

> Methoden zur Untersuchung und Beurteilung der Fliessgewässer

Kieselalgen Stufe F (flächendeckend)

Anhänge 1–6

Download vollständiger Bericht: www.bafu.admin.ch/uv-0740-d

Stand: Juli 2015

> Anhang

A1 Taxaliste mit autökologischen Präferenzen

Download der Excel-Liste: www.bafu.admin.ch/uv-0740-d

A2 Dokumentation der wichtigsten Kieselalgentaxa

Die Kieselalgenbilder der folgenden 23 Tafeln stammen mit ganz wenigen Ausnahmen aus Schweizer Fliessgewässern, wobei viele Taxa, die in Seeausflüssen und Riedgräben vorkommen können, auch berücksichtigt wurden. Die Kieselalgenbilder sollen viele der in der Taxaliste (Anhang A1) aufgeführten Taxa illustrieren und zeigen Taxa und ihre Formen wie sie im Eichdatensatz verwendet wurden. Die Tafeln sind aber nicht als Bestimmungswerk gedacht. Dazu verweisen wir auf die in Kapitel 3.3 aufgeführte Bestimmungsliteratur.

Die Kieselalgentafeln der zweiten Version vom Juni 2014 basieren auf den Tafeln der ersten Version. Die Überarbeitung umfasste diverse Korrekturen und zahlreiche neue taxonomische Bezeichnungen und Synonyme wurden aufgeführt. Die Arten mit D- und G-Werten sowie die Tafeln wurden zudem am jährlich stattfindenden Workshop *Kieselalgen* (durchgeführt vom Verein Schweizerische Arbeitsgemeinschaft Mikroflora S.A.M. / A.S.E.M.) besprochen. An der ersten Version und neu auch an der zweiten Version waren insbesondere beteiligt:

Erste Version:

- > Prof. Dr. Dr. h.c. Horst Lange-Bertalot, Johann W. Goethe Universität, D-60054 Frankfurt
- > Dr. Gabi Hofmann, Hirtenstr. 19, D-61479 Schlossborn
- > Dr. Kurt Krammer, Hindenburgstr. 26A, D-40667 Meerbusch
- > Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen
- Dr. François Straub, PhycoEco, Laboratoire d'algologie, Rue des XXII-Cantons 39, CH-2300 La Chaux-de-Fonds

Zweite Version:

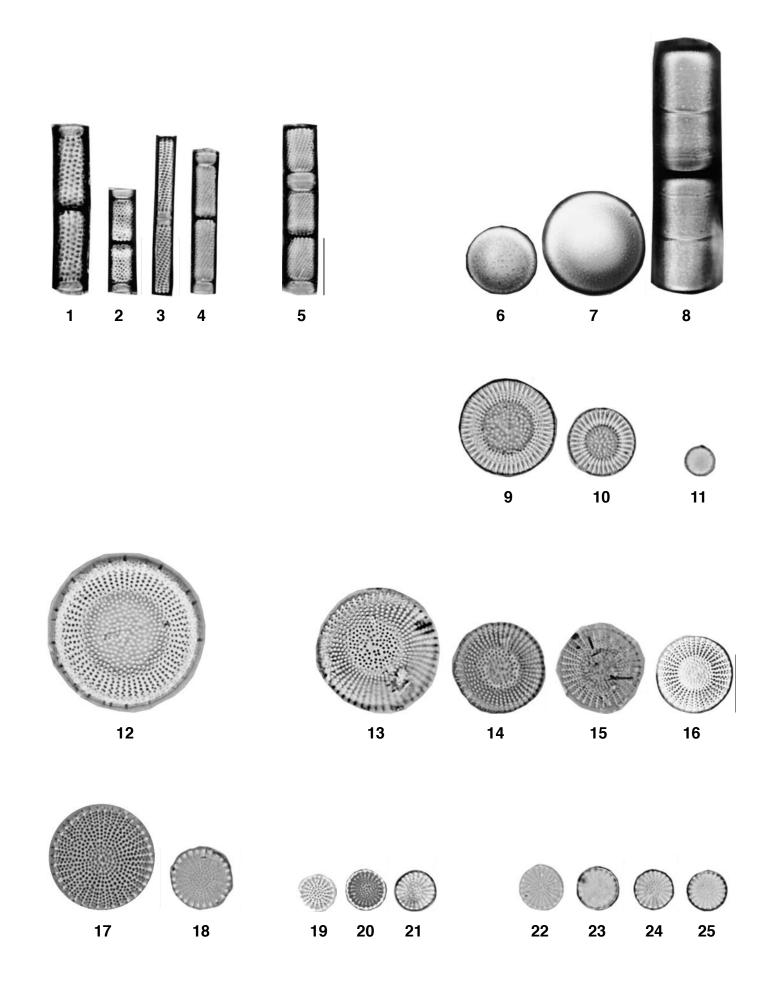
- Dr. François Straub, PhycoEco, Laboratoire d'algologie, Rue des XXII-Cantons 39, CH-2300 La Chaux-de-Fonds
- > Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach
- > Guido Erni, Lierenstrasse 74, CH-5417 Untersiggenthal

Wir danken diesen Personen ganz herzlich für ihre Bemühungen. Ein ganz grosses Dankeschön geht speziell an:

Herrn Erwin Reichardt, welcher uns Fotos der Taxa Amphora inariensis, Navicula menisculus, Pinnularia microstauron und viele Fotos der Gattung Gomphonema zur Verfügung stellte. Herr Reichardt erklärte sich auch bereit, anlässlich eines zweitägigen Treffens im November 2002 nicht einfach zu bestimmende Gomphonema-Arten um G. pumilum, G. angustum, G. micropus und anderen Formen zu besprechen. Das Resultat dieses Workshops wurde in den Tafeln Nr. 18–21 dargestellt.

Herrn Dr. François Straub, welcher beide Versionen sehr genau durchgesehen und auf korrekte Namensgebung geprüft hat. Seine vielen Anregungen und Hinweise waren uns sehr hilfreich. Herr Straub übersetzte zudem die Tafeln ins Französische.

Herrn Lukas Taxböck, welcher mit grossem Engagement und Ausdauer die zweite Version erstellte und etliche neue Bilder anfertigte oder uns aus seinem Fotopool zur Verfügung stellte.

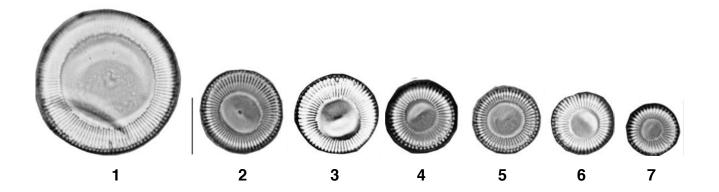

Herrn Guido Erni für die zahlreichen Inputs während der Workshops und das uns zur Verfügung gestellte Bildmaterial.

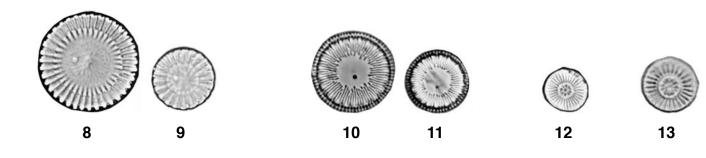
Tafel 1: Fig. 1-25

Tafel 1	Vergrösserung 1500x, Strich = 10 μ m		DVNR	D	G
Fig. 1-4	Aulacoseira granulata (EHRENBERG) SIMONSEN		6785	4.5	1
Fig. 5	Aulacoseira ambigua (GRUNOW) SIMONSEN		6798	4	1
Fig. 6-8	Melosira varians J.G.AGARDH		6005	4.5	2
Fig. 9-10	Cyclostephanos dubius (FRICKE) ROUND		6943		
Fig. 11	Thalassiosira pseudonana HASLE et HEIMDAL		16098	4.5	1
Fig. 12	Stephanodiscus neoastraea HAKANSSON et HICKEL		6796		
Fig. 13-16	Stephanodiscus alpinus HUSTEDT 1)		6795		
Fig. 17-18	Stephanodiscus hantzschii GRUNOW		6009	3.5	1
Fig. 19-21	Stephanodiscus minutulus (KUETZING) CLEVE et MOELLER	2)	6226	4.5	1
Fig. 22-25	Stephanodiscus parvus STOERMER et HAKANSSON 2)		6940	4	1

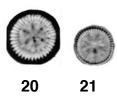
Bemerkungen

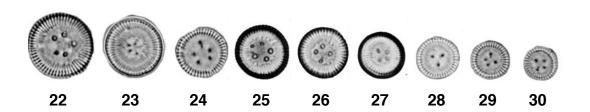
- Bei Figur 13 könnte es sich auch um Stephanodiscus medius HAKANSSON handeln. Zudem stellen die Schalen der Figuren 14-16 für Stephanodiscus alpinus eher kleine Exemplare dar.
- 2) Die beiden Taxa sind im Lichtmikroskop nicht einfach zu unterscheiden. S. minutulus lässt sich von S. parvus durch den beim fokussieren sichtbare Erhebung im Zentrum unterscheiden. S. parvus erscheint auch beim fokussieren flach.



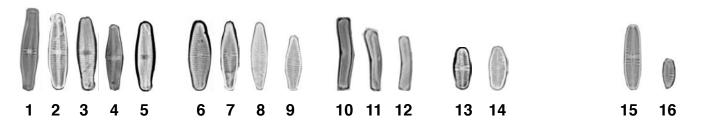

Tafel 2: Fig. 1-30

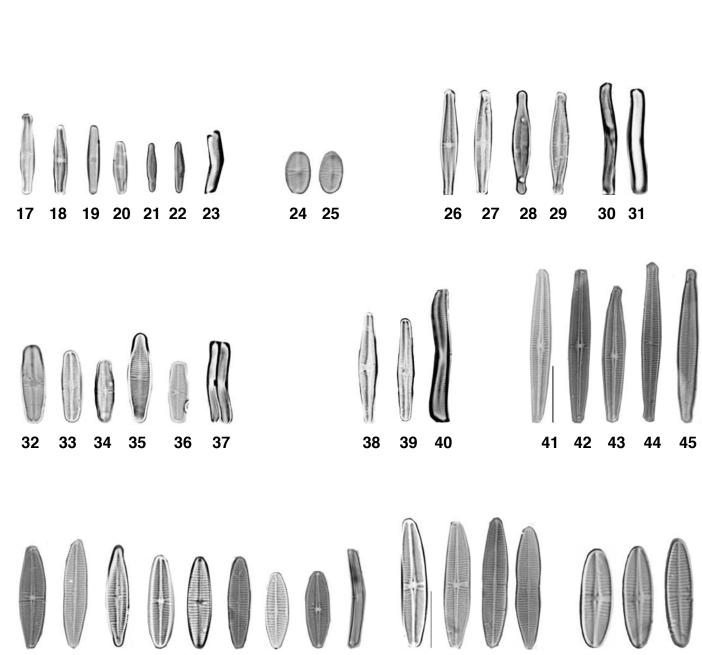
Tafel 2	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-7	Cyclotella distinguenda HUSTEDT	6179	2	1
Fig. 8-9	Cyclotella meneghiniana KUETZING	6002	6	1
Fig. 10-11	Cyclotella costei DRUART et STRAUB	26891	2	1
Fig. 12	Discostella pseudostelligera (HUSTEDT) HOUK et KLEE 1)	26895		
Fig. 13	Discostella stelligera (CLEVE et GRUNOW) HOUK et KLEE 1)	26897		
Fig. 14-16	Cyclotella radiosa (GRUNOW) LEMMERMANN 2)	6204		
Fig. 17-19	Cyclotella praetermissa LUND 2), 3)	6735		
Fig. 20-21	Cyclotella comensis sensu lato (Artengruppe) 4)	100083	2	1
Fig. 22-30	Cyclotella ocellata PANTOCSEK	6936	2	1


- Die neue Gattung Discostella HOUK et KLEE wurde 2004 errichtet. Sie wird durch morphologische Merkmale und neuere genetische Untersuchungen gut gestützt.
- 2) HAKANSSON hat 2002 vorgeschlagen, einzelne Arten der Gattung Cyclotella in eine neu errichtete Gattung Puncticulata zu verschieben. Diese neue Gattung Puncticulata hat sich unter Fachleuten nicht durchgesetzt. Für den DI-CH werden daher die alten Artnamen beibehalten.
- 3) Bei Figur 17 könnte es sich auch um Cyclotella bodanica GRUNOW handeln. 6144
- 4) Die Artengruppe um Cyclotella comensis beinhaltet viele Morphotypen mit unsicherer taxonomischer Stellung.


Fig. 10-11	Cyclotella cyclopuncta HAKANSSON et CARTER	16185	2	1
Fig. 12	Cyclotella pseudostelligera HUSTEDT	6945		
Fig. 13	Cyclotella stelligera CLEVE et GRUNOW	6944		
Fig. 14-16	Cyclotella comta (EHRENBERG) KUETZING	6054		

Tafel 3: Fig. 1-78


Tafel 3	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-12	Achnanthidium minutissimum var. minutissimum (KUETZING) CZARNECKY	26060	3	0.5
Fig. 13-14	Achnanthidium inconspicuum (OESTRUP) LANGE-BERTALOT	26062	1	4
Flg. 15-16	Achnanthidium lineare sensu lato 1)	100225	1	8
Fig. 17-23	Achnanthidium minutissimum var. jackii (RABENHORST) LANGE-BERT. 2)	26063	1	8
Fig. 24-25	Achnanthidium straubianum (LANGE-BERTALOT) LANGE-BERTALOT	26088	2.5	1
Fig. 26-31	Achnanthidium caledonicum (LANGE-BERTALOT) LANGE-BERTALOT	26010	1	8
Fig. 32-37	Achnanthidium saprophilum (KOBAYASI et MAYAMA) ROUND & BUKHT. 3)	26065	7.5	4
Fig. 38-40	Achnanthidium affine (GRUNOW) CZARNECKI	26000	2	4
Fig. 41-45	Achnanthidium gracillimum (LANGE-BERTALOT) LANGE-BERTALOT	26061	1	1
Fig. 46-58	Achnanthidium pyrenaicum (HUSTEDT) KOBAYASI 4)	26005	1.5	1
Fig. 59-61	Achnanthidium delmontii PERES, LE COHU et BARTHES 5)	100244	1.5	1
Fig. 62-66	Achnanthidium eutrophilum (LANGE-BERTALOT) LANGE-BERTALOT 6)	26024	3.5	2
Fig. 67-78	Achnanthidium atomoides MONNIER, LANGE-BERTALOT et ECTOR 7)	26003	3	2


- A. lineare wurde bis anhin nicht von A. minutissimum var. jacki unterschieden. 2011 wurde das Typenmaterial von A. lineare neu untersucht und verschiedene Morphotypen um A. lineare wurden als neue Taxa beschrieben. Diese Taxa lassen sich jedoch nur mit rasterelektronenmikroskopischen Merkmalen unterscheiden, daher wird das Taxon im DI-CH als A. lineare sensu lato geführt.
- 2) Achnanthidium minutissimum var. jackii im Sinne des DI-CH sind kleiner und schmaler als Achnanthidium minutissimum var. minutissimum.
- 3) Die Schalen der Figuren 35 und 36 sind eher atypisch, da die Pseudoraphe nicht lanzettlich erweitert ist. Die abgebildeten Schalen stammen aber aus Kläranlagen mit Populationen von Achnanthes minutissima var. saprophila.
- 4) Bei den Figuren 55-58 könnte es sich auch um Achnanthidium thienemannii HUSTEDT handeln.

16526

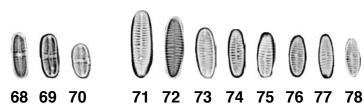
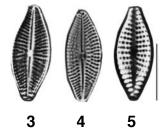
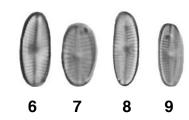
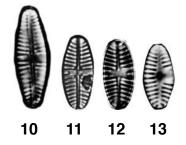

- 5) Die Bilder stammen aus dem Typenmaterial von A. delmontii
- 6) Die "echte" A. eutrophilum hat radiale Striae, es bleibt abzuklären, um welches Taxon es sich bei A. eutrophilum im Sinne des DI-CH handelt.
- 7) A. atomus HUSTEDT ist eine aus Indonesien beschriebene Form, die f\u00e4lschlicherweise auch in Europa bestimmt wurde. A. atomus im Sinne des DI-CH entspricht der 2004 beschriebenen Achnanthidium atomoides.

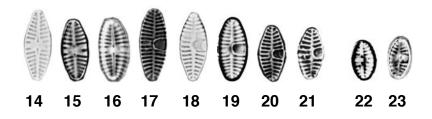
Fig. 1-12	Achnanthes minutissima KUETZING	6014	3	0.5
Fig. 13-14	Achnanthes minutissma var. inconspicua OESTRUP	16136	1	4
Fig. 17-23	Achnanthes minutissima var. jackii (RABENHORST) LANGE-BERTALOT	6707	1	8
Fig. 24-25	Achnanthes straubiana LANGE-BERTALOT	100003	2.5	1
Fig. 26-31	Achnanthes minutissima var. scotica (CARTER) LANGE-BERTALOT	6267	1	8
Fig. 32-37	Achnanthes minutissima var. saprophila KOBAYASI et MAYAMA	16135	7.5	4
Fig. 38-40	Achnanthes minutissima var. affinis (GRUNOW) LANGE-BERTALOT	6173	2	4
Fig. 41-45	Achnanthes minutissima var. gracillima (MEISTER) LANGE-BERTALOT	6240	1	1
Fig. 46-58	Achnanthes biasolettiana GRUNOW	6139	1.5	1
Fig. 62-66	Achnanthes eutrophila LANGE-BERTALOT	100103	3.5	2
Fig. 67-78	Achnanthes atomus HUSTEDT	100084	3	2

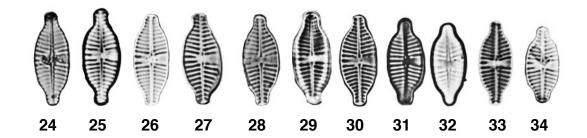
57 58

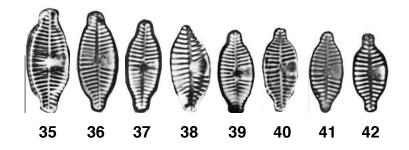

Tafel 4: Fig. 1-44

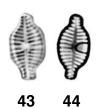

Tafel 4	Vergrösserung 1500x, Strich = 10 μ m		DVNR	D	G
Fig. 1-2	Platessa conspicua (A.MAYER) LANGE-BERTALOT		26015	4	1
Fig. 3-5	Karayeva clevei (GRUNOW) BUKTHIYAROVA		36098	3.5	2
Fig. 6-9	Psammothidium grischunum (WUTHRICH) BUKTHYAROVA et ROUND		26030		
Fig. 10-13	Planothidium lanceolatum (BREBISSON) LANGE-BERTALOT		26048	4	1
Fig. 14-23	Planothidium frequentissimum (LANGE-BERTALOT) LANGE-BERTALOT	1)	36209	6	1
Fig. 24-42	Planothidium dubium (GRUNOW) ROUND et BUKTHIRAYOVA		26045	3	2
Fig. 43-44	Planothidium rostratum (OESTRUP) LANGE-BERTALOT 2)		26051	4.5	1

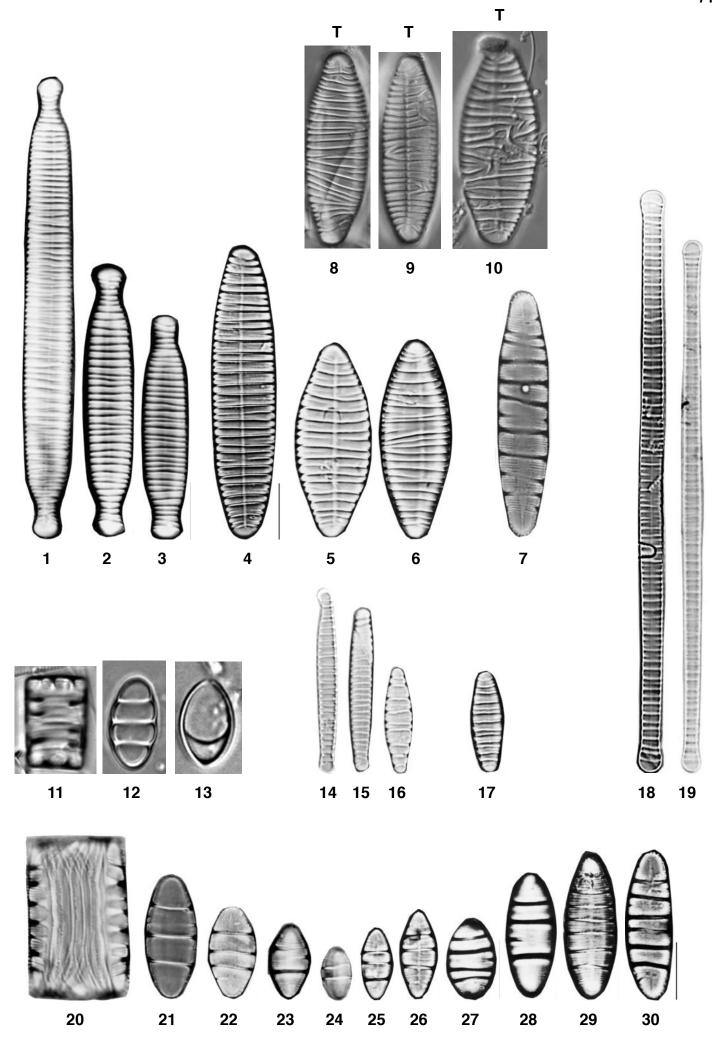

- Um das Taxon Planothidium frequentissimum existieren in der Literatur eine Reihe von Sippen oder Varietäten. Diese haben sich wegen taxonomischer Probleme in der angewandten Gewässerökologie nicht durchgesetzt. So gehören Fig. 22 und 23 vermutlich zum Taxon Planothidium frequentissimum var. minor (STRAUB) LANGE-BERTALOT.
- 2) P. rostratum unterscheidet sich von P. dubium durch die bogenförmige Doppellinie, die den hufeisenförmigen Fleck auf den raphenlosen Schalen abgrenzt.


Fig. 1-2	Achnanthes conspicua A.MAYER	6855	4	1
Fig. 3-5	Achnanthes clevei GRUNOW	6180	3.5	2
Fig. 6-9	Achnanthes grischuna WUTHRICH	6252		
Fig. 10-13	Achnanthes lanceolata ssp. lanceolata (BREBISSON) GRUNOW	16127	4	1
Fig. 14-23	Achnanthes lanceolata ssp. frequentissima LANGE-BERTALOT	6260	6	1
Fig. 24-42	Achnanthes lanceolata ssp. dubia (GRUNOW) LANGE-BERTALOT	6245	3	2
Fig. 43-44	Achnanthes lanceolata ssp. rostrata (OESTRUP) LANGE-BERTALOT	6261	4.5	1







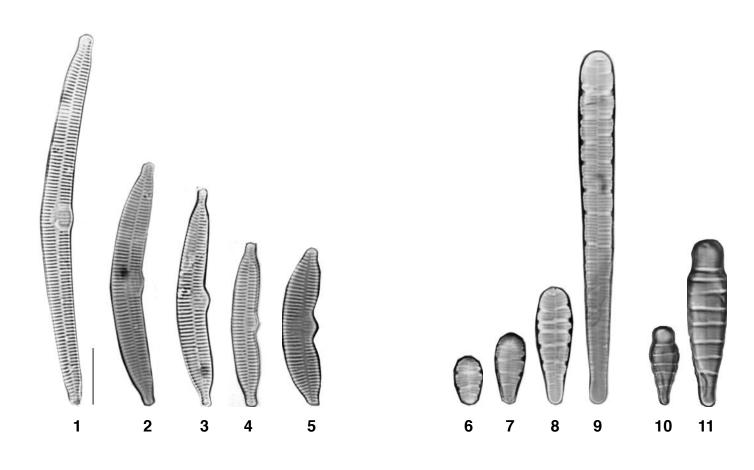

Tafel 5: Fig. 1-30

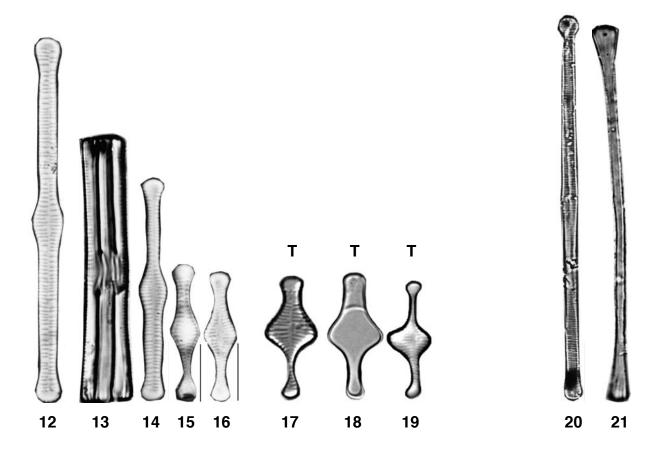
Tafel 5	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-3	Diatoma ehrenbergii KUETZING	6208	2.5	1
Fig. 4-6	Diatoma vulgaris BORY DE SAINT VINCENT	6006	4	2
Fig. 7	Diatoma hyemalis (ROTH) HEIBERG	6167	1	2
Fig. 8-10	Teratologien bei Diatoma vulgaris BORY DE SAINT VINCENT 1)			
Fig. 11-13	Tetracyclus rupestris (BRAUN) GRUNOW 2)	16097		
Fig. 14-16	Diatoma moniliformis ssp. moniliformis KUETZING	6209	2	2
Fig. 17	Diatoma problematica LANGE-BERTALOT 3)	16207	5	2
Fig. 18-19	Diatoma tenuis J.G.AGARDH 4)	6210	3.5	2
Fig. 20-30	Diatoma mesodon (EHRENBERG) KUETZING	6949	1	4

- Teratologische Formen weichen von den arttypischen Schalenformen und Schalencharakteristika ab. Sie können den Schalenumriss oder die Strukturen im Inneren der Schale betreffen. Bei den gezeigten Beispielen sind die Querrippen weniger bis stärker betroffen. Teratologien sind oft stressinduziert und können natürliche (z.B. UV-Strahlung, Siliziummangel) oder anthropogen (z.B. Belastungen durch Schwermetalle oder Kohlenwasserstoffe) bedingte Ursachen haben.
- 2) In der Schalenansicht sind die für T. rupestris typischen Septen oft nicht sichtbar und das Taxon wird daher leicht mit Diatoma mesodon verwechselt. In der Gürtelbandansicht sind diese Septen jedoch gut sichtbar und die Taxa lassen sich unterscheiden.
- 3) Die beiden Taxa D. moniliformis ssp. moniliformis und D. problematica sind sehr ähnlich. D. problematica lässt sich aber durch eine Breite > 5 μ m gut gegenüber D. moniliformis ssp. moniliformis (Breite < 4.5 μ m) abgrenzen.
- 4) Fragilaria incognita (siehe Tafel 9: Fig. 1, 2) kann ebenfalls verdickte Querstreifen (=Transapikalrippen) bilden. Im lebenden Zustand lassen sich die beiden Gattungen leicht durch die zickzack-förmigen Bänder bei Diatoma unterscheiden.

Bildnachweis

Die Bilder der Figuren 11-13 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.


Tafel 6: Fig. 1-21

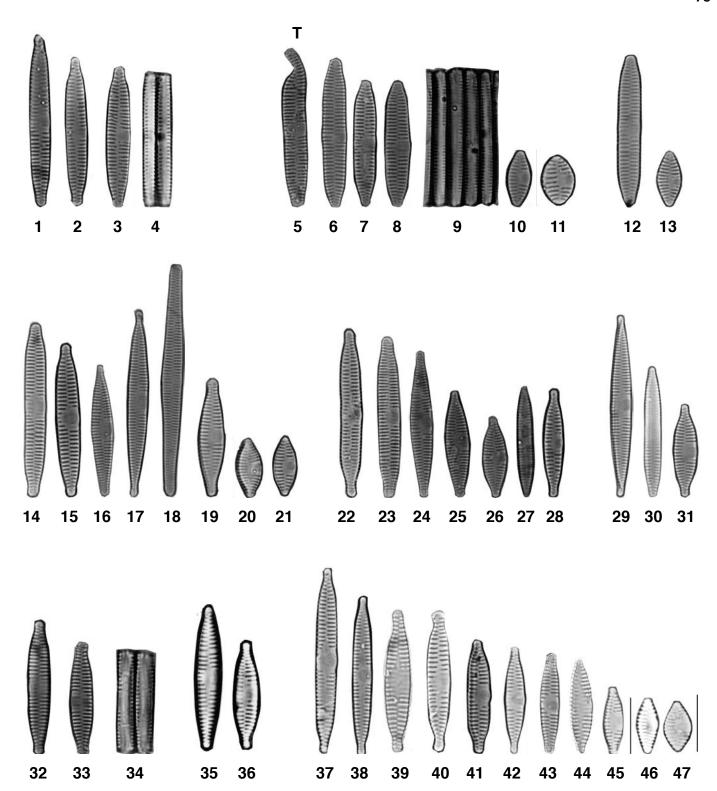

Tafel 6	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-5	Fragilaria arcus (EHRENBERG) CLEVE	6077	1	4
Fig. 6-9	Meridion circulare var. circulare (GREVILLE) J.G.AGARDH	6026	3.5	2
Fig. 10-11	Meridion circulare var. constrictum (RALFS) VAN HEURCK 1	6446		
Fig. 12-19	Tabellaria flocculosa (ROTH) KUETZING 2)	6091	3.5	1
Fig. 20-21	Asterionella formosa HASSALL	6050	3.5	1

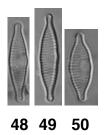
- Kopfige Formen von Meridion circulare werden der var. constrictum zugeordnet. Die Varietät ist deutlich seltener und ist gegenüber trophischer und saprobieller Belastung sensibler als die Nominatvarietät. Die Fig. 10-11 sind Formen aus Schweizer Quellen.
- 2) Die langen Formen (Figuren 12-14) treten eher planktisch (im Pelagial, im Freiwasser schwebend) und die kurzen Formen (Figuren 15-19) eher periphytisch (im Litoral als Aufwuchs) auf.
 Fig. 17-19 sind abnorme Verformungen der Schalen (=Teratologien). Teratologien sind oft stressinduziert und können natürliche (z.B. UV-Strahlung, Siliziummangel) oder anthropogen (z.B. Belastungen durch Schwermetalle oder Kohlenwasserstoffe) bedingte Ursachen haben. Die abgebildeten Schalen von teratologischen Tabellaria flocculosa stammen aus alpinen Quellen.

Bildnachweis

Die Bilder der Figuren 10-11, 17-19 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

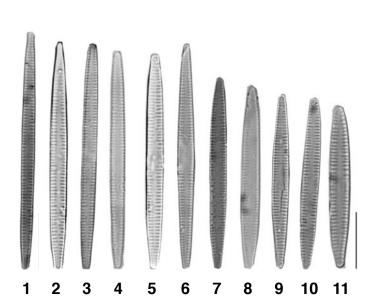
Tafel 7: Fig. 1-50

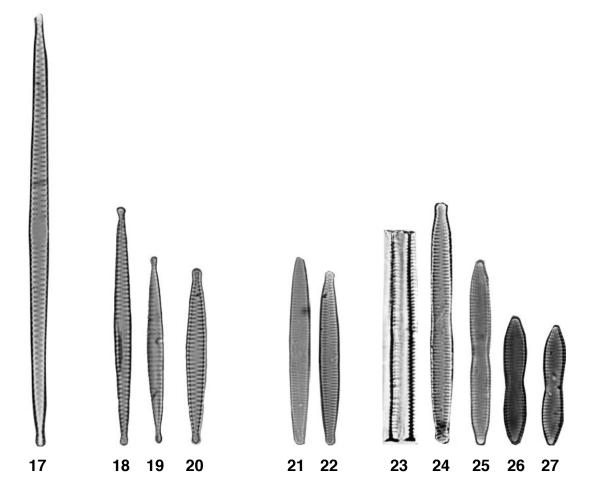

Tafel 7	Vergrösserung 1500x, Strich = 10 μ m		DVNR	D	G
•	Fragilaria vaucheriae (KUETZING) PETERSEN 1) Fragilaria perminuta (GRUNOW) LANGE-BERTALOT	2)	16996 26374	6	0.5


- Dieses Taxon umfasst unserem Verständnis nach sehr viele Populationen in den unterschiedlichsten Lokalitäten (siehe unten). Die Bezeichnung Fragilaria vaucheriae sensu lato ist daher angebrachter.
 Fig. 5 zeigt eine teratologische Verformung der Schale (T).
- 2) Fragilaria perminuta unterscheidet sich von F. vaucheriae durch die geringere Breite (3 4 μ m), die deutlich enger gestellten Streifen (17 20 / 10 μ m) und den deutlicher ausgeprägten hufeisenförmigen Fleck in der Zentralarea.

Lokalitäten der Formen

Fig. 1-4	Furtbach ZH, Stelle 3, unterhalb Kläranlage, 23.3.1987
Fig. 5-11	Rinnenversuch mit Limmatwasser und 10 mg NH ₄ -N/l-Zudosierung, 18.1.1989
Fig. 12-13	Rinnenversuch mit Limmatwasser und 5 mg NH ₄ -N/l-Zudosierung, 18.1.1989
Fig. 14-21	Rinnenversuch mit Limmatwasser und 1 mg NH ₄ -N/l-Zudosierung, 18.1.1989
Fig. 22-28	Rinnenversuch mit Limmatwasser, Kontrolle, 7.1.1989
Fig. 29-31	Limmat ZH, Treppe 4, 13.1.1989
Fig. 32-34	Kläranlage Fehraltorf-Russikon ZH, 25.4.1987
Fig. 35	Schlappinbach GR, 22.8.1985
Fig. 36	Vorderrhein GR, 23.8.1985
Fig. 37-47	Poschiavino GR, 5.10.1988

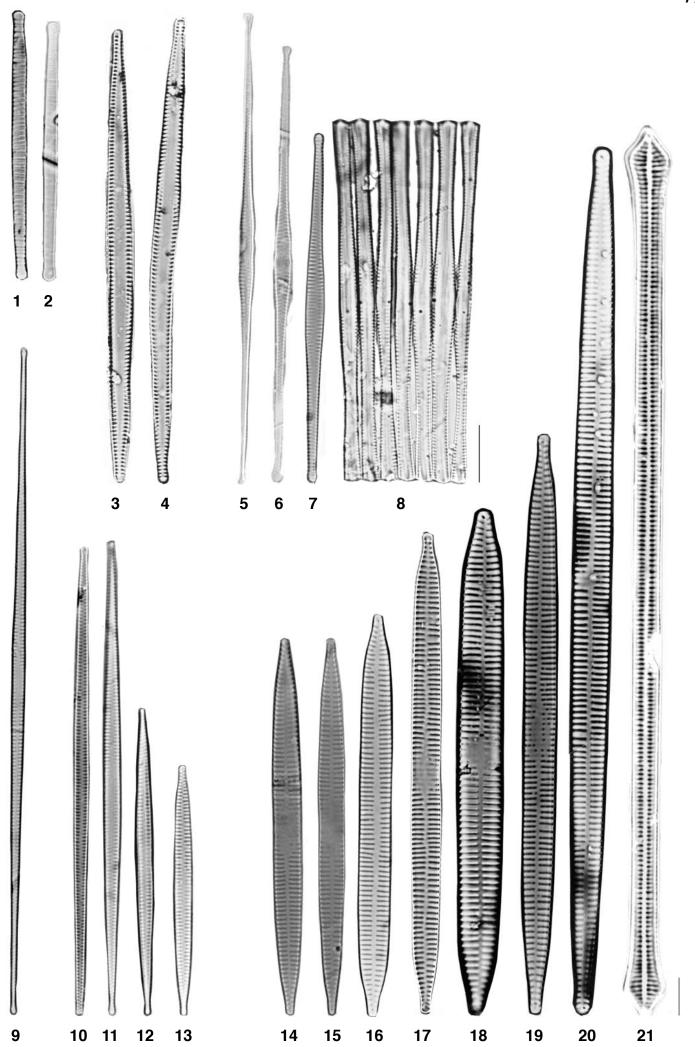

Fig. 1-47	Fragilaria capucina var. vaucheriae (KUETZING) LANGE-BERTALOT	6186	6 0.5
Fig. 48-50	Fragilaria capucina var. perminuta (GRUNOW) LANGE-BERTALOT	6394	



Tafel 8: Fig. 1-27

Tafel 8	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-11	Fragilaria gracilis OESTRUP	16995	1	4
Fig. 12-16	Fragilaria rumpens (KUETZING) CARLSON	26375	2	2
Fig. 17	Fragilaria amphicephaloides LANGE-BERTALOT	36274	1	4
Fig. 18-20	Fragilaria austriaca (GRUNOW) LANGE-BERTALOT	26372	1	8
Fig. 21-22	Fragilaria capucina var. capucina DESMAZIERES	6033	3	2
Fig. 23-27	Fragilaria mesolepta RABENHORST	26373	2.5	2
	Alte Bezeichnungen			
Fig. 1-11	Fragilaria capucina var. gracilis (OESTRUP) HUSTEDT	6392	1	4
Fig. 12-16	Fragilaria capucina var. rumpens (KUETZING) LANGE-BERTALOT	6396	2	2
Fig. 17	Fragilaria capucina var. amphicephala (GRUNOW) LANGE-BERTALOT	6908	1	4
Fig. 18-20	Fragilaria capucina var. austriaca (GRUNOW) LANGE-BERTALOT	6389	1	8
Fig. 21-22	Fragilaria capucina DESMAZIERES	16570	3	2
Fig. 23-27	Fragilaria capucina var. mesolepta (RABENHORST) RABENHORST	6393	2.5	2

Tafel 9: Fig. 1-21

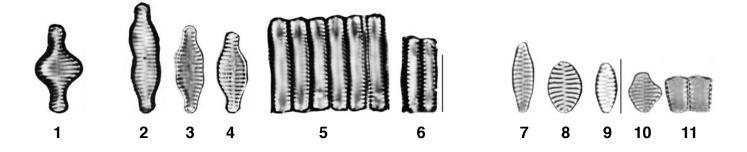

Tafel 9	Vergrösserung 1500x (Fig. 21 = 1000x), Strich = 10 μ m	DVNR	D	G
Fig. 1-2	Fragilaria incognita REICHARDT	6402	1	4
Fig. 3-4	Tabularia fasciculata (J.G.AGARDH) D.M. WILLIAMS et ROUND 1)	26379		
Fig. 5-8	Fragilaria crotonensis KITTON	6075	4	1
Fig. 9	Fragilaria ulna angustissima - Sippen KRAMMER et LANGE-BERTALOT	6410		
Fig. 10-13	Fragilaria tenera (W.SMITH) LANGE-BERTALOT	6409	2	2
Fig. 14-20	Fragilaria ulna (NITZSCH) LANGE-BERTALOT	6239	4	1
Fig. 21	Fragilaria dilatata (BREBISSON) LANGE-BERTALOT	6236		

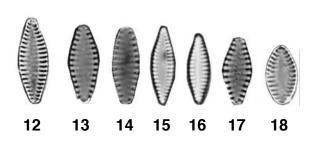
Bemerkung

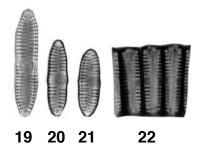
1) Das Taxon kommt bevorzugt in elektrolytreichen Gewässern vor, häufig auch in Brackwasser oder marinen Habitaten.

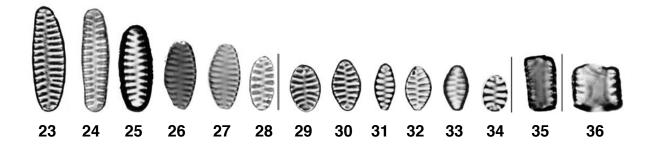
Alte Bezeichnung

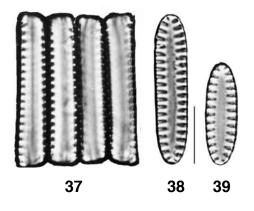
Fig. 3-4 Fragilaria fasciculata (J.G.AGARDH) LANGE-BERTALOT

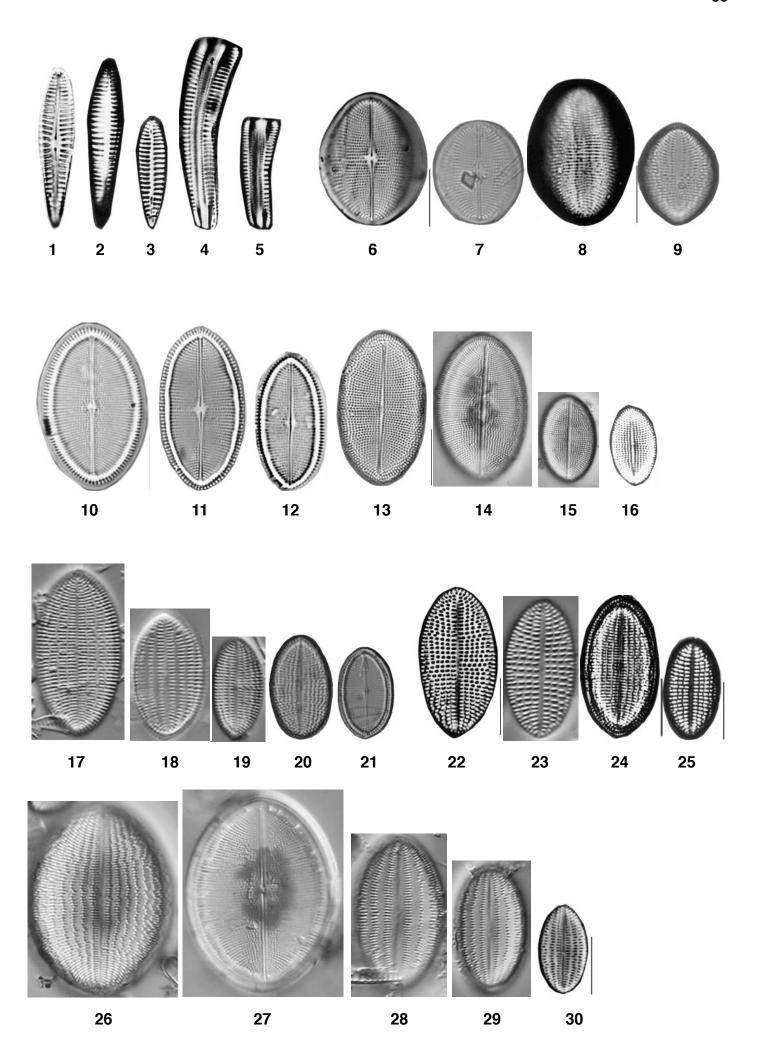



Tafel 10: Fig. 1-39


Tafel 10	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1	Fragilaria construens (EHRENBERG) GRUNOW 1)	16573	3	2
Fig. 2-6	Fragilaria construens f. binodis (EHRENBERG) HUSTEDT 1)	6397	3	2
Fig. 7-11	Fragilaria construens f. venter (EHRENBERG) HUSTEDT 1)	6828	3	2
Fig. 12-18	Fragilaria brevistriata GRUNOW 1)	6388	3	2
Fig. 19-22	Fragilaria bidens HEIBERG	6387		
Fig. 23-36	Fragilaria pinnata sensu lato 1)	6078	3	2
Fig. 37-39	Fragilaria lapponica GRUNOW 1)	6403		


1) Um die Gattung Fragilaria sensu lato bestehen viele taxonomische Konzepte. Momentan ist die taxonomische Situation um Fragilaria sensu lato noch unklar und basiert auf unterscheidbaren Gen-Sequenzen oder nur im Elektronenmikroskop erkennbaren Merkmalen. Daher werden im DI-CH aus praktischen Gründen die Taxa um Fragilaria in dieser Gattung belassen. Der Information halber sind die Namen der ursprünglichen Gattung Staurosira unten aufgeführt.


Fig. 1	Staurosira construens EHRENBERG	3	2
Fig. 2-6	Staurosira binodis (EHRENBERG) LANGE-BERTALOT	3	2
Fig. 7-11	Staurosira venter (EHRENBERG) GRUNOW	3	2
Fig. 12-18	Staurosira brevistriata (GRUNOW) GRUNOW	3	2
Fig. 23-36	Staurosira mutabilis (W. SMITH) GRUNOW		
Fig. 37-39	Staurosira lapponica (GRUNOW) LANGE-BERTALOT	3	2



Tafel 11: Fig. 1-30

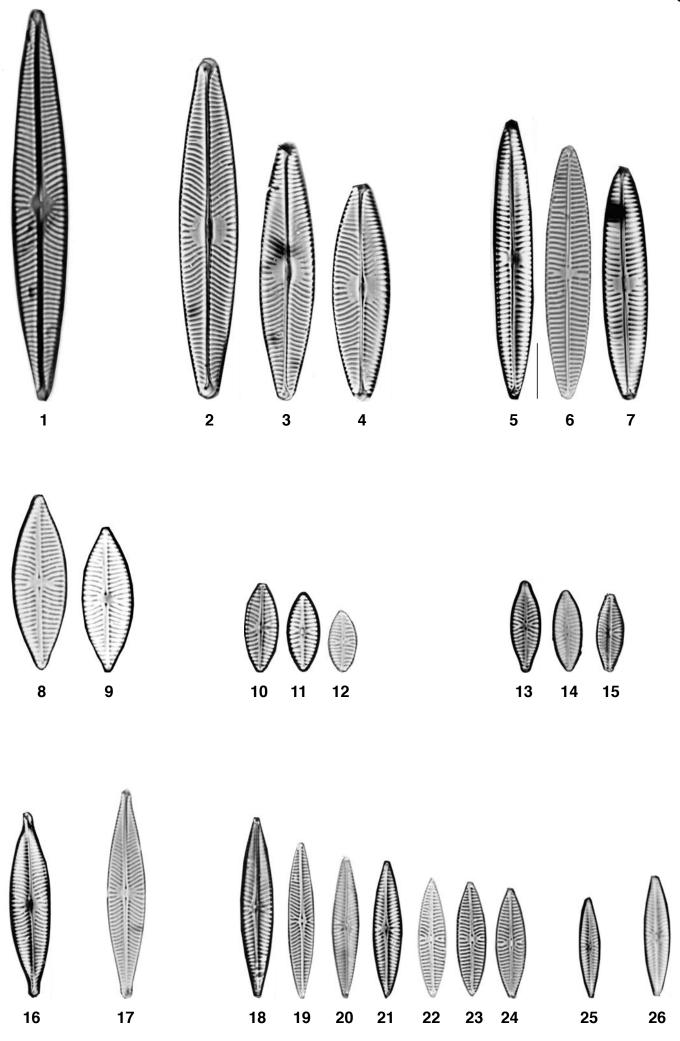
Tafel 11	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-5	Rhoicosphenia abbreviata (J.G.AGARDH) LANGE-BERTALOT	6224	4.5	1
Fig. 6-9	Cocconeis pediculus EHRENBERG	6020	5.5	2
Fig. 10-16	Cocconeis placentula sensu Krammer und Lange-Bertalot 1991	6021	5	1
Fig. 17-21	Cocconeis placentula var. euglypta (EHRENBERG) GRUNOW	6726	5	1
Fig. 22-25	Cocconeis pseudolineata (GEITLER) LANGE-BERTALOT	26128	5	1
Fig. 26-30	Cocconeis placentula var. lineata (EHRENBERG) VAN HEURCK	6728	5	
	Alte Bezeichnung			
Fig. 22-25	Cocconeis placentula var. pseudolineata GEITLER	6729	5	1
Fig. 23-24	Cocconeis placentula var. euglypta EHRENBERG	6726	5	1

Bildnachweis

Die Bilder der Figuren 14-15, 17-19, 23, 26-29 stammen von Guido Erni, Lierenstrasse 74, CH-5417 Untersiggenthal

Tafel 12: Fig. 1-26

Tafel 12	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1	Navicula radiosa KUETZING	6103	4	1
Fig. 2-4	Navicula lanceolata (J.G. AGARDH) EHRENBERG	6864	4.5	1
Fig. 5-7	Navicula tripunctata (O.F. MUELLER) BORY DE SAINT VINCENT	6831	4	1
Fig. 8-9	Navicula menisculus SCHUMANN	6094	4	2
Fig. 10-12	Navicula antonii LANGE-BERTALOT 1)	16653	5	1
Fig. 13-15	Navicula reichardtiana LANGE-BERTALOT	6221	4	1
Fig. 16	Navicula capitatoradiata GERMAIN	6910	4	1
Fig. 17	Navicula cryptocephala KUETZING	6010	4	1
Fig. 18-24	Navicula cryptotenella LANGE-BERTALOT	6889	4	0.5
Fig. 25	Navicula cryptotenelloides LANGE-BERTALOT	16307	4	0.5
Fig. 26	Navicula aquaedurae LANGE-BERTALOT	16289	4	0.5
	Dama allowa a			

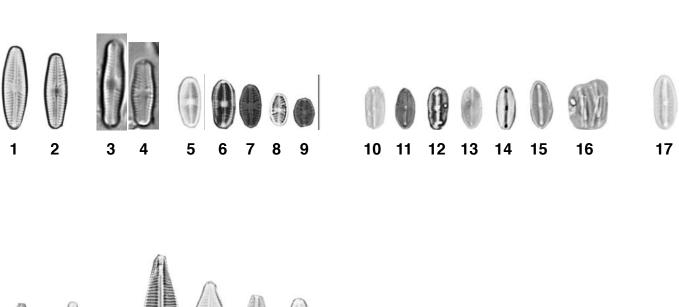

1) Eine sehr ähnliche Art ist Navicula catalanogermanica LANGE-BERTALOT. Diese Art ist sicherlich in Deutschland weiter verbreitet, wurde aber bis 2001 nicht von Navicula antonii unterschieden.

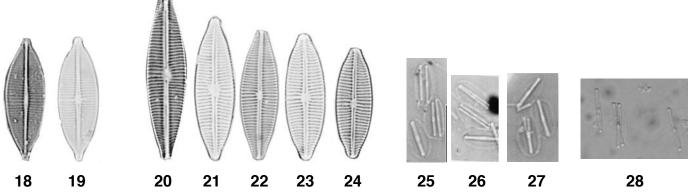
6464

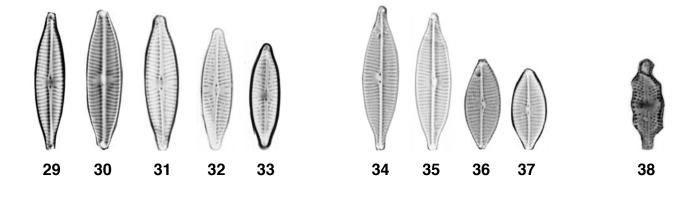
Alte Bezeichnung

Fig. 10-12 Navicula menisculus var. grunowii LANGE-BERTALOT

6514 5 1




Tafel 13: Fig. 1-49


Tafel 13	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-2	Sellaphora seminulum GRUNOW	26624	8	4
Fig. 3-4	Sellaphora joubaudii (GERMAIN) ABOAL	36265		
Fig. 5-9	Eolimna minima (GRUNOW) LANGE-BERTALOT	26568	7	1
Fig. 10-16	Mayamaea atomus var. permitis (HUSTEDT) LANGE-BERTALOT	26472	6	1
Fig. 17	Mayamaea atomus var. atomus (KUETZING) LANGE-BERTALOT	26469	6	1
Fig. 18-19	Craticula accomoda (HUSTEDT) D.G. MANN	26460	8	8
Fig. 20-24	Craticula buderi (GRUNOW) LANGE-BERTALOT 1)	16881	8	8
Fig. 25-27	Fistulifera saprophila (LANGE-BERTALOT et BONIK) LANGE-BERTALOT	6537	7	2
Fig. 28	Fistulifera pelliculosa (BREBISSON) LANGE-BERTALOT	26591	3.5	1
Fig. 29-33	Navicula veneta KUETZING	6890	8	4
Fig. 34-37	Navicula gregaria DONKIN	6015	5.5	1
Fig. 38	Luticola nivalis (EHRENBERG) D.G. MANN	26583		
Fig. 39-42	Eolimna subminuscula (MANGUIN) MOSER, LANGE-BERTALOT et METZELT	26638	7	4
Fig. 43-45	Luticola goeppertiana (BLEISCH) D.G. MANN	26531	8	8
Fig. 46	Adlafia minuscula var. muralis (GRUNOW) LANGE-BERTALOT	26570	7	1
Fig. 47	Fallacia subhamulata (GRUNOW) D.G. MANN	26636	4	2
Fig. 48	Fallacia lenzii (HUSTEDT) LANGE-BERTALOT	26560	4.5	1
Fig. 49	Sellaphora stroemii (HUSTEDT) D.G. MANN	26633	2	1

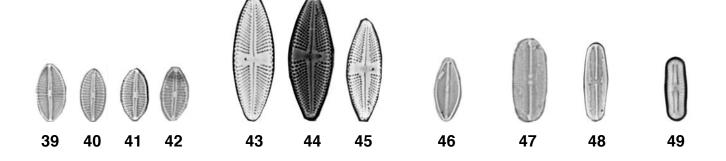
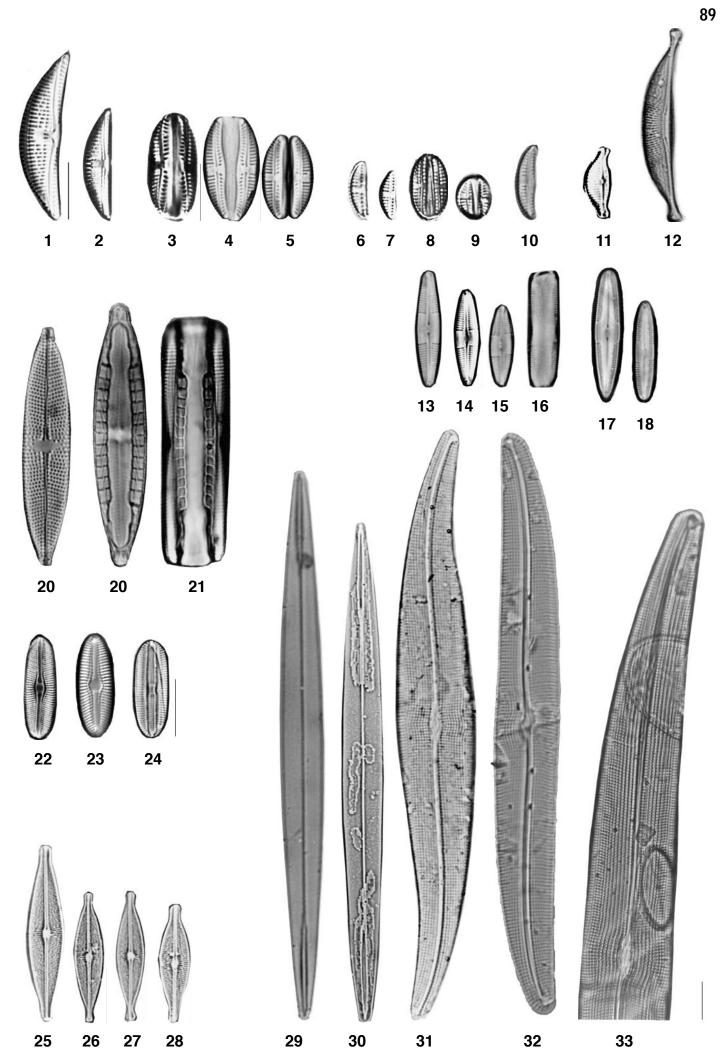

1) Das Taxon wurde früher vermutlich oft als C. halophila oder C. accomoda bestimmt. C. halophila hat keine vorgezogenen Enden und ist mit > 8 μ m breiter als C. buderi und C. accomoda.

Fig. 1-2	Navicula seminulum GRUNOW	6192	8	4
Fig. 3-4	Navicula joubaudii GERMAIN	6507		
Fig. 5-9	Navicula minima GRUNOW	6095	7	1
Fig. 10-16	Navicula atomus var. permitis (HUSTEDT) LANGE-BERTALOT	6241	6	1
Fig. 17	Navicula atomus (KUETZING) GRUNOW	6117	6	1
Fig. 18-19	Navicula accomoda HUSTEDT	6018	8	8
Fig. 20-24	Navicula halophila (GRUNOW) CLEVE	6833	8	8
Fig. 25-27	Navicula saprophila LANGE-BERTALOT et BONIK	6537	7	2
Fig. 28	Navicula pelliculosa (BREBISSON) HILSE	6013	3.5	1
Fig. 38	Navicula nivalis EHRENBERG	16020		
Fig. 39-42	Navicula subminuscula MANGUIN	6896	7	4
Fig. 43-45	Navicula goeppertiana (BLEISCH) H.L. SMITH	6916	8	8
Fig. 46	Navicula minuscula var. muralis (GRUNOW) LANGE-BERTALOT	6872	7	1
Fig. 47	Navicula subhamulata GRUNOW	6106	4	2
Fig. 48	Navicula lenzii HUSTEDT	6923	4.5	1
Fig. 49	Navicula stroemii HUSTEDT	6546	2	1

Tafel 14: Fig. 1-33

Tafel 14	Vergrösserung 1500x (Fig. 29 = 1000x), Strich = 10 μ m	DVNR	D	G
Fig. 1-2	Amphora copulata (KUETZING) SCHOEMANN et ARCHIBLAD 1)	26102	4	2
Fig. 3-5	Amphora inariensis KRAMMER	6171		
Fig. 6-9	Amphora pediculus (KUETZING) GRUNOW	6983	5	0.5
Fig. 10	Amphora indistincta LEVKOV	36245	3.5	1
Fig. 11	Amphora thumensis (A.MAYER) CLEVE-EULER	6288		
Fig. 12	Halamphora oligotraphenta (LANGE-BERTALOT) LEVKOV	36251		
Fig. 13-16	Caloneis lancettula (SCHULZ-DANZIG) LANGE-BERTALOT et WITKOWSKI 2)	26121	3	2
Flg. 17-18	Caloneis fontinalis (GRUNOW) LANGE-BERTALOT & REICHARDT	16591		
Fig. 19-21	Mastogloia smithii var. lacustris GRUNOW	6445		
Fig. 22	Diploneis separanda LANGE-BERTALOT 3)	26285	3.5	4
Fig. 23	Diploneis fontanella LANGE-BERTALOT 3)	26282		
Fig. 24	Diploneis oculata (BREBISSON) CLEVE	6347	3	2
Fig. 25-28	Brachysira neoexilis LANGE-BERTALOT	6295		
Fig. 29-30	Amphipleura pellucida (KUETZING) KUETZING	6048	1	1
Fig. 31	Gyrosigma acuminatum (KUETZING) RABENHORST	6036	4	1
Fig. 32	Gyrosigma sciotense (W.S.SULLIVANT) CLEVE		4	2
Fig. 33	Gyrosigma attenuatum (KUETZING) RABENHORST	6041	4	2

Bemerkung


- 1) Die richtige Artbezeichnung für Amphora libyca ist Amphora copulata (KUET-ZING) SCHOEMAN et ARCHIBALD. Früher wurde das Taxon generell als A. libyca bezeichnet. Dieser falsche Name fand wegen einer falschen Interpretation des Typus seinen Weg in die Bestimmungsbücher Europas. Heute sind um die Art Amphora copulata noch weitere, morphologisch sehr ähnliche Taxa bekannt. So könnten die Fig. 1 2 auch zu A. lange-bertalotii LEVKOV et MET-ZELTIN (DVNR 36237) gehören.
- 2) In der relevanten Bestimmungsliteratur wurden Arten aus dem Formenkreis um C. lancettula f\u00e4lschlicherweise als Caloneis bacillum bezeichnet. Bei diesem Taxon handelt es sich jedoch um eine marine Art. Taxa mit breiter Axialarea geh\u00f6ren zu Caloneis fontinalis.
- 3) Arten aus dem Formenkreis um Diploneis separanda und Diploneis fontanella wurden früher als D. oblongella bezeichnet. Die ursprünglich als D. oblongella bezeichnete Art wurde ohne Abbildung von KUETZING 1849 benannt. Daher wurden Missinterpretationen um das Taxon gebräuchlich.

Alte Bezeichnung

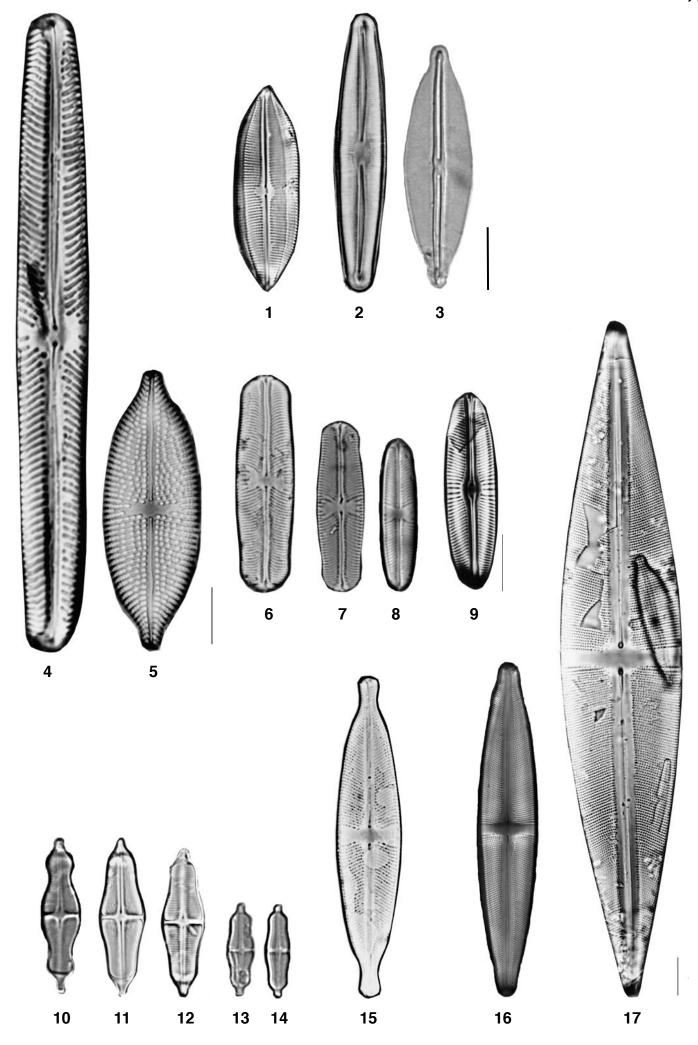
Fig. 12	Amphora veneta var. capitata HAWORTH	6289		
Fig. 13-16	Caloneis bacillum sensu DI-CH	6051	3	2
Fig. 22	Diploneis oblongella (NAEGELI) CLEVE-EULER	6346	3.5	4
Fig. 32	Gyrosigma nodiferum (GRUNOW) REIMER	6443	4	2

Bildnachweis

Die Bilder der Figuren 17-18, 23 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 15: Fig. 1-17

Tafel 15	Vergrösserung 1500x (Fig. 16 & 17 = 1000x), Strich = 10 μ m	DVNR	D	G
Fig. 1	Neidium dubium (EHRENBERG) CLEVE	6108		
Fig. 2	Frustulia vulgaris (THWAITES) DE TONI	6079	4	1
Fig. 3	Frustulia crassinervia BREBISSON) LANGE-BERTALOT et KRAMMER	26397		
Fig. 4	Navicula oblonga KUETZING	6073		
Fig. 5	Aneumastus tusculus (EHRENBERG) D.G. MANN et STICKLE 1)	26111		
Fig. 6-8	Sellaphora pseudopupula (KRASSKE) LANGE-BERTALOT 2)	26605	4	1
Fig. 9	Sellaphora bacillum (EHRENBERG) D.G. MANN	16611		
Fig. 10-12	Stauroneis smithii GRUNOW 3)	6131	3	1
Fig. 13-14	Stauroneis separanda LANGE-BERTALOT et WERUM 3)	26867		
Fig. 15	Stauroneis anceps EHRENBERG 4)	6129	1	1
Fig. 16	Stauroneis gracilis EHRENBERG	16675		
Fig. 17	Stauroneis phoenicenteron (NITZSCH) EHRENBERG	6130		


- 1) Das Taxon Navicula tuscula (EHRENBERG) GRUNOW ist ein Sammeltaxon und beinhaltet Arten, wie A. balticus oder A. minor, die unter dem heutigen Gattungsnamen Aneumastus als eigenständige Taxa betrachtet werden.
- 2) Früher wurden unter dem Namen Navicula pupula KUETZING viele verschiedene, heute als eigenständig angesehene Arten zusammengefasst. Bei Untersuchungen des DI-CH wurde hauptsächlich die abgebildete Art Sellaphora pseudopupula nachgewiesen.
- Die deutlich kleineren Schalen von Stauroneis separanda LANGE-BERTALOT et WERUM wurden früher zu S. smithii gezählt.
- 4) Bei Fig. 15 handelt es sich unter Umständen nicht um Stauroneis anceps. Die neu beschriebenen Arten S. acidoclinata und S. reichardtii sind sehr ähnlich. Die kopfig vorgezogenen Enden sprechen bei Fig. 15 eher für S. reichardtii, es gibt aber in Europa rund um den Formenkreis um S. anceps noch weitere, ungenügend beschriebene Taxa.

Alte Bezeichnungen

Fig. 5	Navicula tuscula EHRENBERG	6989		
Fig. 6-8	Navicula pupula var. pseudopulua (KRASSKE) HUSTEDT	16030	4	1
Fig. 9	Navicula bacillum EHRENBERG	6087		

Bildnachweis

Die Bilder der Figuren 3, 8, 10, 13-14, 16 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 16: Fig. 1-16

Tafel 16	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1	Pinnularia microstauron (EHRENBERG) CLEVE	6125	3.5	1
Fig. 2-8	Pinnularia gibba EHRENBERG 1)	6121	7.5	2
Fig. 9	Pinnularia kneuckeri HUSTEDT	16067		
Fig. 10	Pinnularia borealis EHRENBERG	6148		
Fig. 11	Pinnularia viridis (NITZSCH) EHRENBERG	6128		
Fig. 12-15	Pinnularia grunowii KRAMMER	26734		
Fig. 16	Pinnularia kuetzingii KRAMMER	6646		

1) Sicher in die Gruppe um Pinnularia gibba oder Pinnularia subgibba KRAMMER gehörend, vermutlich handelt es sich um:

Pinnularia parvulissima KRAMMER 26763

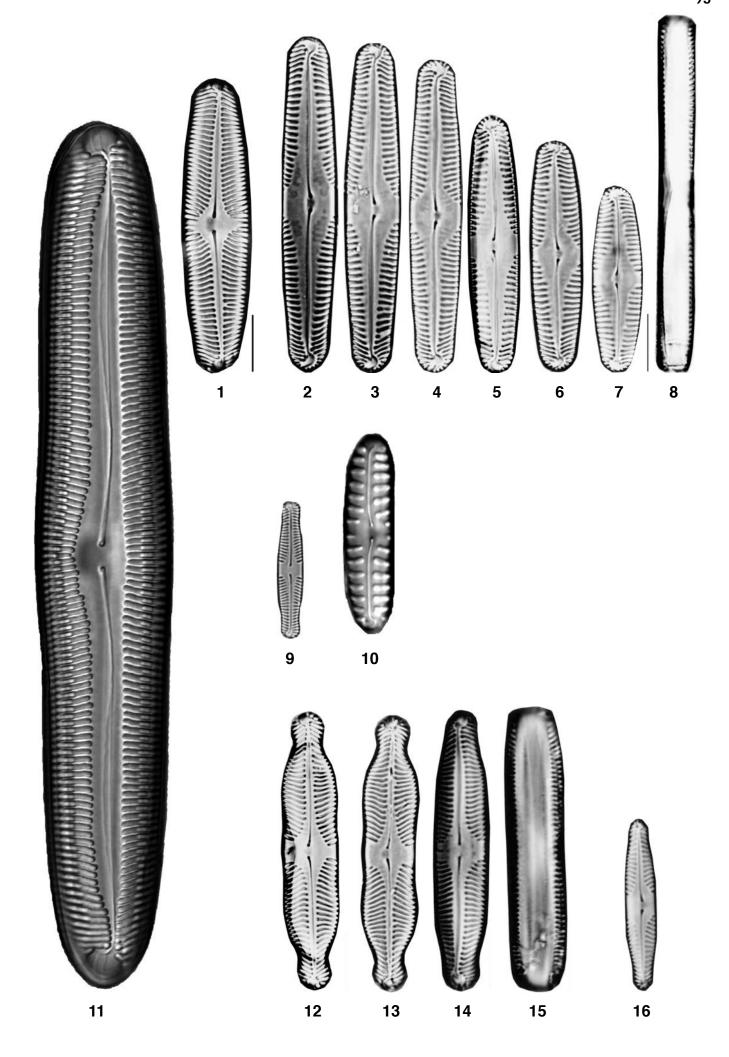

Alte Bezeichnung

Fig. 12-15 Pinnularia mesolepta (EHRENBERG) W. SMITH

6124

Bildnachweis

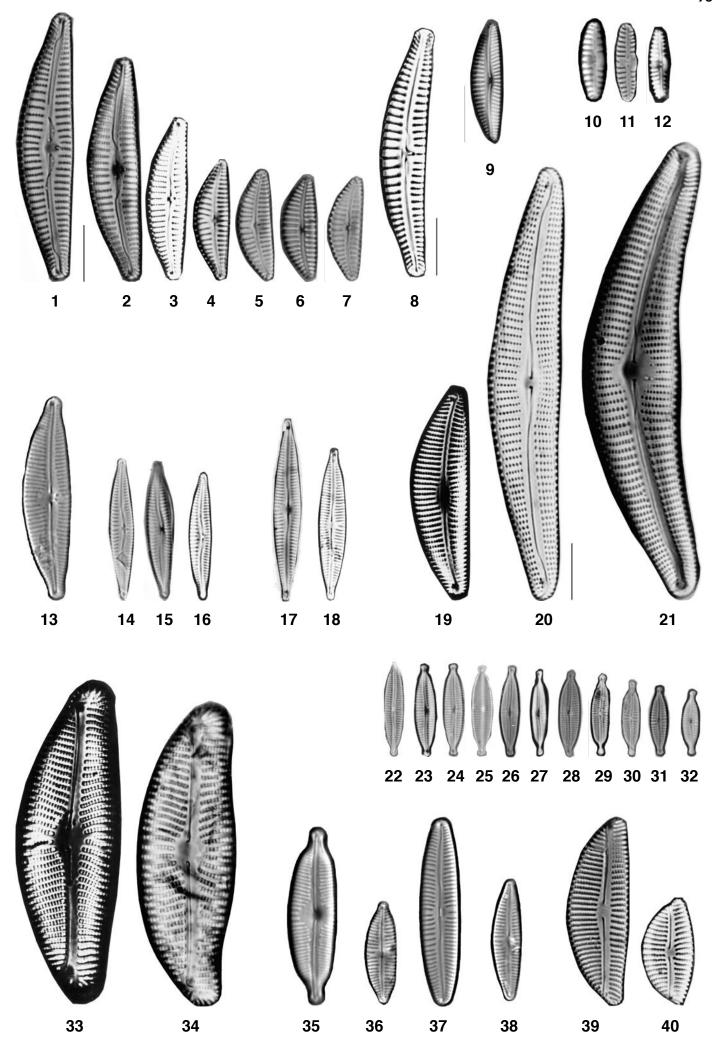
Die Bilder der Figuren 10-11 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 17: Fig. 1-40

Tafel 17	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-7	Cymbella excisa KUETZING 1)	36064	2	2
Fig. 8	Cymbella excisiformis KRAMMER 1)	26133	2	2
Fig. 9	Cymbella laevis NAEGELI	6327	2	1
Fig. 10-12	Reimeria sinuata (GREGORY) KOCIOLEK et STOERMER	36212	3.5	1
Fig. 13	Cymbella affinis KUETZING	26254		
Fig. 14-16	Delicata delicatula (KUETZING) KRAMMER	36053	1	4
Fig. 17-18	Encyonopsis cesatii (RABENHORST) KRAMMER	36063	1	1
Fig. 19	Cymbella compacta OESTRUP	16665		
Fig. 20	Cymbella helvetica sensu lato	6184	2	1
Fig. 21	Cymbella neocistula KRAMMER	26148	2	1
Fig. 22-32	Encyonopsis microcephala sensu lato 2)	6895	2	2
Fig. 33-34	Encyonema prostratum (BERKELEY) KUETZING	26223	4	1
Fig. 35	Cymbopleura naviculiformis (AUERSWALD) KRAMMER	26210	1	1
Fig. 36	Cymbopleura frequens KRAMMER	36044		
Fig. 37	Cymbopleura subaequalis (GRUNOW) KRAMMER	36046	1	2
Fig. 38	Cymbopleura diminuta (GRUNOW) KRAMMER	26157		
Fig. 39-40	Encyonema caespitosum var. caespitosum KUETZING	16991	3	1

Bemerkung

- Die beiden Taxa C. excisa und C. excisiformis wurden früher wohl zu C. affinis KUETZING gezählt. C. affinis hat jedoch mehr als ein Stigma in der Zentralarea.
- 2) Früher handelte es sich bei der Art C. microcephala um ein Sammeltaxon. Neu werden neben E. microcephala einige sehr ähnliche Taxa unterschieden:


Encyonopsis krammeri REICHARDT 26326 Encyonopsis minuta KRAMMER et REICHARDT 16619 Encyonopsis subminuta KRAMMER et REICHARDT 26329

Alte Bezeichnungen

Fig. 1-8	Cymbella affinis KUETZING	6058	2	2
Fig. 10-12	Cymbella sinuata GREGORY	6065	3.5	1
Fig. 13	Cymbella tumidula var. tumidula GRUNOW	36042		
Fig. 14-16	Cymbella delicatula KUETZING	6315	1	4
Fig. 17-18	Cymbella cesatii (RABENHORST) GRUNOW	6183	1	1
Fig. 21	Cymbella cistula (EHRENBERG) KIRCHNER	6059	2	1
Fig. 22-32	Cymbella microcephala (Artengruppe) sensu KRAMMER & LANGE-B. 1986	6895	2	2
Fig. 33-34	Cymbella prostrata (BERKELEY) CLEVE	6040	4	1
Fig. 35	Cymbella naviculiformis AUERSWALD	6063	1	1
Fig. 37	Cymbella subaequalis GRUNOW	6150	1	2
Fig. 39-40	Cymbella caespitosa (KUETZING) BRUN	6891	3	1

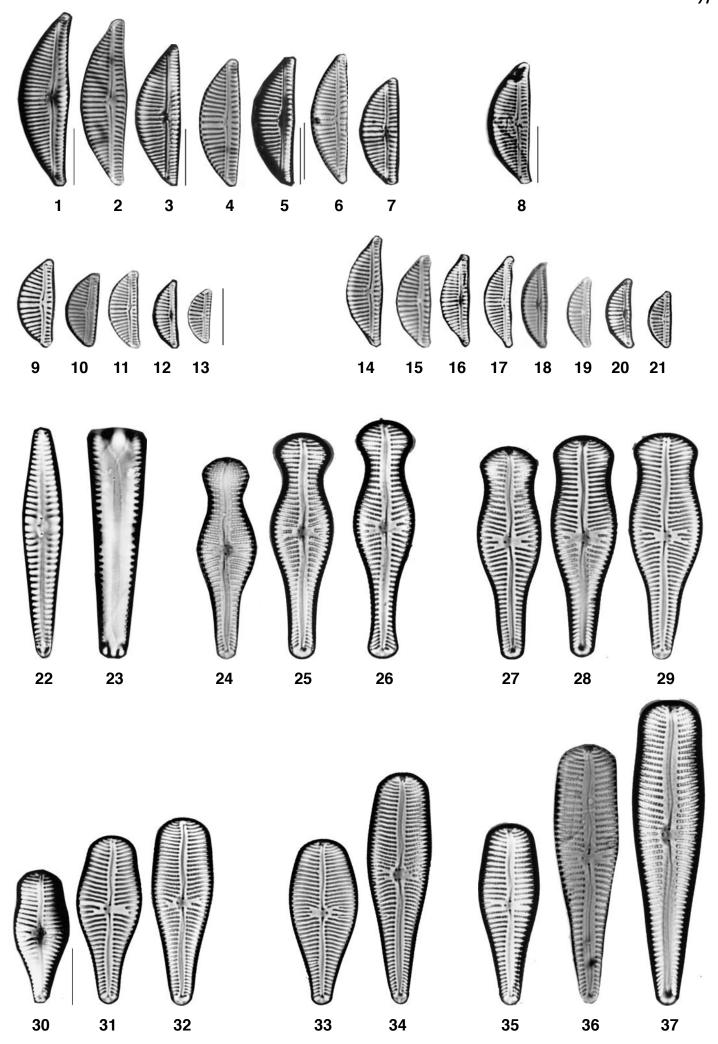
Bildnachweis

Die Bilder der Figuren 10, 35-38 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 18: Fig. 1-37

Tafel 18	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-7	Encyonema silesiacum (BLEISCH) D.G. MANN 1)	6898	3	1
Fig. 8	Encyonema lange-bertalotii KRAMMER 1)	26301		
Fig. 9-13	Encyonema minutum (HILSE) D.G. MANN	26208	2.5	2
Fig. 14-21	Encyonema ventricosum (AGARDH) GRUNOW	26318	2.5	2
Fig. 22-23	Gomphonema dichotomum KUETZING	6423		
Fig. 24-26	Gomphonema capitatum EHRENBERG	100126		
Fig. 27-29	Gomphonema truncatum EHRENBERG	6188	3.5	1
Fig. 30-32	Gomphonema pala REICHARDT	100127		
Fig. 33-34	Gomphonema italicum KUETZING	100150		
Fig. 35-37	Gomphonema clava REICHARDT	100125		

Bemerkung


1) Früher wurden unter dem Sammeltaxon Cymbella silesiaca einige morphologisch sehr ähnliche Taxa zusammengefasst. Besonders E. lange-bertalotii dürfte vor allem in sauberen Gewässern verbreitet sein.

Alte Bezeichnungen

Fig. 1-8	Cymbella silesiaca BLEISCH	6898	3	1
Fig. 9-13	Cymbella minuta Artengruppe sensu lato	6909	2.5	2
Fig. 14-21	Cymbella minuta f. semicircularis	100013	2.5	2

Bildnachweis

Die Bilder der Figuren 25-29, 31-35 und 37 stammen von Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen. Fig. 35 stammt aus Krka, Kroatien und Fig. 37 aus Afrika.

Tafel 19: Fig. 1-51

Tafel 19	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-6	Gomphonema olivaceum (HORNEMANN) BREBISSON	6867	3	0.5
Fig. 7-11	Gomphonema olivaceum var. Fusspol vorgezogen Arbeitsn. REICH. 2002 1)	100151	3	0.5
Fig. 12	Gomphonema olivaceolacuum (LANGE-B. et REICH) LANGE-B. et REICH.	26422		
Fig. 13-17	Gomphonema olivaceoides HUSTEDT	36275	1	8
Fig. 18-24	Gomphonema variostigmatum REICHARDT	100153	1	8
Fig. 25-28	Gomphonema parvulum var. parvulum f. parvulum (KUETZING) KUETZING	6158	8	4
Fig. 29-35	Gomphonema parvulum var. parvulum f. saprophilum LANGE-B. et REICH.	16535	8	4
Fig. 36-37	Gomphonema exilissimum (GRUNOW) LANGE-BERTALOT et REICHARDT	26425	3	1
Fig. 38-40	Gomphonema utae LANGE-BERTALOT et REICHARDT	6801		
Fig. 41-43	Gomphonema innocens REICHARDT	16873		
Fig. 44-46	Gomphonema sphenovertex LANGE-BERTALOT et REICHARDT	36231		
Fig. 47	Gomphonema subclavatum (GRUNOW) GRUNOW	26431		
Fig. 48	Gomphonema clavatum EHRENBERG	6217		
Fig. 49-51	Gomphonema lange-bertalotii REICHARDT	26415		

Erläuterungen zu den Arbeitsnamen

1) Dieses Taxon gehört in die Gruppe von:

Gomphonema olivaceum (HORNEMANN) BREBISSON
Bestimmungsmerkmale

6867 3 0.5

<u>Lichtmikroskop</u>: Kein Stigma, der Kopfpol ist breit gerundet und der Fusspol schmal, lang und etwas vorgezogen.

<u>Rasterelektronenmikroskop</u>: Areolen in Doppelreihen, Foramina punktförmig.

Ökologie: Die beiden Taxa G. olivaceum und G. olivaceum var. Fusspol vorgezogen lassen sich zur Zeit auf Grund ökologischer Variablen nicht auseinanderhalten. Möglicherweise handelt es sich um eine spezielle Wuchsform, bedingt durch unterschiedliche Umweltfaktoren (Temperatur, Leitfähigkeit, Toxizität, ...)

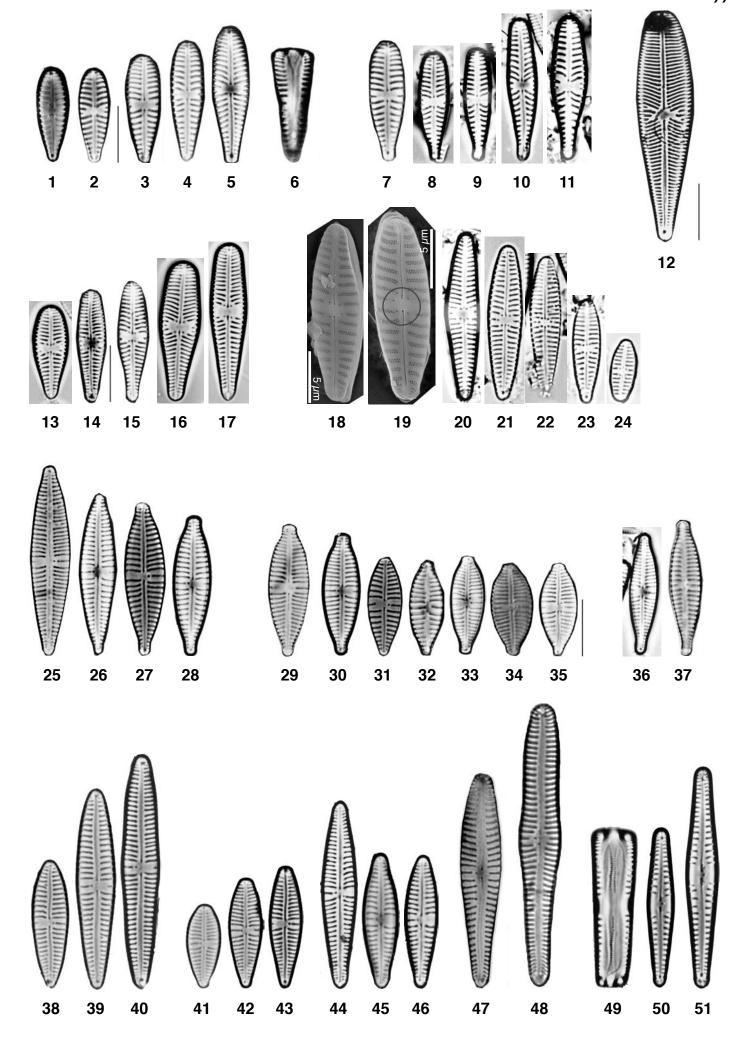

Alte Bezeichnungen

Fig. 12	Gomphonema olivaceum var. olivaceolacuum LANGE-B. et REICHARDT	6432		
Fig. 13-17	Gomphonema olivaceum var. olivaceoides (HUST.) LANGE-B. et REICH.	6431	1	8
Fig. 18-24	Gomphonema variostigmatum Arbeitsname REICHARDT	100153	1	8
Fig. 36-37	Gomphonema parvulum var. exilissimum GRUNOW	6433	3	1

Bildnachweis

Die Bilder der Figuren 8-11, 13, 16-24, 36 und 38-51 stammen von Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen.

Das Bild der Figur 48 stammt von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 20: Fig. 1-53

Tafel 20	Vergrösserung 1500x, Strich = 10 μ m, Fig. 54 = 1000x	DVNR	D	G
Fig. 1-3	Gomphonema pumilum var. pumilum (GRUNOW) LANGE-BERTALOT et REICHARDT 1)	6437	2	4
Fig. 4-8	Gomphonema elegantissimum REICHARDT et LANGE-BERTALOT	36276	2	4
Fig. 9-11	Gomphonema pumilum var. rigidum REICHARDT et LANGE-BERTALOT	26430	2	4
Fig. 12-19	Gomphonema angustivalva REICHARDT	26404	2	4
Fig. 20-26	Gomphonema micropumilum REICHARDT 2)	26420	2	4
Fig. 27-30	Gomphonema pumiloide-Kleinformen Arbeitsname E. REICHARDT 2002 3)	100147	2	4
Fig. 31-33	Gomphonema minusculum KRASSKE	16559	2	4
Fig. 34-36	Gomphonema minutum (J.G. AGARDH) J.G. AGARDH	6912	2.5	2
Fig. 37-40	Gomphonema micropus KUETZING	6428	3	1
Fig. 41-43	Gomphonema cymbelliclinum REICHARDT et LANGE-BERTALOT	16789	3	1
Fig. 44	Gomphonema auritum A. BRAUN	6419		
Fig. 45-50	Gomphonema sarcophagus GREGORY 4)	6438		
Fig. 51-52	Gomphonema hebridense GREGORY	6424		
Fig. 53	Didymosphenia geminata (LYNGBYE) M. SCHMIDT 5)	16209		

Bemerkungen

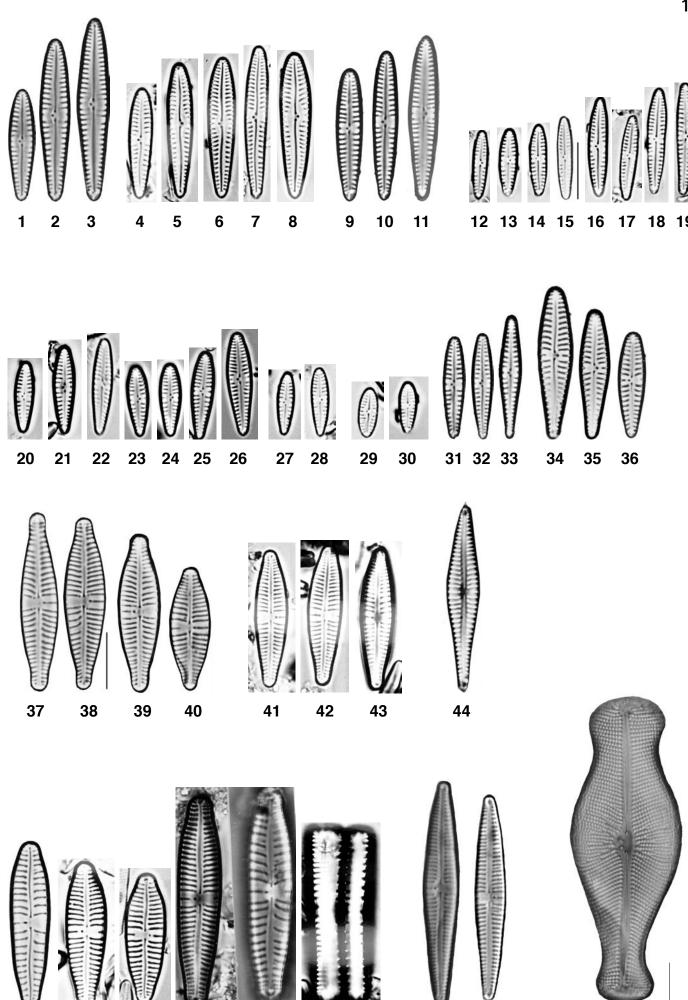
- 1) Fotos ab Typusmaterial.
- 2) Kleine Schalen wie Fig. 20, 23 und 24 könnten in die Gruppe der pumiloiden-Kleinformen gehören.

100147 2 4

- 3) Sammelgruppe für kleine Formen um die Gruppe von Gomphonema pumilum:
 - Fig. 27 und 28: Eventuell kleine Schalen von Gomphonema angustivalva REICHARDT

26404 2 4

2


- Fig. 29 und 30: Eventuell kleine Schalen von Gomphonema spec. winzig Arbeitsname E. REICHARDT 2002
 - 100146 dazu
- Januszellenbildung, d.h. eine Schale feiner gestreift als die andere: Siehe dazu die Fig. 50 (Gürtelband) sowie Fig. 48-49 (beide Schalen desselben Individuums).
- 5) Vielfach wird Didymosphenia geminata als Neophyt betrachtet, so auch in der Schweiz. Die Art wurde jedoch bereits Anfangs des 20. Jahrhunderts von F. Meister an verschiedenen Standorten der Schweiz beobachtet. Ähnliche Berichte stammen auch aus Grossbritannien. Auf Probleme weisen Bericht von Massenvorkommen von D. geminata, die vor allem aus Neuseeland stammen. Dort kann die Art enorme Biomassen bilden und ganze Gewässersysteme empfindlich stören. Dieses Phänomen führte in den betroffenen Ländern zu strengen Richtlinien betreffend Desinfektion von Booten oder Stiefeln. Daher wird die Art auch in der Schweiz kritisch beobachtet. Bis anhin erreichte die Art selten relative Häufigkeiten von mehr als 1 %.

Alte Bezeichnungen

Fig. 4-8 Gomphonema pumilum var. elegans REICHARDT et LANGE-BERTALOT 29429 2

Bildnachweis

Die Bilder der Figuren 1-43 und 45-50 stammen von Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen.

Tafel 21: Fig. 1-35

Tafel 21	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-12	Gomphonema lateripunctatum REICHARDT et LANGE-BERTALOT 1)	6427	1	2
Fig. 13-15	Gomphonema acuminatum sensu lato 2)	6080		
Fig. 16-23	Gomphonema tergestinum (GRUNOW) M. SCHMIDT 3)	6897	3	2
Fig. 24-26	Gomphonema angustum J.G. AGARDH	6819	1	4
Fig. 27-29	Gomphonema occultum REICHARDT et LANGE-BERTALOT	6429	1	1
Fig. 30-32	Gomphonema bavaricum REICHARDT et LANGE-BERTALOT	6420		
Fig. 33-35	Gomphonema vibrio EHRENBERG	6442		

Bemerkung

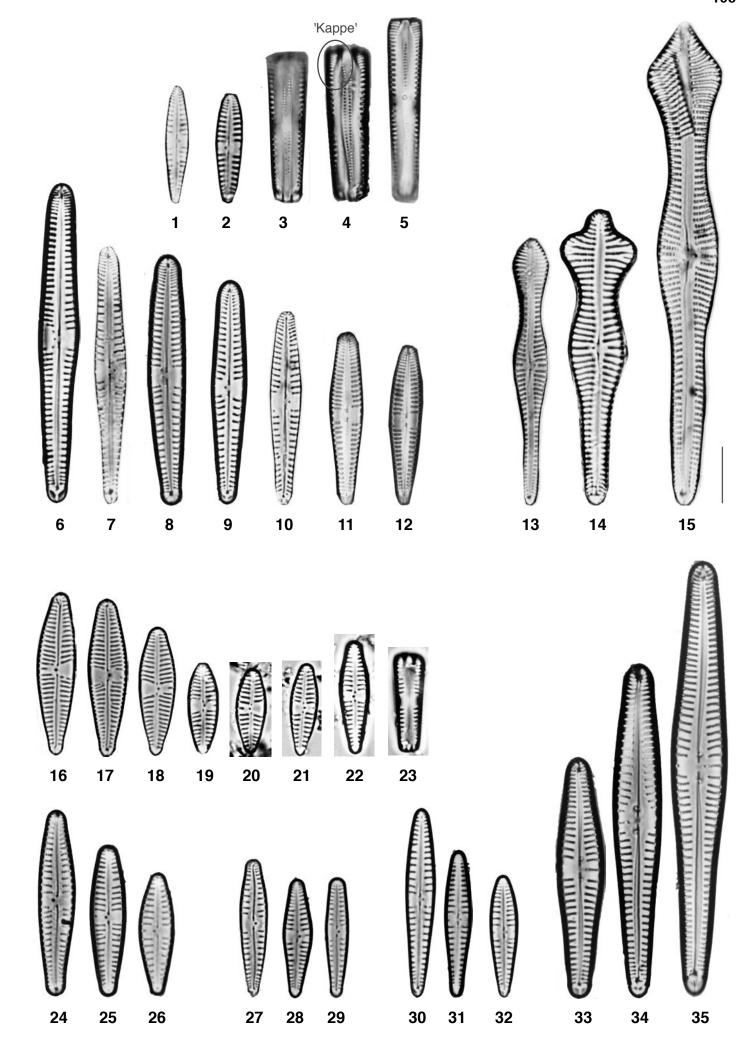
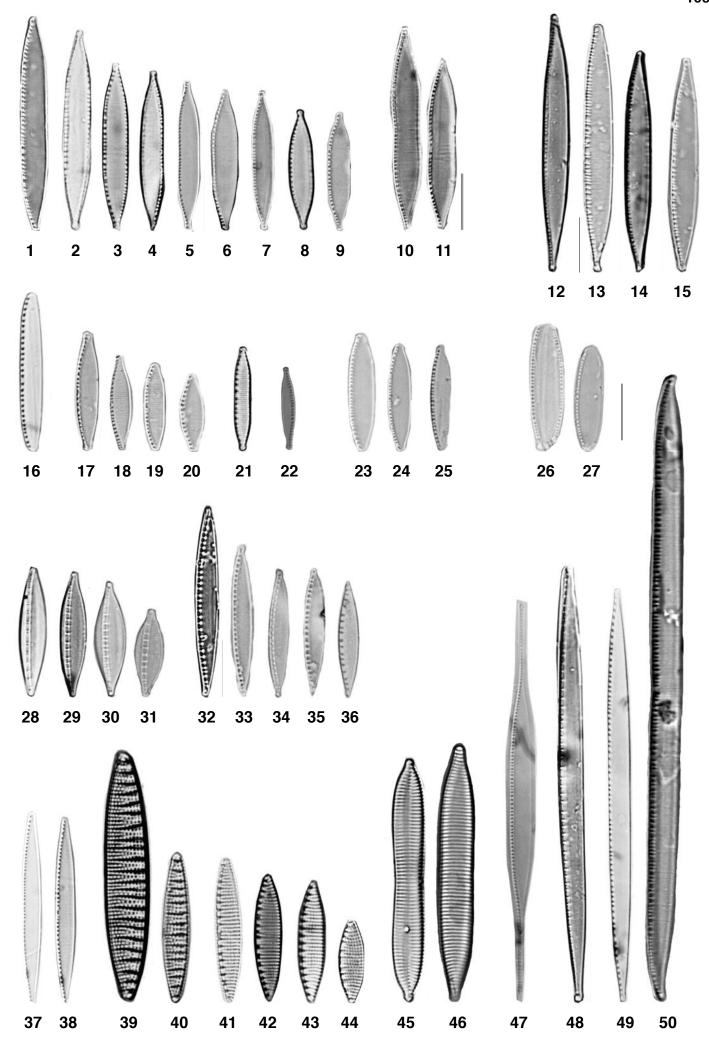

- 1) Streifen am Kopfpol charakteristisch nach unten gezogen (= 'Kappe', siehe Fig. 4).
- 2) Dieses Taxon stellt einen Artenkomplex dar. Es sind heute:

Fig. 13: Gomphonema angusticephalum REICHARDT et LANGE-BERTALOT	16883
Fig. 14: Gomphonema acuminatum EHRENBERG	6080
Fig. 15: Gomphonema brebissonii KUETZING	26406

3) Früher wurde bei Zählungen für den DI-CH zusätzlich das Taxon Gomphonema nicht tergestinum Arbeitsname REICHARDT 2002 unterschieden. Untersuchungen über die ökologischen Präferenzen beider Taxa lassen jedoch keinen Unterschied erkennen. Daher wird nur noch Gomphonema tergestinum aufgeführt. Eine deutlich grössere Form namens Gomphonema supertergestinum REICHARDT (Breite > 7 μ m) wurde 2009 beschrieben. Sehr wahrscheinlich ist dieses Taxa schon länger bekannt, wurde aber immer G. tergestinum zugeordnet.

Bildnachweis

Die Bilder der Figuren 4, 6, 8-9, 16-25 und 27-35 stammen von Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen.



Tafel 22: Fig. 1-50

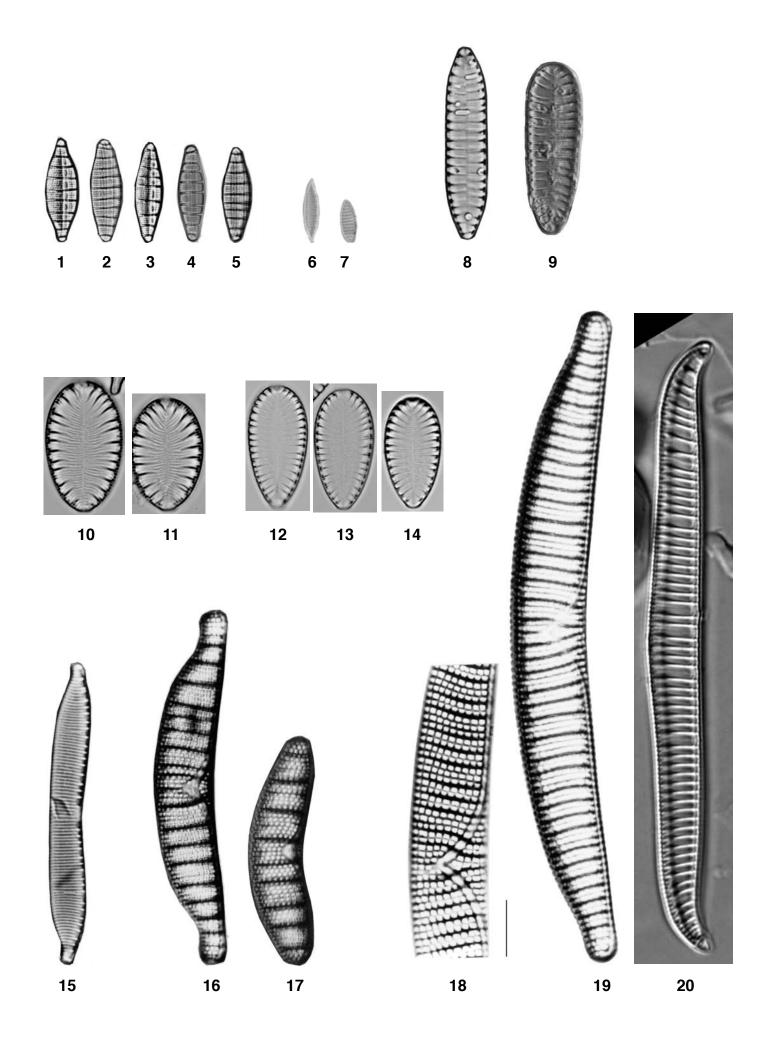
Tafel 22	Vergrösserung 1500x, Strich = 10 μ m	DVNR	D	G
Fig. 1-9	Nitzschia palea (KUETZING) W.SMITH	6011	8	1
Fig. 10-11	Nitzschia capitellata HUSTEDT	6964	7.5	4
Fig. 12-15	Nitzschia pura HUSTEDT	6918	1.5	4
Fig. 16	Nitzschia communis RABENHORST	6194	8	1
Fig. 17-20	Nitzschia fonticola GRUNOW	6025	3.5	1
Fig. 21	Nitzschia perminuta (GRUNOW) M.PERAGALLO	6605	3.5	1
Fig. 22	Nitzschia lacuum LANGE-BERTALOT	6597	4	1
Fig. 23-25	Nitzschia pusilla GRUNOW	6925	5	1
Fig. 26-27	Nitzschia ovalis ARNOTT	6602		
Fig. 28-31	Nitzschia dissipata (KUETZING) GRUNOW	6008	3.5	1
Fig. 32-36	Nitzschia sociabilis HUSTEDT	6961	3.5	2
Fig. 37-38	Nitzschia paleacea GRUNOW	6199	7	1
Fig. 39-40	Denticula kuetzingii GRUNOW	6340	1	2
Fig. 41-44	Nitzschia amphibia GRUNOW	6039	7	8
Fig. 45	Nitzschia constricta (KUETZING) RALFS	6242	5	1
Flg. 46	Nitzschia angustata (W. SMITH) GRUNOW	6991		
Fig. 47	Nitzschia acicularis (KUETZING) W.SMITH	6023	7	4
Fig. 48	Nitzschia recta HANTZSCH	6029	3.5	2
Fig. 49	Nitzschia intermedia HANTZSCH	6857	4	1
Fig. 50	Nitzschia linearis (J.G.AGARDH) W.SMITH	6024	4.5	1

Bildnachweis

Die Bilder der Figuren 46, 50 stammen von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

Tafel 23: Fig. 1-20

Tafel 23	Vergrösserung 1500x, Strich = 10 μ m		DVNR	D	G
Fig. 1-5	Denticula tenuis KUETZING		6068	1	4
Fig. 6-7	Simonsenia delognei (GRUNOW) LANGE-BERTALOT		6225	5	1
Fig. 8	Surirella angusta KUETZING		6133	4.5	1
Fig. 9	Surirella pinnata W.SMITH 1)		100252		
Fig. 10-11	Surirella brebissonii var. brebissonii KRAMMER et LANGE-BERTALOT	2)	6693	4.5	2
Fig. 12-14	Surirella neglecta REICHARDT 2)		100251	4.5	2
Fig. 15	Hantzschia amphioxys (EHRENBERG) GRUNOW 3)		6084	5	1
Fig. 16-17	Epithemia adnata (KUETZING) BREBISSON		6212	2.5	1
Fig. 18-19	Epithemia turgida (EHRENBERG) KUETZING		6353		
Fig. 20	Rhopalodia gibba (EHRENBERG) O. MUELLER		6677		


- Surirella pinnata und Surirella minuta wurden bis anhin unter dem Namen S. minuta geführt. Neuere Untersuchungen schlagen vor, dass die beiden Taxa doch unabhängig sind, und die schlankere S. pinnata sollte als eigenständiges Taxon geführt werden.
- 2) Bis anhin wurde Surirella brebissonii in zwei Varietäten differenziert: S. brebissonii var. brebissonii und S. brebissonii var. kuetzingii. Schmale und fein strukturierte Formen, die bis anhin S. brebissonii var. kuetzingii zugeordnet wurden, werden neu als S. neglecta bezeichnet. Daher werden auch die D- und G-Werte von S. brebissoni var. kuetzingii übernommen.
 Fast zeitgleich zum Beschrieb von S. neglecta wurde aus den USA mit S. lacrimula ein Taxon beschrieben, welches lichtmikroskopisch sehr grosse Ähnlichkeiten mit S. neglecta aufweist. Zur Zeit ist unklar, ob es sich um die gleichen Taxa handelt.
- Beim abgebildeten Taxon handelt es sich um ein Sammeltaxon. Nach den Angaben in der Literatur ist H. amphyoxis das häufigste Taxa des Komplexes.

•	' '	9		•	
Hantzschia abundans L	ANGE-BERTALOT				16264
Hantzschia amphioxys	(EHRENBERG) GRU	JNOW			6084
Hantzschia calcifuga RI	EICHARDT et LANGI	E-BERTALOT	Г		26441
Hantzschia vivacior LAI	NGE-BERTALOT (= F	Fig. 12 ?)			100191

Bildnachweis

Die Bilder der Figuren 10-14 stammen von Erwin Reichardt, Bubenheim 136, D-91757 Treuchtlingen.

Das Bild der Figur 20 stammt von Lukas Taxböck, Aachwiesen 8, CH-8599 Salmsach.

A3 Zählprotokollvorlage

Projekt:	Gewässername:		
BearbeiterIn:	Stellenbezeichnung:		
Datum der Zählung:	Datum der Probeentnahme:		
Proben-Bezeichnung:	Kanton:	Gemeinde:	
Präparatenummer:			
Bemerkungen:	Anzahl Taxa:	Anzahl gezählte Schalen:	

Taxaliste	Anzahl gezählte Schalen	Totale Anzahl
Taxaliste	Anzani gezanite Schalen	Totale Anzam
Taxa gemäss Deutscher Normliste / DVNR		
GB = Gürtelband, RS = Raphenschale, RIS = raphenlose Schale		
Achnanthes biasolettiana / 6139		
Achnanthes lanceolata ssp. frequentissima / 6260		
Achnanthes minutissima / 6014		
Achnanthes minutissima var. Inconspicua / 16136		
Achnanthes minutissima var. jackii / 6707		
Achnanthes minutissima var. saprophila / 16135 Achnanthes minutissima var. scotica / 6267		-
Achnanthes straubiana / 100003		
Amphora pediculus / 6983		
Caloneis bacillum / 6051		
Cocconeis pediculus / 6020		
Cocconeis placentula / 6021		
Cymbella microcephala / 6895		
Cymbella minuta / 6909		
Cymbella silesiaca / 6898		
Diatoma moniliformis / 6209		
Diatoma vulgaris / 6006		
Fragilaria capucina / 6033		
Fragilaria capucina var. vaucheriae / 6186		
Fragilaria ulna / 6239		
Fragilaria ulna var. acus / 6233 Gomphonema micropus / 6428		
Gomphonema olivaceum / 6867		+
Gomphonema parvulum var. parvulum / 16535		
Gomphonema tergestinum / 6897		
Melosira varians / 6005		
Meridion circulare / 6026		
Navicula atomus / 6117		
Navicula cryptotenella / 6889		
Navicula gregaria / 6015		
Navicula halophila / 6833		
Navicula lanceolata / 6864		
Navicula menisculus / 6094		
Navicula menisculus var. grunowii / 6514		
Navicula minima / 6095 Navicula saprophila / 6537		
Navicula sapropriila / 653/ Navicula seminulum / 6192		
Navicula seminuscula / 6896		
Navicula tripunctata / 6831		
Nitzschia dissipata / 6008		
Nitzschia fonticola / 6025		
Nitzschia lacuum / 6597		
Nitzschia palea / 6011		
Nitzschia paleacea / 6199		
Nitzschia pusilla / 6925		
Nitzschia sociabilis / 6961		
Rhoicosphenia abbreviata / 6224		
Surirella brebissonii / 6693		
-		-
	<u> </u>	1

A4 Präparationsverfahren

Mit der **Präparation** wird die Kieselalgenprobe von organischem Material (Zellinhalt der Kieselalgen, andere Organismen, Detritus) befreit sowie entkalkt. In der präparierten Probe sollten möglichst nur noch siliziumhaltige Strukturen, also Kieselalgenschalen oder Bruchstücke davon sowie andere Siliziumverbindungen vorliegen. Eine Teilmenge dieser Probe wird darauf in ein Kunstharz (üblicherweise Naphrax) eingebettet, so dass die Kieselalgen bestimmt und gezählt werden können. Da bei der Mikroskopie mit starker Vergrösserung gearbeitet wird, muss zur Bestimmung und Zählung der Kieselalgen folgendes beachtet werden:

- > Gute Qualität der Aufbereitung (hoher Reinheitsgrad mit wenig Kristallen und Detritus),
- > sorgfältige Einbettung in das Kunstharz (keine Luftblasen, Schalen vollständig mit Einbettmittel gefüllt),
- > geeignete Verdünnung der Kieselalgenschalen (keine überlagernde Kieselalgenschalen),
- > homogene Verteilung der Schalen (keine Klumpungen).

Zur Präparation von Kieselalgenproben sind verschiedenste Verfahren entwickelt worden. Sie werden in Krammer & Lange-Bertalot (1986) beschrieben, wobei alle Präparationsverfahren – mit Ausnahme des einfachen Glühens – grundsätzlich dieselben Arbeitsschritte benötigen, welche aber je nach Verfahren nicht genau in der nachfolgend beschriebenen Reihenfolge durchgeführt werden:

- 1. Entfernung von grösseren Bestandteilen,
- 2. Entkalken mittels Salzsäure,
- 3. Entfernung organischer Bestandteile mittels Hitze und/oder Oxidation,
- 4. Waschen, Neutralisieren
- 5. Einbetten in Kunstharz (Naphrax) zu Dauerpräparaten,
- 6. Konservierung der präparierten Proben,
- 7. Beschriftung und Archivierung der präparierten Proben und der Dauerpräparate.

Als Präparationsverfahren kommen für die Aufbereitung von Aufwuchsproben grundsätzlich das Glühen (Hitze), das Veraschen im Muffelofen kombiniert mit Wasserstoffperoxid und die Heissoxidation mit z. B. Schwefelsäure in Frage. In den nachfolgenden Anhängen A4.1, A4.2 und A4.3 sind diese drei Präparationsverfahren als Laboranleitungen detailliert beschrieben.

- Zu 1: Das **Trennen** des Kieselalgenaufwuchses von grösseren Bestandteilen wie Moos, Laubteile, Steinchen, grössere Wirbellose und anderen Gegenständen erfolgt am besten mit Hilfe eines normalen kleinen Milchsiebes (Metall oder Kunststoff) und durch Auslesen von Hand.
- Zu 2: Die **Entkalkung** mittels Salzsäure sollte immer durchgeführt werden, da die Einzugsgebiete der Schweizer Fliessgewässer in den meisten Fällen kalkhaltiges Gestein aufweisen. Der Salzsäureschritt muss zwingend vor dem Oxidieren mit Schwefelsäure erfolgen, da sich sonst Gipsausfällungen ergeben können.
- Zu 3: Die **Entfernung organischer Bestandteile** kann mit verschiedenen Vorgehensweisen und Chemikalien erreicht werden:
 - a) Glühen (nur Hitze),
 - b) Veraschen im Muffelofen kombiniert mit Heissoxidation (z. B. Wasserstoffperoxid),
 - c) Heissoxidation (z. B. Schwefelsäure, Kaliumnitrat).

- Zu 3a.): Das **Reinigen durch reines Glühen** auf einer Kochplatte, einem Bunsenbrenner oder in einem Muffelofen ist sehr einfach und schnell und sollte in Verbindung mit einem der beiden nachfolgenden Verfahren angewandt werden. **Es empfiehlt sich aber nicht, dieses Verfahren als einzige Präparationstechnik anzuwenden.** Ein grosser Vorteil der Glühmethode liegt darin, dass die Kieselalgenschalen nicht getrennt und Kolonien nicht zerstört werden. Dies kann beim Bestimmen von Gattungen mit unterschiedlich gebauten Schalenhälften (*Achnanthes, Cocconeis*) sehr hilfreich sein. Als Nachteile sind aber die relativ schlechte Reinigung der Schalen (blosses Veraschen, Verkohlen), die fehlende Entkalkung sowie die normalerweise inhomogene Verteilung im Präparat (Klumpungen) zu erwähnen. Die Konsequenz daraus ist, dass bei Glühpräparaten die Anzahl der zu zählenden Schalen deutlich grösser sein müsste als bei den anderen zwei Verfahren um dieselbe Aussagekraft zu erlangen. Ausserdem können normalerweise keine guten mikroskopischen Fotoaufnahmen von Kieselalgen gemacht werden.
- Zu 3b.): Das Veraschen im Muffelofen kombiniert mit Heissoxidation (Wasserstoffperoxid) ist eine gute und schonende Präparationstechnik, welche wir als Standardmethode empfehlen. Die Qualität der Aufbereitung ist im Normalfall sehr gut, wobei im Vergleich zur klassischen Heissoxidation mittels Schwefelsäure die beiden Kieselalgenschalenhälften eher zusammenbleiben. Bei dieser Aufbereitung muss darauf geachtet werden, dass die Temperatur im Muffelofen nicht über 500 °C ansteigt, da sich sonst die Kieselalgenschalen deformieren können.
- Zu 3c.): Die **Heissoxidation** mittels Schwefelsäure oder Salpetersäure und anschliessender Endoxidation mit z. B. Kaliumnitrat ist ein sehr wirkungsvolles Verfahren, so dass die Reinigung der Proben für lichtmikroskopische Zwecke sehr gut ist. Die Säuren lösen aber auch die Diatotepin-Hüllmembran der Zelle auf und wirken korrodierend auf die Kieselsäurestrukturen der Zellwand. Diese Korrosion der Schalenoberfläche ist bei rasterelektronenmikroskopischen Betrachtungen, insbesondere bei stärkerer Vergrösserung, erkennbar und damit störend. Zudem werden sehr dünne Siebmembranen und andere feine Strukturen gänzlich zerstört.
- Zu 4: Das Waschen der präparierten Probe vor dem Einbetten ist zwingend und kann grundsätzlich mittels Dekantieren, Zentrifugieren oder Filtrieren erreicht werden. Alle drei Verfahren sind geeignet und können je nach vorhandener Laboreinrichtung gewählt werden. Während das Dekantieren zur Absetzung der Partikel in der Probe relativ viel Wartezeit benötigt, sind das Zentrifugieren und das Filtrieren schnelle Trennverfahren. Bei der Zentrifugation darf die Zahl der Umdrehungen pro Minute nicht zu hoch sein, da sonst insbesonders die langen Fragilaria-Schalen zerbrechen. Es empfiehlt sich, die Probe mit ca. 1'000 Umdrehungen während rund 5 Minuten rotieren zu lassen und den Vorgang mindestens dreimal zu wiederholen. Die Filtration erfolgt mittels säurebeständigen Teflonfiltern. Diese Filter erlauben ein schnelles Trennen und Waschen der Probe. Bei der Filtration kann das präparierte Material zusätzlich mit Geschirrseife gewaschen werden. Das Waschen mit Geschirrseife bewirkt weniger Klumpungen von Kieselalgen im Dauerpräparat.
- Zu 5: Das Einbetten der präparierten Probe in ein Kunstharz (Naphrax) ist einfach und mit etwas Übung problemlos durchzuführen. Es empfiehlt sich, pro präparierte Probe mindestens drei Präparate unterschiedlicher Verdünnung anzufertigen. Damit kann für die Bestimmung und Zählung der Kieselalgen das beste Präparat ausgewählt werden.

- Zu 6: Die präparierte Probe sollte als Trockenprobe oder flüssig konserviert (Endlösung maximal 4 %, z. B. neutralisiertes Formaldehyd, Lugol) aufbewahrt werden, damit davon zu einem späteren Zeitpunkt erneut Präparate angefertigt oder falls notwendig (z. B. zur Bestimmung) rasterelektronenmikroskopische Aufnahmen gemacht werden können. Es empfiehlt sich aber, die präparierte Probe erst zu konservieren, wenn gebrauchsfähige Präparate vorliegen. Die Trockenprobe erhält man, indem der wässrige Überstand der genügend lang abgesetzten Probe wegpipetiert und der Rest der Algensuspension im Trockenschrank bei 40 bis 50 °C getrocknet wird.
- Zu 7: Für die **Archivierung und Beschriftung** der Rohprobe (sofern nicht alles verbraucht), der präparierten Probe sowie der Präparate sind Etiketten anzufertigen, welche mindestens den Gewässernamen, die Lokalität, die Probenahmenummer, das Probenahmedatum, das Substrat und wenn vorhanden eine eindeutige Laufnummer beinhalten. Für die Ablage der Präparate sind verschiedene Systeme erhältlich. Bei wenigen Präparaten sind Präparatekistchen geeignet, bei grosser Anzahl von Präparaten empfiehlt sich ein professionelleres Ablagesystem (z. B. Schränke, Korpus mit Schubladen).

A4-1 Reinigen durch Glühen

Anleitung gemäss Krammer & Lange-Bertalot (1986)

Geräte und Material Chemikalien

Bunsenbrenner Naphrax als Einbettmittel (in Toluol gelöst)

Dreibein mit Keramikplatte Entionisiertes Wasser

Objektträger (Glas, für Mikroskopie) HC

Deckgläser (Glas, rund, 20 mm Durchmesser) Formaldehydlösung (37%, neutralisiert)

Pipetten

Pinzetten (flach und spitzig) Sicherheitsmassnahmen

Becherglas

Labor-Kapelle, Abzug oder im Freien

Laboranweisung

Sofern die Aufwuchsprobe Moosblättchen, kleine Steinchen, Laub oder andere grössere Partikel enthält, sollte die Probe zu Beginn, nachdem sie gut aufgeschüttelt wurde, mit einem Milchsieb grob filtriert werden. Der Rückstand im Sieb kann verworfen werden.

Auf der Keramikplatte werden die runden Deckgläschen in regelmässigem Abstand (nicht zu nahe) platziert. Darauf gibt man rund 0.5 ml Probenmaterial, allenfalls mit entionisiertem Wasser verdünnt. Anschliessend wird der Tropfen mit geringer Hitze zum Verdunsten gebracht.

Nach dem Eintrocknen des Materials kann die Hitze soweit erhöht werden, dass sich die Deckgläser nicht verbiegen, der organische Gehalt der Probe aber verkohlt. Der Glühvorgang ist beendet, wenn das Probematerial auf dem Deckglas eine gräuliche bis weisse Farbe angenommen hat.

Als mögliche Variante kann dann das Deckglas mit einer Pinzette in entionisiertem Wasser zur Entfernung von Asche getaucht werden (zur Entkalkung allenfalls noch etwas HCl zugeben). Da die Kieselalgen durch die Hitze mit dem Deckglas versintert sind, sollte der Materialverlust minimal sein. Falls mit HCl gewaschen wurde, dann nochmals in reinem entionisiertem Wasser spülen.

Anschliessend kann das Präparat (Deckglas) mittels Naphrax auf einem Objektträger eingebettet werden. Es empfiehlt sich, mehrere Präparate mit unterschiedlichen Verdünnungen anzusetzen.

Zum Einbetten der Diatomeen wird ein Tropfen Naphrax auf einen Objektträger gegeben, dieser kurz erhitzt (Blasenbildung, Toluol entweicht), das Deckglas mit den Kieselalgen nach unten auf den Tropfen Naphrax gelegt und der Objektträger auf eine kühle Unterlage gelegt. Mit einer Flachpinzette wird nun das Deckglas sorgfältig angedrückt, so dass sich das noch flüssige Naphrax luftblasenfrei unter dem Deckglas verteilt. Anschliessend das Präparat mit einer Etikette beschriften und vor Gebrauch genügend lang (12 Stunden) Abkühlen lassen. Das Naphrax muss vollständig hart sein.

Das restliche Rohmaterial kann nun – falls im Feld nicht bereits geschehen – mit Formaldehyd (4 % Endlösung) konserviert werden.

A4-2 Veraschen mittels Muffelofen kombiniert mit Heissoxidation (Wasserstoffperoxid) und Dekantieren

Anleitung gemäss AWEL Zürich, Standard-Arbeitsanweisung Labor, Nr. LI 600/1

Geräte und Material Chemikalien

Porzellantiegel (45 ml) Formaldehydlösung (37 %, neutralisiert)

Nesslerzylinder (100 ml) mit Gestell Salzsäure (32 %)

Trockenschrank Wasserstoffperoxid (30 %, stabilisiert)
Muffelofen Naphrax als Einbettmittel (in Toluol gelöst)

Wasserbad Entionisiertes Wasser

Reagenzgläser mit Gestell

Heizplatte <u>Sicherheitsmassnahmen</u>

Objektträger (Glas, für Mikroskopie)

Deckgläser (Glas, rund, 20 mm Durchmesser)

Labor-Kapelle, Abzug

Snap-cap-Gläschen (10 ml)

Labormantel tragen

Snap-cap-Gläschen (10 ml)

Labormantel tragen

Handschuhe

Labormantel

Prilla tragen

Schutzbrille Brille tragen

Schutzbrille Augenwaschwasser griffbereit Pinzetten (flach und spitzig)

Laboranweisung

Sofern die Aufwuchsprobe Moosblättchen, kleine Steinchen, Laub oder andere grössere Partikel enthält, sollte die Probe zu Beginn, nachdem sie gut aufgeschüttelt wurde, mit einem Küchensieb grob filtriert werden. Der Rückstand im Sieb kann verworfen werden. Anschliessend das im Probenahmegefäss genügend lang abgesetzte Material dekantieren und in einem beschrifteten Porzellantiegel überführen. Das restliche Wasser wird im Trockenschrank bei ca. 90 °C verdampft.

Die Tiegel werden in den Muffelofen gestellt und während 2.5 Std. langsam auf 450 °C erhitzt. Diese Temperatur wird für weitere 2.5 Std. gehalten.

Nach dem Erkalten der Tiegel wird der Rückstand mit ca. 10 bis 20 ml Salzsäure (32 %) aufgenommen und in einen 100 ml Nesslerzylinder überführt (Vorsicht! Stark kalkhaltiges Material reagiert heftig!)

In der Kapelle werden ca. 20 ml Wasserstoffperoxid (30%) zugegeben. Die Proben müssen während der nun folgenden Reaktion beobachtet werden. Droht ein Überschäumen durch zu heftige Reaktion muss der Nesslerzylinder im Wasserbad kurz abgekühlt werden. Nach Abklingen der Reaktion werden weitere 10 bis 20 ml Wasserstoffperoxid (30%) zugegeben. Wenn die Reaktion wiederum abgeklungen ist, stellt man die Proben in das Wasserbad und erhitzt sie für ca. eine Std. auf 75 bis 80°C. Anschliessend lässt man die Nesslerzylinder abkühlen und füllt sie mit entionisiertem Wasser auf.

Nach 24 Std. dekantiert man den Überstand und übergiesst die Probe wiederum mit entionisiertem Wasser. Diesen Vorgang wiederholt man 3 bis 4 mal bis das überstehende Wasser einen pH-Wert über 5 aufweist.

Das nun präparierte und gewaschene Material wird in ein vorgängig beschriftetes 10 ml Snap-cap-Gläschen abgefüllt. Je nach Menge des vorhandenen Materials wird ein Aliquot von 0.2 bis 0.5 ml entnommen und in ein Reagenzglas gegeben. Anschliessend erfolgt die Verdünnung mit entionisiertem Wasser, bis nur noch eine geringe Trübung erkennbar ist. Von der Verdünnung gibt man 0.5 ml auf ein Deckglas und lässt das Wasser bei Zimmertemperatur während einer Nacht ohne Durchzug verdunsten. Anschliessend kann das Präparat (Deckglas) mittels Naphrax auf einem Objektträger eingebettet werden. Es empfiehlt sich mehrere Präparate mit unterschiedlichen Verdünnungen anzusetzen.

Zum Einbetten der Diatomeen wird ein Tropfen Naphrax auf einen Objektträger gegeben, diesen kurz erhitzt (Blasenbildung, Toluol entweicht), das Deckglas mit den Kieselalgen nach unten auf den Tropfen Naphrax gelegt und der Objektträger auf eine kühle Unterlage gelegt. Mit einer Flachpinzette wird nun das Deckglas sorgfältig angedrückt, so dass sich das noch flüssige Naphrax luftblasenfrei unter dem Deckglas verteilt. Anschliessend das Präparat mit einer Etikette beschriften und vor Gebrauch genügend lang (12 Stunden) Abkühlen lassen. Das Naphrax muss vollständig hart sein.

Sind brauchbare Dauerpräparate vorhanden, konserviert man das restliche präparierte Material mit Formaldehyd (4 % Endlösung). Wenn das restliche präparierte Material trocken aufbewahrt werden soll, pipetiert man das Wasser im Snap-cap-Gläschen ab und trocknet das präparierte Material bei ca. 40 bis 50 °C. Es gilt aber zu beachten, dass die Diatomeen beim Trocknen zerbrechen können.

Das restliche Rohmaterial kann nun – falls im Feld nicht bereits geschehen – mit Formaldehyd (4 % Endlösung) konserviert werden.

117

A4-3 Heissoxidation (Schwefelsäure, Kaliumnitrat, Filtration)

<u>Gemäss Straub (1981), Iserentant, Ector, Straub & Hernandez-Becerril (1999)</u> und Anleitung des Amtes für Lebensmittelkontrolle Zug

Geräte und Material

Bechergläser (250 ml)

Heizplatte

Abfiltrationsanlage aus Glas

Wasserstrahlpumpe

Teflonfilter (Porenweite $\leq 5 \mu m$)

Stativ mit Platte, Trichterhalterung, Klammern

Glastrichter (ca. 10 cm Durchmesser) Objektträger (Glas, für Mikroskopie)

Deckgläser (Glas, rund, 20 mm Durchmesser)

Deckgraser (Gras, rund, 20 mm Durer

Snap-cap-Gläschen (10 ml)

Handschuhe Labormantel Schutzbrille

Pinzetten (flach und spitzig)

Polylöffel

Chemikalien

Formaldehydlösung (37%, neutralisiert)

Salzsäure (32%)

Schwefelsäure konzentriert

Kaliumnitrat fest

Ethanol

Entionisiertes Wasser mit Geschirrseife

gelös

Sicherheitsmassnahmen

Labor-Kapelle, Abzug Labormantel tragen Handschuhe tragen Brille tragen

Augenwaschwasser griffbereit

Laboranweisung

Sofern die Aufwuchsprobe Moosblättchen, kleine Steinchen, Laub oder andere grössere Partikel enthält, sollte die Probe zu Beginn, nachdem sie gut aufgeschüttelt wurde, mit einem Milchensieb grob filtriert werden. Der Rückstand im Sieb kann verworfen werden. Das so filtrierte Probenmaterial wird in einen beschrifteten Becherglas gegossen. Anschliessend werden 10 bis 20 ml konzentrierte Salzsäure dazugegeben (Achtung Schaumentwicklung infolge Kalklösung). Die Probe sollte dann auf der Heizplatte kurz aufgekocht und anschliessend durch Stehenlassen abgekühlt werden.

Diese Salzsäurelösung wird danach von der abgekühlten Probe mittels Dekantieren, Zentrifugieren oder Filtrieren entfernt (waschen, neutralisieren). Hier wird die Variante der Filtration mittels Wasserstrahlpumpe, Glasfiltrationsanlage und säurebeständigem Teflonfilter beschrieben. Bei der Vorbereitung der Glasfiltrationsanlage sollte der Teflonfilter zuerst mit Ethanol benetzt und anschliessend mit entionisiertem Wasser gespült werden. Anschliessend kann die mit Salzsäure versetzte Probe abfiltriert werden. Der Filterrückstand wird dann mehrmals mit entionisiertem Wasser gespült. Auf dem Filter noch vorhandene grössere Partikel wie Moosblättchen oder Insektenlarven können mit der spitzen Pinzette entfernt werden.

Anschliessend den Teflonfilter mit dem Probenmaterial mit einer Flachpinzette wegnehmen und in dasselbe beschriftete Becherglas zurücklegen. Dann 8 ml konzentrierte Schwefelsäure dazugeben, ganz wenig mit entionisiertem Wasser verdünnen und die Probe auf der Heizplatte aufkochen. Die Lösung verfärbt sich dann je nach organischem Gehalt braun bis schwarz (Verkohlen der Partikel).

Zur heissen Lösung wird nun mit einem Polylöffel vorsichtig pulverförmiges Kaliumnitrat dazugegeben, bis die Lösung hell wird (Oxidation von organischem Kohlenstoff, Vorsicht bei diesem Vorgang können bräunlich gefärbte nitrose Gase entstehen).

Die Lösung wird anschliessend abgekühlt, mit Wasser etwas verdünnt und erneut mittels Wasserstrahlpumpe, Glasfiltrationsanlage und neuem Teflonfilter abfiltriert. Um im Dauerpräparat Klumpungen von Kieselalgen zu verhindern, kann das präparierte Material mit wenig Geschirrseife gewaschen werden. Der in der Probe noch vorhandene verschmorte Teflonfilter kann verworfen werden. Den Filterrückstand mit den Kieselalgen nach dem Waschen mit Geschirrseife erneut mit entionisiertem Wasser mehrmals gut nachspülen.

Nun werden die Kieselalgen vom Teflonfilter entfernt und in ein beschriftetes 10 ml Snapcap-Gläschen gegeben. Dazu wird ein Glastrichter auf einem Stativ in eine Ringhalterung gelegt und die untere Trichteröffnung in ein beschriftetes Snap-cap-Gläschen geführt. Anschliessend den Teflonfilter mit den präparierten Kieselalgen mittels einer Flachpinzette von der Filtrationseinrichtung wegnehmen und auf die Innenseite des Trichters legen. Der Filterrückstand wird nun vorsichtig mit einer Flachpinzette abgekratzt und mit wenig entionisiertem Wasser in das Snap-cap-Gläschen gespült. Der Teflonfilter kann dann beseitigt werden. Anstelle des Ablösens der Kieselalgen ab dem Teflonfilter kann der Teflonfilter mit den Kieselalgen auch einfach in das Snap-cap-Gläschen gelegt werden. Die Kieselalgen lösen sich dann mittels intensivem Schütteln.

Je nach Menge des vorhandenen Materials wird ein Aliquot von 0.2 bis 0.5 ml entnommen und in ein Reagenzglas gegeben. Anschliessend erfolgt die Verdünnung mit entionisiertem Wasser, bis nur noch eine geringe Trübung erkennbar ist. Von der Verdünnung gibt man 0.5 ml auf ein Deckglas und lässt das Wasser bei Zimmertemperatur während einer Nacht ohne Durchzug verdunsten. Darauf kann das Präparat (Deckglas) mittels Naphrax auf einem Objektträger eingebettet werden. Es empfiehlt sich, mehrere Präparate mit unterschiedlichen Verdünnungen anzusetzen.

Zum Einbetten der Diatomeen wird ein Tropfen Naphrax auf einen Objektträger gegeben, dieser kurz erhitzt (Blasenbildung, Toluol entweicht), das Deckglas mit den Kieselalgen nach unten auf den Tropfen Naphrax gelegt und der Objektträger auf eine kühle Unterlage gelegt. Mit einer Flachpinzette wird nun das Deckglas sorgfältig angedrückt, so dass sich das noch flüssige Naphrax luftblasenfrei unter dem Deckglas verteilt. Anschliessend das Präparat mit einer Etikette beschriften und vor Gebrauch genügend lang (12 Stunden) Abkühlen lassen. Das Naphrax muss vollständig hart sein.

Sind brauchbare Dauerpräparate vorhanden, konserviert man das restliche präparierte Material mit Formaldehyd (4 % Endlösung). Wenn das restliche präparierte Material trocken aufbewahrt werden soll, pipetiert man das Wasser im Snap-cap-Gläschen ab und trocknet das präparierte Material bei ca. 40 bis 50 °C. Es gilt aber zu beachten, dass die Diatomeen beim Trocknen zerbrechen können.

Das restliche Rohmaterial kann nun – falls im Feld nicht bereits geschehen – mit Formaldehyd (4 % Endlösung) konserviert werden.

Herstellung des Präparats

A5 Adressverzeichnis zur Bestellung von Material

- > Schweizerische Arbeitsgemeinschaft für Mikroflora, c/o AquaPlus, Bundesstrasse 6, CH-6300 Zug Probenahmematerial, Kieselalgenkratzer und Utensilien, siehe auch <u>www.aquaplus.ch</u> (Bereich Download)
- > Brunel Microscopes Ltd., Unit 6 Enterprise Centre, Bumpers Way, Bumpers Way Industrial Estate, Chippenham Wilts, SN14 6QA United Kingdom, siehe auch www.brunelmicroscopes.co.uk/coverslips.html Naphrax
- > Mesomatic AG Zürich, Konradstrasse. 18, Postfach 2673, CH-8021 Zürich Etiketten für Objektträger, Artikel CIL Laser-Etiketten, Artikelnummer L23-9100

A6 Dokumentationen zur Autökologie von 188 Taxa

Die Dokumentationen stehen im Internet unter folgender URL zur Verfügung: www.modul-stufen-konzept.ch. Diese Dokumentationen stellen eine Interpretationshilfe dar, sei es auf Niveau der Lebensgemeinschaften oder des DI-CH-Indexwertes.

A6-1 Taxaspezifische Abbildungen zur Ermittlung der Indikationswerte D und G

Für jedes Taxon existiert dieselbe grafische Auswertung des ökologischen Vorkommens. Diese Grafiken illustrieren verschiedene Häufigkeitsverteilungen, wie sie zur Ermittlung der Indikationswerte D und G verwendet wurden (gemäss Abbildung 7 auf Seite 38).

A6-2 Dokumentation autökologischer Aspekte

Für jedes Taxon wurden die folgenden ökologischen Aspekte grafisch dargestellt (Datenbasis: 4'554 Kieselalgenproben (Zähllisten), Datenbank: BIS AquaPlus):

- > die geografische Verteilung in der Schweiz
- > Anzahl Vorkommen des Taxons pro Häufigkeitsklasse und Lebensraumtyp
- > Auftreten des Taxons innerhalb der für die Eichung benutzten Stoffkonzentrationen (6 Parameter)
- > Vorkommen des Taxons innerhalb der achtteiligen chemischen und biologischen Bewertungsskala.