünen bilden müssten, was bei geringer Geschiebeführung nicht zutreffen kann.

Bei Gewässern mit grosser Breite (verzweigte Gerinneform) hat die Wahl der Uferneigung keinen spürbaren Einfluss auf die Werte *B*_w und *h*. Bei gewundenen Gewässern ist die Uferneigung in der Regel steil und die Annahme eines Recheckgerinnes entspricht eher der Realität.

Berechnung der Abflusstiefe mit dem logarithmischen Fliessgesetz. Rauheitselement $2 \cdot d_{90}$, Wandrauheit $k_{Wand} = 21 \text{ m}^{1/3}/\text{s}$, reduziertes Gefälle bei kleiner Überdeckung nach Jäggi.

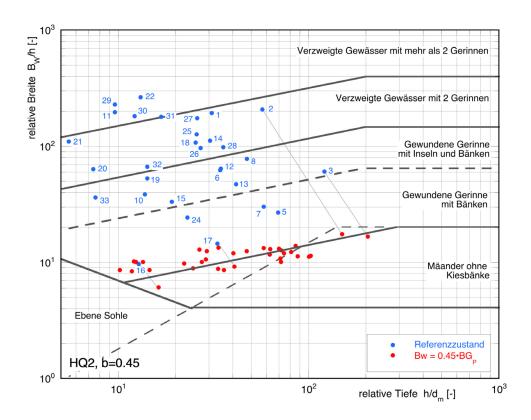


Bild 13 Datensatz der Schweizer Gewässer im modifizierten Ahmari & da Silva Diagramm im Referenzzustand sowie im Zustand ohne Geschiebe (Gerinnebreite entspricht 0.45 mal der Gerinnebreite nach Parker, Formel (1)) unter Berücksichtigung eines gerinnebildenden Abflusses **HQ**₂. Hydraulische Berechnung mit einem Rechteckgerinne.

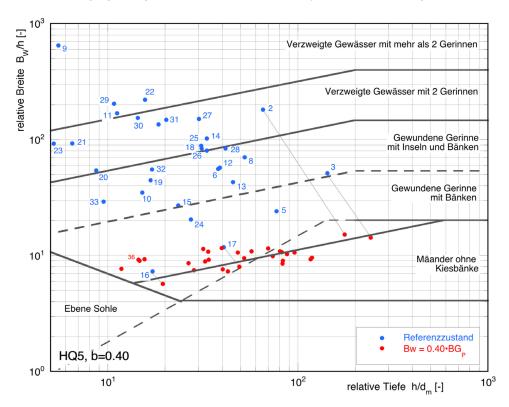


Bild 14 Datensatz der Schweizer Gewässer im modifizierten Ahmari & da Silva Diagramm im Referenzzustand sowie im Zustand ohne Geschiebe (Gerinnebreite entspricht 0.40 mal der Gerinnebreite nach Parker, Formel (1)) unter Berücksichtigung eines gerinnebildenden Abflusses **HQ**₅. Hydraulische Berechnung mit einem Rechteckgerinne.

Kritischer Pfad

Wird einem natürlichen Gewässer Geschiebe entzogen, so nimmt dessen Gerinnebreite ab und die Position im modifizierten Ahmari & da Silva-Diagramm (B_w/h ; h/d_m) bewegt sich auf einem **kritischen Pfad** bis in den unteren Bereich der gewundenen Gewässer mit Bänken. Dabei verändert sich die Gerinneform vom Referenzzustand hin zu einem gewundenen Gewässer mit abgepflästerter Sohle ohne Geschiebebänke.

2.6 Ziele für Gerinneform und Anforderung an die Geschiebefracht

In der Vollzugshilfe wird das Ziel für die Morphologie des Gewässers wie folgt konkretisiert und daraus eine Anforderung an die Geschiebefracht abgeleitet:

Konkretes Ziel für die Gerinneform

Die Gerinneform des Gewässers ist ähnlich wie im Referenzzustand (gleicher Typ).

Anforderung an die Geschiebefracht

Die Geschiebefracht ist so gross, dass sich in den naturnahen Abschnitten eine Gerinneform wie oben beschrieben einstellen kann.

Begründung der Zielvorgabe Wenn die Gerinneform annähernd erreicht ist, dann ist auch der Lebensraum ähnlich wie im Referenzzustand. Wenn die Gerinneform nicht annähernd erreicht wird, dann ist die Zusammensetzung des Lebensraums des Gewässers wesentlich anders als im Referenzzustand, was zur Folge hat, dass die gewässertypischen Tiere und Pflanzen im Vergleich zum Referenzzustand wesentlich beeinträchtigt sind.

Übertragen auf die Gerinneformen im modifizierten Ahmari & da Silva Diagramm kann man von einer ähnlichen Gerinneform sprechen, wenn sich die Position des Gewässers im Diagramm nicht mehr als um ungefähr den halben Abstand zwischen zwei Gewässerformgrenzen verschiebt. Für Gewässer, die sich im Referenzzustand weit oben in einem Bereich für eine Gerinneform befinden heisst das, dass sie sich im Zielzustand maximal in den mittleren Bereich der Gerinneform verlagern dürfen. Für Gewässer, die sich im Referenzzustand im unteren Bereich einer Gerinneform befinden heisst das, dass sie im Zielzustand die Grenzlinie⁶ zur nächsten Gerinneform nur leicht unterschreiten dürfen.

Diese qualitative Zielvorgabe wird mit der folgenden quantitativen Bedingung sichergestellt:

Bedingung 1

$$\left(\frac{B_W}{h}\right)_{Ziel} \ge 0.75 \left(\frac{B_W}{h}\right)_{RZ} \tag{12}$$

Das heisst, dass die relative Breite B_w/h um maximal 25% reduziert werden darf.

Bedingung 2

Bei gewundenen Gewässern mit Bänken, welche im Referenzzustand eine geringe Geschiebefracht aufweisen und deren Wertepaar (B_w/h ; h/d_m) sich im unteren Bereich der entsprechenden Fläche im modifizierten Ahmari & da Silva Diagramm befindet, könnte die oben definierte Anforderung dazu führen, dass die erforderliche Fracht null würde. Aus diesem Grund ist zusätzlich folgende Bedingung zu erfüllen:

$$\left(\frac{B_W}{h}\right)_{Ziel} \ge \frac{1}{2} \left(\left(\frac{B_W}{h}\right)_{RZ} + \left(\frac{B_W}{h}\right)_{GF=0}\right) \tag{13}$$

Wird einem Gewässer Geschiebe entzogen, so verändert sich die Gerinneform kontinuierlich. Die Übergänge der im modifizierten Ahmari & da Silva Diagramm definierten Flächen sind nicht scharf, sondern fliessend.

Das heisst, dass sich das Wertepaar (B_w/h ; h/d_m) ausgehend vom Referenzzustand maximal um die halbe Distanz bis zu dessen Position ohne Geschiebefracht verlagern darf.

In Bild 15 ist die Veränderung der Gerinneform im modifizierten Ahmari & da Silva Diagramm bei einer schrittweisen Abminderung von der relativen Breite B_w/h um jeweils 25% beispielhaft dargestellt. Die entsprechende Veränderung der Gerinneform von einem Punkt zum anderen ist im Sinne der oben beschriebenen Bedingung 1 noch zulässig.

Bild 16 zeigt eine wesentliche Veränderung der Gerinneform am Beispiel des Schwarzwassers. Infolge von Kiesentnahmen nahm das Verhältnis B_w/h von 104.3 (1954) auf 74.5 (2016) ab, was einer Reduktion von 29 % entspricht. Dadurch hat sich die Gerinneform von einem verzweigten Gewässer mit 2 Gerinnen verändert zu einem Gewässer im Übergangsbereich zu gewundenen Gewässern mit Inseln und Bänken. Die zwei Gerinneformen sind nicht mehr ähnlich und die oben genannte Anforderung ist nicht mehr erfüllt.

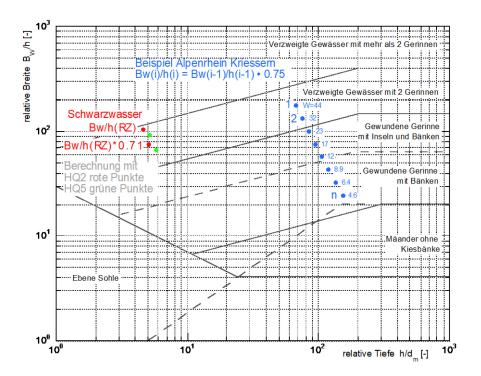


Bild 15 Modifiziertes Ahmari & da Silva Diagramm.

Beispiel Alpenrhein Kriessern: Verlagerung des Wertepaares (B_w/h ; h/d_m) bei einer schrittweisen Abminderung des Verhältnisses B_w/h um 25%. Angegeben ist zudem W gemäss Gleichung 14.

Beispiel Schwarzwasser: Verlagerung des Wertepaares von 1954 bis 2016 mit einer Reduktion von B_w/h um 29%.

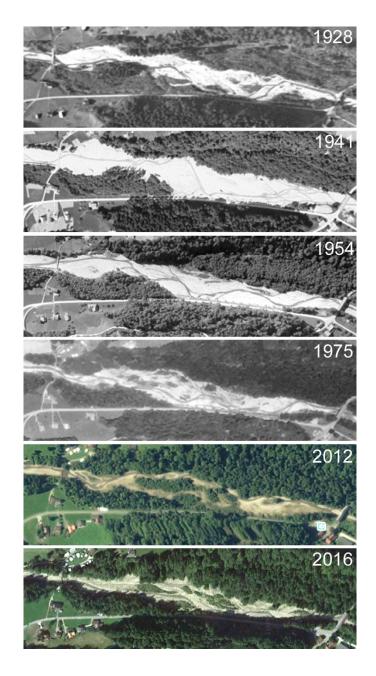


Bild 16 Schwarzwasser flussabwärts von Heubach. Orthofotos von 1928 bis 2016. Fliessrichtung von links nach rechts. Infolge von Kiesentnahmen nahm die dynamische Gerinnebreite ab und die Gerinneform hat sich von einem verzweigten Gewässer zu einem Gewässer im Übergangsbereich zu gewundenen Gewässern mit Inseln und Bänken verändert.

Erforderliche Geschiebefracht Beispielgewässer Unter Berücksichtigung dieser Anforderungen lässt sich mit Gleichung 11 für alle Gewässer die erforderliche Geschiebefracht berechnen.

In Bild 17 und Bild 18 sind für Auswertungen mit HQ_5 und HQ_2 das Verhältnis zwischen der erforderlichen Geschiebefracht und der Fracht im Referenzzustand in Funktion der dimensionslosen Grösse

$$W = \left(\frac{B_w}{h}\right) \left(\frac{h}{d_m}\right)^{-0.34} \tag{14}$$

dargestellt. W kann als Mass der Gerinneform interpretiert werden.

Wertepaare $(B_w/h; h/d_m)$ mit gleichem W liegen im modifizierten Ahmari & da Silva Diagramm auf einer Geraden parallel zu den ansteigend verlaufenden Trennlinien zwischen den Gerinneformen. Je grösser W, desto stärker verzweigt ist das Gerinne.

Es zeigt sich Folgendes:

Verzweigte Gewässer mit mehr als 2 Gerinnen:

Die erforderliche Geschiebefracht liegt bei 80 % der Geschiebefracht im Referenzzustand (beim Hinterrhein mit W = 390 erreicht die erforderliche Geschiebefracht den Maximalwert von 81 %, Auswertung mit HQ_5).

Verzweigte Gewässer mit 2 Gerinnen:

Die erforderliche Geschiebefracht beträgt 73 bis 80 % der Geschiebefracht im Referenzzustand.

Gewundene Gewässer mit Inseln und Bänken:

Die erforderliche Geschiebefracht beträgt ca. 63 bis 78 % der Geschiebefracht im Referenzzustand.

Gewundene Gewässer mit Bänken:

Die erforderliche Geschiebefracht beträgt 47 bis etwa 70 % der Geschiebefracht im Referenzzustand. Beim Sellenbodenbach und der Suhre wurde Bedingung 2 massgebend.

Auf die Unterschiede zwischen den Auswertungen mit HQ_5 und HQ_2 wird in Kapitel 2.7 eingegangen.

Zusammenfassung

Damit die Gerinneform eines Gewässers nicht massgebend verändert wird, muss die Geschiebefracht mindestens folgende Prozentwerte der Fracht im Referenzzustand erreichen:

Verzweigte Gewässer	≥ 75 – 80%
Gewundene Gewässer mit Inseln und Bänken	≥ 63 – 78%
Gewundene Gewässer mit Bänken	≥ 47 – 70%

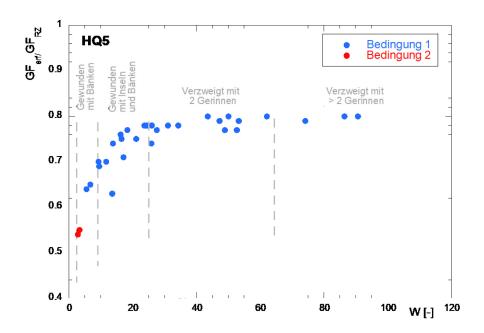


Bild 17 Verhältnis zwischen erforderlicher Geschiebefracht und der Geschiebefracht im Referenzzustand in Funktion der dimensionslosen Grösse W bei einer Auswertung mit HQ5. W = f(Bw/h;h/dm), vgl. Gleichung 14 und Bild 15, ist ein Mass für die Gerinneform.

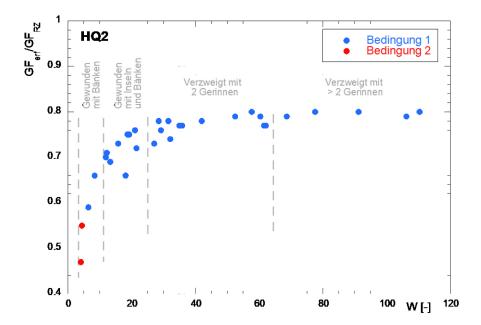


Bild 18 Verhältnis zwischen erforderlicher Geschiebefracht und der Geschiebefracht im Referenzzustand in Funktion der dimensionslosen Grösse W bei einer Auswertung mit HQ_2 . W = f(Bw/h;h/dm), vgl. Gleichung 14 und Bild 15, ist ein Mass für die Gerinneform.

2.7 Vergleich der Auswertungen mit HQ2 und HQ5

Die Wahl des massgebenden Abflusses hat einen Einfluss auf die Gerinnebreite nach Parker, die Abflusstiefe *h* und den Ordinatenwert *b* (Diagramm Korrekturfaktor Parker).

"bankfull or dominant conditions"

Wie bereits in Kapitel 2.1.2 ausgeführt, wird in der Literatur als massgebender Abfluss entweder der bordvolle oder der bettbildende Abfluss erwähnt.

Der bordvolle Abfluss, wie er bei Ahmari & da Silva verwendet wird, wird in der Literatur meist als $HQ_{1.5}$, manchmal als HQ_{1} , selten über HQ_{3} angegeben.

Zum bettbildenden oder morphologischen Abfluss gibt es sehr unterschiedliche Angaben. Bei Gebirgsflüssen mit steiler Geschiebefunktion kann der bettbildende Abfluss viel grösser als der bordvolle Abfluss sein (Bunte *et al.*, 2014). Bei alluvialen Flüssen im Gleichgewicht soll der bettbildende Abfluss aber nahe dem bordvollen Abfluss liegen.

Zusammenfassend lässt sich sagen, dass der massgebende Abfluss kein Abfluss mit konstanter Jährlichkeit HQ_X ist, sondern von Gewässer zu Gewässer verschieden ist. In der Regel dürfte er im Bereich von HQ_2 liegen, bei steilen Gewässern aber grösser sein.

Datenverfügbarkeit

Auf <u>www.hydrodaten.admin.ch</u> ist HQ_2 in einer Tabelle angegeben. HQ_5 ist aus einer Graphik zu lesen.

Gerinneform im modifizierten Ahmari & da Silva Diagramm Bild 19 In Bild 19 sind alle Datenpunkte im Referenzzustand sowie ohne Geschiebe basierend auf Berechnungen mit HQ_2 und HQ_5 im modifizierten Ahmari & da Silva Diagramm eingezeichnet.

Bei der Auswertung mit HQ_2 befinden sich alle Punkte weiter oben links, als bei der Auswertung mit HQ_5 . Dementsprechend verläuft auch die Trennlinie, welche die Wertepaare bei fehlender Geschiebefracht annähert, etwas weiter oben. Dasselbe gilt für die Trennlinie zwischen den Gerinneformen «Gewundene Gewässer mit Inseln und Bänken» und «Gewundene Gewässer mit Bänken».

Wird die Lage einzelner Wertepaare mit Lagebestimmung mit HQ_2 und HQ_5 mit der Abgrenzung gemäss modifiziertem Ahmari & da Silva verglichen, so kann folgendes festgestellt werden (beobachtete Gerinneformen vgl. Anhang 2):

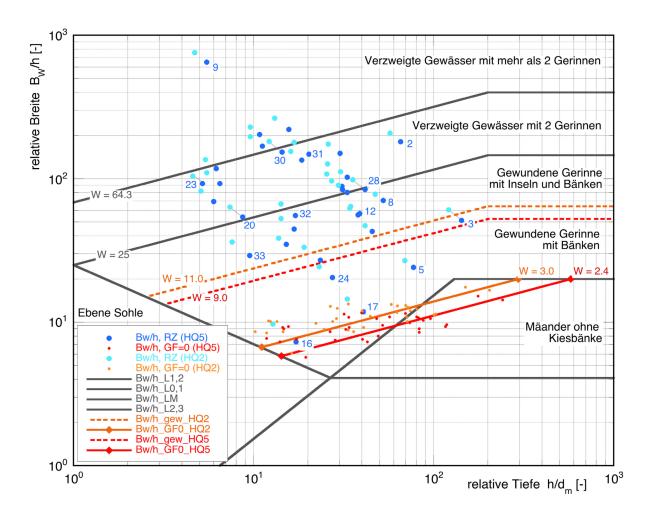


Bild 19 Vergleich der Auswertungen mit HQ5 (dunkelblaue und rote Punkte) und HQ2 (hellblaue und orange Punkte).

Brenno Castro (Nr. 20) Der Punkt befindet sich bei einer Auswertung mit HQ_5 an der unteren Grenze des Bereichs der verzweigten Gewässer mit 2 Gerinnen; bei einer Auswertung mit HQ_2 innerhalb des Bereichs der verzweigten Gewässer mit 2 Gerinnen. Auf Luftbildern (1934 – 2016) sind 2 Gerinne mit ausgedehnten Bänken sowie Inseln mit Gehölz zu erkennen. Die Gerinneform ist dem Übergangsbereich zuzuordnen.

Töss Dättlikon (Nr. 31) Der Punkt befindet sich bei einer Auswertung mit HQ_5 im Bereich der verzweigten Gewässer mit 2 Gerinnen; bei einer Auswertung mit HQ_2 auf der Grenzlinie zum Bereich der verzweigten Gewässer mit mehr als 2 Gerinnen. Auf der historischen Karte pendelt die Töss in der breiten Schotterebene mit 1 bis 3 Gerinnen. Die Gerinneform entspricht eher einem verzweigten Gewässer mit 2 Gerinnen.

Simme Därstetten, Niedermettlisau (Nr. 32) Der Punkt befindet sich bei einer Auswertung mit HQ_5 noch im Bereich der gewundenen Gewässer mit Inseln und Bänken; bei einer Auswertung mit HQ_2 im unteren Bereich der verzweigten Gewässer mit 2 Gerinnen. Der morphologisch nicht ganz einheitliche Abschnitt zeigt beide Gerinneformen.

Schwarzwasser Heubach (vgl. Bild 15)

Alle Punkte befinden sich im Bereich der verzweigten Gewässer mit 2 Gerinnen. Bei reduzierter Geschiebezufuhr zeigt das Gewässer Merkmale von gewundenen Gewässern mit Inseln und Bänken. Dies passt besser zur Auswertung mit HQ_5 .

Fazit

Weil die Grenzen zwischen den Gerinneformen fliessend sind, zeigen Gewässer im Grenzbereich zweier Gerinneformen oft Merkmale beider Gerinneformen. Die Auswertung der Gewässerbeispiele zeigt eine etwas bessere Übereinstimmung für HQ_5 .

Vergleich der erforderlichen Geschiebefrachten bei Auswertungen mit HQ₂ und HQ₅ In Bild 20 ist der Vergleich der erforderlichen Geschiebefrachten bei Auswertungen mit HQ_5 und HQ_2 dargestellt.

Es zeigt sich, dass beide Auswertungen praktisch identische Resultate ergeben. Einzig bei der Aare Wynau und dem Sellenbodenbach (beides gewundene Gewässer mit Bänken) ergibt eine Auswertung mit HQ_2 eine um 8 bis 13% geringere Geschiebefracht.

Fazit

Die Berechnung der erforderlichen Geschiebefracht für die Beispielgewässer in Kapitel 2.6 hat gezeigt, dass der Einfluss der Wahl von HQ_2 und HQ_5 nicht signifikant ist. Dies bedeutet, dass eine Auswertung mit beiden Abflüssen zielführend ist und zu vergleichbaren Ergebnissen führt. Eine Auswertung mit dem Abfluss HQ_2 bietet aber folgende Vorteile:

- Ungefähre Übereinstimmung mit dem bordvollen Abfluss, wie er bei Ahmari & da Silva verwendet wird.
- Direkte Verfügbarkeit bei den BAFU-Messstationen auf www.hydrodaten.admin.ch.

Ein Nachteil ist die vergleichsweise kleinere erforderliche Geschiebefracht bei einzelnen gewundenen Gewässern mit Bänken.

Wir empfehlen daher, eine Auswertung mit HQ_2 zu verwenden, die in Kapitel 2.5 formulierten Bedingungen aber wie folgt zu ergänzen:

Die erforderliche Geschiebefracht ist ≥ 50% der Geschiebefracht im Referenzzustand.

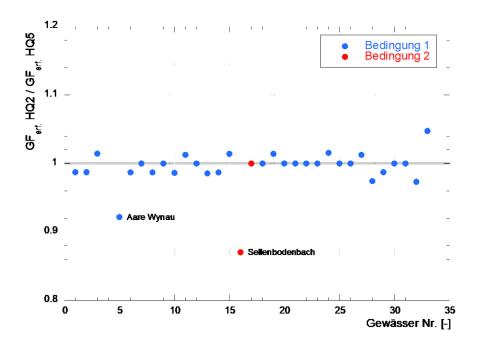


Bild 20 Vergleich der erforderlichen Geschiebefracht bei einer Auswertung mit HQ_2 und HQ_5 für die untersuchten Gewässerstrecken.

3 Berechnungsschritte und Eingangsparameter

Schritt 1

Gerinnebreite des Referenzzustandes

Historische Karten und Pläne, Luftbilder oder Felderhebungen in Vergleichsstrecken veranschaulichen die charakteristische Gerinneform im Referenzzustand.

Zur Bestimmung der dynamischen Gerinnebreite wird die gehölzfreie Fläche eines Gewässerabschnitts dividiert durch die Länge des Talwegs des Abschnitts (Bild 21).

Schritt 2

h und B_W des massgebenden Abflusses

Mit einer Normalabflussberechnung im Rechteckgerinne wird für den massgebenden Abfluss (HQ_2) das Wertepaar (B_W/h ; h/d_m) bestimmt, das zur Darstellung des Referenzzustands im modifizierten Diagramm von Ahmari & da Silva nötig ist. Dabei ist h die Abflusstiefe und B_W die Wasserspiegelbreite bei HQ_2 (Wasserspiegelbreite B_W und Gerinnebreite BG sind wegen der Annahme eines Rechteckgerinnes identisch). d_m ist der mittlere Korndurchmesser des Sohlenmaterials. HQ_2 ist der Abfluss eines 2-jährlichen Ereignisses und dient als pragmatische Annäherung an den bordvollen Abfluss.

Schritt 3

Gerinneform des Referenzzustandes

Das Wertepaar (B_w/h ; h/d_m) für den Referenzzustand wird im modifizierten Diagramm von Ahmari & da Silva markiert und die entsprechende Gerinneform abgelesen (Bild 22). Zur Plausibilisierung ist das Resultat mit der Gerinneform zu vergleichen, welche in den historischen Karten oder Luftbildern sichtbar ist.

Schritt 4

Gerinnebreite nach Parker Berechnung der Gerinnebreite nach Parker (1979) aus:

$$BG_P = 4.4 \sqrt{\frac{HQ_2}{\sqrt{(s-1) g d_m}}} \tag{15}$$

mit

s = relative Dichte von Sediment und Wasser (= 2.65)

 $g = \text{Erdbeschleunigung} (= 9.81 \text{ m/s}^2)$

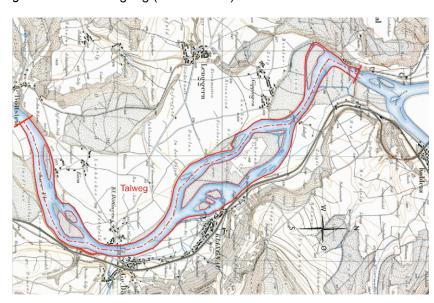


Bild 21 Beispiel Aare Klingnau: Gehölzfreie Fläche und Talweg. Fliessrichtung von links nach rechts

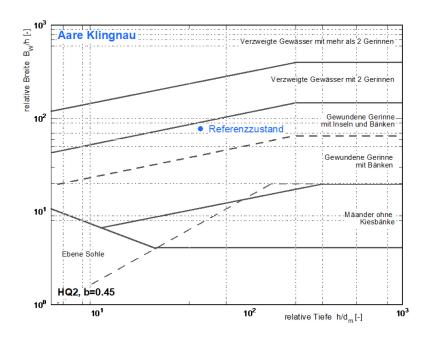


Bild 22 Beispiel Aare Klingnau: Position des Wertepaares (Bw/h; h/dm) des Referenzzustandes im modifizierten Ahmari & da Silva Diagramm mit Zuordnung der Gerinneform (Schritt 3).

Schritt 5

Gerinnebreite bei fehlender Geschiebezufuhr Die Gerinnebreite bei fehlender Geschiebezufuhr ergibt sich aus der Gerinnebreite nach Parker und dem Korrekturfaktor 0.45 (bei Verwenden von HQ_2):

$$BG_{GF=0} = 0.45 BG_P (16)$$

Schritt 6

Gerinneform bei fehlender Geschiebezufuhr Für die Gerinneform bei fehlender Geschiebezufuhr wird mit einer Normalabflussberechnung das Wertepaar ($BG_{GF=0}/h$; h/d_m) berechnet und im modifizierten Ahmari & da Silva Diagramm eingezeichnet (Bild 23).

Zwischen den Wertepaaren (B_w/h ; h/d_m) für den Referenzzustand und bei fehlender Geschiebezufuhr wird eine Verbindungslinie gezogen. Diese stellt den kritischen Pfad dar, auf welchem sich das Wertepaar (B_w/h ; h/d_m) verändert, wenn die Geschiebefracht kleiner ist als die Fracht im Referenzzustand (Bild 23).

Schritt 7

Relative Breite im Zielzustand Es sind folgende zwei Bedingungen zu erfüllen:

$$\left(\frac{B_w}{h}\right)_{Ziel} \ge 0.75 \left(\frac{B_w}{h}\right)_{RZ} \tag{17}$$

und

$$\left(\frac{B_{w}}{h}\right)_{Ziel} \ge \frac{1}{2} \left(\left(\frac{B_{w}}{h}\right)_{RZ} + \left(\frac{B_{w}}{h}\right)_{GF=0}\right)$$
(18)

Bei Erfüllung dieser Bedingungen ist die Gerinneform ähnlich derjenigen im Referenzzustand (Bild 24).

Schritt 8

Gerinnebreite im Zielzustand

Die Gerinnebreite BG_{Ziel} , welche sich im Zielzustand einstellt, wird mit einer Normalabflussberechnung bestimmt, indem iterativ für verschiedene Breiten der Term B_w/h berechnet und mit $(B_w/h)_{Ziel}$ verglichen wird.

Schritt 9Erforderliche Geschiebefracht

Die erforderliche Geschiebefracht wird berechnet aus

$$GF_{erf} = GF_{RZ} \frac{BG_{Ziel} - 0.45 \ BG_P}{BG_{RZ} - 0.45 \ BG_P}$$
 (19)

Die resultierende erforderliche Geschiebefracht muss grösser sein als

$$GF_{erf} \ge 0.5 GF_{RZ} \tag{20}$$

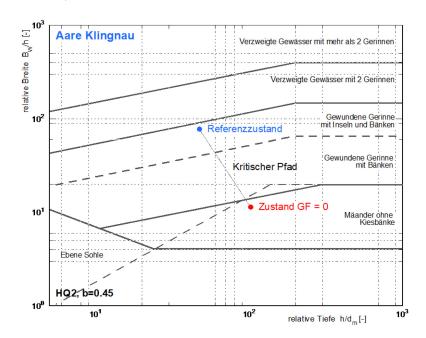


Bild 23 Beispiel Aare Klingnau: Position des Wertepaares (Bw/h; h/dm) im Referenzzustand und im Zustand ohne Geschiebe mit dem kritischen Pfad im modifizierten Ahmari & da Silva Diagramm (Schritt 6).

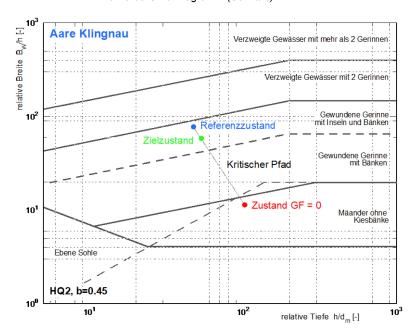


Bild 24 Beispiel Aare Klingnau: Position des Wertepaares (Bw/h; h/dm) bei Erfüllung von Bedingung 1, resp. im Zielzustand im modifizierten Ahmari & da Silva Diagramm (Schritt 7).

4 Sensitivitätsanalyse

Ziel der Sensitivitätsanalyse Mit Hilfe der Sensitivitätsanalyse soll aufgezeigt werden, wie robust die hier vorgestellte Methode bei der Anwendung in der Praxis ist. Die Methode erfordert die Erhebung von Messgrössen aus Karten (Gerinnebreite im Referenzzustand, Gefälle), aus der Natur (Korndurchmesser) oder deren Schätzung mit Hilfe empirischer Ansätze (Abflusswerte). Die Messgrössen sind mit Fehlern behaftet, welche sich auf die Unschärfe des Endergebnisses, das Verhältnis der erforderlichen Fracht zur Fracht im Referenzzustand, auswirkt. Mit der Sensitivitätsanalyse wird das Ausmass dieser Unschärfe bestimmt.

Vorgehen

Der Einfluss eines Fehlers an den Eingangsgrössen wird mit Hilfe einer Variation der Eingangsgrössen bestimmt. Das für die Beispielgewässer von Anhang 1 bestimmte Verhältnis der erforderlichen Fracht zur Fracht im Referenzzustand (Bild 18) wird als beste Schätzung betrachtet. Jede Eingabegrösse wird um Werte zwischen ±10 % und ±20% variiert und die Abweichung von der besten Schätzung in Prozent bestimmt. Die einzelnen prozentualen Abweichungen werden nach dem Gauss'schen Fehlerfortpflanzungsgesetz geometrisch addiert und daraus ein mittlerer Fehler am Endergebnis abgeleitet.

Eingangsgrösse	geschätzter mittlerer Fehler
BG _{RZ}	± 10 %
J	± 10 %
d ₉₀	± 20 %
d_m	± 20 %
HQ ₂	± 15 %
k _{Wand}	± 3 m ^{1/3} /s

Tabelle 3 Variation der Eingangsgrössen für die Sensittivitätsanalyse

Ergebnisse

In Bild 25 und Bild 26 sind die relativen Fehler am berechneten Verhältnis $GF_{\it erf}/GF_{\it RZ}$ in Funktion von W (im Referenzzustand) für verschiedene Eingangsgrössen bzw. Kombinationen davon abgebildet. Der relative mittlere Fehler am Endergebnis nimmt mit zunehmender Verzweigung (zunehmendem Wert W) ab. Für gewundene Gewässer mit Bänken wurden relative mittlere Fehler zwischen 6 % und 13 % bestimmt. Für alle übrigen Gewässer relative mittlere Fehler kleiner als 5 % (Bild 25). Die Methode erweist sich insgesamt also als robust.

Eine Unsicherheit an der Bestimmung der Gerinnebreite im Referenzzustand BG_{RZ} wirkt sich am stärksten auf das Endergebnis aus. Unsicherheiten an den Eingangsgrössen, welche die Abflussberechnung beeinflussen (Gefälle J, Korngrösse d_{90} und Wandrauheit k_{Wand}), wirken sich weniger stark aus als Unsicherheiten an HQ_2 und d_m , welche beide für die Bestimmung der Gerinnebreite nach Parker verwendet werden.

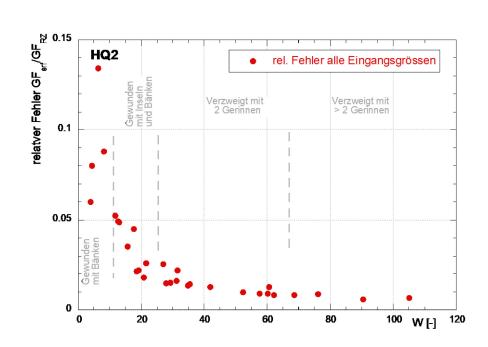


Bild 25 Relativer mittlerer Fehler am Ergebnis GF_{ef}/GF_{RZ} bei einer Variation der Eingangsgrössen gemäss Tabelle 3.

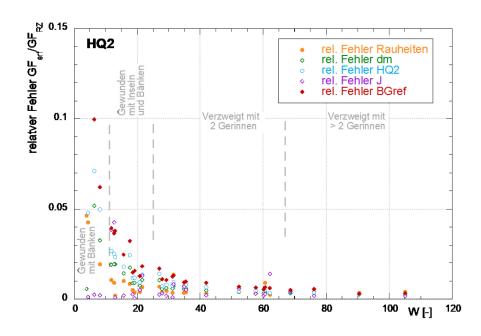


Bild 26 Relativer mittlerer Fehler am Ergebnis GF_{erf}/GF_{RZ} bei einer Variation ausgewählter Eingangsgrössen gemäss Tabelle 3.

Einfluss der Geschiebefracht im Referenzzustand Die Berechnung der erforderlichen Geschiebefracht ist abhängig von der Geschiebefracht im Referenzzustand. Fehler an der Geschiebefracht im Referenzzustand wirken sich linear auf die erforderliche Geschiebefracht aus. Aus diesen Gründen ist der Bestimmung der Geschiebefracht im Referenzzustand grosse Aufmerksamkeit zu schenken und, soweit möglich, aufgrund verschiedener Ansätze zu bestimmen und zu plausibilisieren.

Mit der Methode 1 wird der *Anteil* an der Geschiebefracht im Referenzzustand bestimmt. Damit ist die Methodik selbst nicht von der Genauigkeit der Geschiebefracht im Referenzzustand abhängig.

5 Anwendungsempfehlung

Die in Kapitel 2 vorgestellte Methode wurde spezifisch für die Anforderungen an die Gewässerschutzgesetzgebung entwickelt. Sie ist robust und geeignet, um die erforderliche Geschiebefracht im Verhältnis zur Geschiebefracht im Referenzzustand zu ermitteln und wird für die Massnahmenplanung zur Sanierung des Geschiebehaushaltes nach Gewässerschutzgesetz empfohlen. Es sind zwei Varianten zur Anwendung geeignet:

- 1. Umfassende Variante (Vorgehen gemäss Kapitel 3)
- 2. Vereinfachte Variante (ohne hydraulische Berechnungen)

Mit der **umfassenden Variante** wird die erforderliche Geschiebefracht mithilfe von morphologischen Berechnungen bestimmt. Sie erlaubt eine zuverlässige und gewässerspezifische Abschätzung der erforderlichen Geschiebefracht. Die umfassende Variante wird für die Herleitung der erforderlichen Geschiebefracht von **grossen Gewässern** empfohlen.

Mit der **vereinfachten Variante** wird anhand der Gerinneform im Referenzzustand schnell und einfach abgeschätzt, wie gross die erforderliche Geschiebefracht relativ zur Referenzfracht ist. Dabei wird GF_{erf}/GF_{RZ} auf 5% gerundet (Bild 27). Dementsprechend hat die erforderliche Geschiebefracht folgende Prozentwerte der Referenzfracht zu erreichen:

Verzweigte Gewässer mit mehr als 2 Gerinnen	80%
Verzweigte Gewässer mit 2 Gerinnen	75%
Gewundene Gewässer mit Inseln und Bänken	70%
Gewundene Gewässer mit Bänken	65%

Die Gerinneform im Referenzzustand wird mit Hilfe historischer Karten und Luftbildern oder bestehender naturnaher Gewässerabschnitte bestimmt. Die vereinfachte Variante wird für die Herleitung der erforderlichen Geschiebefracht von **kleinen Gewässern** empfohlen.

Beide Varianten sind anwendbar für Gefälle bis 3%.

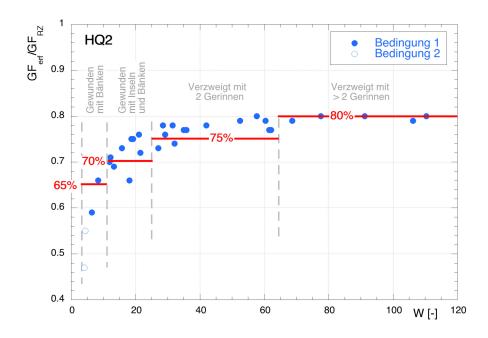
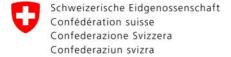


Bild 27 Vereinfachte Variante zur Bestimmung der erforderlichen Geschiebefracht in Abhängigkeit der Gerinneform.


6 Literatur

- Ahmari H. & da Silva A.M.F. (2011): Regions of bars, meandering and braiding in da Silva and Yalin's plan. Journal of Hydraulic Research, 49, 718-727.
- Anderson A.G., Parker G., Wood A. (1975): The flow and stability characteristics of alluvial channels. St. Anthony Falls Hydraulic Laboratory, 161, Minneapolis, Minnesota. Zitiert in Bezzola (2003)-
- Ashmore P.E. (2001): Braiding Phenomena: statics and kinetics. In: Gravel-Bed River V (Ed M.P. Mosley), pp.95-120. New Zealand Hydrological Society. Wellington New Zealand.
- Bezzola G.R. (2003): Vorlesungsmanuskript Flussbau. Eidgenössische Technische Hochschule Zürich.
- Bunte K., Abt S.R., Swingle K.W., Cenderelli D.A. (2014): Effective discharge in Rocky Mountain headwater streams. Journal of Hydrology, 519, 2136-2147.
- da Silva A.M.A.F. (1991): Alternate bars and Related Alluvial Processes. Thesis of Master of Science, Queens University, 225 S.
- Flussbau AG & NDR Consulting GmbH (2013): Simme. Studie über den Geschiebehaushalt (2013). Im Auftrag des Tiefbauamts des Kantons Bern. Bern und Thun, 2013
- Flussbau AG (2014): Aare Bielersee Rhein, Sanierungsplanung Geschiebehaushalt, Schlussbericht. Im Auftrag des Tiefbauamts des Kantons Bern, des Amts für Umwelt des Kantons Solothurn und des Departements Bau, Verkehr und Umwelt des Kantons Aargau. Zürich, 2014
- Flussbau AG (2016): Sellenbodenbach, Neuenkirch. Sanierungs- und Aufwertungskonzept. Im Auftrag der Gemeinde Neuenkirch. Zürich, 2016.
- Flussbau AG (2017): Sanierung Geschiebehaushalt Schwarzwasser. Im Auftrag des Tiefbauamts des Kantons Bern, 2017.
- Flussbau AG (2018): Hochwasserschutz Alpenrhein, Internationale Strecke, km65 km91, Generelles Projekt, Fachplanung Hydraulik und Geschiebe, Morphologie. Im Auftrag der Internationalen Rheinregulierung. Zürich, 2018.
- Hunzinger L., Schälchli U., Nitsche M., Kirchofer A., Roulier C., Rüesch T. (2020, in Anhörung): Geschiebehaushalt Massnahmen. Ein Modul der Vollzugshilfe Renaturierung der Gewässer. Bundesamt für Umwelt. Bern.
- Ikeda S., Parker G., Kimura Y. (1988). Stable Width and Depth of Straight Gravel Rivers with Heterogeneous Bed Materials. Water Resources Research, 24(5), 713-722.
- Jäggi M. (1983): Alternierende Kiesbänke. Mitteilung der Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, 62, Zürich.
- KW Oberhasli AG (2017): Baumgartner Jan: Mailverkehr.
- Marti Ch. & Bezzola G.R. (2004): Sohlenmorphologie in Flussaufweitungen. Jahrestagung der SGMG 2003 in Erstfeld: Turbulenzen in der Geomorphologie. Mitteilung Nr. 184 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. 173-188.
- Marti Ch. (2006): Morphologie von verzweigten Gerinnen. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Mitteilung Nr. 199.
- Millar R.G. (2005): Theoretical regime equations for mobile gravel bed rivers with stable banks. Geomorphology , 64, 207-220.
- Parker G. (1976): On the Cause and Characterstic Scales of Meandring and Braiding Rivers. Journal of Fluid Mechanics, 76, 457-480. Zitiert in Bezzola (2003).
- Parker G. (1979): Hydraulic Geometry of Active Gravel Rivers. Journal of the Hydraulics Division, HY9, pp 1185-1201.
- Schälchli, Abegg + Hunzinger (2000): Auenschutzpark Rohr-Rupperswil, Restwasserstrecke Kraftwerk Rupperswil Auenstein. Ökologisch begründetes Dotierregime. Im Auftrag des Baudepartements des Kantons Aargau. Bern, 2000.

- VAW (1987): Aare-Erosion. Bericht über die Untersuchungen betreffend das Ausmass und den zeitlichen Ablauf der erwarteten Sohlenerosion in der Aarestrecke zwischen Büren und Solothurn. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Bericht Nr. 919.
- VAW (2017): Grundlagenversuche zur Untersuchung des Zusammenhangs zwischen Geschiebefracht und Morphodynamik in Kiesflüssen. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Bericht Nr. 4348, Januar 2017.
- Wolman M.G. & Miller J.P. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. The Journal of Geology 68(1): 54-74.
- Zarn B. (1997): Einfluss der Flussbettbreite auf die Wechselwirkung zwischen Abfluss, Morphologie und Geschiebetransportkapazität. Mitteilung Nr. 154 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich.

7 Symbole

В	Breite	[m]
b	Ordinatenabschnitt	[-]
B*	Breite, an $ar{Q}$ normiert	[-]
BG	Gerinnebreite	[-]
BG_i	Gerinnebreite im Zustand i	[m]
BG_P	Gerinnebreite nach Parker	[m]
BG_{RZ}	Gerinnebreite im Referenzzustand	[m]
BG_{Ziel}	Gerinnebreite im Zielzustand	[m]
B_w	Wasserspiegelbreite	[m]
d_m	Mittlerer Korndurchmesser einer Mischung	[m]
d _x	Korndurchmesser, welcher von x Gewichtsprozenten der Körner einer Mischung unterschritten wird	[m]
GF	Geschiebefracht	[m³/a]
GF_i	Geschiebefracht im Zustand i	[m³/a]
GF_{RZ}	Geschiebefracht im Referenzzustand	[m³/a]
\overline{GF}	Geschiebefracht, an HQ_X normiert	[-]
h	Abflusstiefe	[m]
HQ_X	Hochwasserabfluss, der statistisch gesehen alle x Jahre einmal erreicht oder überschritten wird	[m ³ /s]
J	Gefälle	[-]
KF	Korrekturfaktor zur Berechnung der Gerinnebreite nach Parker	[-]
Q	Abfluss	[m ³ /s]
Q_0	Grenzabfluss für den Geschiebetransportbeginn	[m ³ /s]
Q_b	Geschiebetransportrate	[m ³ /s] oder [kg/s]
Q_D	Grenzabfluss für das Aufreissen der Deckschicht	[m ³ /s]
Q_x	Abfluss, der an x Tagen im Jahr erreicht oder überschritten wird	[m ³ /s]
$ar{Q}$	Abfluss, an der Korngrösse im Gerinne normiert	[-]

Bundesamt für Umwelt BAFU

Abteilung Wasser

2021

Die erforderliche Geschiebefracht

Fachbericht zum Modul «Geschiebehaushalt – Massnahmen» der Vollzugshilfe Renaturierung der Gewässer

Anhang – Datensatz Beispielgewässer

Die erforderliche Geschiebefracht Anhang 1

Beispielgewässer Massgebender Abfluss HQ2

Naturnaher Zustand / Referenzzustand

:		. 70	-			-		× `	1	1	- 17	Berechnung mit Rechteckgerinne	IIT Kechteckge		
Gewässer	Ort	HQ2 [m3/s]	SM dm [m]	SM d90 [m]	[-] sr	BG Parker	BG nZ,nnZ(n	nnZ) / BG(P)	GF nnZF(nnZ)		Bs nnZ	h(HQZ)	Bw(HQ2)	h/dm	Bw/h
Alpenrhein	Mastrils	780	0.100	0.270	0.0030	109	250	2.29	100000	128.2	250.0	1.61	250.0	16.1	155.3
Alpenrhein	Kriessern km75	1300	0.032	0.080	0.0013	187	380	2.03	52000	40.0	380.0	1.83	380.0	57.2	207.7
Alpenrhein	Rheineck	1300	0.026	0.065	0.0008	197	191	0.97	20000	15.4	191.0	3.15	191.0	121.2	9.09
Aare	Grenchen	520	0.00040	0.450	0.00008	354	146	0.41	0	0.0	146.0	5.38	146.0	13450.0	27.1
Aare	Wynau	720	0.050	0.110	0.0010	124	93	0.75	13500	18.8	93.0	3.46	93.0	69.2	26.9
Aare	Aarau-Biberstein	830	0.075	0.160	0.0013	121	160	1.32	13000	15.7	160.0	2.57	160.0	34.3	62.3
Aare	Wildegg-Brugg	830	0.075	0.160	0.0013	121	200	1.66	2000	8.4	200.0	2.22	200.0	29.6	90.1
Aare	Klingnau	1520	0.065	0.150	0.0010	169	240	1.42	16000	10.5	240.0	3.08	240.0	47.4	77.9
Hinterrhein	Cazis	360	0.140	0.300	0900:0	89	200	7.35	00009	166.7	200.0	0.66	500.0	4.7	757.6
Ilfis	Kröschenbrunnen	105	0.085	0.200	0.0048	42	45	1.08	2000	19.0	45.0	1.17	45.0	13.8	38.5
Kleine Emme	Malters-Emmen	306	0.100	0.240	0.0050	89	189	2.77	15000	49.0	189.0	96.0	189.0	9.6	196.9
Limmat	Dietikon	410	0.054	0.120	0.0015	92	120	1.30	2800	8.9	120.0	1.87	120.0	34.6	64.2
Reuss	Rathausen-Perlen	480	0.050	0.110	0.0021	102	86	96.0	14000	29.5	98.0	2.08	98.0	41.6	47.1
Reuss	Perlen-Gisikon	480	0:020	0.110	0.0020	102	170	1.67	13000	27.1	170.0	1.52	170.0	30.4	111.8
Sihl	Adliswil	160	0.080	0.200	0.0038	52	51	0.98	3300	20.6	51.0	1.53	51.0	19.1	33.3
lenbodenbaci	Sellenbodenbach Neuenkirch	6	090'0	0.140	0900'0	13	7.5	0.56	30	3.3	7.5	0.77	7.5	12.8	9.7
Suhre	Triengen	14.2	0.025	0.070	0.0030	21	12	0.58	06	6.3	12.0	0.83	12.0	33.2	14.5
Wiese	Basel	103	0.031	0.087	0.0031	53	82	1.60	3000	29.1	85.0	0.79	85.0	25.5	107.6
Wigger	Altishofen	20	090'0	0.120	0.0050	37	45	1.21	1500	21.4	45.0	0.85	45.0	14.2	52.9
Brenno	Castro	141	0.140	0.580	0.0270	43	99	1.55	12500	88.7	0.99	1.04	0.99	7.4	63.5
Brenno	Marogno	177	0.165	0.420	0.0180	46	100	2.18	14000	79.1	100.0	0.91	100.0	5.5	109.9
Brenno	Loderio	259	0.065	0.144	0.0050	02	225	3.22	19000	73.4	225.0	0.85	225.0	13.1	264.7
Schwarzwasser	Heubach	25	0.100	0.310	0.0260	20	48	2.46	3200	128.0	48.0	0.46	48.0	4.6	104.3
Thur	Wattwil	175	0.080	0.180	0.0026	22	45	0.82	4000	22.9	45.0	1.85	45.0	23.1	24.3
Thur	Niederstetten	490	0.055	0.120	0.0024	100	180	1.80	12000	24.5	180.0	1.42	180.0	25.8	126.8
Thur	Bürglen	290	0.065	0.145	0.0020	106	170	1.61	18500	31.4	170.0	1.76	170.0	27.1	96.6
Thur	Frauenfeld	280	0.055	0.125	0.0017	109	250	2.29	18500	31.9	250.0	1.43	250.0	26.0	174.8
Thur	Niederneunforn	220	0.050	0.120	0.0016	111	175	1.58	20000	35.1	175.0	1.78	175.0	35.6	98.3
Töss	Kollbrunn	77	0.050	0.100	0.0066	41	110	2.70	2600	33.8	110.0	0.48	110.0	9.6	229.2
Töss	Leisental	68	0.045	0.090	0.0059	45	100	2.23	2800	31.5	100.0	0.55	100.0	12.2	181.8
Töss	Dättlikon	115	0.040	0.080	0.0033	53	120	2.28	2800	24.3	120.0	0.67	120.0	16.8	179.1
Simme	Niedermettlisau	87	0.055	0.133	0.0083	42	52	1.23	12300	141.4	52.0	0.78	52.0	14.2	66.7
Gadmerwasser	Chalenegg	25	0.076	0.165	0.0180	21	21	1.01	4300	172.0	21.0	0.58	21.0	7.6	36.2

Verzweigte Gewässer mit mehr als 2 Gerinnen
Verzweigte Gewässer mit 2 Gerinnen
Gewundene Gerinne mit Inseln und Bänken
Cewundene Gerinne mit Bänken
Mäander ohne Kiesbänke

Anhang 1 Die erforderliche Geschiebefracht

Beispielgewässer Massgebender Abfluss HQ2 GF=0

	Bw/h	11.0	17.5	16.7	31.3	11.2	10.1	10.1	11.4	9.8	8.9	10.6	10.8	13.1	12.7	8.8	6.1	9.2	13.3	10.1	10.1	10.1	12.0	8.6	8.6	13.0	11.7	12.0	12.3	12.5	13.4	12.5	12.9	10.2
rinne	mp/y	44.5	150.0	204.6	12725.0	100.4	71.6	71.6	102.6	22.2	24.7	28.9	71.1	70.0	71.8	33.5	16.3	40.8	58.1	27.5	13.5	12.4	40.3	10.2	35.9	62.9	62.5	74.2	81.0	29.2	33.6	47.3	26.7	12.1
it Rechteckge	Bw(HQ5)	49.0	84.2	88.6	159.2	26.0	54.3	54.3	76.2	30.6	18.7	30.7	41.5	45.7	45.7	23.5	0.9	9.4	23.9	16.7	19.2	20.6	31.5	8.8	24.6	45.1	47.5	49.1	49.8	18.3	20.2	23.7	19.0	9.4
Berechnung mit Rechteckgerinne	h(HQ5)	4.45	4.80	5.32	5.09	5.02	5.37	5.37	6.67	3.11	2.10	2.89	3.84	3.50	3.59	2.68	0.98	1.02	1.8	1.65	1.89	2.05	2.62	1.02	2.87	3.46	4.06	4.08	4.05	1.46	1.51	1.89	1.47	0.92
ш	BG GF=0	49.0	84.2	88.6	159.2	26.0	54.3	54.3	76.2	30.6	18.7	30.7	41.5	45.7	45.7	23.5	0.9	9.4	23.9	16.7	19.2	20.6	31.5	8.8	24.6	45.1	47.5	49.1	49.8	18.3	20.2	23.7	19.0	9.4
	GF nnZ GF(nnZ) / HQ5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	GF nnZ G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KF	(GF=0)/BG(P)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	BG nZ,nnZ BG(GF=0)/BG(P)	250	380	191	146	93	160	200	240	200	45	189	120	86	170	51	7.5	12	82	45	99	100	225	48	45	180	170	250	175	110	100	120	25	21
	_	1																																
	BG Parker	109	187	197	354	124	121	121	169	89	42	89	92	102	102	52	13	21	53	37	43	46	0.2	20	22	100	106	109	111	41	45	53	42	21
		0.0030	013	800	0.00008 354		0.0013		0.0010	0900:0	0.0048	0.0050	0.0015	0.0021 102						0.0050	0.0270 43		0.0050	0.0260 20	0.0026 55	0.0024 100	020		0.0016	0.0660	0.0059	0.0033	0.0083	
	Js [-] BG Parker	030	0.0013	0.0008	0.00008	0.0010		0.0013			048	020						0:0030	0.0031			0.0180			026			0.0017	016	099		0.0033	0.0083	
	SM d90 [m] Js [-] BG Parker	0:0030	0.0013	0.065 0.0008	0.00008	0.0010	0.0013	0.0013	0.0010	09000	0.0048	0.0050	0.0015	0.0021	0.0020	0.200 0.0038	0900:0	0.070 0.0030	0.087 0.0031	0.0050	0.0270	0.0180	05000	0.0260	0.0026	0.0024	0.0020	0.125 0.0017	0.0016	0.0660	0.0059	0.080 0.0033	0.133 0.0083	0.165 0.0180
	Js [-] BG Parker	0.100 0.270 0.0030	0.032 0.080 0.0013	0.026 0.065 0.0008	0.450 0.00008	0.050 0.110 0.0010	0.075 0.160 0.0013	0.075 0.160 0.0013	0.150 0.0010	0.300 0.300	0.200 0.0048	0.100 0.240 0.0050	0.120 0.0015	0.110 0.0021	0.110 0.0020	0.200 0.0038	0.140 0.0060	0.025 0.070 0.0030	0.031 0.087 0.0031	0.0050 0.0050	0.580 0.0270	0.165 0.420 0.0180	0.065 0.144 0.0050	0.100 0.310 0.0260	0.200 0.0026	0.055 0.120 0.0024	0.145 0.0020	0.055 0.125 0.0017	0.120 0.0016	0.100 0.0660	0.045 0.090 0.0059	0.080 0.0033	0.055 0.133 0.0083	0.165 0.0180
	SM d50 [m] SM d90 [m]	0.100 0.270 0.0030	0.032 0.080 0.0013	0.026 0.065 0.0008	0.00040 0.450 0.00008	0.050 0.110 0.0010	0.075 0.160 0.0013	0.075 0.160 0.0013	1520 0.065 0.150 0.0010	0.300 0.300	0.085 0.200 0.0048	0.100 0.240 0.0050	410 0.054 0.120 0.0015	0.050 0.110 0.0021	iisikon 480 0.050 0.110 0.0020	0.080 0.200 0.0038	9 0.060 0.140 0.0060	0.025 0.070 0.0030	0.031 0.087 0.0031	0.060 0.120 0.0050	0.140 0.580 0.0270	0.165 0.420 0.0180	0.065 0.144 0.0050	0.100 0.310 0.0260	0.080 0.200 0.0026	0.055 0.120 0.0024	0.065 0.145 0.0020	0.055 0.125 0.0017	0.050 0.120 0.0016	0.050 0.100 0.0660	0.045 0.090 0.0059	0.040 0.080 0.0033	0.055 0.133 0.0083	0.076 0.165 0.0180
	HQ2 [m3/s] SM d50 [m] SM d90 [m] Js [-] BG Parker	780 0.100 0.270 0.0030	1300 0.032 0.080 0.0013	ırhein Rheineck 1300 0.026 0.065 0.0008	520 0.00040 0.450 0.00008	720 0.050 0.110 0.0010	830 0.075 0.160 0.0013	830 0.075 0.160 0.0013	1520 0.065 0.150 0.0010	360 0.140 0.300 0.0060	105 0.085 0.200 0.0048	306 0.100 0.240 0.0050	410 0.054 0.120 0.0015	480 0.050 0.110 0.0021	ss Perlen-Gisikon 480 0.050 0.110 0.0020	160 0.080 0.200 0.0038	0.060 0.140 0.0060	14.2 0.025 0.070 0.0030	Basel 103 0.031 0.087 0.0031	70 0.060 0.120 0.0050	Castro 141 0.140 0.580 0.0270	177 0.165 0.420 0.0180	259 0.065 0.144 0.0050	. 25 0.100 0.310 0.0260	175 0.080 0.200 0.0026	490 0.055 0.120 0.0024	590 0.065 0.145 0.0020	Frauenfeld 580 0.055 0.125 0.0017	570 0.050 0.120 0.0016	0.050 0.100 0.0660	89 0.045 0.090 0.0059	115 0.040 0.080 0.0033	87 0.055 0.133 0.0083	25 0.076 0.165 0.0180

Die erforderliche Geschiebefracht Anhang 1

Massgebender Abfluss HQ5 Beispielgewässer

Naturnaher Zustand / Referenzzustand

¥

Berechnung mit Rechteckgerinne 160.0 200.0 240.0 500.0 45.0 189.0 120.0 98.0 170.0 51.0 7.5 7.5 12.0 45.0 100.0 48.0 45.0 180.0 170.0 250.0 175.0 21.0 110.0 Bw(HQ5) 1.29 1.03 1.02 0.96 1.12 2.1 2.28 1.66 1.08 2.19 1.01 0.52 2.03 2.08 3.41 Bs nnZ 120.0 16.0 16.0 37.5 5.6 25.0 23.2 15.0 15.0 6.6 6.6 15.8 55.8 51.6 94.1 18.8 30.6 30.6 11.8 0.0 7.0 7.0 17.5 GF nnZ|F(nnZ) / HQ5 17.4 24.7 24.7 26.7 27.1 13500 13000 7000 16000 2000 2800 2800 14000 13000 3300 130 1500 12500 14000 19000 3200 4000 12000 18500 2600 2800 4300 100000 52000 18500 20000 BG nZ,nnZ (nnZ) / BG(P) 45 52 62 50 50 78 110 110 61 **BG Parker** 123 214 225 380 136 133 184 45 17 24 62 43 51 55 83 23 63 115 119 124 127 0.0010 0.0013 0.0060 0.0015 0.0020 0.0060 0.0030 0.0031 0.0050 0.0050 0.0026 0.0066 0.0013 0.0010 0.0050 0.0180 0.0020 0.0017 0.0016 0.0180 0.00008 0.120 0.080 0.450 0.160 0.160 0.150 0.300 0.240 0.110 0.200 0.140 0.120 0.420 0.310 0.120 0.145 0.120 0.070 0.180 0.080 SM d90 [m] 0.087 HQ5 [m3/s] SM dm [m] 0.100 0.032 0.026 0.00040 0.050 0.075 0.075 0.065 0.140 0.100 0.054 0.050 0.080 0.060 0.025 0.031 0.060 0.165 0.065 0.100 0.055 0.065 0.050 0.050 0.076 0.080 1700 1700 600 860 1000 1000 11000 500 500 560 560 560 14 14 95 200 200 251 348 34 34 230 640 640 750 750 96 1118 160 122 37 Rathausen-Perlen Kröschenbrunner Aarau-Biberstein Malters-Emmen Niederneunforn Niedermettlisau Kriessern km75 Wildegg-Brugg Perlen-Gisikon Niederstetten Sellenbodenbach Neuenkirch Frauenfeld Chalenegg Grenchen Altishofen Kollbrunn Rheineck Triengen Marogno Dättlikon Loderio Heubach Klingnau Dietikon Adliswil Bürglen Leisental Mastrils Wattwil Wynau Castro Cazis Basel g Gadmerwasser Schwarzwasser Kleine Emme Hinterrhein Alpenrhein Alpenrhein Alpenrhein Gewässer Brenno Brenno Limmat Wigger Brenno Reuss Suhre Wiese Reuss Aare Aare Thur Aare Aare Thur Thur Thur Thur Töss Töss Töss Ilfis 18 56 25 28 z.

Verzweigte Gewässer mit mehr als 2 Gerinnen

Verzweigte Gewässer mit 2 Gerinnen

Gewundene Gerinne mit Inseln und Bänken

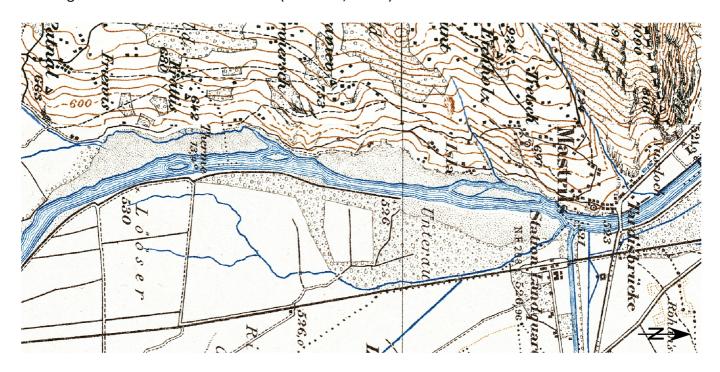
Gewundene Gerinne mit Bänken

Mäander ohne Kiesbänke

Anhang 1 Die erforderliche Geschiebefracht Beispielgewässer Massgebender Abfluss HQ5

Massgebend GF=0

	Bw/h	9.5	15.2	14.3	38.5	9.3	8.5	8.5	9.6	8.6	7.5	9.5	0.6	10.9	10.7	7.6	5.7	8.0	11.5	8.9	9.3	9.0	10.6	7.7	7.3	11.1	6.6	10.3	10.6	10.8	11.6	10.9	11.4	9.2
nne	mp/4	52.1	176.3	241.9	9875.0	116.6	83.1	83.1	118.5	26.6	28.4	34.0	83.3	80.4	82.4	40.3	19.5	49.2	69.7	32.5	15.6	14.7	48.3	11.8	42.8	75.3	73.7	87.6	0.96	33.8	39.8	57.0	31.8	14.5
Berechnung mit Rechteckgerinne	Bw(HQ5)	49.3	85.5	90.1	152.0	54.4	53.0	53.0	73.7	32.1	18.2	31.2	40.7	43.9	43.9	24.5	9.9	8.6	24.9	17.3	20.3	21.8	33.3	9.1	25.0	45.8	47.6	49.6	50.8	18.2	20.7	24.8	20.0	10.2
echnung mit	h(HQ5)	5.21	5.64	6.29	3.95	5.83	6.23	6.23	7.7	3.72	2.41	3.4	4.5	4.02	4.12	3.22	1.17	1.23	2.16	1.95	2.19	2.42	3.14	1.18	3.42	4.14	4.79	4.82	4.8	1.69	1.79	2.28	1.75	1.1
Ber	Bs nnZ	49.3	85.5	90.1	152.0	54.4	53.0	53.0	73.7	32.1	18.2	31.2	40.7	43.9	43.9	24.5	9.9	9.6	24.9	17.3	20.3	21.8	33.3	9.1	25.0	45.8	47.6	49.6	50.8	18.2	20.7	24.8	20.0	10.2
	/ HQ5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	GF nnZ F(nnZ) / HQ5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KF	(nnZ) / BG(P)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
	BG nZ,nnZ(r	250	380	191	146	66	160	200	240	200	45	189	120	86	170	51	7.5	12	82	45	99	100	225	48	45	180	170	250	175	110	100	120	25	21
	BG Parker	123	214	225	380	136	133	133	184	80	45	82	102	110	110	61	17	24	62	43	51	22	83	23	63	115	119	124	127	45	25	62	20	25
	[-] sf	0.0030	0.0013	0.0008	0.00008	0.0010	0.0013	0.0013	0.0010	0900.0	0.0048	0.0050	0.0015	0.0021	0.0020	0.0038	0900:0	0.0030	0.0031	0.0050	0.0270	0.0180	0.0050	0.0260	0.0026	0.0024	0.0020	0.0017	0.0016	0990'0	0.0059	0.0033	0.0083	0.0180
	SM d90 [m]	0.270	080'0	0.065	0.450	0.110	0.160	0.160	0.150	0.300	0.200	0.240	0.120	0.110	0.110	0.200	0.140	0.070	0.087	0.120	0.580	0.420	0.144	0.310	0.200	0.120	0.145	0.125	0.120	0.100	0.090	0.080	0.133	0.165
	SM d50 [m] :	0.100	0.032	0.026	0.00040	0.050	0.075	0.075	0.065	0.140	0.085	0.100	0.054	0.050	0.050	0.080	090.0	0.025	0.031	090.0	0.140	0.165	0.065	0.100	0.080	0.055	0.065	0.055	0.050	0.050	0.045	0.040	0.055	0.076
	нд5 [m3/s] :	1000	1700	1700	009	098	1000	1000	1800	200	125	400	200	260	260	220	14	19.7	142	95	200	251	368	34	230	640	750	750	750	96	118	160	122	37
	Ort	Mastrils	Kriessern km	Rheineck	Grenchen	Wynau	Aarau-Bibers	Wildegg-Bru	Klingnau	Cazis	Kröschenbru	Malters-Emn	Dietikon	Rathausen-P	Perlen-Gisikd	Adliswil	Neuenkirch	Triengen	Basel	Altishofen	Castro	Marogno	Loderio	km14.64	Wattwil	Niederstette	Bürglen	Frauenfeld	Niederneunf	Kollbrunn	Leisental	Dättlikon	Niedermettli	Chalenegg
	Gewässer (Alpenrhein	Alpenrhein	Alpenrhein			Aare /	Aare	Aare	Hinterrhein (Kleine Emme <mark></mark> Malters-Emr	Limmat	Reuss	Reuss		Sellenboden Neuenkirch	Suhre -	Wiese	Wigger		Brenno		Schwarzwas km 14.64	Thur			Thur	Thur	Töss	Töss	Töss	Simme	Gadmerwass Chalenegg
	Nr.	1	7	3	4	2	9			6		11	12	13	14	15	16		18	19		21		23	. 54	. 52			. 87	. 67		31		33


Anhang 2

Dokumentation Beispielgewässer

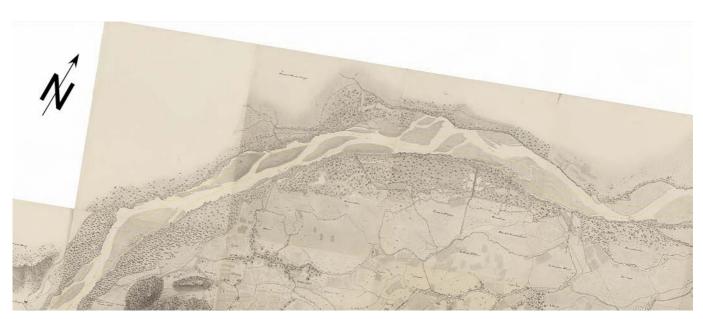
Hochwasserabflüsse	HQ ₂ : 780 m ³ /s	HQ ₅ : 1000 m ³ /s	
Quelle:	BAFU, Abflussmessstation	n Rhein, Domat-Ems	
Gefälle	J: 0.0030		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.270 m	d _m : 0.100 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand: o	ca. 100'000 m³/a	
Quelle:	Flussbau AG		
Gerinneform:	4 Verzweigtes Gewässer	mit 2 Gerinnen	

Historische Darstellungen

1. Siegfriedkarte: Jahr: 1882 (Blatt 415, Zizers) Massstab: 1:25'000

Luftbilder

2. Jahr: 2015 Massstab: 1:25'000


Hochwasserabflüsse Quelle:	HQ ₂ : 1300 m ³ /s BAFU, Abflussmessstation	HQ₅: 1700 m³/s Rhein, Diepoldsau, Rietbrücke	
Gefälle	J: 0.0013		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.080 m	d _m : 0.032 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand: ca	. 52'000 m³/a	
Quelle:	Flussbau AG		
Gerinneform:		nit 2 Gerinnen	

Historische Darstellungen

1. Römerkarte: Jahr: 1769 Massstab: 1:40'000

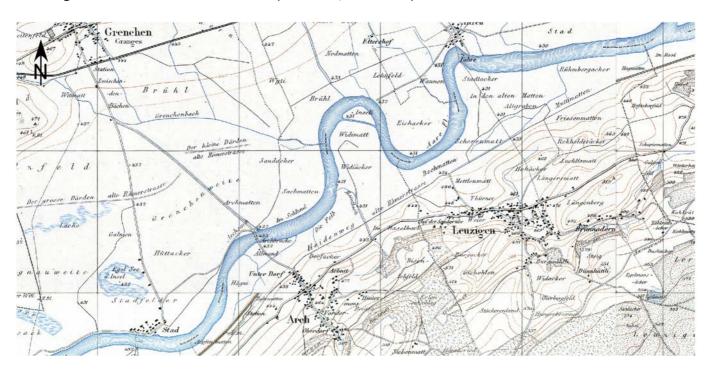
2. Duile- Karte Jahr: 1825 Massstab: 1:40'000

Hochwasserabflüsse Quelle:	HQ ₂ : 1300 m ³ /s BAFU, Abflussmessstation Rhein,	HQ₅: 1700 m³/s
Quelle.	DAI O, ADITUSSITIESSSTATION MICHI,	Diepolasaa, Metbracke
Gefälle	J: 0.0008	
Quelle:	Angenähert aus Lauflänge	
Sohlenmaterial	d ₉₀ : 0.065 m	d _m : 0.026 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: ca. 20'00	00 m ³ /a
Quelle:	Flussbau AG	
Gerinneform:	Übergang gewundenes Gerinne r	nit Inseln und Bänken ③ zu
	gewundenem Gerinne mit Bänke	n ②

Historische Darstellungen

1. Römerkarte: Jahr: 1769 Massstab: 1:40'000

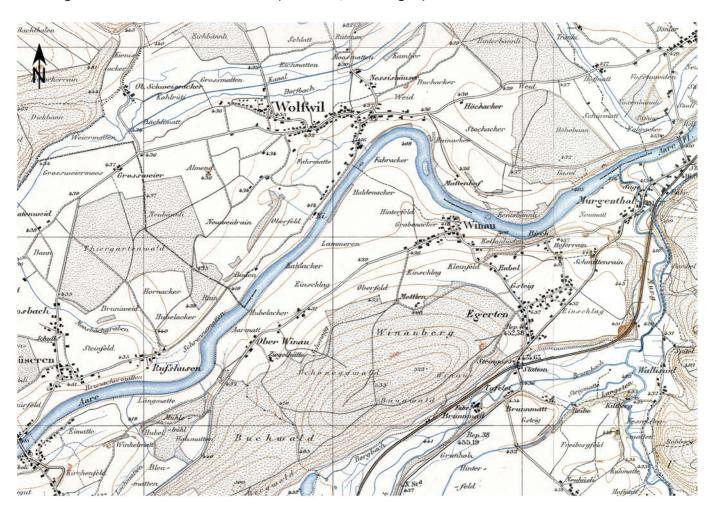
2. Duile- Karte Jahr: 1825 Massstab: 1:40'000


Aare, Grenchen, SO

4

Hochwasserabflüsse Quelle:	HQ ₂ : 520 m ³ /s BAFU, Abflussmessstation Aare,	HQ₅: 600 m³/s Brügg, Ägerten
Gefälle	J: 0.00008	
Quelle:	Bericht VAW: Aare-Erosion	
Sohlenmaterial	d ₉₀ : 0.4500 m	d _m : 0.0004 m
Quelle:	Bericht VAW: Aare-Erosion	
Geschiebefracht	im naturnahen Zustand: 0 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	① Mäander ohne Kiesbänke	

Historische Darstellungen


1. Siegfriedkarte Jahr: 1875 (Blatt 123, Grenchen) Massstab: 1:40'000

Hochwasserabflüsse Quelle:	HQ ₂ : 720 m ³ /s BAFU, Abflussmessstation	HQ ₅ : 860 m ³ /s Aare, Murgenthal	
Quener	b/ii o, / ionassinesssiation / iare, ivial gentilal		
Gefälle	J: 0.0010		
Quelle:	Bafu Querprofile		
Sohlenmaterial	d ₉₀ : 0.110 m	d _m : 0.050 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand: 13	im naturnahen Zustand: 13'500 m³/a	
Quelle:	Flussbau AG		
Gerinneform:	② Gewundenes Gerinne mit Bänken		

Historische Darstellungen

1. Siegfriedkarte Jahr: 1884 (Blatt 164, Aarwangen) Massstab: 1:30'000

Aare, Aarau Biberstein, AG

HQ₅: 1000 m³/s

6

Quelle: BAFU, Abflussmessstation Aare, Brugg

 HQ_2 : 830 m³/s

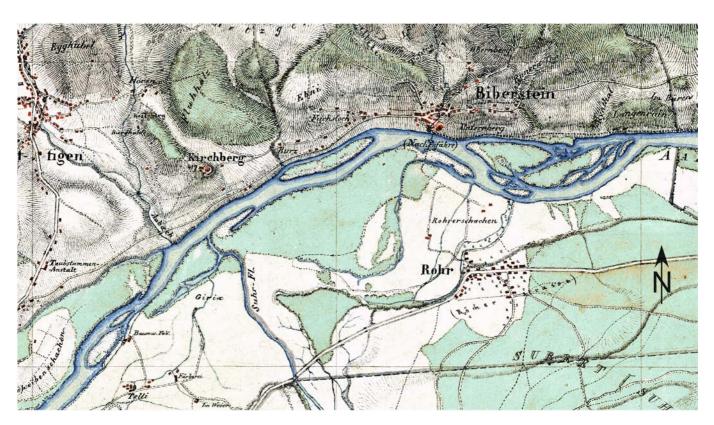
Gefälle J: 0.0013

Hochwasserabflüsse

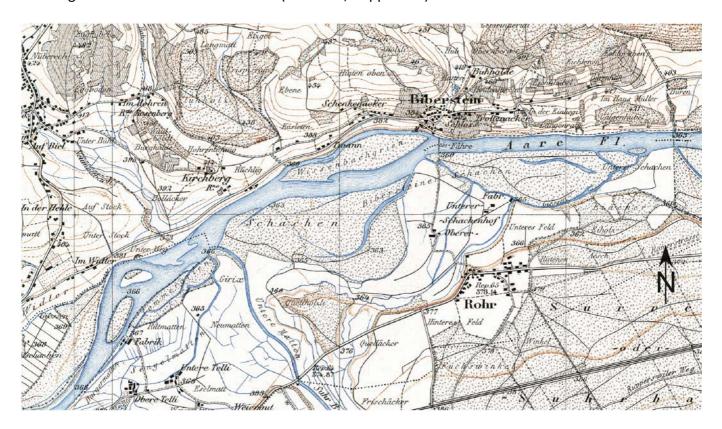
Quelle: Karten, Querprofile (mittleres Gefälle Aarau – Wildegg)

Sohlenmaterial d_{90} : 0.160 m d_{m} : 0.075 m

Quelle: Flussbau AG


Geschiebefracht im naturnahen Zustand: 13'000 m³/a

Quelle: Flussbau AG


Gerinneform: 3 Gewundenes Gerinne mit Inseln und Bänken

Historische Darstellungen

1. Michaeliskarte: Jahr: 1837-1843 Massstab: 1:25'000

2. Siegfriedkarte Jahr: 1878 (Blatt 151, Rupperswil) Massstab: 1:25'000

Aare, V	Vildegg-	Brugg,	AG
---------	----------	--------	----

Hochwasserabflüsse HQ_2 : 830 m³/s (red: 460m³/s) HQ_5 : 1000 m³/s (red: 650 m³/s)

7

Quelle: BAFU, Abflussmessstation Aare, Brugg

Gefälle J: 0.0013 Quelle: Querprofile

Sohlenmaterial d_{90} : 0.160 m d_{m} : 0.075 m

Quelle: Flussbau AG

Geschiebefracht im naturnahen Zustand: 13'000 m³/a

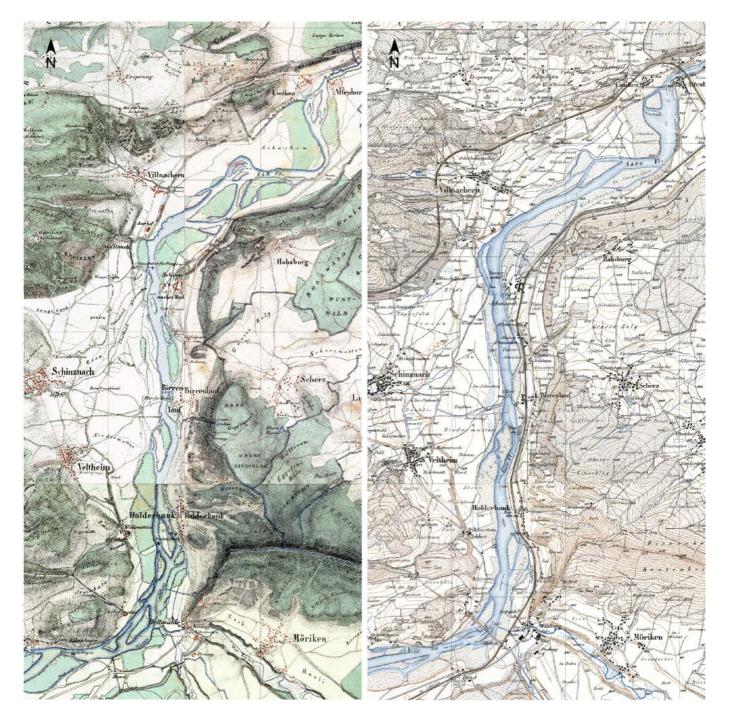
Quelle: Flussbau AG

Gerinneform:

Naturnaher Zustand 3 Gewundenes Gerinne mit Inseln und Bänken

Reduzierter Abfluss (1961) ② Gewundenes Gerinne mit Bänken Zustand 2012 ② Gewundenes Gerinne mit Bänken

Historische Darstellungen (nächste Seite)


1. Michaeliskarte: Jahr: 1837- 1843

Massstab: 1:50'000

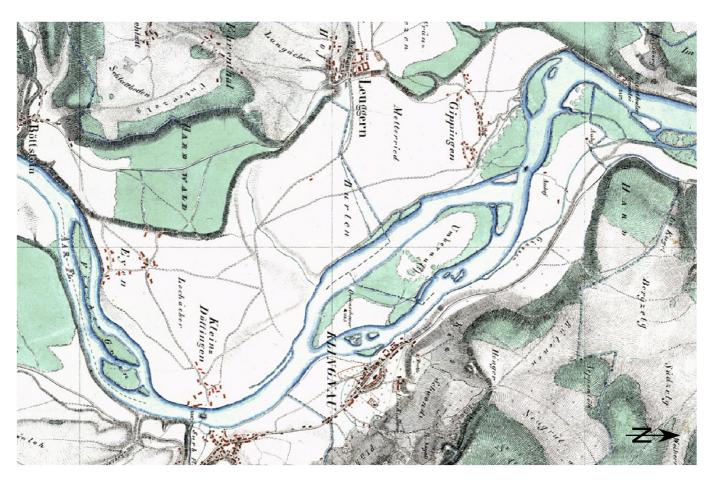
2. Siegfriedkarte:

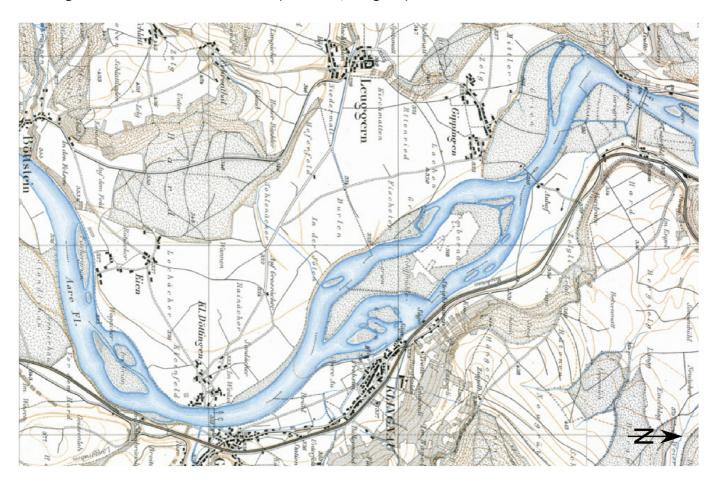
Jahr: 1878 (Blatt 038, Brugg/ Blatt 151 Rupperswil)- 1882 (Blatt 053, Veltheim)

Massstab: 1:50'000

Luftbilder

3. Jahr: 1961 Massstab: 1:10'000



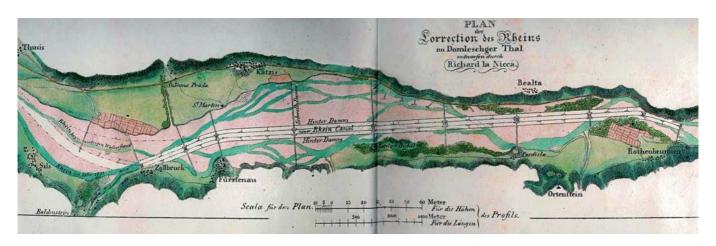

Hochwasserabflüsse Quelle:	HQ ₂ : 1'520 m ³ /s BAFU, Abflussmessstation Aare, U	HQ ₅ : 1800 m³/s Intersiggenthal Stilli
Gefälle	J: 0.0010	
Quelle:	BAFU -Querprofile	
Sohlenmaterial	d ₉₀ : 0.150 m	d _m : 0.065m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 16'000 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	③ Gewundenes Gerinne mit Inseln und Bänken	

Historische Darstellungen

1. Michaeliskarte: Jahr: 1837- 1843 Massstab: 1:30'000

2. Siegfriedkarte: Jahr: 1882 (Blatt 022, Klingnau) Massstab: 1:30'000

Hinterrhein, Cazis, GR


9

Hochwasserabflüsse Quelle:	HQ ₂ : 360 m ³ /s BAFU, Abflussmessstation Hintern	HQ ₅ : 500 m³/s hein, Fürstenau
Gefälle	J: 0.0060	
Quelle:	Mittleres Gefälle aus LK 1:25'000	
Sohlenmaterial	d ₉₀ : 0.300 m	d _m : 0.140 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: ca. 60'000 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	© Verzweigtes Gewässer mit mehr als 2 Gerinnen	

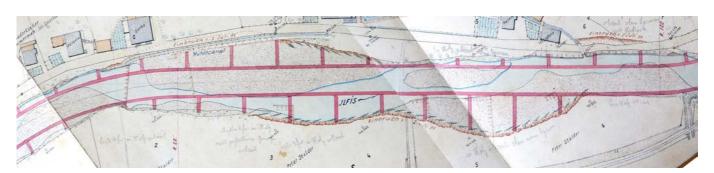
Historische Darstellungen

1. Plan der Korrection des Rheins im Domleschger Thal

Richard la Nicca Jahr: 1826 Massstab: 1:50'000

10

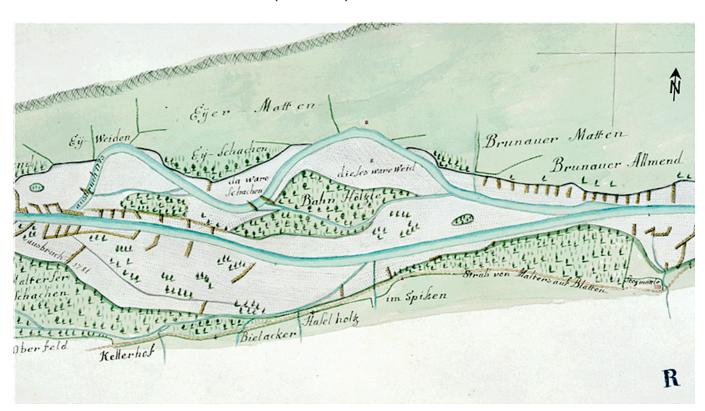
Hochwasserabflüsse Quelle:	HQ₂: 105 m³/s Gewässerraum Wigger, Luthern, S Im Auftrag des Kt. Luzern	HQ ₅ : 125 m ³ /s Suhre, Ilfis (Bericht Flussbau AG, 2013)
Gefälle	J: 0.0048 Mittleres Gefälle LK 1:25'000	
Sohlenmaterial Quelle:	d ₉₀ : 0.200 m Flussbau AG	d _m : 0.085 m


Geschiebefracht im naturnahen Zustand: 2'000 m³/a

Quelle: Flussbau AG

Gerinneform: 3 Gewundenes Gerinne mit Inseln und Bänken

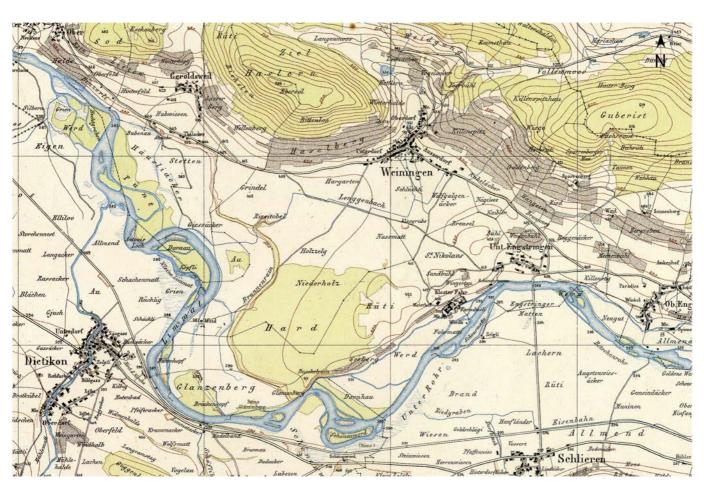
Historische Darstellungen


1. Projektplan Jahr: 1891/92 Massstab: 1:2'500

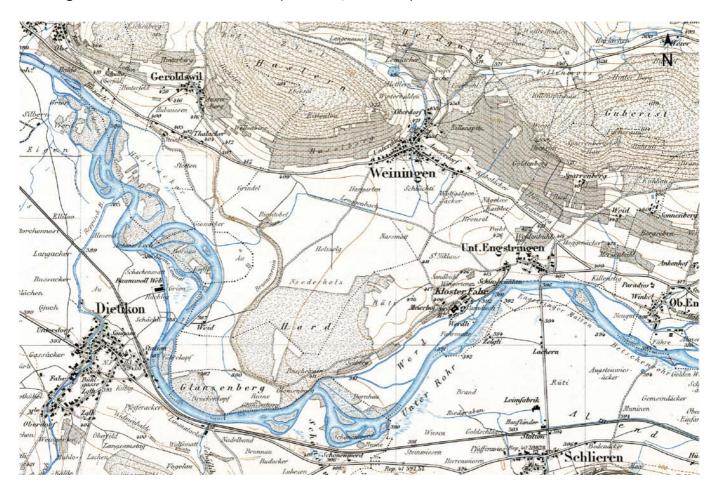
Hochwasserabflüsse	HQ ₂ : 306 m ³ /s	HQ ₅ : 400 m ³ /s	
Quelle:	BAFU, Abflussmessstation	n Kleine Emme, Emmen	
Gefälle	J: 0.0050		
Quelle:	LK 1:25'000		
Sohlenmaterial	d ₉₀ : 0.240 m	d _m : 0.100 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand:	15'000 m ³ /a	
Quelle:	Flussbau AG		
Gerinneform:	⑤ Verzweigtes Gewässe	r mit mehr als 2 Gerinnen	

1. Plan der Emme

Jos. Hess Jahr: 1784 (Blatt Nr. 4) Massstab: 1:10'000

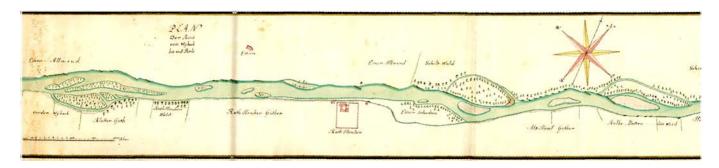


Limmat, Dietikon, ZH


Hochwasserabflüsse	HQ ₂ : 410 m ³ /s	HQ ₅ : 500 m ³ /s
Quelle:	BAFU, Abflussmessstation Limma	t, Zürich Unterhard
Gefälle	J: 0.0015	
Quelle:	BAFU Querprofile	
Sohlenmaterial	d ₉₀ : 0.120 m	d _m : 0.054 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 2'800 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	③ Gewundenes Gerinne mit Inseln und Bänken	

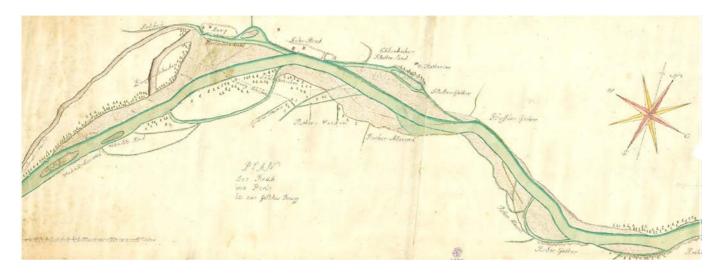
Historische Darstellungen

1. Wildkarte Jahr: 1850 Massstab: 1:30'000

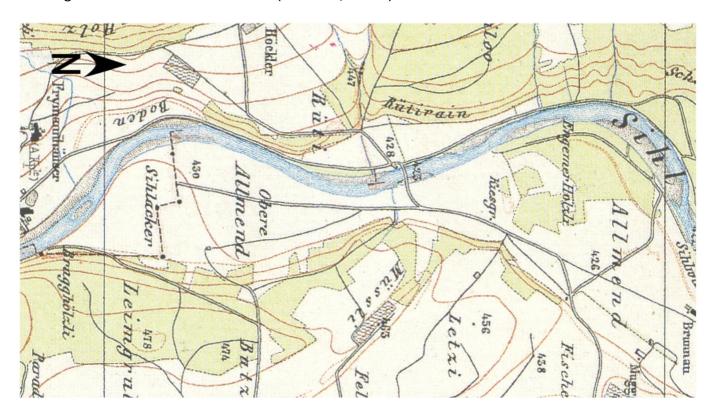

2. Siegfriedkarte Jahr: 1877 (Blatt 158, Schlieren) Massstab: 1:30'000

Hochwasserabflüsse Quelle:	HQ₂: 480 m³/s BAFU, Abflussmessstation	HQ₅: 560 m³/s Reuss Mühlau, Hünenberg	
Gefälle	J: 0.0021		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.110 m	d _m : 0.050 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand: 14'000 m³/a		
Quelle:	Flussbau AG		
Gerinneform:	③ Gewundenes Gerinne r	nit Inseln und Bänken	

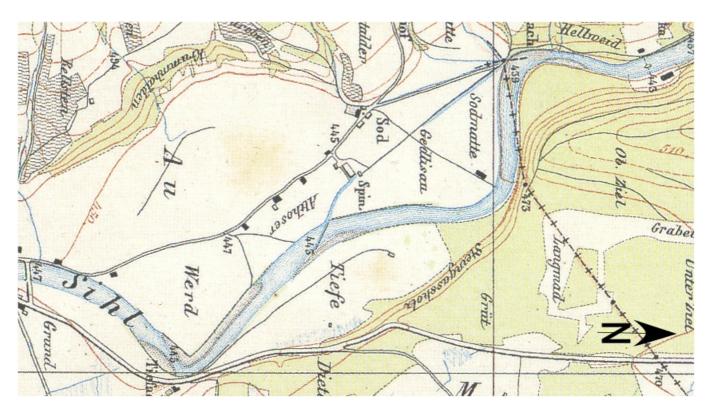
1. Plan der Reuss


Jos. Hess Jahr: 1793 Massstab: 1:25'000

Hochwasserabflüsse	HQ ₂ : 480 m ³ /s	HQ ₅ : 560 m ³ /s	
Quelle:	BAFU, Abflussmessstation	on Reuss, Mühlau, Hünenberg	
- C.			
Gefälle	J: 0.0020		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.110 m	d _m : 0.050 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand:	13'000 m ³ /a	
Quelle:	Flussbau AG		
Gerinneform:		r mit 2 Gerinnen	


1. Plan der Reuss

Jos. Hess Jahr: 1794 Massstab: 1:20'000

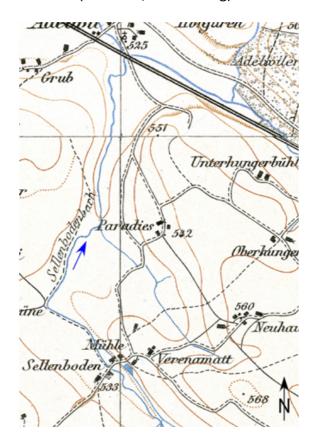


Hochwasserabflüsse Quelle:	HQ ₂ : 160 m ³ /s Auswertung historischer	HQ ₅ : 220m³/s Abflüsse (ohne Sihlsee)
	-	
Gefälle	J: 0.0038	
Quelle:	Querprofile	
Sohlenmaterial	d ₉₀ : 0.200 m	d _m : 0.080 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand:	3'300 m ³ /a
Quelle:	Flussbau AG	
Gerinneform:	Übergang gewundene Gerinne mit Inseln und Bänken ③ zu gewundene Gerinne mit Bänken ②	

1. Siegfriedkarte Jahr: 1881 (Blatt 161, Zürich) Massstab: 1:10'000

2. Siegfriedkarte Jahr: 1882 (Blatt 175, Thalwil) Massstab: 1:10'000

Sellenbodenbach, Neuenkirch LU


16

	,		
Hochwasserabflüsse	HQ₂: 9 m³/s	HQ ₅ : 14 m ³ /s	
Quelle:	Flussbau AG		
Gefälle	J: 0.0060		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.140 m	d _m : 0.060 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand	: 30 m³/a	
Quelle:	Flussbau AG		
Gerinneform:	Übergang gewundene Gerinne mit Bänken ② zu Mäander ohne Geschiebezufuhr ①		

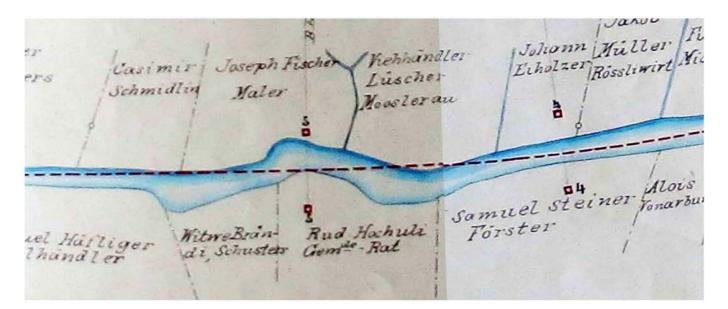
Historische Darstellungen

1. Siegfriedkarte

Jahr: 1889 (Blatt 202, Rothenburg) Massstab: 1:15'000

Foto

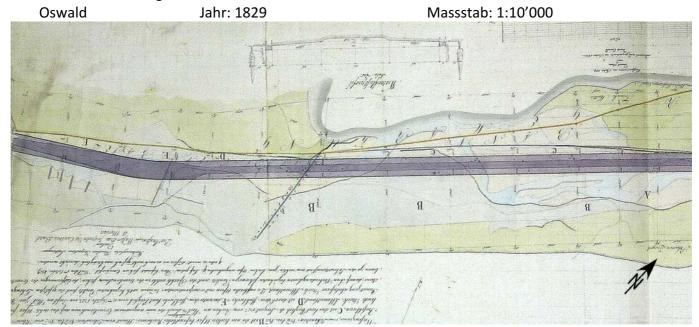
2. Jahr: 2015 (Flussbau AG)



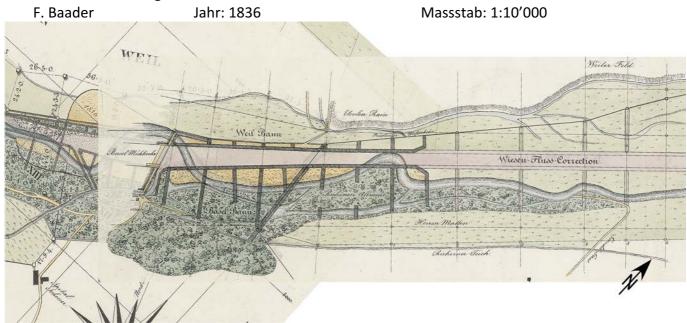
Hochwasserabflüsse Quelle:	HQ₂: 14 m³/s Gewässerraum Wigger, Luthern, Im Auftrag des Kt. Luzern	HQ₅: 20 m³/s Suhre, Ilfis (Bericht Flussbau AG, 2013)
Gefälle	J: 0.0030	
Quelle:	Querprofile, Talgefälle	
Sohlenmaterial	d ₉₀ : 0.070 m	d _m : 0.025 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 130 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	② Gewundenes Gerinne mit Bänken	

1. Ausschnitt 1: Suren- Correktion. Grenzstrecke Triengen- Reitnau. Situationsplan Jahr: 1898 Massstab: 1:1'000

2. Ausschnitt 2: Suren- Correktion. Grenzstrecke Triengen- Reitnau. Situationsplan Jahr: 1898 Massstab: 1:1'000


Wiese, Basel, BS			18
Hochwasserabflüsse	HQ ₂ : 103 m ³ /s	HQ₅: 142 m³/s	
Quelle:	BAFU, Abflussmessstation	on Wiese, Basel	
			_
Gefälle	J: 0.0031		
Quelle:	Querprofile, Talgefälle		
Sohlenmaterial	d ₉₀ : 0.087 m	d _m : 0.031 m	
Quelle:	Flussbau AG		
		31	
Geschiebefracht	im naturnahen Zustand:	3'000 m³/a	
Quelle:	Flussbau AG		
Gerinneform:	Übergang verzweigte Ge	wässer mit 2 Gerinnen ④ zu	

1. Zeichnung nach einer Plandarstellung um 1800 (Werner Balkow, 2011) Massstab: 1:10'000


gewundene Gerinne mit Inseln und Bänken ③

2. Plan: Beschreibung der Correction des Wiesen-Flusses

3. Plan des Wiesenzugs

19

Wigger, Altishofen, LU

Hochwasserabflüsse HQ₂: 70 m³/s HQ₅: 95 m³/s

Quelle: Gewässerraum Wigger, Luthern, Suhre, Ilfis (Bericht Flussbau AG, 2013)

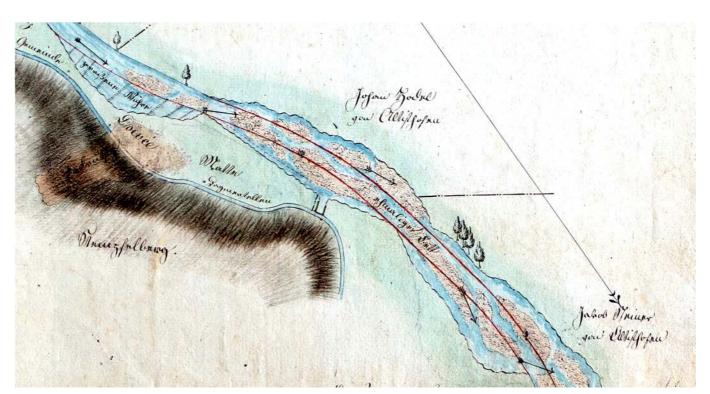
Im Auftrag des Kt. Luzern

Gefälle J: 0.0050

Quelle: Querprofile, Talgefälle

Sohlenmaterial d_{90} : 0.120 m d_{m} : 0.060 m

Quelle: Flussbau AG


Geschiebefracht im naturnahen Zustand: 1500 m³/a

Quelle: Flussbau AG

Gerinneform: 3 Gewundenes Gerinne mit Inseln und Bänken

Historische Darstellungen

1. Plan Jahr: 1817 Massstab: 1:2'500

Brenno, Castro TI		20
Hochwasserabflüsse	HQ ₂ : 141 m ³ /s H0	Q₅: 200 m³/s
Quelle:	Brenno, Sanierung Geschiebehaushalt (Flussbau AG, 16.11.2017) Im Auftrag des Kt. TI	
Gefälle	J: 0.0270	
Quelle:	Querprofile, Talgefälle	
Sohlenmaterial		_n : 0.140m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 12'500 m³/a	
Quelle:	Flussbau AG	
Gerinneform:		nen

Luftbilder (nächste Seite)

1. Jahr: 1934 Massstab: 1:10'000

2. Jahr: 1988 Massstab: 1:10'000

3. Jahr: 1998 Massstab: 1:10'000 4. Jahr: 2016 Massstab: 1:10'000

Brenno, Marogno Tl

Hochwasserabflüsse HQ₂: 177 m³/s HQ₅: 251 m³/s

Quelle: Brenno, Sanierung Geschiebehaushalt (Flussbau AG, 16.11.2017)

Im Auftrag des Kt. TI

Gefälle J: 0.0180

Quelle: Querprofile, Talgefälle

Sohlenmaterial d_{90} : 0.420 m d_{m} : 0.165m

Quelle: Flussbau AG

Geschiebefracht im naturnahen Zustand: 14'000 m³/a

Quelle: Flussbau AG

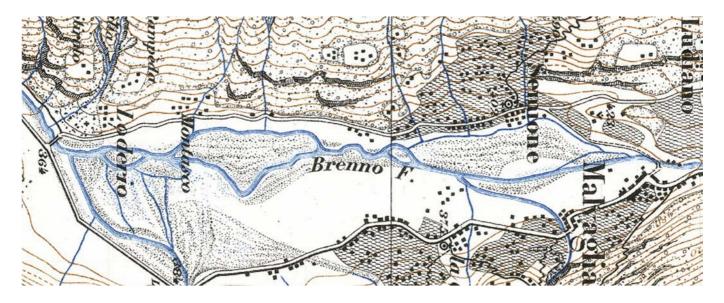
Luftbilder

1. Jahr: 1934 Massstab: 1:10'000

2. Jahr: 1989 Massstab: 1:10'000

3. Jahr: 2016 _____ Massstab: 1:10'000

Brenno, Loderio, TI


Hochwasserabflüsse Quelle:	HQ₂: 259 m³/s Brenno, Sanierung Geschiebehau Im Auftrag des Kt. TI	HQ₅: 368 m³/s ushalt (Flussbau AG, 16.11.2017)
Gefälle	J: 0.0050	
Quelle:	Querprofile, Talgefälle	
Sohlenmaterial	d ₉₀ : 0.144 m	d _m : 0.065 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 19'000 m³/a	
Quelle:	Flussbau AG	

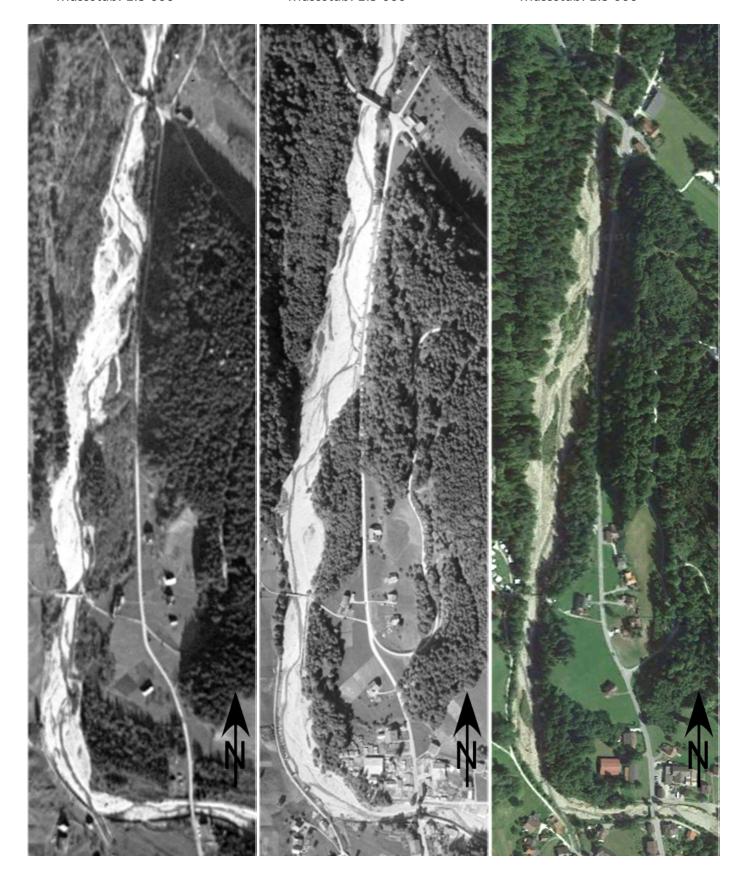
⑤ Verzweigtes Gewässer mit mehr als 2 Gerinnen

Historische Darstellungen


Gerinneform:

1. Plan Jahr: 1872 (Blatt 508, Biasca) Massstab: 1:25'000

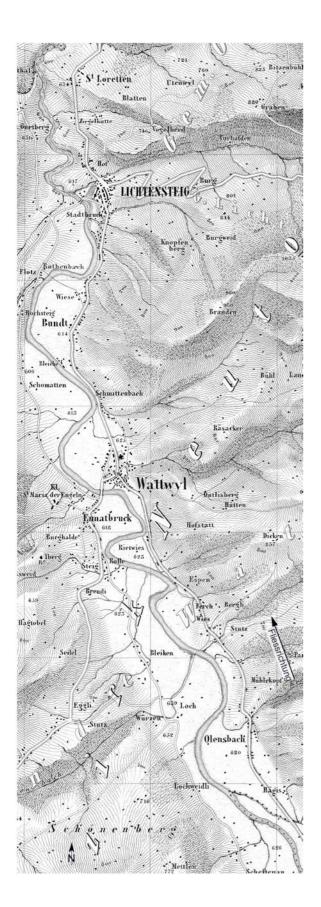
Luftbilder


2. Jahr: 1934 Massstab: 1:10'000

Hochwasserabflüsse Quelle:	HQ₂: 25 m³/s Sanierung Geschiebehaushalt S Im Auftrag des Tiefbauamtes de	HQ ₅ : 34 m³/s chwarzwasser (Flussbau AG, 2017) es Kt. Bern
Gefälle	J: 0.0260	
Quelle:	Querprofile	
Sohlenmaterial	d ₉₀ : 0.310 m	d _m : 0.100m
Quelle:	Flussbau AG	
		3,
Geschiebefracht	im naturnahen Zustand: 3'200 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	④ Verzweigtes Gewässer mit 2	Gerinnen

Luftbilder (nächste Seite)

1. Jahr: 1928 Massstab: 1:5'000 2. Jahr: 1954 Massstab: 1:5'000 3. Jahr: 2016 Massstab: 1:5'000

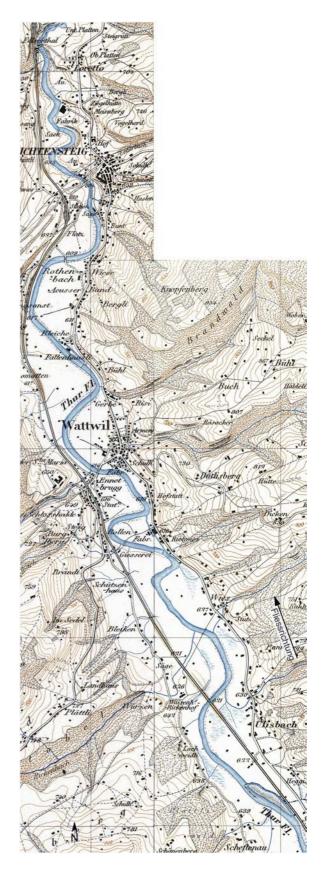


Thur, Wattwil, SG			24
II. alama a a a la filita a a	110 · 175 ··· ³ /-	HQ ₅ : 230 m ³ /s	
Hochwasserabflüsse	HQ ₂ : 175 m ³ /s		
Quelle:	Hydrologie Thur (Flussb	au AG, 2008)	
	Im Auftrag des Kt. SG	Im Auftrag des Kt. SG	
Gefälle	J: 0.0260		
Quelle:	Querprofile Thur, Talge	fälle	
Sohlenmaterial	d ₉₀ : 0.180 m	d _m : 0.080 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand	im naturnahen Zustand: 4'000 m³/a	
Quelle:	Flussbau AG		
Gerinneform:	② Gewundenes Gerinn	o mit Ränkon	
Germinerorin.	© Gewundenes Gennin	e iiiit balikeli	

Historische Darstellungen (nächste Seite)

1. Eschmannkarte: Jahr: 1854

Massstab: 1:30'000



2. Siegfriedkarte:

Jahr: 1879

(Blatt 234, Kappel und Blatt 231, Wattwil)

Massstab: 1:30'000

Hochwasserabflüsse HQ₂: 490 m³/s HQ₅: 640 m³/s

Quelle: Hydrologie Thur (Flussbau AG, 2008)

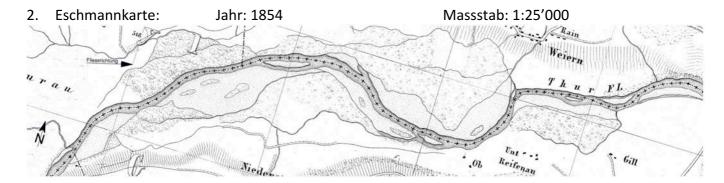
Im Auftrag des Kt. SG

Gefälle J: 0.0024

Quelle: Querprofile Thur, Talgefälle

 $Sohlen material \\ \qquad \qquad d_{90} \colon 0.120 \ m \\ \qquad \qquad d_{m} \colon 0.055 \ m \\$

Quelle: Flussbau AG


Geschiebefracht im naturnahen Zustand: 12'000 m³/a

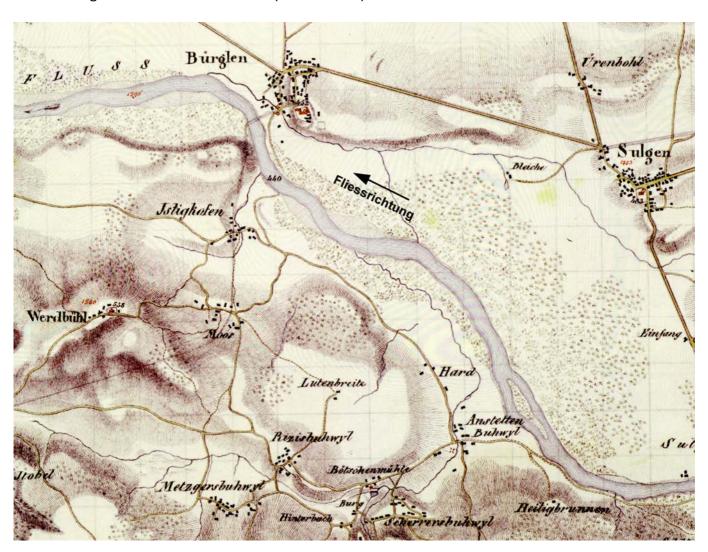
Quelle: Flussbau AG

Historische Darstellungen

1. Korrektionsplan: Jahr: 1825 Massstab: 1:25'000

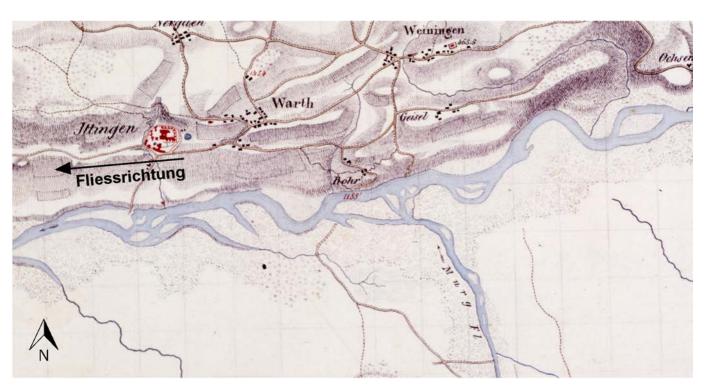
3. Korrektionsplan: Jahr: 1875 Massstab: 1:25'000

4. Korrektionsplan: Jahr: 1887 Massstab: 1:25'000

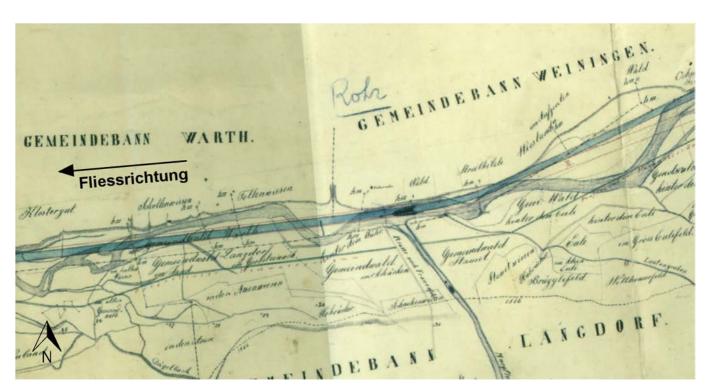


Thur, Bürglen, TG

Hochwasserabflüsse Quelle:	HQ₂: 590 m³/s BAFU, Abflussmessstation Thur,	HQ ₅ : 750 m ³ /s Halden
Gefälle Quelle:	J: 0.0020 Querprofile	
Sohlenmaterial Quelle:	d ₉₀ : 0.145 m Flussbau AG	d _m : 0.065 m
Geschiebefracht Quelle:	im naturnahen Zustand: 18'500 m³/a Flussbau AG	
Gerinneform:	Übergang verzweigte Gewässer i gewundene Gerinne mit Inseln u	


Historische Darstellungen

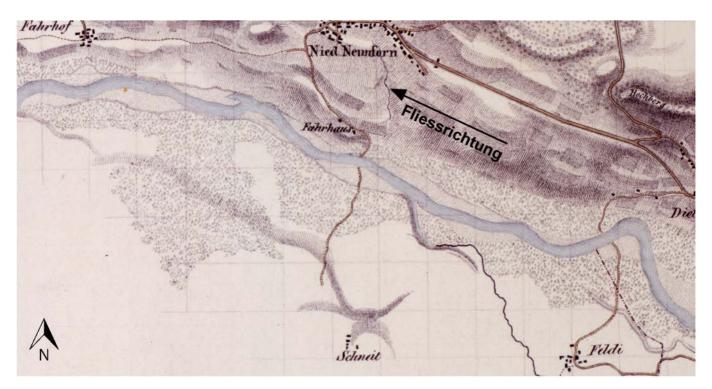
1. Sulzbergerkarte: Jahr: 1835 (Blatt No. VIII) Massstab: 1:25'000



Hochwasserabflüsse Quelle:	HQ ₂ : 580 m ³ /s	HQ₅: 750 m³/s	
Quelle.	BAFU, Abflussmessstation Thur, Andelfingen		
Gefälle	J: 0.0017		
Quelle:	Querprofile		
Sohlenmaterial	d ₉₀ : 0.125 m	d _m : 0.055 m	
Quelle:	Flussbau AG		
Geschiebefracht	im naturnahen Zustand: 18'5	.00 m³/a	
Quelle:	Flussbau AG	00 III / u	
Gerinneform:	Verzweigtes Gewässer mit 2 Gerinnen		

1. Sulzbergerkarte: Jahr: 1834-1837 (Blatt No. IV) Massstab: 1:25'000

2. Korrektionskarte: Jahr: 1854 Massstab: 1:25'000



Thur, Niederneunforn, TG

Hochwasserabflüsse Quelle:	HQ₂: 570 m³/s BAFU, Abflussmessstation Thur, A	HQ₅: 750 m³/s Indelfingen
Gefälle	J: 0.0016	
Quelle:	Querprofile, Talgefälle	
Sohlenmaterial	d ₉₀ : 0.120 m	d _m : 0.050 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 20'000 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	Übergang verzweigte Gewässer m	nit 2 Gerinnen ④ zu
	gewundene Gerinne mit Inseln und Bänken ③	

Historische Darstellungen

1. Sulzbergerkarte: Jahr: 1834-1837 (Blatt No. II) Massstab: 1:25'000

2. Korrektionskarte: Jahr: 1854 Massstab: 1:25'000

Hochwasserabflüsse	HQ ₂ : 77 m ³ /s	HQ ₅ : 96 m ³ /s
Quelle:	Interpolation aus Kantonalen Messstationen	
Gefälle	J: 0.0660	
Quelle:	Querprofile	
Sohlenmaterial	d ₉₀ : 0.100 m	d _m : 0.050 m
Quelle:	Flussbau AG	
		_
Geschiebefracht	im naturnahen Zustand: 2'600 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	S Verzweigtes Gewässer mit mehr als 2 Gerinnen	

1. Tösslauf von Kohlbrunnen bis an das Ende des Löfflers:

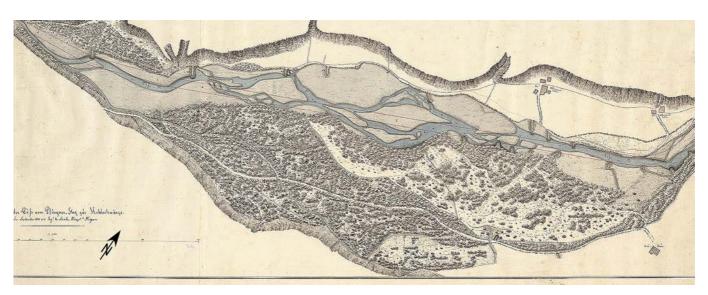
Peter Hch. Ing. Jahr: ca.1865 (L2193) Massstab: 1:10'000

Töss, Leisental, ZH

Hochwasserabflüsse	HQ_2 : 89 m ³ /s	HQ₅: 118 m³/s
Quelle:	Interpolation aus Kantonalen Messstationen	
Gefälle	J: 0.0059	
Quelle:	Querprofile	
Sohlenmaterial	d ₉₀ : 0.090 m	d _m : 0.045 m
Quelle:	Flussbau AG	
Geschiebefracht	im naturnahen Zustand: 2'800 m³/a	
Quelle:	Flussbau AG	
Gerinneform:	④ Verzweigtes Gewässer mit 2 G	erinnen


Historische Darstellungen

1. Kyburg, Winterthur, Töss: Töss von Sennschür bis oberhalb der Einmündung der Kempt Salomon Hegner Jahr: ca. 1816 (L2182) Massstab: 1:10'000



Hochwasserabflüsse Quelle:	HQ ₂ : 115 m ³ /s BAFU, Abflussmessstation Töss, I	HQ₅: 160 m³/s Neftenbach
Gefälle	J: 0.0033	
Quelle:	Querprofile	
Sohlenmaterial	d ₉₀ : 0.080 m	d _m : 0.040 m
Quelle:	Flussbau AG	u _m . 0.040 III
Geschiebefracht Quelle:	im naturnahen Zustand: 2'800 m³/a Flussbau AG	
Gerinneform:	④ Verzweigtes Gewässer mit 2 G	Gerinnen

1. Grundriss des Tössbettes vom Pfungersteg bis zum Blind-Steg:
Johann Jakob Sulzer Jahr: 1807 (L1992) Massstab: 1:10'000

2. Stromkarte der Töss vom Pfungmer-Steg zur Hohlschwärze: Salomon Hegner Jahr:1814 (L1994) Massstab: 1:10'000

Hochwasserabflüsse HQ₂: 87 m³/s HQ₅: 122 m³/s

Quelle: Auendynamik unteres Simmental, Konzeptstudie (Flussbau AG und Kissling

und Zbinden)

Im Auftrag des Amts für Landwirtschaft und Natur und des

Renaturierungsfonds des Kt. Bern

Gefälle J: 0.0083 Quelle: Querprofile

Sohlenmaterial d_{90} : 0.133 m d_{m} : 0.055 m

Quelle: Flussbau AG

Geschiebefracht im naturnahen Zustand: 12'300 m³/a

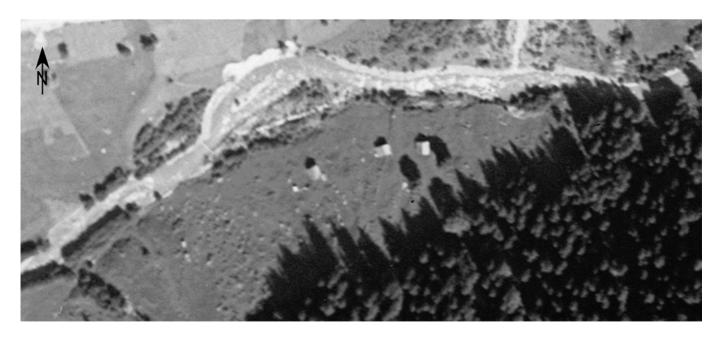
Quelle: Flussbau AG

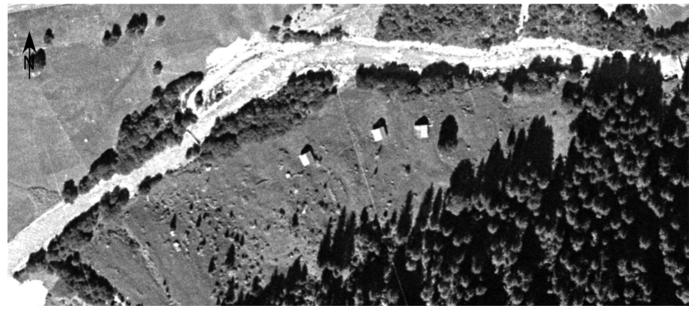
Gerinneform: 3 Gewundenes Gerinne mit Inseln und Bänken

Luftbilder

1. Jahr: 1940 Massstab: 1:5'000

2. Jahr: 1946 Massstab: 1:5'000


3. Jahr: 2004 Massstab: 1:5'000


<u> </u>			
Hochwasserabflüsse Quelle:	HQ₂: 25 m³/s KW Oberhasli AG	HQ₅: 37 m³/s	
Gefälle	J: 0.0180		
Quelle:	LK 1:25'000		
Quelle:	LK 1:25 000		
Sohlenmaterial	d ₉₀ : 0.165 m	d _m : 0.076 m	
Quelle:	Flussbau AG	a _{III} . 6.67.5 III	
Geschiebefracht	im naturnahen Zustand: 4'300 m ³ /a		
Quelle:	KW Oberhasli AG		
Gerinneform:	② Gewundenes Gerinne	mit Bänken	

Luftbilder

1. Jahr: 1940 Massstab: 1:2'500

2. Jahr: 1960 Massstab: 1:2'500

3. Jahr: 1986 Massstab: 1:2'500

