

Lista Rossa delle specie minacciate in Svizzera

Licheni epifiti e terricoli

Edizione 2002

Autori

Christoph Scheidegger Philippe Clerc

> Michael Dietrich Martin Frei Urs Groner Christine Keller Irene Roth Silvia Stofer Mathias Vust

Valenza giuridica della presente pubblicazione

Lista Rossa dell'UFAFP ai sensi dell'articolo 14 capoverso 3 dell'ordinanza del 16 gennaio 1991 sulla protezione della natura e del paesaggio (RS 451.1)

La presente pubblicazione, promossa dall'UFAFP in veste di autorità di vigilanza, è uno strumento di aiuto all'esecuzione destinato in primo luogo alle autorità esecutive. Nel testo viene data concretezza a concetti giuridici indeterminati, contemplati in leggi e ordinanze, nell'intento di uniformarne l'esecuzione nella prassi. I testi d'aiuto all'esecuzione, spesso designati con il nome di direttive, istruzioni, raccomandazioni, manuali, aiuti pratici, ecc., sono pubblicati dall'UFAFP nella collana «Ambiente-Esecuzione».

Da un lato queste pubblicazioni contribuiscono a garantire, in misura notevole, l'uguaglianza giuridica e la certezza del diritto; dall'altro permettono l'adozione, se del caso, di soluzioni flessibili e adeguate. Tenendo conto di questi aiuti all'esecuzione, le autorità esecutive hanno la certezza di applicare il diritto federale a norma di legge. Non sono escluse soluzioni alternative, purché – secondo la prassi giudiziaria – ne venga dimostrata la conformità legale.

Redazione

Francis Cordillot, UFAFP, divisione Natura Christoph Scheidegger, WSL, sezione Ecologia Genetica, dipartimento di ricerca Paesaggio Ruth Landolt, pubblicazioni WSL

Distribuzione

UFAFP

Documentazione CH-3003 Berna

Fax: +41 (0) 31 324 02 16 E-mail: docu@buwal.admin.ch Internet: www.buwalshop.ch

Numero di ordinazione

VU 9010-I (gratuito)

Editori

Ufficio federale dell'ambiente, delle foreste e del paesaggio UFAFP

Istituto federale di ricerca WSL

Conservatoire et Jardin botaniques de la Ville de Genève CJBG

Direzione del progetto

Christoph Scheidegger¹⁾ (licheni epifiti)

1) Istituto federale di ricerca WSL, 8903 Birmensdorf

Philippe Clerc²⁾ (licheni terricoli)

²⁾ Conservatoire et Jardin botaniques de la Ville de Genève (CJBG), 1292 Chambésy

Autori

Introduzione: Irene Roth¹⁾, Christoph Scheidegger¹⁾, Philippe Clerc²⁾

Licheni epifiti: Christoph Scheidegger¹⁾, Michael Dietrich¹⁾, Martin Frei¹⁾, Urs Groner¹⁾, Christine Keller¹⁾, Irene Roth¹⁾, Silvia Stofer¹⁾, Philippe Clerc²⁾ Licheni terricoli: Philippe Clerc²⁾, Mathias Vust²⁾ Misure di protezione: Martin Frei¹⁾, Urs Groner¹⁾

Traduzione

Marco Conedera (Riassunto), Gruppo Licheni Ticino (c/o Museo cantonale di storia naturale, Lugano)

Impaginazione

Jacqueline Annen, WSL Birmensdorf

Foto di copertina

Lobaria pulmonaria con corpi fruttiferi rosso-bruni

Indicazione bibliografica

Scheidegger, C. & Clerc, P., 2002: Lista Rossa delle specie minacciate in Svizzera. Licheni epifiti e terricoli. Editori: UFAFP, Berna, Istituto federale di ricerca WSL, Birmensdorf e Conservatoire et Jardin botaniques de la Ville de Genève CJBG. Collana dell'UFAFP «Ambiente-Esecuzione», 122 pag.

© UFAFP 2002

Indice

	Abstracts	5
	Prefazione	7
	Riassunto	9
	Résumé	10
	Zusammenfassung	11
	Summary	12
1	Introduzione	13
2	Liste Rosse dell'UICN	15
3	Il gruppo di specie in Svizzera	19
	3.1 I licheni	19
	3.2 Distribuzione ed ecologia	19
	3.3 I licheni reagiscono in modo sensibile	20
	3.4 Importanza ecologica dei licheni	21
	3.5 Minacce	22
	3.6 Ricerche lichenologiche in Svizzera	24
4	Licheni epifiti in Svizzera	25
	4.1 Habitat	25
	Gli alberi costituiscono microhabitat variati	25
	Dai boschetti fino alle brughiere - licheni epifiti in habitat dive	rsi 25
	Quali habitat sono particolarmente favorevoli per i licheni epif	iti? 27
	Cosa rende preziosi questi spazi?	27
	4.2 Metodi di rilevamento	28
	Il rilevamento di dati storici	28
	Il rilevamento di dati attuali	28
	Determinazione, tassonomia ed erbarizzazione dei licheni	32
	La Banca Dati «LICHEN»	34
	4.3 Categorie di minaccia e criteri UICN-2001	34
	Categorie di minaccia della Lista Rossa	34
	Criteri della Lista Rossa	36
	4.4 Risultati	40
	Specie estinte	40
	Specie minacciate di estinzione	41
	Specie fortemente minacciate	43
	Specie vulnerabili	46
	Percentuale delle specie minacciate ed estinte	46
	Specie potenzialmente minacciate	46
	Specie non minacciate	47
	Specie con dati insufficienti	47
	Specie valutate e non prese in considerazione	47

Indice 3

	Alle	gati	117
7	Bibl	iografia	111
		Aspetti pratici della protezione dei licheni	118
6	Mis	ure di protezione	107
	5.6	Ringraziamenti	106
	5.5	Misure di protezione e conservazione dei licheni terricoli	104
	5.4	Lista Rossa	98
		Specie con dati insufficienti (DD)	98
		Specie non minacciate (LC)	94
		Specie potenzialmente minacciate (NT)	94
		Specie vulnerabili (VU)	93
		Specie fortemente minacciate (EN)	93
		Specie minacciate di estinzione (CR)	91
		Specie estinte (RE)	91
	5.3	Risultati	89
		Procedura seguita nell'allestimento della Lista Rossa	83
		Catalogo bibliografico dei licheni della Svizzera	83
		La Banca Dati «LICHEN»	83
		Metodi di rilevamento	7 s 81
		Tassonomia	77 79
		Specie considerate Specie non considerate	77
	5.2	Materiale e metodi	77 77
	. .	Le minacce per i licheni terricoli	76
		Habitat caratteristici	75
		Perché i licheni terricoli?	74
		Stato attuale delle conoscenze	74
		Differenti tipi di licheni terricoli	73
	5.1		73
5	Lich	neni terricoli in Svizzera	73
		· · · · · · · · · · · · · · · · · · ·	
	4.7	Ringraziamenti	71
		Protezione nelle aree gestite dall'uomo	70
		Zone di protezione della natura e riserve forestali	69
	4.0	Conservazione dei licheni epifiti Influsso della gestione del territorio sulle categorie di minaccia delle specie	68 68
	4.0	Paragone tra criteri UICN – 2001 ed i criteri delle Liste Rosse tradizionali	67
		Significato dei criteri utilizzati	66
		Percentuale delle specie minacciate	66
	4.5	Lista Rossa	53

Abstracts

Keywords: Red List, threatened species, species conservation, lichens The Red List 2002 of threatened epiphytic and terricolous lichens of Switzerland lists all evaluated lichen species in Switzerland with the categories of threat according to IUCN criteria. It represents the first official Red List of this group and was prepared by the Swiss Federal Research Institute WSL (epiphytic lichens) and the «Conservatoire et Jardin botaniques de la Ville de Genève» (terricolous lichens).

Stichwörter: Rote Liste, gefährdete Arten, Artenschutz, Flechten Die Rote Liste 2002 der gefährdeten baum- und erdbewohnenden Flechten der Schweiz enthält die Liste aller beurteilter Flechtenarten mit den Gefährdungskategorien nach den Kriterien der IUCN. Sie stellt die erste offizielle Rote Liste dieser Organismen dar und wurde von der Eidgenössischen Forschungsanstalt WSL (baumbewohnende Flechten) und dem Conservatoire et Jardin botaniques de la Ville de Genève (erdbewohnende Flechten) durchgeführt.

Mots-clés: Liste Rouge, espèces menacées, conservation des espèces, lichens La Liste Rouge 2002 des lichens épiphytes et terricoles menacés en Suisse comprend la liste de toutes les espèces évaluées ainsi que les catégories dans lesquelles elles ont été classées suivant les critères de l'UICN. Elle représente la première liste officielle pour ces organismes et a été établie par l'Institut fédéral de recherches WSL (lichens épiphytes) et les Conservatoire et Jardin botaniques de la Ville de Genève (lichens terricoles).

Parole chiave: Lista Rossa, specie minacciate, conservazione delle specie, licheni La Lista Rossa 2002 delle specie di licheni epifiti e terricoli minacciate in Svizzera elenca tutte le specie valutate e il loro grado di minaccia secondo i criteri dell'UICN. È la prima Lista Rossa ufficiale per questi organismi ed è stata redatta dall'Istituto Federale di Ricerca WSL (licheni epifiti) e dal «Conservatoire et Jardin botaniques de la Ville de Genève» (licheni terricoli).

Abstracts 5

Prefazione

Le Liste Rosse sono campanelli d'allarme. Ci indicano in quali categorie di minaccia sono da collocare le specie ed i gruppi di specie indigene. Le Liste Rosse forniscono la base per una efficace protezione della natura; rilevano i cambiamenti nella molteplicità delle specie e sottolineano le minacce. Le Liste Rosse permettono però anche di verificare se l'impegno profuso nella protezione della natura e del paesaggio e la gestione a lungo termine delle risorse naturali siano riusciti a mantenere la biodiversità a un livello elevato.

Le Liste Rosse sono strumenti armonizzati a livello internazionale per salvaguardare la biodiversità nel mondo intero. Dieci anni orsono, durante il Vertice di Rio (RIO 1992), le massime autorità politiche di 182 nazioni vollero considerare seriamente i verdetti inquietanti delle Liste Rosse. La Svizzera si è impegnata non solo per la salvaguardia di specie grandi e vistose quali gli uccelli ed i mammiferi, ma riconosce che anche gruppi di organismi poco appariscenti ma ecologicamente importanti debbano essere protetti con interventi specifici. Dal 2000 sono protetti a livello federale anche rappresentanti facilmente riconoscibili e vistosi della flora lichenologica. La protezione di questo gruppo finora fortemente trascurato diventa una sfida specialmente per le istanze competenti di Cantoni e Confederazione.

Questa Lista Rossa dei licheni costituisce la prima edizione riconosciuta in Svizzera. I licheni sono un gruppo molto vasto che comprende specie con modi di vita e distribuzione molto diversi. Ciò ne ha reso necessario lo studio da parte di due diversi gruppi di autori. La Lista Rossa è quindi suddivisa in licheni epifiti e licheni terrico-li. Malgrado presupposti molto diversi, gli autori sono riusciti nella non facile impresa di collocare le specie nelle varie categorie di minaccia. Per i licheni epifiti sono stati adottati con rigore i criteri UICN vincolanti a livello internazionale.

La constatazione che attualmente quasi la metà dei licheni conosciuti sono da considerare come minacciati – situazione analoga a quella dei muschi e delle fanerogame – inquieta e sprona a una protezione efficace delle specie, che in questo gruppo di organismi può essere realizzata con un impiego ragionevole di mezzi. La pubblicazione non è quindi destinata solo a specialisti, ma ad una cerchia più vasta di interessati e responsabili politici per i quali sono fondamentali la conservazione e la cura di paesaggi prossimi allo stato naturale, per la loro insita bellezza, la peculiarità e la molteplicità degli organismi in essi viventi.

Ufficio federale dell'ambiente, delle foreste e del paesaggio

Willy Geiger Vicedirettore

Prefazione 7

Riassunto

La Lista Rossa 2002 delle specie di licheni (epifite e terricole) minacciate per la Svizzera è stata compilata in base ai criteri UICN del 2001 e alle direttive per la loro applicazione a livello di liste regionali e nazionali. Per l'applicazione delle direttive al gruppo dei licheni sono stati elaborati criteri aggiuntivi che permettono di concretizzare i principi applicativi formulati in modo generico dall'UICN.

Delle 786 specie di licheni (520 epifite e 266 terricole) analizzate, 295 (37%) sono state inserite nella Lista Rossa. La percentuale di specie epifite minacciate è del 44% (230 specie), mentre per le terricole questa percentuale si fissa al 24% (65 specie). Ulteriori 107 specie (13%) sono classificate come potenzialmente minacciate (NT) e 312 specie (39%) sono considerate non minacciate. 38 specie (22 epifite e 16 terricole) sono considerate estinte in Svizzera (RE), 45 (35 epifite e 10 terricole) minacciate d'estinzione (CR), 96 (87 epifite e 9 terricole) fortemente minacciate (EN) e 116 (86 epifite e 30 terricole) vulnerabili (VU).

Le specie elencate nella Lista Rossa sono presenti in tutti gli habitat, tuttavia la percentuale delle specie minacciate è maggiore nei seguenti spazi vitali:

Per le specie epifite:

- boschi radi prossimi allo stato naturale e con alberi di grosse dimensioni, soprattutto in soprassuoli che nelle generazioni arboree precedenti non hanno subito disturbi su vasta scala (continuità ecologica);
- luminosi cedui composti con querce, querce di grosse dimensioni all'interno o al margine dei boschi;
- vecchi soprassuoli a struttura sciolta, boschi pascolati, pascoli alberati, selve castanili;
- piante legnose spaziate;
- alberature da viale o alberi isolati;
- siepi e cespugli tradizionali;
- frutteti ad alto fusto gestiti senza il ricorso a pesticidi e a fertilizzanti;
- noci, specialmente in giaciture miti e con elevata umidità dell'aria.

Per le specie terricole:

- prati magri calcicoli interrotti da terra fine;
- prati aridi su suoli acidi;
- terrazzi alluvionali e banchi ghiaiosi con vegetazione discontinua;
- prati alpini discontinui;
- formazioni di arbusti nani;
- depressioni e limiti di torbiere alte.

La Lista Rossa 2002 è la prima lista ufficiale per questi organismi.

Résumé

La Liste rouge 2002 des lichens épiphytes et terricoles menacés en Suisse a été établie selon les critères 2001 de l'UICN et les directives d'application pour des listes régionales et nationales. Pour l'application des directives au groupe des lichens, des critères complémentaires ont été formulés afin de concrétiser les indications ouvertes données par l'UICN.

Sur les 786 espèces lichéniques étudiées (520 espèces épiphytes et 266 espèces terricoles), 295 (37%) figurent sur la Liste Rouge. La part d'espèces menacées est de 44% (230 espèces) pour les lichens épiphytes et de 24% (65 espèces) pour les lichens terricoles. 107 autres espèces (13%) sont potentiellement menacées (NT) et 312 espèces (39%) sont considérées comme non menacées. 38 (22 espèces épiphytes et 16 espèces terricoles) sont éteintes en Suisse (RE), 45 (35 espèces lichéniques et 10 espèces terricoles) sont au bord de l'extinction (CR), 96 (87 espèces épiphytes et 9 espèces terricoles) sont en danger (EN) et 116 (86 espèces épiphytes et 30 espèces terricoles) sont considérées comme vulnérables (VU).

Les espèces de la Liste Rouge se retrouvent dans tous les milieux, mais la majeure partie des espèces menacées se situe dans les milieux suivants:

Pour les lichens épiphytes:

- Forêts et peuplements de vieux arbres clairsemés et proches de l'état naturel, notamment dans les peuplements où les anciennes générations d'arbres ont été épargnées de perturbations à grande échelle (continuité écologique)
- Taillis-sous-futaie de chênes clairsemés, chênes de taille imposante en forêt ou en lisière
- Anciens peuplements forestiers répartis en bouquets, pâturages boisés, selves de châtaigniers
- Bosquets espacés
- Arbres des allées, arbres isolés
- Haies et buissons traditionnels
- Arbres fruitiers à haute tige, épargnés de pesticides et d'engrais
- Noyers, notamment dans les milieux chauds où l'air est humide

Pour les lichens terricoles:

- Prairies sèches sur sol calcaire entrecoupées de plages de terre fine
- Prairies sèches sur sols acides
- Terrasses alluviales et plages de gravier avec tapis végétal discontinu
- Prairies alpines au tapis végétal discontinu
- Landes à arbrisseaux nains
- buttes, murs de tourbe en bordure des tourbières

La Liste Rouge 2002 est la première liste officielle pour ce groupe d'organismes.

Zusammenfassung

Die Rote Liste 2002 der gefährdeten baum- und erdbewohnenden Flechten der Schweiz wurde nach den IUCN-Kriterien 2001 und den Richtlinien für deren Anwendung auf regionale bzw. nationale Listen erstellt. Für die Anwendung der Richtlinien auf die Gruppe der Flechten wurden Zusatzkriterien erarbeitet, welche die offen formulierten Entscheidungswege der IUCN konkretisieren.

Von den 786 untersuchten Flechtenarten (520 baumbewohnende und 266 erdbewohnende Arten) wurden 295 (37%) auf die Rote Liste gesetzt. Der Anteil gefährdeter Arten ist 44% (230 Arten) bei den baumbewohnenden Arten und 24% (65 Arten) bei den erdbewohnenden Arten. Weitere 107 Arten (13%) sind potenziell gefährdet (NT) und 312 Arten (39%) gelten als nicht gefährdet. 38 (22 baum- und 16 erdbewohnende Arten) sind in der Schweiz ausgestorben (RE), 45 (35 baum- und 10 erdbewohnende Arten) sind als vom Aussterben bedroht (CR), 96 (87 baum- und 9 erdbewohnende Arten) werden als stark gefährdet (EN) und 116 (86 baum- und 30 erdbewohnende Arten) als verletzlich (VU) eingestuft. Arten der Roten Liste finden sich in allen Lebensräumen, aber der Anteil der gefährdeten Arten ist in den folgenden Lebensräumen am höchsten:

Für baumbewohnende Flechten:

- Lichte naturnahe Wälder und Altholzbestände, speziell in Beständen, welche in früheren Baumgenerationen keine grossflächigen Störungen erfahren haben (ökologische Kontinuität)
- Lichte Eichen-Mittelwälder, mächtige Eichen in Wäldern oder an Waldrändern
- Alte hainartige Waldbestände, Wytweiden, pâturage-boisés, Kastanien-Selven
- Locker stehende Gehölze
- Alleebäume, freistehende Einzelbäume
- Traditionelle Hecken und Gebüsche
- Hochstamm-Obstbäume, ohne Pestizid- und Düngungseinsatz
- Walnussbäume, besonders in warmen, luftfeuchten Lagen

Für erdbewohnende Flechten:

- Kalkmagerrasen mit feinerdigen Lücken
- Trockenrasen auf sauren Böden
- Schotterterrassen und Kiesbänke mit lückiger Vegetation
- Lückige alpine Rasen
- Zwergstrauchheiden
- Bülten, Torfstichkanten in Hochmooren

Die Rote Liste 2002 stellt die erste offizielle Rote Liste für diese Organismengruppe dar.

Summary

The Red List 2002 of threatened and rare epiphytic and terricolous lichens in Switzerland was drawn up according to the IUCN criteria 2001 and the guidelines for their application to regional/national lists. Additional criteria were developed for applying the guidelines to lichens. With these the IUCN's rather openly formulated decision paths can be made more concrete and explicit.

The Red List contains 295 (37%) of the 786 lichen species studied in Switzerland (520 epiphytic and 266 terricolous). The proportion of threatened epiphytic species was 44% (230 species) and that of terricolous lichens was 24% (65 species). A further 107 species (13%) are listed as Near Threatened (NT) and 312 species are considered to be least concern. 38 (22 epiphytic and 16 terricolous species) are Regionally Extinct (RE), i.e. no longer found in Switzerland. 45 (35 epiphytic and 10 terricolous species) are seen as Critically Endangered (CR), 96 (87 epiphytic and 9 terricolous species) as Endangered (EN) and 116 (86 epiphytic and 30 terricolous species) as Vulnerable (VU). Red List species can be found in all habitats, but the proportion of endangered species is highest in the following habitats:

For epiphytic species:

- Light and fairly natural forests and old-growth stands, especially in stands not subject to large-scale disturbances in earlier tree generations (ecological continuity)
- Light oak coppice, great oaks in forests or on the edge of forests
- Old grove-like forest stands, pasture-woodlands (pâturage-boisés), traditional chestnut orchards (Selva)
- Sparsely wooded, standing thickets
- Avenue trees, free-standing single trees
- Traditional hedgerows and bushes
- Tall-growing fruit trees not treated with pesticides and fertilisers
- Walnut trees, especially in warm, humid locations

For terricolous species:

- Calcareous, poor lawns with gaps containing fine earth
- Dry lawns on acidic soils
- Alluvial terraces and gravel banks with loose vegetation
- Patches of alpine grass
- Dwarf shrub groves
- hummocks and edges of raised peat bogs

The Red List 2002 is the first official Red List for this group of organisms.

1 Introduzione

Le Liste Rosse sono uno strumento giuridico della protezione della natura (articolo 14 dell'ordinanza federale sulla protezione della natura e del paesaggio, in particolare i capoversi 3 e 5: vedi riquadro sottostante).

Con la compensazione ecologica (art. 15) e le disposizioni sulla protezione delle specie (art. 20), la protezione dei biotopi crea le premesse per la conservazione delle specie selvatiche indigene del mondo vegetale ed animale.

Art. 14 Protezione dei biotopi (ordinanza federale sulla protezione della natura e del paesaggio, RS 451.1).

- 1 La protezione dei biotopi deve assicurare la sopravvivenza della flora e della fauna selvatiche indigene, in particolare unitamente alla compensazione ecologica (art. 15) e alle disposizioni sulla protezione delle specie (art. 20).
- 2 La protezione dei biotopi è segnatamente assicurata:
 - a. da misure per la tutela e, se necessario, per il ripristino delle loro particolarità e della loro molteplicità biologica;
 - b. da manutenzione, cure e sorveglianza per assicurare a lungo termine l'obiettivo della protezione;
 - c. da misure organizzative che permettano di raggiungere lo scopo della protezione, di riparare i danni esistenti e di evitare danni futuri;
 - d. dalla delimitazione di zone-cuscinetto sufficienti dal punto di vista ecologico;
 - e. dall'elaborazione di dati scientifici di base.
- 3 I biotopi degni di protezione sono designati sulla base:
 - a. dei tipi di ambienti naturali giusta l'allegato 1, caratterizzati in particolare da specie indicatrici;
 - b. delle specie vegetali e animali protette giusta l'articolo 20;
 - c. dei pesci e crostacei minacciati giusta la legislazione sulla pesca;
 - d. delle specie vegetali e animali minacciate e rare, enumerate nelle Liste Rosse pubblicate o riconosciute dall'UFAFP;
 - e. di altri criteri, quali le esigenze legate alla migrazione delle specie oppure il collegamento fra i biotopi.
- 4 I Cantoni possono adattare gli elenchi conformemente al capoverso 3 lettere a-d alle particolarità regionali.
- I Cantoni prevedono un'adeguata procedura d'accertamento, che permetta di prevenire eventuali danni a biotopi degni di protezione oppure violazioni delle disposizioni dell'articolo 20 relative alla protezione delle specie.
- 6 Un intervento di natura tecnica passibile di deteriorare biotopi degni di protezione può essere autorizzato solo se è indispensabile nel luogo previsto e corrisponde ad un'esigenza preponderante. Per la valutazione del biotopo nell'ambito della ponderazione degli interessi, oltre al fatto che l'oggetto debba essere degno di protezione giusta il capoverso 3, sono determinanti in particolare:
 - a. la sua importanza per le specie vegetali e animali protette, minacciate e rare;
 - b. la sua funzione compensatrice per l'economia della natura;
 - c. la sua importanza per il collegamento dei biotopi degni di protezione;
 - d. la sua particolarità biologica o il suo carattere tipico.
- 7 L'autore o il responsabile di un intervento su un biotopo degno di protezione deve essere tenuto a prendere provvedimenti per assicurarne la migliore protezione possibile, la ricostituzione oppure almeno una sostituzione confacente.

1 Introduzione 13

La designazione e valutazione di biotopi meritevoli di protezione si effettua perciò sulla base delle specie minacciate o rare elencate nelle Liste Rosse emanate o accettate dall'UFAFP e delle specie di licheni protette secondo l'art. 20. I Cantoni possono adeguare queste Liste alle particolarità regionali. Permessi per interventi tecnici che possano minacciare biotopi meritevoli di protezione possono essere concessi solo se l'intervento non può essere effettuato altrove, e se corrisponde a una esigenza preponderante. L'autore o il responsabile di un intervento su un biotopo degno di protezione deve essere tenuto a prendere provvedimenti per assicurarne la migliore protezione possibile, la ricostituzione oppure almeno una sostituzione confacente (art. 7).

2 Liste Rosse dell'UICN

Direttive per l'allestimento di Liste Rosse nazionali e regionali

Le categorie di minaccia proposte dall'UICN ed i criteri seguiti per l'allestimento delle Liste Rosse, costituiscono uno strumento oggettivo per valutare la minaccia che incombe sugli organismi (UICN 2001). Da quando nel 1994 i criteri di valutazione soggettivi per l'attribuzione delle categorie di minaccia UICN sono stati sostituiti da un sistema di criteri quantitativi (UICN 1994), la protezione della natura dispone di uno strumento unitario per valutare il grado di minaccia dei vari gruppi di organismi. Secondo l'UICN, il vantaggio dei nuovi criteri rispetto ai precedenti sta nel fatto che il grado di minaccia è stimabile oggettivamente e non dipende più dalla valutazione soggettiva di esperti. I criteri utilizzati per l'attribuzione della categoria di minaccia sono definiti in modo preciso, ciò che permette di verificare con criteri scientifici la classificazione delle specie minacciate (UICN 2001). Seguendo le indicazioni dell'UFAFP, le Liste Rosse svizzere che verranno pubblicate in futuro, faranno riferimento al sistema UICN (UICN 2001).

Le categorie di minaccia utilizzate nella presente Lista Rossa corrispondono a quelle emanate dall'UICN (UICN 2001), completate con l'aggiunta della categoria RE «regionalmente estinte», come proposto dalla UICN, per l'adeguamento alle Liste Rosse regionali.

Categorie di minaccia

Le categorie di minaccia consentono di avanzare una stima del rischio di estinzione di una specie in un determinato periodo di tempo. L'informazione corrispondente è contenuta in una gamma di criteri quantitativi da A ad E, utilizzati però solo per i licheni epifiti. Di seguito le categorie di minaccia sono descritte brevemente e le loro relazioni sono riportate nella figura 1. Nel sito dell'UICN (www.iucn.org oppure www.redlist.org) si può trovare una descrizione dettagliata.

EX (Extinct – estinta) e RE (Regionally extinct – estinta nella regione)

Una specie è da considerare estinta quando vi è il sospetto fondato che l'ultimo individuo sia morto. Se le Liste Rosse sono compilate per singoli Paesi o regioni, la categoria RE (regionally extinct) indica che la specie è estinta nella regione in questione, ma è ancora attestata in altre parti del mondo (GÄRDENFORS 1996; GÄRDENFORS *et al.* 1999).

CR (Critically endangered – minacciata d'estinzione)

Una specie è minacciata d'estinzione, quando è dimostrabile che il suo statuto di CR soddisfa uno dei criteri A–E. Essa è pertanto classificata come a rischio estremamente elevato di estinguersi allo stato selvatico nel giro delle prossime tre generazioni.

EN (Endangered – fortemente minacciata)

Una specie è fortemente minacciata quando non rientra nella categoria CR, ma è dimostrabile che il suo statuto di EN soddisfa uno dei criteri A–E. Per la specie in questione vi è pertanto un rischio molto elevato di estinguersi allo stato selvatico.

2 Liste Rosse dell'UICN 15

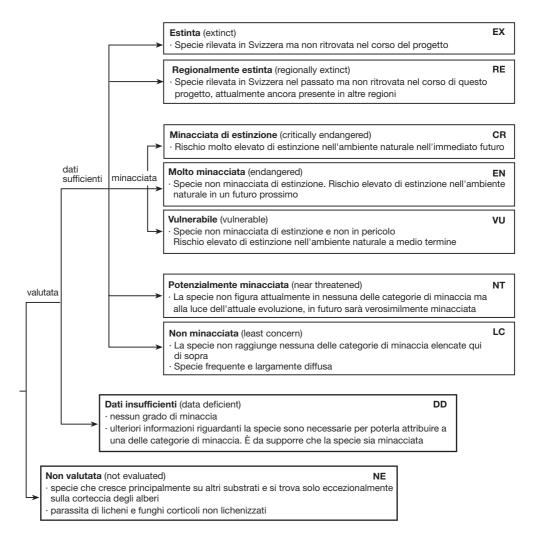


Fig. 1: Categorie di minaccia delle Liste Rosse secondo UICN-2001. Annotazioni particolari per quanto concerne i licheni.

VU (Vulnerable – vulnerabile)

Una specie è vulnerabile quando non rientra nelle categorie CR e EN ma sussiste evidenza che il suo statuto di VU soddisfa uno dei criteri A–E. Per la specie in questione sussiste pertanto un alto rischio di estinguersi allo stato selvatico.

Le tre categorie di minaccia CR, EN e VU sono riunite in una Lista Rossa sotto la rubrica «specie minacciate» (threatened) e contrapposte alle due categorie seguenti, nelle quali sono classificate specie che presentano un rischio di minaccia ridotto.

NT (Near threatened – potenzialmente minacciata)

Una specie è potenzialmente minacciata quando, al momento, non soddisfa i criteri CR, EN o VU, ma di cui è lecito supporre, considerato l'andamento evolutivo, che possa un giorno rientrare in una categoria di minaccia. Nella presente Lista Rossa sono state classificate nella categoria NT tutte le specie che si ritengono in continua diminuzione (criteri A2, A3 o A4).

LC (Least concern – non minacciata)

Una specie è ritenuta non minacciata quando non soddisfa nessuno dei criteri sopra elencati. Le specie ampiamente diffuse e frequenti fanno parte di questa categoria.

DD (Data Deficient – dati insufficienti)

Una specie viene considerata DD quando i dati a disposizione non permettono di stabilirne la categoria di minaccia. DD non è perciò una categoria di minaccia a se stante. L'inserimento sotto DD indica che è necessario raccogliere ulteriori informazioni che mostreranno probabilmente che la specie in questione è minacciata.

NE (Not evaluated – non valutata)

Una specie è ritenuta NE quando non sono stati valutati i criteri di minaccia.

2 Liste Rosse dell'UICN 17

3 II gruppo di specie in Svizzera

3.1 I Licheni

Simbiosi

I licheni sono funghi che vivono in stretta associazione con alghe verdi o con cianobatteri (alghe blu). Questa comunione di organismi diversi viene detta simbiosi.

La doppia natura dei licheni non è visibile ad occhio nudo, si manifesta soltanto con l'osservazione al microscopio. Il fungo costituisce il corpo vegetativo del lichene, il cosiddetto tallo, che racchiude una popolazione di alghe unicellulari o di cianobatteri. La simbiosi offre notevoli vantaggi ad ambedue i partner. Le alghe ed i cianobatteri (fotobionti) sono abili alla fotosintesi e riescono quindi a procurare i carboidrati necessari per la loro alimentazione e quella del convivente (micobionte). I cianobatteri inoltre sono in grado di legare l'azoto atmosferico e di renderlo disponibile per il partner. Il fungo da parte sua, grazie alla capacità di avvolgere l'alga, la protegge da una irradiazione solare troppo intensa, dagli animali che si nutrono di alghe e le procura sostanze minerali e acqua. Tutti i fotobionti possono vivere anche senza il loro partner, quest'ultimo invece non sopravvive senza il fotobionte (WIRTH 1995; SCHÖLLER 1997).

Forme di crescita

In base alle forme di crescita del tallo i licheni vengono suddivisi in licheni fruticosi (frutice = cespuglio), fogliosi e crostosi. I licheni fruticosi posseggono talli per lo più rigidi, da eretti a penduli, ramificati a mo' di cespuglio oppure formano dei filamenti penduli (barbe di bosco). I licheni fogliosi posseggono talli con lobi, simili a foglie, che aderiscono lassamente al substrato con strutture simili a radici. I licheni crostosi formano talli estesi con superficie da liscia a granulosa. Aderiscono così intimamente al substrato da non poter essere staccati senza lederli. Fra i 3 gruppi vi sono numerose forme particolari e forme di transizione. La suddivisione in forme di crescita è artificiosa e non corrisponde ai rapporti di parentela.

Substrato

I licheni colonizzano una quantità di substrati differenti. Li troviamo su cortecce di alberi, rocce, terreno e legno ma anche su muschi, foglie sempreverdi e substrati antropici come legno lavorato (recinti, panche ecc.), muri naturali e calcestruzzo, monumenti, tetti ecc., perfino su ossa, vetro, tetti di automobili e pneumatici. Non tutte le specie hanno le stesse esigenze di substrato. La maggior parte delle specie hanno tuttavia un rapporto specifico con il substrato nel senso che crescono di solito solo su corteccia, legno, silicati, calcare o sul terreno.

3.2 Distribuzione ed ecologia

Distribuzione

I licheni crescono in tutte le regioni e zone climatiche del globo; dalle regioni senza ghiaccio dell'Artico e Antartico, alle zone temperate, le steppe, le savane ed i deserti fino alle foreste tropicali. I licheni hanno spesso vasta diffusione e sono presenti nei vari continenti in luoghi ecologicamente comparabili. Nei licheni le specie endemiche sono in numero assai più ridotto che nelle fanerogame (GALLOWAY 1994, SCHEIDEGGER e GOWARD 2002).

Vita in condizioni estreme

La capacità dei licheni di sopravvivere anche nei climi più estremi dipende dal loro particolare modo di vivere. Essendo organismi ad umidità variabile (poichiloidri), il cui contenuto idrico dipende dalla disponibilità idrica dell'ambiente circostante, essi possono sopportare periodi di siccità e temperature molto elevate allo stato secco, riducendo ad un minimo il loro metabolismo. Nei periodi di pioggia, il tallo del lichene può assorbire in breve tempo acqua per un multiplo del suo peso a secco e quindi riattivare il metabolismo. Non tutti i licheni dipendono dall'acqua piovana; rugiada o nebbia sono sufficienti per soddisfare il loro fabbisogno. Alcune specie delle zone climatiche fredde sono in grado di fissare CO_2 anche a temperature di -20 °C. I licheni sopportano temperature molto basse passando ad uno stato di vita latente.

Concorrenza

La crescita lenta, le dimensioni ridotte ed il fabbisogno relativamente elevato di luce fanno sì che i licheni siano meno concorrenziali rispetto alle piante superiori. I licheni dominano così di preferenza nei luoghi non adatti alle piante superiori, vale a dire in luoghi aridi, poveri di sostanze nutritive o troppo freddi. È questo il caso per esempio della tundra artica ricoperta di licheni terricoli e del paesaggio alpino ricco di licheni epilitici e terricoli.

Molteplicità di specie

Anche i tipi di vegetazione dominati dalle fanerogame, come ad es. i boschi, offrono numerose nicchie per i licheni. Pur rappresentando una minor parte della biomassa del bosco, i licheni presentano una elevata diversità: ad es. nelle foreste montagnose umide i licheni raggiungono facilmente una grande diversità di specie, paragonabile o anche superiore a quella delle fanerogame.

3.3 I licheni reagiscono in modo sensibile

La capacità di sopravvivere in condizioni estreme dei licheni non implica che essi siano fondamentalmente organismi poco esigenti e resistenti. Di fronte a interventi antropici sul loro habitat, i licheni manifestano spesso una grande sensibilità. Questa sensibilità dipende dalle particolari caratteristiche biologiche dei licheni.

Natura simbiotica

La simbiosi lichenica rappresenta un equilibrio particolare. L'alterazione dell'equilibrio tra i due partner in seguito a cambiamenti dell'habitat o a danneggiamento di uno dei due, porta ad una diminuita vitalità o addirittura all'annientamento di tutto il tallo.

Nutrimento

I licheni non possiedono radici e non sono ad es. in grado di estrarre sostanze nutritive da una pianta vivente e quindi di danneggiarla. Essi estraggono piuttosto le sostanze nutritive dall'acqua che li umidifica. Nei licheni epifiti è nell'acqua che scorre lungo il tronco che sono disciolte le sostanze nutritive dell'aria, le polveri ed il materiale di sgretolamento della corteccia.

Durata della vita

La longevità del singolo tallo di molte specie di licheni favorisce l'accumulo di sostanze nocive che, oltre determinati valori, può risultare dannoso. Inoltre le sostanze nocive contenute nell'aria e nell'acqua possono agire senza ostacoli su tutta la superficie del lichene, poiché esso non è dotato di una membrana protettiva efficace.

Biologia della dispersione

La crescita lenta della maggior parte dei licheni e la formazione tardiva di unità riproduttive contribuiscono anch'esse ad aumentare la sensibilità ai cambiamenti repentini dell'ambiente.

3.4 Importanza ecologica dei licheni

Catena alimentare

Nelle zone artiche e boreali del globo, dove ricoprono vaste superfici del terreno, i licheni sono un anello importante della catena alimentare: renne, caribù, alci e buoi muschiati si nutrono nei mesi invernali soprattutto di licheni. Costituiscono un alimento tanto i licheni terricoli, in particolare del genere Cladonia (*Cladonia rangiferina* e altre specie), quanto le barbe di bosco (*Usnea, Bryoria*) che crescono sugli alberi. Sono però soprattutto gli invertebrati come lumache, insetti e acari che in vario modo si nutrono di licheni.

Habitat

Oltre al nutrimento, la vegetazione lichenica offre a molti animali spazio vitale e camuffamento da nemici. Acari e insetti vivono in gran numero tra i talli. I bruchi di diverse farfalle notturne si mimetizzano con pezzetti di lichene, altri imitano un ramoscello ricoperto di licheni (mimicry). Parecchi uccelli utilizzano i licheni, in particolare quelli fogliosi e quelli fruticosi, per costruire il nido (SCHÖLLER 1997).

Licheni e uomo

Le svariate modalità con cui l'uomo ha utilizzato e utilizza ancora i licheni, sono ampiamente descritte in Schöller (1997) e Richardson (1974). Il loro impiego più antico era alimentare e medicinale. Soprattutto in tempi di carestia, venivano cotti o utilizzati come aggiunta alla farina; diversi partecipanti a spedizioni difficili sopravvissero grazie ai licheni (NADOLNY 1999). In Giappone, Umbilicaria esculenta è ritenuta una prelibatezza. Nell'arte medica dell'antichità e nel Medioevo i licheni avevano un ruolo importante. Oggigiorno il lichene islandico (Cetraria islandica) e anche specie del genere *Usnea* e *Lobaria* servono per la preparazione di prodotti farmaceutici. Inoltre i licheni hanno tuttora un ruolo importante nella medicina popolare (http://www.lichen.com/usetaxon.html). Per lungo tempo da un lichene del genere Roccella che cresce sulle rocce costiere, veniva estratto un colorante prezioso di color porpora, chiamato Orseille. Anche altre specie di licheni vengono utilizzate nella tintura di lana e stoffa. Evernia prunastri e Pseudevernia furfuracea da secoli servono da importante materia prima nell'industria dei profumi. Una quantità notevole di licheni importati dal Nord viene usata per la preparazione di corone, la costruzione di modellini e a scopo decorativo. I popoli delle regioni artiche che vivono dell'allevamento delle renne beneficiano indirettamente dei licheni. Le renne infatti, come già detto, almeno durante i mesi invernali si nutrono soprattutto di licheni.

Bioindicazione

La possibilità di utilizzare i licheni quali bioindicatori della qualità dell'aria, ha dato loro negli ultimi tempi molta notorietà (HERZIG & URECH 1991; KIRSCHBAUM & WIRTH 1995). Bioindicatori sono specie la cui presenza o assenza in un dato habitat permette di valutarne certe caratteristiche ambientali. Alcuni licheni sono anche indicatori della stabilità ecologica del loro habitat (ROSE 1976; ROSE 1992).

3.5 Minacce

Diminuzione delle specie

La vegetazione lichenica è in continua trasformazione. Già nel XIX secolo si documentò la scomparsa di licheni dalle grandi città con zone industriali. Nel XX secolo i lichenologi cominciarono a notare una generale diminuzione di licheni anche al di fuori degli agglomerati urbani, diminuzione che assunse proporzioni considerevoli negli ultimi 50 anni (Schöller 1997). In alcune regioni questa diminuzione può essere documentata con l'aiuto di vecchie pubblicazioni di lichenologia. Il paragone tra situazione passata e presente indica in certi casi grandi cambiamenti (Ruoss & CLERC 1987). Con questo metodo è stata ad esempio documentata la scomparsa di diversi macrolicheni dalle foreste dell'Altopiano del Canton Argovia a partire dal 1960 (Scheideger et al. 1991). Anche gli erbari danno indicazioni inerenti la distribuzione di singole specie in tempi passati (CLERC 1999). Di Lobaria pulmonaria, un appariscente lichene foglioso, esistono numerose reperti provenienti dall'Altopiano in vecchi erbari, ragion per cui dobbiamo ritenere che in tempi addietro il lichene fosse frequente. Oggi lo troviamo soltanto nel Giura e nelle Prealpi. Parallelamente alla diminuzione, per alcune specie regredisce anche la capacità riproduttiva. Confronti con materiale di erbario, permettono di stabilire che i corpi fruttiferi di Lobaria pulmonaria sono attualmente molto più rari che in passato (Scheidegger 1995) e che in Parmelia caperata solo eccezionalmente troviamo ancora singoli corpi fruttiferi e per lo più malformati (CLERC 1999), sebbene la specie sia ancora molto diffusa.

Modificazione nella composizione delle specie

Nello stesso periodo di tempo tuttavia, sono aumentate notevolmente altre specie. Sovente si tratta di specie fortemente concorrenziali, ad ampio spettro ecologico, cosicché in generale questi cambiamenti nello spettro delle specie si manifestano come un impoverimento della flora lichenica (FREY 1958).

Ricolonizzazione

In certi agglomerati si assiste da un po' di tempo ad una graduale ricolonizzazione di quelli che un tempo furono deserti lichenici con specie relativamente resistenti agli inquinanti, fenomeno riconducibile al miglioramento della qualità dell'aria (WIRTH et al. 1996; FIORE-DONNO 1997). Questa rallegrante tendenza non cambia comunque la situazione di minaccia nella quale si trova tuttora gran parte delle specie sensibili.

Cause di minaccia

Presentazioni esaustive dei fattori di minaccia sia a livello globale che regionale figurano in numerose pubblicazioni recenti (Wolseley 1995; Church *et al.* 1996; Wirth *et al.* 1996; Schöller 1997). Secondo l'opinione della maggior parte degli autori, i maggiori fattori di minaccia per i licheni sono la distruzione ed i cambiamenti degli habitat e l'inquinamento atmosferico.

Distruzione degli habitat

Il crescente bisogno di superfici per agglomerati, industria e commercio o strade, così come i raggruppamenti nell'agricoltura, hanno come conseguenza la continua scomparsa di habitat di licheni terricoli ed epifiti.

Modificazioni degli habitat dovuti alla gestione forestale

Il tipo di gestione forestale influenza in modo determinante la vegetazione lichenica (FREY 1958; DIETRICH 1990; WILDI & CAMENZIND 1990). Come già descritto, i licheni epifiti dipendono dalla presenza di un sufficiente numero di alberi vecchi, di po-

polamenti ricchi di luce e dalla rinuncia ad interventi incisivi. Vari tipi di foreste prossimi allo stato naturale (riccamente strutturate e luminose, con un'alta percentuale di alberi vecchi) che soddisfano queste condizioni sono diventati rari. Nelle foreste economiche odierne, dove lo sfruttamento è stato a lungo tempo razionalizzato e ottimizzato per essere più redditizio, le condizioni ecologiche sono spesso sfavorevoli ai licheni. Il passaggio dalla gestione tradizionale a ceduo composto ricco di luce ad una gestione più redditizia con foreste fitte con alberi ad alto fusto, ha portato sia ad una diminuzione del numero di alberi vecchi che a un cambiamento delle condizioni di luce a sfavore dei licheni epifiti. Contrariamente alle peccete subalpine, spesso molto ricche di licheni, le piantagioni di abete rosso a bassa quota sono molto povere di licheni a causa della carenza di luce.

La legge vigente in Svizzera sin dal 1876 che, a differenza di tanti altri Stati europei, vieta il taglio raso, ha un effetto positivo sulla flora lichenica a crescita lenta e longeva. Attualmente non è più possibile valutare quanto abbiano potuto contribuire all'impoverimento della flora lichenica questi tagli rasi, in parte su vasta scala.

Inquinamento dell'aria

A differenza di altri fattori di minaccia, l'inquinamento atmosferico influisce su tutto il territorio. Ne sono toccati anche ecosistemi pressoché naturali che distano parecchio dalle fonti inquinanti (Wolseley 1995; Wirth et al. 1996). A lungo si pensò che il diossido di zolfo SO₂ fosse l'agente atmosferico più dannoso per i licheni. Gli effetti negativi dell' SO₂ e dei suoi derivati sono stati documentati in numerose pubblicazioni (RICHARDSON 1992; KIRSCHBAUM & WIRTH 1995). In seguito al diminuito carico di SO₂ dopo gli anni '70, le specie più sensibili a questo agente inquinante si sono leggermente riprese (ad es. Parmelia caperata in Inghilterra e nella Germania meridionale) e sono riapparse nelle città e negli agglomerati. Ricerche sperimentali sui macrolicheni hanno dimostrato che una maggiore concentrazione di ozono può limitarne la capacità di fotosintesi (Scheidegger & Schroeter 1995). Attualmente il fattore inibente più importante della flora lichenica è l'inquinamento dell'aria con effetto eutrofizzante proveniente dai composti azotati utilizzati nell'allevamento intensivo, nella concimazione di superfici agricole ed emessi dal traffico motorizzato (VAN HERK 1999). Gli ossidi di azoto NO_x e l'ammoniaca NH₃ alterano i rapporti di concorrenza tra le specie. Ne consegue che specie deboli, adattate a luoghi poveri di sostanze nutritive vengono soppiantate da specie eutrofiche, con conseguente impoverimento della flora lichenica. La forte crescita di alghe sulla corteccia degli alberi dovuta alla concimazione inibisce ad esempio la crescita di giovani licheni epifiti (WIRTH et al. 1996).

Raccolta e distruzione

Raccolte a scopo scientifico, farmaceutico o altro, sono potenziali fattori di minaccia per la vegetazione lichenica. *Lobaria pulmonaria* utilizzata in omeopatia, è una specie protetta in Svizzera (art. 20 OPN). La raccolta può avvenire solo con autorizzazione. Negli ultimi anni i licheni sono stati raccolti, spesso in grandi quantità, per la tintura della lana. Fintanto che la raccolta si limita esclusivamente a licheni di piante abbattute, nulla da dire dal punto di vista della protezione della natura. L'eliminazione di licheni da tronchi e rami di alberi da frutta e da giardino si pratica ancora in parte. Questa azione non porta nessun beneficio agli alberi, non fa che distruggere una flora lichenica spesso variopinta e ricca di specie (SCHEIDEGGER 2001).

3.6 La ricerca lichenologica in Svizzera

Importanza della lichenologia in Svizzera Dalla fondazione della lichenologia con la pubblicazione del Methodus di Acharius nell'anno 1803, la Svizzera ha sempre svolto un ruolo importante nella ricerca lichenologica internazionale (CLERC 1998).

Periodo classico (1800–1840) Ludwig Emanuel Schaerer (1785–1853), parroco a Belp nel Canton Berna, pubblica il suo elenco dei licheni europei.

Periodo dei grandi progressi (1860–1900) Prende piede il microscopio. Jean Müller, direttore argoviese del giardino botanico di Ginevra, pubblica tra il 1852 ed il 1897 più di 160 articoli scientifici. Si tratta in gran parte di liste e descrizioni di nuovi taxa, raccolti da altri botanici soprattutto in Paesi tropicali. Nello stesso periodo, il botanico Simon Schwendener (1829–1919), nato a San Gallo e professore di botanica a Basilea, pubblica la sua teoria rivoluzionaria sulla doppia natura dei licheni.

Periodo pre-moderno (1901–1975)

Questo periodo è segnato da due grandi personalità svizzere. Friedrich Tobler (1879–1957), professore di botanica e direttore del giardino botanico dell'Università di Dresda, riesce tra i primi a dimostrare sperimentalmente la doppia natura dei licheni, riuscendo a coltivare separatamente la parte algale e la parte fungina. Eduard Frey (1888–1974), originario della valle dell'Hasli nell'Oberland bernese, è uno dei migliori conoscitori della flora lichenica alpina. Pubblica più di 50 lavori scientifici che ne fanno uno dei grandi del suo tempo. Ancora oggi è percepibile il suo influsso.

Periodo moderno (1976–2001)

Tra il 1978 ed il 1996 la sezione crittogamica dell'Università di Berna, fondata da Klaus Ammann, forma due generazioni di lichenologi, la maggior parte dei quali lavora attualmente in progetti riguardanti i licheni. Sono circa 20 professionisti. Attualmente in Svizzera esistono sei gruppi attivi a livello di ricerca (CLERC 1998). La ricerca si concentra a Basilea per quanto concerne bioindicazione ed ecologia; a Birmensdorf (WSL) per conservazione, floristica, ecofisiologia e genetica delle specie; a Ginevra (CJBG), dove è conservato il più grande erbario svizzero di licheni, limitatamente alla sistematica e alla floristica; a Zurigo (Università) per quanto concerne la biologia molecolare e l'ecofisiologia.

Bryolich – Associazione svizzera di briologia e lichenologia A questa associazione fondata nel 1956 fanno riferimento circa 250 specialisti e dilettanti. Il suo scopo è quello di stimolare e sostenere la ricerca scientifica nel campo dei licheni e dei muschi in Svizzera. A scadenza semestrale appare il bollettino di informazione Meylania.

4 Licheni epifiti in Svizzera

4.1 Habitat

Gli alberi costituiscono microhabitat variati

La maggior parte dei licheni epifiti, viventi cioè sulle cortecce, non crescono indistintamente su tutte le piante e tutti gli arbusti. Essi mostrano evidenti preferenze.

Proprietà della corteccia

Questa specializzazione è da ricondurre alle caratteristiche chimiche e fisiche della corteccia, quali l'acidità (pH), la capacità di immagazzinare acqua e la struttura della superficie. Alcuni licheni prediligono ad es. cortecce acide, povere in sostanze nutritive e si trovano quindi di preferenza sulle conifere; altri sono invece specialisti di alberi a corteccia neutra, come ad es. il frassino. Le caratteristiche chimiche della corteccia possono tuttavia variare in funzione delle immissioni. Alberi esposti ad un maggior carico di azoto, presentano una composizione della flora lichenica diversa dagli alberi della medesima specie esposti a minor carico.

Durante lo sviluppo di un albero, la struttura della corteccia subisce cambiamenti. In alberi giovani è liscia, più tardi si screpola e si trasforma in un mini-paesaggio frastagliato. Corrispondentemente si può osservare sugli alberi nel corso del tempo una caratteristica successione di licheni epifiti. Specie pioniere, di solito licheni crostosi, col tempo vengono soppiantate da altre specie più concorrenziali, ad es. da licheni fogliosi.

Microclima

Un albero presenta zone con condizioni microclimatiche (luce ed umidità) diverse che vengono colonizzate da associazioni licheniche specializzate. Perciò un albero è raramente colonizzato da una flora lichenica unitaria. Crepe profonde, ad es. nel tronco di una vecchia quercia, sono lo spazio vitale preferito di specie dell'ordine Caliciales, con corpi fruttiferi simili a spilli. I licheni crostosi del genere *Lepraria* sono specializzati su zone riparate dall'acqua che ricoprono con i loro talli biancoverdastri. Le *Leprariae*, come pure le *Caliciales*, possono infatti coprire il fabbisogno di acqua sfruttando l'umidità dell'aria. Le *Lobarie* e altri macrolicheni dell'associazione vegetale Lobarion amanti dei posti umidi, si insediano su tronchi ricoperti di muschio ed esposti all'acqua piovana. Le barbe di bosco, in spazi vitali adatti, colonizzano soprattutto rami e rametti di chiome luminose. Al contrario, altre specie di licheni necessitano di poca luce e sono in grado di crescere perfino nelle fitte piantagioni di abete rosso.

Dai boschetti fino alle brughiere – licheni epifiti in habitat diversi

Di per sé, ogni albero o arbusto – sia esso un gigantesco abete bianco in una foresta diradata, una rosa delle Alpi in una brughiera al di sopra del limite del bosco, un tiglio in un villaggio dell'Altopiano o un ligustro in un giardino di periferia – può costituire lo spazio vitale per un lichene epifita. I licheni epifiti sono quasi ovunque una parte della biodiversità: nelle foreste, nelle zone agricole o negli agglomerati urbani.

Bosco

Il bosco, che occupa il 30% della superficie totale del Paese, è lo spazio vitale più importante per i licheni epifiti (UFAFP 1999). La vegetazione lichenica si differenzia alquanto nei vari tipi di bosco. Appariscenti per la loro ricchezza di licheni sono spesso i boschi di montagna, ad es. le peccete subalpine o le foreste miste di larici e cembri delle Alpi centrali. In queste foreste non soltanto la biomassa ma anche la varietà delle specie può essere estremamente alta. Non è raro vedere su un singolo tronco 30 specie diverse, tra cui appariscenti macrolicheni come la Letharia vulpina dal colore giallo luminoso, oppure le barbe di bosco dei generi Usnea e Bryoria e molti licheni crostosi poco appariscenti. Le ultime popolazioni di Usnea longissima, specie fortemente minacciata di estinzione in Svizzera, e altre specie anch'esse fortemente minacciate si trovano nei boschi di montagna. Diversa è invece la situazione nelle piantagioni fitte e oscure dell'Altopiano. Esse offrono condizioni di vita sfavorevoli alla crescita dei licheni epifiti. Solitamente vi si trova soltanto una manciata di specie come ad es. Lepraria lobificans, un lichene molto comune con tallo biancastro ovattato, Micarea prasina, spesso sterile e difficilmente distinguibile a occhio nudo dal rivestimento di alghe verdi, o Porina leptalea i cui piccolissimi corpi fruttiferi ricurvi possono essere scoperti dopo attente ricerche ai piedi del tronco di abete rosso. Solitamente più ricche di licheni che le piantagioni di abete rosso sono le foreste di latifoglie dell'Altopiano, in particolar modo quando si tratta di cedui composti con ancora i vecchi alberi ad alto fusto. Questi alberi giganti, ad es. vecchie querce, rappresentano l'unico spazio di sopravvivenza per Bactrospora dryina e altre specie rare.

Zone agricole

Le superfici agricole coltivate coprono il 38% della superficie totale del Paese (UFAFP 1999). La modernizzazione dell'agricoltura ha portato al peggioramento delle condizioni di vita sia per i licheni che per altri gruppi di organismi. Oggi il paesaggio agricolo, razionalizzato su vasta scala, offre rifugio ai licheni epifiti soltanto dove le siepi, gli arbusti, singoli alberi e piante rivierasche sono state risparmiate dal raggruppamento fondiario. E perfino in questi luoghi, la vegetazione lichenica è sovente minacciata dalla concimazione (vedi sopra). Di buon auspicio è la constatazione che negli ultimi due decenni è ripresa la ricostituzione delle siepi e la loro superficie è aumentata (UFAFP 1994). Una siepe abbisogna però all'incirca dai 10 ai 30 anni per espletare appieno la sua funzione di spazio vitale. Ai licheni dalla crescita lenta, questo periodo di tempo potrebbe non essere sufficiente. Colture agricole come vigneti, frutteti e selve castanili possono ospitare vegetazioni licheniche ricche di specie. Un'agricoltura intensiva con uso di pesticidi, inibisce drasticamente la molteplicità delle specie. Non per niente nella maggior parte dei vigneti non troviamo più licheni. In tutta la Svizzera i frutteti ad alto fusto a gestione estensiva, uno spazio vitale prezioso non solo per i licheni, diventano sempre più rari (UFAFP 1994). Per fortuna negli ultimi tempi nella Svizzera meridionale vengono intrapresi grandi sforzi per salvare dall'inselvatichimento le poche selve castanili ancora intatte.

Zone abitate

Anche in zone densamente popolate, alberi in parchi e viali, alberi e arbusti in giardini e aiuole offrono spazi vitali per i licheni. Non tutte le specie arboree sono habitat idonei ai licheni epifiti. Ad es. i platani che troviamo spesso in viali e parchi, mal si prestano alla colonizzazione di licheni poiché il regolare scorticamento a placche ne impedisce l'insediamento. La vegetazione lichenica è molto più povera negli agglo-

merati e lungo gli assi di traffico carichi di immissioni che non in zone lontane dai centri abitati. Spesso gli alberi in città sono in gran parte ricoperti da alghe verdi e i pochi licheni che vi si trovano sono specie relativamente resistenti all'inquinamento.

Zona alpina

Al di sopra del limite della foresta sono predominanti i licheni epilitici e terricoli. Ma le brughiere sono un habitat idoneo anche per i licheni epifiti.

Quali habitat sono particolarmente favorevoli per i licheni epifiti?

L'esperienza ci insegna che habitat particolarmente idonei ai licheni epifiti, caratterizzati da una grande molteplicità di specie e/o dalla presenza di specie rare sono (WIRTH *et al.* 1996):

- foreste naturali o prossime allo stato naturale di ogni tipo con alberi vecchi e molto vecchi, premesso che esse si trovino in regioni non o scarsamente inquinate;
- vecchi popolamenti forestali luminosi, quali riserve di caccia, parchi, pascoli estensivi, frutteti e selve, premesso che gli alberi non vengano trattati o concimati;
- cedui composti luminosi ricchi di querce e carpini oppure quercete originate da boschi cedui.

Che cosa rende preziosi questi spazi?

Premesse determinanti per l'insediamento di una vegetazione epifita di valore in questi habitat è la presenza di un numero sufficiente di alberi vecchi e la continuità ecologica dell'ambiente.

Struttura d'età

Molti licheni hanno un periodo di sviluppo lunghissimo. Ad es. il ciclo biologico, dalla colonizzazione del substrato fino alla formazione di unità riproduttive dura in *Lobaria pulmonaria* almeno 30 anni (Roth *et al.* 1997; Scheideger *et al.* 1998). Inoltre, la maggior parte di licheni dispone di scarsi e poco efficienti meccanismi di disseminazione. Più un albero è vecchio, tanto maggiore è la probabilità che vi si insedi una vegetazione lichenica ricca di specie e che i singoli licheni possano svilupparsi sufficientemente affinché le nuove diaspore vengano disseminate sui più giovani alberi circostanti. Se tutti gli alberi, raggiunta una certa età, vengono abbattuti, così come succede nelle foreste economiche moderne, ne derivano conseguenze negative per la molteplicità dei licheni, poiché le specie a crescita particolarmente lenta non riescono a stare al passo con lo sviluppo degli alberi e perdono così la loro base vitale.

Continuità

La continuità ecologica dell'habitat è altrettanto importante come la presenza di un numero sufficiente di alberi vecchi (Rose 1976). Per habitat ad elevata continuità ecologica si intendono soprassuoli e parcelle che di regola mantengono la loro struttura quasi invariata per più secoli. In particolare si intendono le stazioni in cui in passato l'habitat non abbia subito alterazioni su vasta scala (siano esse di origine na-

turale o antropica). Le alterazioni di proporzioni limitate, tipiche per questi habitat, devono essere di intensità e regolarità costante nel tempo. Quali esempi per boschi ad elevata continuità ecologica si possono citare i boschi prossimi allo stato naturale, i cedui composti e in parte anche i pascoli alberati.

Per i motivi sopra indicati, intervalli troppo brevi tra i diversi interventi, ad es. in foreste economiche, con il tempo portano ad un impoverimento della flora lichenica. Soltanto specie largamente diffuse e a crescita rapida possono sopravvivere. Piccole popolazioni licheniche, il cui spazio vitale si limita a pochi alberi, possono essere completamente eliminate da un singolo intervento, come ad es. l'abbattimento di parecchi alberi vicini. Questo può significare la scomparsa della specie dalla parte di bosco interessata, o addirittura dall'intera regione. In questo caso è poco probabile una ricolonizzazione da parte della specie in questione. La continuità ecologica di un habitat non dipende necessariamente dal grado di antropizzazione o dal carattere naturale della vegetazione. Le selve castanili ad esempio, pascolate e utilizzate in molteplici altri modi, rappresentano paesaggi tradizionali con un'elevata continuità ecologica formatasi attraverso secoli di gestione invariata.

Condizioni di luce

Le condizioni di luce svolgono anch'esse un ruolo importante: l'eterogeneità nella struttura d'età delle piante e la dinamica naturale (boschi prossimi allo stato naturale), o la gestione forestale (cedui composti, frutteti, boschetti, ecc.) costituiscono strutture sufficientemente ricche di luce, necessarie per una vegetazione lichenica ricca di specie.

4.2 Metodi di rilevamento

Il rilevamento di dati storici

I dati storici si basano sulla valutazione di erbari svizzeri e una selezione di erbari stranieri e, per motivi metodologici, coprono circa 150 anni, un periodo un po' più lungo dei 100 anni previsti dall'UICN (Clerc, comunicazione orale).

Il rilevamento di dati attuali

Il rilevamento della flora epifitica della Svizzera e delle sue 5 grandi regioni (Giura, Altopiano, Prealpi, Alpi e Sud delle Alpi) è stato realizzato tra il 1989 e il 2000 utilizzando tre metodi diversi (fig. 2). Queste grandi regioni corrispondono alle regioni di produzione definite dall'Inventario Forestale Nazionale svizzero, IFN (BRASSEL & BRÄNDLI 1999). Esse rispecchiano le diverse condizioni di produzione forestale e si basano sulla griglia di informazione dell'Ufficio federale di statistica. La ripartizione delle superfici è riportata in tabella 1. Nelle future Liste Rosse è previsto di suddividere la superficie della Svizzera in regioni biogeografiche, conformemente a quanto fatto dall'UFAFP (vedi KÄSERMANN & MOSER 1999).

Rilevamento A: campionamento rappresentativo

Con il metodo di rilevamento A sono stati raccolti dati rappresentativi su 826 aree di studio permanenti di 500 m². In uno studio preliminare è stato sviluppato il metodo di rilevamento e ne è stata testata l'idoneità (Dietrich & Scheideger 1997a; Dietrich & Scheideger 1997b). Le aree di saggio sono localizzate sui punti nodali del reticolo chilometrico svizzero. Esse rappresentano il 2% dei punti nodali del reticolo chilometrico e lo 0,001% della superficie nazionale. In precedenza, nelle 5 regioni Giura, Altopiano, Prealpi, Alpi e Sud delle Alpi era stata effettuata una stratificazione nelle unità di vegetazione «bosco» e «non-bosco» e in 6 zone altitudinali di vegetazione (tab.1). All'interno di questi strati è stata eseguita una scelta casuale delle aree di saggio (fig. 2). Grazie al rilevamento dei dati standardizzato ed eseguito sulle aree di saggio dell'Inventario Forestale Nazionale svizzero (ZINGG & BACHOFEN 1988; BRASSEL & BRÄNDLI 1999), sarà possibile determinare in modo attendibile le variazioni nei dati raccolti nel corso di futuri inventari. Nelle zone non boscate, dove non erano disponibili aree di saggio permanenti, sono state esaminate e documentate superfici di uguale dimensione.

Sono state delimitate due aree circolari concentriche rispettivamente di 200 m^2 (raggio R_1 = 7,98 m) e 500 m^2 (raggio R_2 = 12,62 m), intese sulla proiezione orizzontale; a partire da inclinazioni maggiori di 10° , i raggi sono stati corretti in modo corrispondente. L'unità di osservazione principale è stata la specie arborea, il cui rilevamento è stato eseguito separatamente nelle due aree concentriche e per categorie di diametro a petto d'uomo (DPU <12 cm e DPU >12 cm) e di altezza (<170 cm, >170 cm). Ulteriori unità d'osservazione sono stati rispettivamente lo strato degli arbusti e quello degli arbusti nani.

È stato utilizzato il medesimo metodo di rilevamento sia in bosco che fuori. Il rilevamento su un'area sperimentale è stato eseguito a tappe.

Tab. 1: Numero di aree di saggio prestratificate per regione, zone altitudinali di vegetazione e unità di vegetazione: F = foresta; NF = non foresta; S = superficie totale; n = aree di saggio.

Regione	G	iura	Alto	piano	Pre	ealpi		Alpi	Sud d	elle Alpi	Sv	izzera
Unità di vegetazione	F	NF	F	NF	F	NF	F	NF	F	NF	F	NW
S (superficie in km²)	1950	2961	2282	7148	2170	4437	3816	12981	1645	1901	11863	29428
Zone altitudinali di veget	azione											
collinare/submontana	14	35	31	116	4	24	6	17	9	7	64	199
montana inferiore	12	11	13	27	12	25	9	7	5	2	51	72
montana superiore	9	11	1	-	17	18	21	17	9	3	57	49
subalpina inferiore	3	3	1	-	10	16	30	33	6	3	50	55
subalpina superiore	-	-	-	-	-	1	11	48	4	10	15	59
alpina/ nivale	-	-	-	-	-	5	-	137	-	13	-	155
n	38	60	46	143	43	89	77	259	33	38	237	589
	9	98	1	89	1	32	;	336		71	:	826

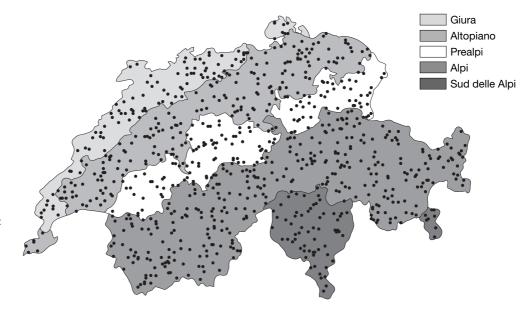


Fig. 2: Le 826 aree di saggio del rilevamento A nelle cinque regioni della Svizzera: Giura = 98; Altopiano = 189; Prealpi = 132; Alpi = 336; Sud delle Alpi = 71.

Rilevamento A1: all'interno di R_1 è stata creata per ogni specie arborea una lista di base (presenza/assenza) di tutte le specie di licheni presenti su alberi con DPU >12 cm e a un'altezza da 0 a 170 cm.

Rilevamento A2: all'interno di R₂, è stato effettuato, per ogni specie arborea con DPU >12 cm, un rilevamento complementare dei licheni che non erano ancora stati registrati sulla specie arborea in questione a un'altezza da 0 a 170 cm.

Rilevamento A3: all'interno di R_2 , è stato effettuato, per ogni specie arborea con DPU <12 cm, un rilevamento complementare a un'altezza da 0 a 170 cm dei licheni che non erano ancora stati registrati sulla specie arborea in questione.

Rilevamento A4 : all'interno di R_2 , è stato effettuato, per tutti gli alberi di una specie, un rilevamento complementare per altezze superiori a 170 cm dei licheni che non erano ancora stati registrati sulla specie arborea in questione.

All'interno di R₁, è stato recensito il numero di individui di ogni *specie (specie selezionate, potenzialmente minacciate; vedi sotto) presenti a un'altezza da 0 a 170 cm su tutti i singoli alberi con DPU >12 cm. Gli stessi rilevamenti sono stati effettuati all'interno di R2 su alberi con DPU >36 cm.

Rilevamento A5: all'interno di R₂, è stato effettuato un rilevamento complementare nello strato arbustivo di tutte le specie di licheni che finora non erano state ritrovate su nessuna specie di albero. Per le *specie è stata valutata la frequenza nel popolamento.

Rilevamento A6: all'interno di R₂, è stato effettuato un rilevamento complementare nello strato di arbusti nani di tutte le specie di licheni non registrate precedentemente né su alberi né nello strato arbustivo. Per le *specie è stata stimata la frequenza nel soprassuolo. I rilevamenti di tipo A contano in tutto 2250 censimenti floristici.

Rilevamento B: cartografia di 56 superfici della dimensione di 20 km x 20 km

Questo rilevamento si basa su un reticolo a maglie di 20 km x 20 km che suddivide la Svizzera in unità cartografiche di 400 km² di superficie. Per il rilevamento dati sono state scelte 56 unità di superficie che rappresentano circa il 50% della superficie nazionale (fig. 3).

Scopo dei rilevamenti B era di raccogliere il maggior numero possibile di specie di licheni epifiti in ogni superficie di 20 km x 20 km. Il tempo a disposizione è stato limitato ad un massimo di 4–6 giorni per unità di superficie, a seconda del dislivello da percorrere. Per evitare errori sistematici, ogni superficie è stata elaborata da almeno due lichenologi.

Unità di osservazione era il singolo albero, cespuglio o arbusto nano. Per tutti i taxa sono stati rilevati dati di presenza/assenza. In tutti i rilevamenti sono stati annotati coordinate, substrato (specie arborea) e, per gli alberi, anche la strutturazione della corteccia ed il DPU.

Come nel rilevamento A, di regola, sono stati annotati la struttura dello strato arboreo, l'habitat e la topografia.

La raccolta dati sul terreno per i rilevamenti A e B, è stata eseguita tra il 1995 e il 1999 da sei lichenologi professionisti.

Rilevamento O: ulteriori dati floristici della vegetazione lichenica

Per il metodo di rilevamento O sono stati raccolti i dati floristici attualmente disponibili (dal 1989) per tutta la Svizzera. Sono tutti i dati a disposizione, pubblicati e non, compresi i dati di erbari pubblici e privati. Collaboratori volontari hanno inoltre

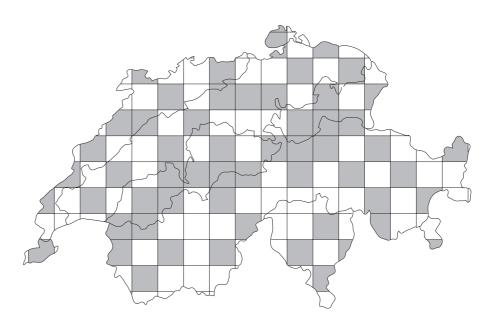


Fig. 3: Reticolo 20 km x 20 km con le 56 superfici del rilevamento B.

esaminato superfici di 20 km x 20 km scelte in modo mirato, non considerate nel rilevamento B.

I rilevamenti B e O contano in tutto 7609 censimenti floristici. Il 70% è stato eseguito nell'ambito dei rilevamenti B e O e all'incirca il 30% nell'ambito dei rilevamenti A.

Rilevamento di dati sulla biologia della popolazione per specie selezionate (*specie)

Durante i rilevamenti A e B, per 190 specie scelte e potenzialmente a rischio (tab. 2), accanto ai dati di presenza/assenza sono stati rilevati dati di biologia delle popolazioni sul singolo albero e nel soprassuolo in funzione di una futura applicazione dei criteri A3–E della Lista Rossa. I dati sono però anche utili alla stima della dimensione della popolazione. I parametri considerati sono stati i seguenti: numero di individui per albero (uno o due individui; alcuni individui; numerosi individui); frequenza nel soprassuolo o su un certo numero di alberi (su un singolo albero; su 2 fino a 5 alberi; su più di 5 alberi).

Durante il rilevamento A sono state registrate le *specie e il numero di individui presenti su alberi con DPU >12 cm in R1 e su alberi con DPU >36 cm in R2. Ogni albero è stato chiaramente caratterizzato attraverso la specie, il DPU e il suo numero identificativo secondo l'IFN o un numero ID nuovo secondo un piano di situazione dell'area di saggio. Nel rilevamento B è stato annotato il numero di individui delle *specie, possibilmente per ogni singolo albero. Nel caso di rilevamenti su arbusti o arbusti nani, ne è stata registrata unicamente la frequenza nel soprassuolo.

Determinazione, tassonomia e erbarizzazione dei licheni

Per la determinazione dei campioni di licheni ci si è basati in prima linea sulla flora lichenica della Germania sudoccidentale e delle regioni limitrofe (WIRTH 1995). Nel limite del possibile è stata utilizzata la nomenclatura ivi contenuta anche se, in seguito a cambiamenti avvenuti dopo la pubblicazione, per diverse specie si imporrebbero adattamenti. Per la Svizzera diversi gruppi tassonomici hanno dovuto essere riveduti o almeno adattati. Queste modifiche non sono dovute solo alle differenze geografiche tra le regioni ma soprattutto in seguito a nuovi risultati scientifici.

Nell'allegato 1 vengono caratterizzate le specie per le quali nella letteratura scientifica non è stata trovata nessuna descrizione. Poiché non è sempre stato possibile distinguere specie strettamente imparentate, in alcuni casi si sono creati gruppi di specie. Le specie riunite in gruppi di specie, sono raccolte nell'allegato 2. Nel limite del possibile, i taxa sono stati determinati sul campo. Quando la determinazione non era certa, si sono raccolti campioni per la determinazione in laboratorio. Oltre al microscopio, per le determinazioni in laboratorio, si è fatto ricorso alla cromatografia su strato sottile per l'analisi delle sostanze licheniche (Culberson & Ammann 1979; Culberson & Johnson 1982). Nell'ambito di questo progetto sono state eseguite circa 9000 analisi chimiche. Tutti i taxa raccolti durante l'inventario sono stati eti-

Tab. 2: Lista delle 190 specie la cui popolazione è stata stimata (* specie).

Agonimia allobata Alectoria sarmentosa Anaptychia ciliaris Anaptychia crinalis Arthonia cinnabarina Arthonia leucopellaea Arthonia pruinata Arthonia reniformis Arthothelium spectabile Bacidia biatorina Bacidia fraxinea Bacidia rosella Bactrospora dryina Biatora rufidula Biatoridium delitescens Bryoria bicolor Bryoria capillaris Bryoria fuscescens Bryoria implexa Bryoria subcana Buellia alboatra Buellia arnoldii Buellia disciformis Buellia erubescens Buellia poeltii Buellia triphragmioides Calicium adaequatum Caloplaca lobulata Caloplaca lucifuga Candelariella lutella Cetraria laureri Cetraria oakesiana Cetraria sepincola Cetrelia cetrarioides Cetrelia chicitae Cetrelia olivetorum Chaenotheca brachypoda Chaenotheca chlorella Chaenotheca chrysocephala Chaenotheca cinerea Chaenotheca gracilenta Chaenotheca hispidula Chaenotheca laevigata Chaenotheca phaeocephala Chaenotheca subroscida Cheiromycina flabelliformis Chromatochlamys muscorum Chrysothrix candelaris Cliostomum corrugatum Cliostomum leprosum Cliostomum pallens Collema conglomeratum Collema fasciculare Collema flaccidum Collema fragrans Collema furfuraceum Collema ligerinum Collema nigrescens Collema occultatum Cyphelium inquinans Cyphelium karelicum Cyphelium lucidum Cyphelium pinicola Dimerella lutea

Eopyrenula leucoplaca Evernia divaricata Evernia mesomorpha Fellhanera gyrophorica Fellhaneropsis vezdae Graphis elegans Gyalecta flotowii Gyalecta truncigena Gyalecta ulmi Heterodermia leucomelos Heterodermia obscurata Heterodermia speciosa Hypocenomyce caradocensis Hypocenomyce friesii Hypocenomyce praestabilis Hypocenomyce scalaris Hypogymnia vittata Lecanactis abietina Lecania fuscella Lecanora albella Lecanora chlarotera Leptogium burnetiae Leptogium cyanescens Leptoaium hildenbrandii Leptogium saturninum Letharia vulpina Lobaria amplissima Lobaria pulmonaria Lobaria scrobiculata Lobaria virens Lopadium disciforme Loxospora cismonica Macentina stigonemoides Maronea constans Menegazzia terebrata Micarea adnata Mycobilimbia sphaeroides Mycoblastus affinis Mycoblastus caesius Mycoblastus sanguinarius Nephroma bellum Nephroma laevigatum . Nephroma parile Nephroma resupinatum Ochrolechia pallescens Ochrolechia szatalaensis Opegrapha ochrocheila Pachyphiale fagicola Pachyphiale ophiospora Pannaria conoplea Pannaria rubiginosa Parmelia acetabulum Parmelia flavention Parmelia laciniatula Parmelia laevigata Parmelia minarum Parmelia quercina Parmelia reticulata Parmelia septentrionalis Parmelia sinuosa Parmelia submontana Parmelia taylorensis Parmeliella triptophylla Parmotrema arnoldii

Parmotrema chinense Parmotrema crinitum Parmotrema stuppeum Peltigera collina Pertusaria alpina Pertusaria borealis Pertusaria coccodes Pertusaria constricta Pertusaria coronata Pertusaria flavida Pertusaria leioplaca Pertusaria multipuncta Pertusaria ophthalmiza Pertusaria pertusa Pertusaria pupillaris Pertusaria pustulata Pertusaria sommerfeltii Pertusaria trachythallina Phaeophyscia ciliata Phaeophyscia hirsuta Phaeophyscia hispidula Phaeophyscia insignis Phaeophyscia poeltii Phlyctis agelaea Physcia clementei Physcia vitii Ramalina dilacerata Ramalina fastigiata Ramalina fraxinea Ramalina obtusata Ramalina roesleri Ramalina sinensis Ramalina thrausta Rinodina plana Rinodina ventricosa Schismatomma decolorans Schismatomma graphidioides Schismatomma pericleum Sclerophora nivea Sphaerophorus globosus Sphaerophorus melanocarpus Sticta fuliginosa Sticta limbata Sticta svlvatica Strangospora deplanata Strigula mediterranea Teloschistes chrysophthalmus Tephromela atra Thelenella modesta Thelopsis rubella Thelotrema lepadinum Usnea cavernosa Usnea ceratina Usnea cornuta Usnea florida Usnea fulvoreagens Usnea glabrata Usnea longissima Usnea madeirensis Usnea wasmuthii Varicellaria rhodocarpa Vezdaea stipitata

chettati con la menzione «osservazione», «specie d'erbario-determinazione certa» oppure «specie d'erbario-determinazione incerta». A progetto terminato, tutti i campioni dei rilevamenti A e B verranno depositati nell'erbario del Conservatoire et Jardin botanique di Ginevra.

La Banca Dati «LICHEN»

Tutti i dati rilevati fino alla fine del 2000 sono stati inseriti nella Banca Dati relazionale Oracle «LICHEN» (http://www.wsl.ch/relics/rauminf/riv/datenbank/lichen/database lichen.html). La struttura della Banca Dati è descritta nella figura 4. Dal punto di vista tecnico la Banca Dati LICHEN è collegata alla Banca Dati «Waldbeobachtungsdatenbank der Landesforst- und Waldschadensinventare» (http://www.wsl.ch/relics/rauminf/riv/datenbank/beo/database BEO.html). Nella Banca Dati sono stati inoltre evidenziati tutti i taxa con caratteristiche ecologiche e di biologia della popolazione diverse e annotate le categorie di minaccia dei licheni nei Paesi limitrofi: Germania (Wirth et al. 1996), Austria (Türk & Hafellner 1999), Italia (Nimis 2000), Olanda (Aptroot et al. 1998), Inghilterra e Galles (Church et al. 1996), Svezia (Gärdenfors 2000).

4.3 Categorie di minaccia e criteri UICN-2001 Categorie di minaccia della Lista Rossa

Originariamente le categorie di minaccia ed i criteri di inserzione erano stati sviluppati per le Liste Rosse internazionali. È stato dunque necessario affinare il sistema per renderle utilizzabili a livello nazionale e regionale (GÄRDENFORS *et al.* 1999). Nella presente Lista Rossa il grado di minaccia dei taxa è indicato non solo per la Svizzera ma anche per le 5 regioni Giura, Altopiano, Prealpi, Alpi e Sud delle Alpi (fig. 2).

L'adattamento dei criteri mondiali alle condizioni nazionali e regionali è stato largamente dibattuto negli ultimi anni (GÄRDENFORS 1996; GÄRDENFORS *et al.* 1999). Anche se le direttive dell'UICN non sono state ancora ufficialmente adottate, certi punti essenziali previsti in questo nuovo documento sono già stati presi in considerazione nella presente Lista Rossa.

A dire il vero la maggior parte delle categorie rimane uguale a quelle delle Liste Rosse internazionali. Solo nelle specie estinte si differenziano le specie estinte globalmente (EX) da quelle estinte regionalmente (RE). Per le liste regionali si prevede però che, dopo la classificazione in una categoria, si proceda ad una seconda valutazione che indichi se la categoria di minaccia della popolazione regionale è influenzata in modo positivo o negativo dall'evoluzione delle popolazioni regionali limitrofe. Questa procedura è determinante quando devono essere vagliati organismi mobili quali ad esempio gli uccelli, come ampiamente discusso nella Lista Rossa degli uccelli nidificanti minacciati in Svizzera (Keller *et al.* 2001). Per gli organismi sedentari questo influsso riveste un'importanza minore. Nei licheni, che spesso si propa-

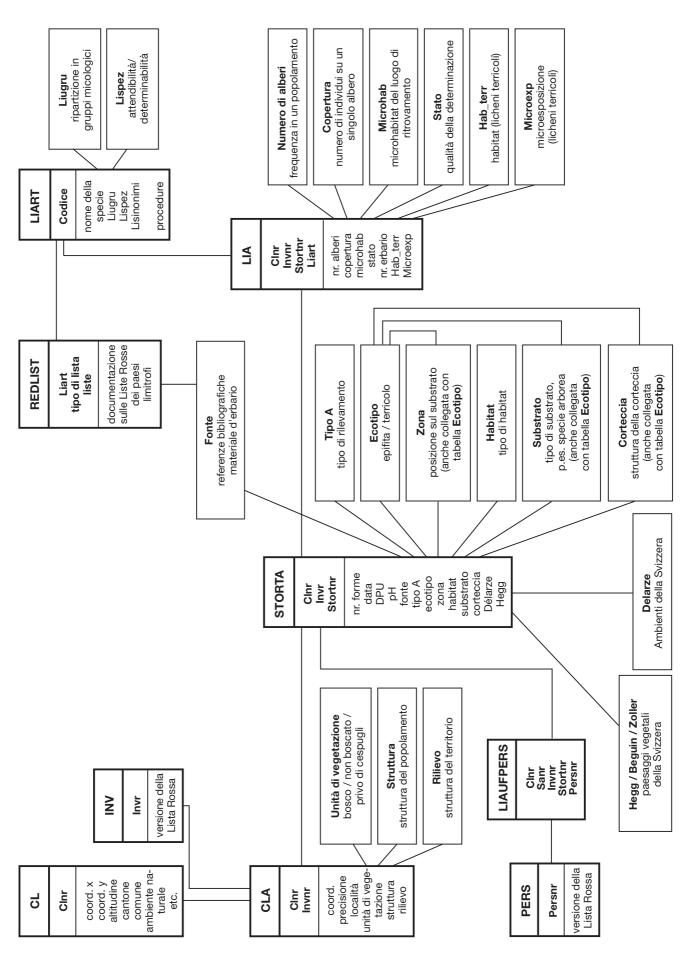


Fig. 4: Schema della Banca Dati «Lichen».

gano solo su distanze molto brevi, l'influsso di popolazioni limitrofe, almeno per le specie rare e quelle minacciate, può essere trascurato per periodi brevi come quelli considerati nella pratica della protezione della natura. Per questa ragione non si eseguono correzioni di attribuzioni nelle categorie della LR in base all'evoluzione di popolazioni nazionali limitrofe

Il processo di declassamento descritto è stato però da noi adottato per specie che sono soprattutto epifite, ma che si possono osservare anche su terreno, roccia o legno. Per queste specie la grandezza della popolazione è stata probabilmente sottostimata. Queste specie sono perciò state declassate di una categoria di minaccia (GÄRDENFORS *et al.* 1999) e evidenziate in tabella 13 (ultima colonna). Specie che possono essere epifite ma che crescono soprattutto su legno o roccia, non sono inserite nella Lista Rossa dei licheni epifiti (tab. 11).

I criteri di minaccia utilizzati nella presente Lista Rossa si basano sulle categorie dell'UICN (UICN 2001), completati dalla categoria RE «estinto regionalmente», così come consigliato dall'UICN durante il processo di adattamento alle Liste Rosse regionali.

Specie conosciute in Svizzera in tempi passati, ma non ritrovate durante i lavori a questa Lista Rossa, sono da considerare estinte regionalmente (RE). Siccome tutti questi licheni epifiti appaiono ancora in altre regioni europee, non è stata applicata la categoria di minaccia EX.

Una specie è potenzialmente minacciata (NT) quando al momento non sono soddisfatti i criteri delle categorie CR, EN oppure VU, ma se ne suppone un continuo regresso (criteri A2, A3 o A4).

Criteri della Lista Rossa

I criteri sono stati ripresi dall'UICN (UICN 1994 e 2001) e, dove necessario, adattati agli organismi studiati. I termini utilizzati nei criteri A–E necessitano di una spiegazione supplementare per i licheni epifiti. Dove possibile indichiamo tra parentesi il termine inglese usato dall'UICN.

Generazione (generation)

Secondo l'UICN (1994), la generazione è definita come l'età media dei genitori nella popolazione. La durata della generazione dei licheni è molto variabile. Alcune specie come ad es. *Fellhanera bouteillei*, che cresce su foglie sempreverdi e aghi, nel giro di tre anni sono in grado di formare il tallo, produrre corpi fruttiferi e propagarsi prima della caduta della foglia o ago e della propria morte. La maggior parte delle specie epifite tuttavia vive per decenni, di regola fino al taglio o alla caduta dell'albero ospitante. Riteniamo che per i licheni una generazione duri 35 anni – tre generazioni corrispondono quindi a circa 100 anni. Questo orizzonte di tempo è accettato dall'UICN come limite massimo e si situa decisamente al di sotto di quello utilizzato per le Liste Rosse degli alberi (OLDFIELD *et al.* 1998). Anche se la maggior

parte delle specie di licheni rare sembra necessitare di tempi decisamente più lunghi per assicurare la dispersione della specie, il tempo di una generazione ipotizzato per i licheni è sufficiente affinché un lichene come ad es. *Lobaria pulmonaria* possa propagare le diaspore (ROTH *et al.* 1997).

Luogo di ritrovamento (location)

Il luogo di ritrovamento è una regione limitata geograficamente e/o ecologicamente, nella quale un unico e inaspettato evento potrebbe riguardare tutti gli individui presenti. Per i licheni epifiti della Svizzera il luogo di ritrovamento viene definito come una superficie a maglie di 100 m x 100 m. Il numero dei luoghi di ritrovamento a livello regionale di un taxon corrisponde, in Svizzera, alla superficie a maglie di 100 x 100 m nei quali il taxon è presente in quella regione.

Area di distribuzione (extent of occurrence)

L'area di distribuzione espressa in km², è il più piccolo dei poligoni convessi che racchiude tutti i punti di osservazione conosciuti all'interno della regione (Svizzera, regioni).

Aree colonizzate (area of occupancy)

L'area di colonizzazione indica la superficie in km² effettivamente occupata da un taxon all'interno dell'area di distribuzione. Il valore stimato risulta dalle frequenze delle specie figuranti nei rilevamenti rappresentativi di tipo A. Ogni presenza di un taxon su una area di saggio corrisponde dunque ad una superficie colonizzata di 50 x 1 km².

Individuo maturo (mature individuals)

Il termine individuo nei licheni è controverso. È di per se corretto che talli sviluppatisi dalla germinazione di una spora, possano essere definiti individui nel senso stretto della parola. Nei molti casi di specie che si moltiplicano in modo vegetativo, il termine individuo, in pratica, non può più essere attribuito, ancor meno per le specie i cui talli si fondono durante la crescita. Il termine individuo viene perciò qui usato in modo acritico anche se accettabile da un punto di vista pratico e definisce talli separati nello spazio che probabilmente sono sorti da eventi di colonizzazione indipendenti. Il numero degli individui capaci di riprodursi corrisponde al numero di individui che sono in grado di moltiplicarsi in modo generativo o vegetativo. Per le * specie, il numero di individui maturi per punto di osservazione è estrapolato prendendo dei dati della frequenza nella popolazione e del numero di individui per albero. Per i taxa rimanenti abbiamo ammesso un numero di 80 individui maturi per punto di osservazione. Si ritengono punti di osservazione di un taxon tutti i ritrovamenti del taxon stesso con coordinate diverse.

Popolazione (population)

La popolazione è definita dall'insieme di tutti gli individui presenti in Svizzera o in una delle sue regioni. Il suo effettivo è determinato dal numero di individui capaci di riprodursi.

Sottopopolazione (subpopulation)

Le sottopopolazioni sono gruppi geograficamente delimitati all'interno della popolazione tra i quali sussistono pochi scambi genetici. Per i licheni epifiti della Svizzera una sottopopolazione è definita come la somma di tutti gli individui all'interno di una superficie a maglie di 20 km x 20 km. La loro grandezza è espressa in numero di individui maturi. Il numero delle sottopopolazioni svizzere (regionali) di una specie equivale al numero di superfici a maglie di 20 km x 20 km nelle quali questa specie è stata trovata all'interno di una regione.

Ripartizione estremamente frammentata (severely fragmented)

Se nessuna delle sottopopolazioni raggiunge il numero di individui indicato tra parentesi (CR 50, EN 250, VU 1000), sussiste, in combinazione con ulteriori criteri, motivo per considerarla una categoria di minaccia secondo l'UICN. Questo parametro viene applicato nei criteri B e C per stabilire la categoria di minaccia.

Substrato (non definito dall'UICN)

La singola specie vegetale sulla quale crescono licheni epifiti è definita substrato.

Contrariamente alla versione originale inglese, la descrizione dei criteri è stata limitata agli aspetti effettivamente applicati in questa Lista Rossa. Ciò spiega le lacune nella numerazione dei criteri, ad es. l'assenza di A1. La categoria di minaccia propria di una specie è data dalla categoria più elevata individuata in uno dei criteri A–E. Nella Lista Rossa, dopo la categoria di minaccia, sono elencati tra parentesi i criteri che hanno portato a questa classificazione (tab. 13).

Un taxon è minacciato di estinzione (fortemente minacciato, vulnerabile) se sussiste un elevato rischio di estinzione nel prossimo futuro, secondo almeno uno dei seguenti criteri A–E:

A: riduzione della popolazione in una delle forme seguenti:

- A 2: riduzione irreversibile della grandezza della popolazione di almeno 80% (50%, 30%) nel corso delle ultime 3 generazioni (100 anni); riduzione basata su:
 - b) il numero di sottopopolazioni.

Il criterio A 2b) si basa sul paragone del numero di popolazioni di una specie ritrovate in passato con quelle osservate di recente. Bisogna però considerare che il numero di dati raccolti in passato è nettamente inferiore a quello di oggi e che i rilievi non coprivano tutto il Paese. Per correggere questa differenza è stato scelto il metodo seguente: si è supposto che le sottopopolazioni delle specie *Parmelia acetabulum*, *Parmelia caperata* e *Parmelia revoluta* non abbiano subito un regresso negli ultimi 150 anni. Un paragone tra i ritrovamenti storici e quelli recenti ha dimostrato che queste specie vengono trovate attualmente in più sottopopolazioni che in tempi passati. Il quoziente risultante dal numero di sottopopolazioni recenti e storiche di queste tre specie (1.52) è stato utilizzato come fattore di correzione per compensare le

differenze in questione (SCHEIDEGGER *et al.*, in corso di stampa). Inoltre, si è provveduto a cercare nella letteratura scientifica specie attualmente non più documentabili. Tuttavia in questo ambito si è proceduto con molta cautela e sono state usate unicamente specie citate in monografie ancora valide. Delle numerose indicazioni figuranti nella bibliografia precedente (CLERC 2000), soltanto i casi evidenti sono stati presi in considerazione per valutare una specie come RE.

A 3: Riduzione, prevedibile o supposta, di almeno l' 80% (50%, 30%) nel corso delle prossime tre generazioni (100 anni); riduzione fondata sulla prospettata probabilità di estinzione di una specie in un luogo di ritrovamento.

Una delle principali caratteristiche di numerose specie epifite rare risiede nel fatto che un'alta percentuale delle popolazioni si concentra su un numero molto basso di piante ospitanti. Anche nelle misure effettive di protezione degli habitat, in futuro bisogna calcolare che avvenimenti casuali provocheranno un'ulteriore diminuzione di queste specie. La probabilità di estinzione di piccole popolazioni è stata rappresentata in un modello in base al concetto di «biologia di piccole popolazioni» (Soulé 1987) e usata per la classificazione delle specie secondo il criterio A 3. Il modello è ottimizzato per specie che hanno come centro di diffusione vecchi alberi (Scheideger et al. 1998). Molti licheni minacciati appartengono a questo gruppo, tra i quali i vistosi generi Lobaria, Sticta e varie specie di *Usnea*. Anche licheni crostosi dei generi *Arthonia, Bactrospora* e *Gyalecta* si comportano secondo questo modello.

A 4: Diminuzione, valutata continua, della grandezza delle popolazioni di almeno 80% (50%, 30%) nel corso di tre generazioni (100 anni); questa stima prende in considerazione gli ultimi ed i prossimi 50 anni. c) Qualità dell'habitat.

Il criterio A 4 si fonda sull'opinione di esperti, che hanno stimato il regresso attuale delle popolazioni basandosi sulla diminuzione della superficie o della qualità dell'habitat (allegato 3). La categoria di minaccia CR non è mai stata attribuita.

- B: L'area di distribuzione è stimata a meno di 100 km² (5000 km², 20000 km²) o la superficie colonizzata a meno di 10 km² (500 km², 2000 km²) e le stime confermano i due aspetti:
- B 1: la popolazione è fortemente frammentata, vale a dire nessuna sottopopolazione è stimata a più di 50 (250, 1000) individui maturi, oppure la popolazione è nota soltanto per un luogo di ritrovamento (<5, <10);
- B 2: diminuzione continua osservata, dedotta o supposta in: iii) Superficie o qualità dell'habitat.

Quale area di distribuzione in Svizzera è stata definita la superficie del poligono più piccolo disegnato attorno a tutti i luoghi di ritrovamento recenti. La superficie colonizzata è data dal numero di ritrovamenti di una specie avvenuti nel corso del sotto-

progetto A. Ogni ritrovamento corrisponde ad una superficie colonizzata di 50 km². Alle specie che nel sottoprogetto non sono state mai trovate, viene attribuita una superficie colonizzata di <10 km² (DIETRICH *et al.* 2001).

La definizione «diminuzione continua» nel corso di un primo rilevamento di un gruppo di organismi, può essere attribuita solo se supportata dal parere di esperti. Per la Lista Rossa dei licheni epifiti è stato usato specialmente il criterio di diminuzione di diversi tipi di habitat rappresentanti ambienti di vita fondamentali per quella particolare specie di lichene (allegato 3, vedi anche criteri A 4 e C).

- C: La popolazione è stimata a meno di 250 individui maturi (2500, 10000) e:
- C 1: una diminuzione continua stimata ad almeno il 25% durante una generazione (20% in 2 generazioni; 10% in 3 generazioni), oppure
- C 2: una continua diminuzione osservata, dedotta o supposta nel numero degli individui maturi e nella struttura della popolazione in una delle seguenti forme:
 - a) frammentata (vale a dire nessuna sottopopolazione è stimata a più di 50 individui (250, 1000) maturi);
 - b) tutti gli individui sono presenti in una sola sottopopolazione.

Come base di calcolo sono serviti tutti i recenti dati di distribuzione, tenendo presente che i dati di rilevamento A sono stati estrapolati dall'insieme delle superficie.

D: La popolazione è stimata a meno di 50 (250) individui maturi (VU: la popolazione è stimata a meno di 1000 individui maturi e la superficie colonizzata è minore di 20 km² o il numero dei luoghi di ritrovamento è minore o uguale a 5).

Quale base di calcolo sono stati utilizzati tutti i dati di distribuzione recenti, tenendo presente che i dati di rilevamento A sono stati estrapolati dall'insieme delle superficie.

E: Analisi quantitative dimostrano che la probabilità di estinzione nel giro dei prossimi 100 anni si aggira almeno attorno al 50% (20%, 10%).

Il calcolo si basa sul modello discusso al punto A3.

4.4 Risultati

Specie estinte

Dei 520 taxa studiati, 22 specie sono conosciute soltanto da fonti storiche e sono da considerare come regionalmente estinte in Svizzera (RE) (tab. 3). Per la maggior parte si tratta di specie relativamente vistose, facilmente riconoscibili, che sono state oggetto di intense ricerche durante tutti i lavori alla Lista Rossa. A questo gruppo appartengono inoltre molteplici licheni crostosi; hanno il loro punto massimo di distribuzione a basse quote e sono noti quali indicatori di elevata continuità ecologica (ad

es. *Arthonia medusula*, *A. pruinata*, *Catapyrenium psoromoides*). Probabilmente il numero delle specie estinte in Svizzera è più elevato. Il grado di elaborazione di raccolte storiche è incompleto e specialmente per i licheni crostosi particolarmente frequenti, negli erbari è possibile trovare molteplici specie per le quali non si conosce nessun caso di presenza attuale.

Specie minacciate di estinzione

In Svizzera 35 specie di licheni sono minacciate di estinzione (CR). Tra queste si ritrovano alcune specie che in tutta Europa sono fortemente regredite e che sono riportate nella maggior parte delle Liste Rosse. A queste appartiene il lichene foglioso.

Heterodermia speciosa, che a metà del XIX secolo era molto diffuso anche nell'Altopiano su alberi da frutta e alberi di viale e che oggi è riscontrabile solo in pochi luoghi in boschi prossimi allo stato naturale. Un regresso simile ha avuto Maronea constans, che nella prima metà del XIX secolo ad es. veniva sovente trovata su alberi da frutta nel distretto di Knonau. L'unico sito oggi noto in Svizzera è in un bosco misto prossimo allo stato naturale di faggio e abete bianco. La maggior parte delle specie CR è pure regredita in vaste zone di tutta Europa. In Svizzera esse sono limitate a pochi luoghi di ritrovamento, per la maggior parte a un unico luogo (fig. 5). Una protezione assoluta di questi siti diventa imperante ed è consigliabile la messa

Tab. 3: Lista delle 22 specie di licheni epifiti estinte in Svizzera (RE). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	1	NL	GB	S
Arthonia cinereopruinosa	†	М	М			М
Arthonia elegans	†	М				
Arthonia helvola	†					М
Arthonia medusula	†	М	М			
Arthonia pruinata	M	М		M		М
Arthothelium spectabile	M	М			†	
Bacidia auerswaldii	†	М	М		†	М
Bacidia friesiana	M	М		†		М
Bacidia polychroa	M	†	М		†	М
Bryoria simplicior						
Buellia arnoldii	M					
Caloplaca lobulata	М	М				М
Catapyrenium psoromoides	М				М	М
Chaenotheca cinerea	М	М	М			М
Collema conglomeratum	†				†	
Heterodermia leucomelos	†		М		М	
Lecanactis amylacea	M				М	М
Lobaria virens	†		М			М
Pannaria rubiginosa	М	М	М			М
Pertusaria trachythallina	М	М				
Rinodina polyspora	†	М				
Teloschistes chrysophthalmus	†		М		М	

Tab. 4: Lista delle 35 specie di licheni epifiti minacciate di estinzione in Svizzera (CR). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	S
Arthonia faginea						
Arthonia reniformis	М		М			
Bacidia biatorina	М					
Bacidia fraxinea	М					
Biatoridium delitescens	М				М	
Buellia triphragmioides						
Catinaria papillosa						
Cetrelia chicitae	М					
Cheiromycina flabelliformis						
Chromatochlamys muscorum	М	М				
Collema fragrans	М	М		†	М	М
Collema furfuraceum	М	М				М
Collema occultatum	М	М	М			М
Heterodermia obscurata	М	М				
Heterodermia speciosa	М	М				М
Lecania koerberiana	†	†				
Leptogium burnetiae		М				
Maronea constans	†	М				М
Mycoblastus caesius						
Opegrapha ochrocheila	М	М				М
Pachyphiale ophiospora		М				
Parmelia reticulata	†			†		
Phaeophyscia hispidula		М				
Ramalina sinensis	†	М	М			
Rinodina sheardii						
Rinodina ventricosa		М				
Schismatomma graphidioides	†				M	М
Sphaerophorus melanocarpus	†	†				
Sticta fuliginosa	М	М	М			М
Sticta limbata	†	М	М			М
Strangospora deplanata	†		М			
Strigula mediterranea						
Thelenella modesta	†			†	M	
Usnea cornuta	М			†		
Usnea longissima	†	М	М			М

in opera di provvedimenti specifici per la tutela delle specie. Danni subiti dall'albero ospitante oppure dall'habitat possono avere quale conseguenza la scomparsa della specie dalla Svizzera.

Specie fortemente minacciate

87 specie (tab. 5) sono classificate come fortemente minacciate (EN). Accanto a specie che a Sud delle Alpi sussistono nelle selve castanili o sull'Altopiano svizzero, ad es. su singole querce solitarie, ve ne sono in questo gruppo anche numerose che hanno il loro baricentro di distribuzione nelle tipiche foreste miste dell'orizzonte montano superiore. Queste specie sopravvivono soltanto grazie ad una gestione forestale molto rispettosa: la loro presenza in foreste gestite da decenni deve essere interpretata come indice di esemplare gestione forestale. La maggior parte di queste specie reagisce con grande sensibilità a forti cambiamenti nella struttura del soprassuolo e, a causa del loro potenziale di distribuzione spesso limitato, non sono in grado di colonizzare nuove aree adatte nello spazio di pochi decenni e ad una distanza superiore a qualche dozzina di metri. Per la maggior parte delle specie il danneggiamento dei pochi esemplari ancora presenti potrebbe portare ad un inasprimento della categoria di minaccia o addirittura all'estinzione della specie.

Di queste specie in Svizzera di regola si conoscono da 4 a 20 stazioni (fig. 5), spesso però il ritrovamento si limita ad un solo albero ospitante. Nell'elaborazione di piani di gestione, consigliamo in ogni caso di considerare prioritaria la conservazione di popolazioni di licheni fortemente minacciati e di dare maggior valore ecologico agli habitat di queste specie.

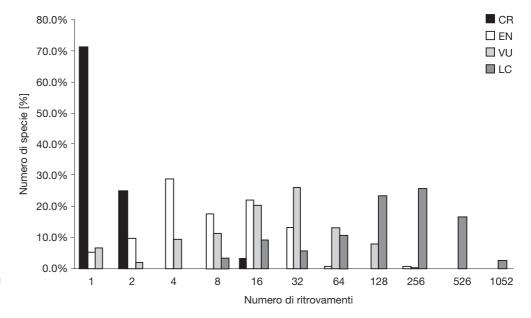


Fig. 5: Percentuale e numero di ritrovamenti delle specie licheniche che sono state classificate nelle 4 categorie della Lista Rossa CR, EN, VU e LC.

Tab. 5: Lista delle 87 specie di licheni epifiti fortemente minacciate in Svizzera (EN). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	<u>S</u>	Specie	D	Α	I	NL	GB	S
Agonimia octospora			М				Lecidea betulicola	†	М				
Arthonia apatetica	М						Lecanora cinereofusca	М	М	M			
Arthonia dispersa	M						Leptogium hildenbrandii	†	М	М		†	
Arthonia fuliginosa	M	М	М				Leptogium teretiusculum	М	М				
Arthonia vinosa	M	М	М	†			Lobaria amplissima	М	М	М			М
Arthrosporum populorum	M	М		†			Lobaria scrobiculata	М	М	М			
Bacidia circumspecta	M	М		†			Megalospora pachycarpa	М	M				
Bacidia hegetschweileri	†				М		Nephroma laevigatum	М					
Bacidia laurocerasi	†			†		М	Ochrolechia pallescens	М	M				
Bacidia rosella	М	М					Ochrolechia subviridis	М			М		
Bacidia sp.1							Pachyphiale carneola	М	M	M			М
Biatora ocelliformis	†						Pannaria conoplea	М	М	М			М
Biatora rufidula							Parmelia laciniatula	М	М				М
Bryoria nadvornikiana	M				М		Parmelia laevigata	М	M	M			
Bryoria sp.							Parmelia minarum					М	
Buellia alboatra	М			M			Parmelia septentrionalis	М	М				
Byssoloma marginatum			М				Parmotrema stuppeum	М	M	M			
Calicium adaequatum		М					Pertusaria borealis						
Caloplaca chrysophthalma	М		М				Pertusaria flavida	М			†		
Caloplaca flavorubescens	М	М			М		Pertusaria hemisphaerica	М			М		
Caloplaca lucifuga	М	М	М				Pertusaria multipuncta	М	М		†		М
Caloplaca pollinii	М		М		†		Pertusaria pertusa	М	М				
Candelariella subdeflexa	М						Pertusaria pustulata	М	М			М	
Catillaria alba	М		М				Pertusaria sommerfeltii	М	М				
Cetraria oakesiana	М	М	М				Phaeophyscia insignis		М				
Cetraria sepincola	М			†			Physcia clementei	†			М		
Cetrelia olivetorum	М					М	Ramalina dilacerata	М	М	М			
Chaenotheca chlorella	М	М	М				Ramalina panizzei						
Chaenotheca hispidula	М	М		†		М	Ramalina roesleri	М	М	М			М
Chaenotheca laevigata	М	М			М	М	Ramalina thrausta	М	М				М
Cliostomum leprosum							Rinodina colobina	М	М	М			
Cliostomum pallens							Rinodina isidioides			М			
Collema fasciculare	М	М				М	Rinodina plana						
Collema ligerinum	М	М					Rinodina roboris			М			
Collema subflaccidum		М				М	Scoliciosporum pruinosum				†		
Cyphelium lucidum	М	М					Thelopsis flaveola	†	М	M			М
Cyphelium pinicola	М		М				Thelopsis rubella	М	М				М
Dimerella lutea	М	М	М			М	Usnea florida	М	М		†		М
Fellhaneropsis myrtillicola	М	М	М				Usnea glabrata	М			М		М
Graphis elegans	М	М	М	М			Usnea madeirensis	†				М	
Gyalecta flotowii	М	М		†			Usnea wasmuthii	М					
Gyalecta ulmi	М	М			М		Zamenhofia hibernica						
Hypocenomyce friesii	М	М					aff. Biatora areolata						
Lecania fuscella	М			†	†								

Tab. 6: Lista delle 86 specie di licheni epifiti vulnerabili in Svizzera (VU). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	S	Specie	D	Α	I	NL	GB	S
Anaptychia ciliaris	М	М		М			Micarea coppinsii						
Anaptychia crinalis		†	М				Micarea sp.1						
Arthonia byssacea	М	†	M			М	Mycobilimbia carneoalbida	М					
Arthonia leucopellaea	М	М					Mycobilimbia sphaeroides	М	М		†		
Bacidia incompta	М	М		М	М	М	Mycoblastus affinis	М	М				
Bactrospora dryina	М	М	М		М	М	Nephroma resupinatum	М	М			†	
Bryoria bicolor	М						Ochrolechia szatalaensis	М	М				
Buellia erubescens	М						Pachyphiale fagicola	М	М	М			
Calicium adspersum	М	М	М	†	М		Parmelia sinuosa	М	М	М			
Calicium lenticulare	М	М	М			М	Parmelia taylorensis	М	М				
Calicium parvum	М	М					Parmotrema arnoldii	М	М	М			
Calicium quercinum	М	М			†	М	Parmotrema chinense	М	М				
Caloplaca alnetorum							Parmotrema crinitum	М	М				
Caloplaca assigena	†						Pertusaria alpina	М	М				
Caloplaca obscurella	M	М					Pertusaria coccodes	М					
Candelariella viae-lacteae	М						Pertusaria constricta	М	М				
Catillaria pulverea	М	М				М	Pertusaria coronata	М					
Cetraria laureri	М		М				Pertusaria ophthalmiza	М	М				
Chaenotheca phaeocephala	М	М			М		Phaeophyscia poeltii						
Chaenotheca subroscida	М	М					Physcia vitii	М					
Collema nigrescens	М	М					Ramalina fastigiata	М	М				
Cyphelium karelicum	М	М	М				Ramalina obtusata	М	М				М
Eopyrenula leucoplaca	†	М	М			М	Rinodina conradii	М	М		М		
Fellhanera gyrophorica	·						Rinodina efflorescens		М				
Fellhanera subtilis	М						Rinodina polysporoides		М				
Fellhaneropsis vezdae	М	М	М			М	Schismatomma decolorans	М	М				
Fuscidea arboricola							Sclerophora nivea	М	М			М	
Gyalecta truncigena	М			М		М	Scoliciosporum curvatum						
Hypocenomyce praestabilis	М						Sphaerophorus globosus	М	М	М			
Hypogymnia vittata	М						Sticta sylvatica	М	М				М
Japewia subaurifera							Strangospora ochrophora		М				
Lecanactis abietina	М	М					Strangospora pinicola						
Lecanora vinetorum							Strigula glabra	М					
Lecidea erythrophaea	М				М		Strigula jamesii						М
Lecidea margaritella		М					Thelotrema lepadinum	М	М		М		
Lecidella laureri		М					Trapelia corticola						
Leptogium cyanescens	М	М				М	Usnea ceratina	М	М		†		М
Lobaria pulmonaria	М	М					Usnea fulvoreagens	М			M		
Lopadium disciforme	М	М	М				Usnea glabrescens	М					
Loxospora cismonica	М	М	М				Usnea rigida	М	М				
Macentina stigonemoides							Vezdaea stipitata						
Menegazzia terebrata	М						aff. Lecania cyrtellina						
Micarea adnata	М	М				М	aff. Pyrrhospora quernea						

Specie vulnerabili

86 specie (tab. 6) sono state inserite nella categoria delle specie vulnerabili (VU) della Lista Rossa. Di queste specie si conoscono da 16 fino a 64 luoghi di ritrovamento (fig. 5). Anch'esse sono tipiche di foreste gestite in modo rispettoso, di alberi di noce, di vecchi boschetti e formazioni aperte tipo parco. In questo gruppo troviamo numerose specie che ancor oggi sono tipiche di forme particolari di boschi, come ad es. il ceduo composto con querce. *Bactrospora dryina* è nota nell'Europa Centrale unicamente in questo tipo di bosco. Se si considera che questa specie cresce solo in microhabitat situati in profonde crepe della corteccia di querce secolari, sulla parte del tronco inclinata e protetta dalla pioggia, si capisce che anche per specie di questa categoria sono impellenti interventi di protezione a lungo termine. Le particolari esigenze relative al microhabitat di numerose specie di questo gruppo sono note, in particolar modo dei generi *Calicium, Chaenotheca* e *Cyphelium* che crescono tutti su alberi vecchi in soprassuoli ad alta continuità ecologica. Anche in questo gruppo di licheni è importante proteggere le specie. Un albero ospitante una specie minacciata può essere abbattuto solo se questa cresce con certezza su più di otto altri alberi.

Percentuale delle specie minacciate ed estinte

Se riuniamo le categorie di minaccia sopra descritte, constatiamo che il 44% di tutti i licheni epifiti deve essere ritenuto minacciato o estinto (tab. 7).

Specie potenzialmente minacciate

Del 56% delle specie attualmente classificate come non minacciate, per 84 specie si deve tuttavia supporre un continuo regresso (criteri A2, A3 e A4). Tuttavia il regresso stimato non è tale da comportare un inserimento nelle categorie di minaccia CR, EN o VU. Se persiste l'evoluzione negativa, in futuro è da prevedere l'inserimento in una categoria di minaccia superiore. Queste 84 specie sono raggruppate nella categoria potenzialmente minacciate (tab. 8). Colpisce il fatto che in Paesi limitrofi, molte di queste specie sono già classificate come minacciate. Solo in pochi casi questo è dovuto a fattori climatici. Nella maggior parte dei casi in queste regioni esse sono minacciate a causa di interventi umani e possono essere salvate solo con dispendiosi interventi di protezione.

Tab. 7: Frequenza assoluta e percentuale delle 534 specie di licheni epifiti classificate in Svizzera nelle diverse categorie della Lista Rossa.

Categoria di minaccia	Numero di specie	% di tutte le specie	% cumulativa
RE	22	4,2%	4,2%
CR	35	6,7%	10,9%
EN	87	16,7%	27,6%
VU	86	16,5%	44,1%
NT	84	16,1%	60,2%
LC	199	38,5%	98,7%
DD	7	1,3	100

Specie non minacciate

La Lista Rossa elenca infine 199 specie di licheni non minacciate (LC) in Svizzera, per le quali, pur persistendo lo sfruttamento delle risorse naturali, per i prossimi anni non si prevedono rischi (tab. 9). Bisogna però ricordare che in questo gruppo (numericamente il più grande) non solo troviamo specie comuni che si trovano ovunque, ma anche un numero ragguardevole di specie che nei Paesi limitrofi sono a rischio o addirittura estinte.

Specie con dati insufficienti

Per sette taxa, per lo più rari, al momento non è possibile attribuire con certezza la categoria di minaccia a cui appartengono. Alcune di queste specie sono state descritte per la prima volta quando i lavori a questa Lista Rossa erano già avanzati, così che si deve ammettere che la specie non era stata recensita correttamente. Nella presente Lista Rossa sono classificati nella categoria (DD) (tab. 10).

Specie valutate e non prese in considerazione

In seguito al lavoro sul campo, all'esame di materiale di erbari e della bibliografia recente sono state identificate 624 specie di licheni epifiti, vale a dire presenti su corteccia di piante vive. Non tutte queste specie sono ospiti obbligati di corteccia vivente. Per 104 specie si è ammesso che la maggioranza dei siti di ritrovamento era legno morto, terra o roccia (tab. 11). C'era quindi da aspettarsi che con i metodi di rilevamento usati non fosse possibile determinare in modo soddisfacente la categoria di minaccia di queste specie, poiché è stata rilevata soltanto una piccola parte dei siti di crescita. Queste specie sono state perciò escluse dalla Lista Rossa dei licheni epifiti (stato NE). Una parte delle specie qui escluse, è stata tuttavia inclusa nella Lista Rossa dei licheni terricoli. La maggior parte dovrebbe tuttavia essere riesaminata in un prossimo studio dei licheni su legno marcescente e su roccia.

Le rimanenti 520 specie o gruppi di specie crescono esclusivamente (386 specie) o soprattutto (134 specie) in modo epifitico e sono state usate per l'elaborazione della Lista Rossa.

È opportuno menzionare qui un altro gruppo, la cui segnalazione per la Svizzera è probabilmente frutto di confusioni. Vi appartiene *Nephroma helveticum*, per il quale sono indicati luoghi di ritrovamento sicuri nella Foresta Nera settentrionale (WIRTH 1995), ma per la Svizzera non sono noti ritrovamenti sicuri.

Tab. 8: Lista delle 84 specie di licheni epifiti potenzialmente minacciate in Svizzera (NT). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	S	Specie	D	Α	I	NL	GB	S
Acrocordia cavata	М	М		†			Lecidea hypopta						
Acrocordia gemmata	M			М			Lecidella aff. prasinula						
Alectoria sarmentosa	M	М					Leptogium saturninum	М				М	
Arthonia cinnabarina	M	М		†		M	Micarea cinerea	М					
Arthonia muscigena	M		M				Mycoblastus sanguinarius	М	M	M			
Bacidia absistens	†					М	Nephroma bellum	М	M	M			
Bacidia beckhausii	M						Nephroma parile	М	M	M			
Bacidia globulosa	M						Ochrolechia arborea	М					
Biatora fallax	†						Ochrolechia turneri	М			М		
Biatora helvola	М						Parmelia acetabulum	М					
Biatora porphyroplaca							Parmelia elegantula	М					М
Bryoria capillaris	М			†			Parmelia exasperata	М			М		
Bryoria implexa	М	М			†		Parmelia flaventior						
Buellia disciformis	М				·		Parmelia glabra	М					
Buellia poeltii	М	М					Parmelia pastillifera	М	М		†		
Calicium abietinum	М			†		М	Parmelia quercina	М			М	М	
Caloplaca cerinella	М			†			Parmeliella triptophylla	М	M				
Caloplaca cerinelloides	М			M			Peltigera collina	М	M				
Catinaria atropurpurea	†						Pertusaria pupillaris		M				
Cetrelia cetrarioides	M						Phaeophyscia ciliata	М	М		†		
Chaenotheca brachypoda	М	М		М			Phaeophyscia hirsuta	М	М				
Chaenotheca brunneola	М	М		†			Phlyctis agelaea	М	М		†		
Chaenotheca gracilenta	М			'	М	М	Physconia enteroxantha	М					
Cliostomum corrugatum	М	М	М		М	•••	Physconia grisea						
Cyphelium inquinans	М	М	М	М	•••		Physconia perisidiosa	М			М		
Evernia divaricata	M			М		М	Pyrenula laevigata	М	M				М
Evernia mesomorpha	M					М	Pyrenula nitidella	М				†	М
Fellhanera bouteillei	M	М	М			M	Ramalina fraxinea	М			М		
Hypocenomyce caradocens			141			141	Ramalina pollinaria	М			М		
Lecanora albella	M						Rinodina capensis	М	М				
Lecanora allophana	M						Rinodina exigua						
Lecanora anopta	IVI	М	М				Rinodina griseosoralifera	М	M				
Lecanora conizaeoides		IVI	IVI				Rinodina pyrina	М			†		
							Rinodina sophodes	М	M				
Lecanora expallens							Rinodina sp.						
Lecanora gisleri	N 4						Ropalospora viridis						
Lecanora intumescens	М			†			Schismatomma pericleum	М	М	M			М
Lecanora leptyrodes							Tephromela atra	М					
Lecanora praesistens							Usnea cavernosa	М	M				
Lecanora salicicola							Usnea filipendula	М			†		
Lecanora sambuci	M			†			Varicellaria rhodocarpa	М					
Lecanora subcarpinea	M						Xanthoria fulva	M					

Tab. 9: Lista delle 200 specie di licheni epifiti non minacciate in Svizzera (LC). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; Wirth et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; Church et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	S	Specie	D	Α	I	NL	GB	S
Agonimia allobata		М		М			Chaenotheca stemonea	М					
Agonimia tristicula	М						Chaenotheca trichialis	М					
Amandinea punctata							Chrysothrix candelaris	М			М		
Anisomeridium polypori	М						Cladonia cenotea	М					
Arthonia didyma	М			М			Cladonia coniocraea						
Arthonia mediella	†	М	М				Cladonia digitata				М		
Arthonia radiata	М						Cladonia fimbriata						
Arthonia spadicea	М						Cladonia squamosa						
Arthothelium ruanum	М			М			Collema flaccidum	М					
Bacidia arceutina	М			М			Dimerella pineti						
Bacidia arnoldiana							Evernia prunastri						
Bacidia chloroticula							Graphis scripta	М			М		
Bacidia delicata						M	Gyalideopsis anastomosans		М	М			
Bacidia naegelii	М						Haematomma ochroleucum	М					
Bacidia neosquamulosa							Halecania viridescens						
Bacidia phacodes	М			М		M	Hyperphyscia adglutinata	М	М				М
Bacidia rubella	М			М			Hypocenomyce scalaris						
Bacidia subincompta	М						Hypocenomyce sorophora						
Biatora chrysantha	М						Hypogymnia austerodes	М	М				
Biatora efflorescens	М						Hypogymnia bitteri						
Biatora flavopunctata	М	М					Hypogymnia farinacea	М					
Biatora subduplex							Hypogymnia physodes						
Biatora vacciniicola							Hypogymnia tubulosa						
Biatoridium monasteriense	М	М			М		Imshaugia aleurites	М					
Bryoria fuscescens	М			М			Japewia tornoensis	М					
Buellia arborea							Lauderlindsaya acroglypta	М					
Buellia griseovirens							Lecania cyrtella	М					
Buellia schaereri	М						Lecanora aff. expallens						
Calicium glaucellum	М			М			Lecanora argentata	М			М		
Calicium montanum							Lecanora barkmaneana						
Calicium salicinum	М			М			Lecanora boligera						
Calicium trabinellum	М				†		Lecanora cadubriae						
Calicium viride	М			М			Lecanora carpinea	М					
Caloplaca cerina	М			†			Lecanora phaeostigma						
Caloplaca chlorina		М					Lecanora chlarotera						
Caloplaca ferruginea	М			М			Lecanora circumborealis	М					
Caloplaca herbidella	М						Lecanora expersa	М	М				
Caloplaca holocarpa							Lecanora fuscescens					†	
Caloplaca isidiigera							Lecanora hagenii						
Caloplaca sorocarpa		М	М				Lecanora horiza	М					
Caloplaca sp.1							Lecanora mughicola						
Candelaria concolor	М						Lecanora persimilis	М					
Candelariella reflexa						M	Lecanora pulicaris						
Candelariella vitellina							Lecanora saligna						
Candelariella xanthostigma							Lecanora strobilina						
Catillaria nigroclavata	М			М			Lecanora subintricata						
Cetraria chlorophylla				М			Lecanora symmicta	М					
Chaenotheca chrysocephala	М						Lecanora varia	М			М		
Chaenotheca ferruginea			М				Lecidea amaurospoda	М					
-							•						

Tab. 9: Lista delle 200 specie di licheni epifiti non minacciate in Svizzera (LC) (continuazione)

Specie	D	Α	I	NL	GB	<u>s</u>	Specie	D	Α	ı	NL	GB	S
Lecidea leprarioides							Parmeliopsis ambigua						
Lecidea nylanderi	†						Parmeliopsis hyperopta				†		
_ecidea porphyrospoda							Pertusaria aff. pulvereo-						
ecidea turgidula	М						sulphurata						
ecidella aff. leprothalla							Pertusaria albescens	M					
ecidella elaeochroma	М						Pertusaria amara	M					
ecidella flavosorediata	М	М					Pertusaria leioplaca	M			М		
.ecidella sp.1							Phaeophyscia chloantha	M	М				
ecidella sp.2							Phaeophyscia endophoenice	a M					
ecidella sp.3							Phaeophyscia orbicularis						
epraria eburnea							Phlyctis argena						
epraria elobata							Physcia adscendens						
epraria incana							Physcia aipolia	M			M		
epraria jackii							Physcia stellaris	M					
epraria lobificans							Physcia tenella						
epraria obtusatica							Physconia distorta	M			М		
epraria rigidula							Placynthiella dasaea						
eproloma vouauxii	М						Placynthiella icmalea						
etharia vulpina	М						Platismatia glauca						
oxospora elatina			М	†			Porina aenea						
Micarea denigrata							Porina leptalea	M	М	М	М		
licarea melaena	М						Protoparmelia hypotremella						
licarea nitschkeana	М						Pseudevernia furfuracea						
Micarea peliocarpa	М						Pyrenula nitida	М			М	М	
Micarea prasina							Ramalina farinacea	М					
Nycobilimbia epixanthoides	М						Reichlingia leopoldii						
lycobilimbia sabuletorum							Rinodina archaea	М	М				
Nycobilimbia sanguineoatra	М						Rinodina malangica	М					
lycoblastus alpinus							Rinodina orculata	М					
Nycoblastus fucatus							Rinodina septentrionalis						
lormandina pulchella	М			М			Scoliciosporum chlorococcu	m			М		
Ochrolechia alboflavescens							Scoliciosporum gallurae						
Ochrolechia androgyna	М						Scoliciosporum sarothamni						
Ochrolechia microstictoides		М					Scoliciosporum umbrinum		М				
pegrapha atra	М	М					Strangospora moriformis	М	М		М		
pegrapha rufescens	М						Strigula stigmatella	М	М				
pegrapha sp.							Trapeliopsis flexuosa						
)pegrapha varia	М			М			Usnea diplotypus	М					М
pegrapha vermicellifera	М	М		М		М	Usnea hirta	М			М		
Dpegrapha viridis	М						Usnea lapponica	М	М				
Dpegrapha vulgata	М						Usnea prostrata						
Parmelia caperata	М					М	Usnea scabrata	М	М				М
Parmelia exasperatula							Usnea subfloridana	М			М		
Parmelia glabratula							Usnea substerilis	М					
Parmelia revoluta	М					М	Vezdaea aestivalis	М	М	М			
Parmelia saxatilis							Vulpicida pinastri	М			М		
Parmelia subargentifera	М						Xanthoria candelaria						
Parmelia subaurifera	М						Xanthoria fallax	М					М
Parmelia submontana	М	М				М	Xanthoria parietina						
Parmelia subrudecta	М					М	Xanthoria polycarpa						
Parmelia sulcata							. , ,						
Parmelia tiliacea	М			М									

Tab. 10: Lista delle 7 specie di licheni per le quali i dati a disposizione sono insufficienti (DD). I simboli indicano in quale Paese le specie sono da considerare estinte (†) o minacciate (M): Germania (D; WIRTH et al. 1996), Austria (A; TÜRK & HAFELLNER 1999), Italia (I; NIMIS 2000), Olanda (NL; APTROOT et al. 1998), Inghilterra e Galles (GB; CHURCH et al. 1996), Svezia (S; GÄRDENFORS 2000).

Specie	D	Α	I	NL	GB	S
Bryoria subcana				М		
Caloplaca ulcerosa	М			М		
Candelariella lutella		M				
Fellhanera viridisorediata						
Fuscidea pusilla						
Lecanora flavoleprosa						
Xylographa minutula						

Tab. 11: Elenco di 104 specie di licheni epifiti che crescono per lo più su legno marcescente, terra o roccia. Queste specie non sono state considerate nella Lista Rossa dei licheni epifiti (NE).

Specie

Absconditella annexa (Arnold) Vězda 1965 Anzina carneonivea (Anzi) Scheideg. 1985 Arthonia arthonioides (Ach.) A.L.Sm. 1911 Bacidia caligans (Nyl.) A.L.Sm. 1911 Baeomyces rufus (Hudson) Rebent. Biatora vernalis (L.) Fr. 1822

Brodoa intestiniformis (Vill.) Goward 1987 Caloplaca citrina (Hoffm.) Th.Fr. 1860 Candelariella aurella (Hoffm.) Zahlbr. 1928 Catillaria erysiboides (Nyl.) Th.Fr. 1874 Cetraria hepatizon (Ach.) Vainio 1899 Cetraria islandica (L.) Ach. 1803 Chaenotheca xyloxena Nadv. 1934 Chrysothrix chlorina (Ach.) Laundon 1981 Cladonia bacilliformis (Nyl.) Vain. 1894 Cladonia bellidiflora (Ach.) Schaerer 1823

Cladonia carneola (Fr.) Fr. 1831 Cladonia cornuta (L.) Hoffm. 1791 Cladonia deformis (L.) Hoffm.1796

Cladonia furcata (Hudson) Schrader ssp. furcata 1794

Cladonia glauca Flörke 1828 Cladonia gracilis (L.) Willd. 1787 Cladonia incrassata Flörke 1826 Cladonia macilenta Hoffm. 1796

Cladonia norvegica Tønsb. & Holien 19844 Cladonia parasitica (Hoffm.) Hoffm. 1796 Cladonia pleurota (Flörke) Schaerer 1850 Cladonia polydactyla (Flörke) Sprengel 1827

Cladonia pyxidata (L.) Hoffm. 1796 Cladonia rangiformis Hoffm. 1796 Cladonia sulphurina (Michaux) Fr. 1831

Collema auriforme (With.) Coppins & Laundon 1984 Cyphelium notarisii (Tul.) Blomb. & Forss. 1880

Cyphelium tigillare (Ach.) Ach. 1815 Cystocoleus ebeneus (Dillw.) Thwaites 1849 Diploschistes muscorum (Scop.) R.Sant. 1980 Enterographa zonata (Korber) Källsten 1989

Fuscidea praeruptorum (Du Rietz & H.Magn.) V.Wirth & Vězda 1972

Fuscidea recensa (Stirton) Hertel, V.Wirth & Vězda 1972

Icmadophila ericetorum (L.) Zahlbr. 1895
Lecanora hypoptoides (Nyl.) Nyl. 1872
Lecanora muralis (Schreb.) Rabenh. 1845
Lecidea huxariensis (Lahm) Zahlbr.1899
Lecidella scabra (Taylor) Hertel & Leuck. 1969
Lempholemma polyanthes (Bernh.) Malme 1924
Lepraria caesioalba (B. de Lesd.) Laundon 1968
Leprocaulon microscopicum (Vill.) D.Hawksw. 1974
Leproloma membranaceum (Dickson) Vainio 1899
Leptogium gelatinosum (With.) Laundon 1984
Leptogium intermedium (Arnold) Arnold 1885
Leptogium lichenoides (L.) Zahlbr. 1924
Leptogium subtile (Schrader) Torss. 1843

Specie

Leptogium tenuissimum (Dickson) Körber 1855 Massalongia carnosa (Dickson) Körber 1955 Megaspora verrucosa (Ach.) Haf. & V.Wirth 1987 Micarea botryoides (Nyl.) Coppins 1980 Micarea elachista (Korber) Coppins & R.Sant. 1983

Micarea globulosella (Nyl.) Coppins 1983 Micarea hedlundii Coppins 1983 Micarea lignaria (Ach.) Hedl. 1892

Micarea nigella Coppins 1983 Mycobilimbia fusca (Massal.) Haf. & V. Wirth 1987 Mycobilimbia sabuletorum (Schreber) Haf. 1984

Omphalina umbellifera (L.) Quel. 1886
Pannaria pezizoides (Weber) Trevisan 1869
Parmelia conspersa (Ach.) Ach. 1803
Parmelia omphalodes (L.) Ach. 1803
Peltigera aphthosa (L.) Willd. 1787
Peltigera canina (L.) Willd. 1787
Peltigera degenii Gyelnik 1921

Peltigera didactyla (With.) Laundon 1984 Peltigera elisabethae Gyelnik 1927

Peltigera horizontalis (Hudson) Baumg. 1790 Peltigera leucophlebia (Nyl.) Gyelnik 1926 Peltigera membranacea (Ach.) Nyl. 1887 Peltigera neckeri Müll. Arg. 1862

Peltigera polydactyla (Necker) Hoffm. 1790 Peltigera praetextata (Sommerf.) Zopf 1909 Peltigera rufescens (Weiss) Humb. 1793

Phaeophyscia endococcina (Körber) Moberg 1977 Phaeophyscia nigricans (Flörke) Moberg 1977 Phaeophyscia sciastra (Ach.) Moberg 1977 Physcia caesia (Hoffm.) Furnr. 1839 Physcia dimidiata (Arnold) Nyl. 1881

Placynthiella uliginosa (Schrader) Coppins & P.James 1984

Porina glaucocinerea (Nyl.) Vain. 1922

Physcia dubia (Hoffm.) Lettau 1912

Porpidia macrocarpa (DC.) Hertel & Schwab 1984 Psoroma hypnorum (Vahl) Gray var. hypnorum

Racodium rupestre Pers. 1932

Rhizocarpon geographicum (L.) DC. 1805 Rhizocarpon polycarpum (Hepp) Th.Fr. 1874 Thelomma ocellatum (Körber) Tibell 1976

Toninia aromatica (Sm.) Massal.

Trapeliopsis gelatinosa (Florke) Coppins & P.James 1984

Trapeliopsis granulosa (Hoffm.) Lumbsch

Trapeliopsis pseudogranulosa Coppins & P.James 1984

Verrucaria praetermissa (Trevis.) Anzi 1864

Verrucaria xyloxena Norn. 1867 Vezdaea retigera Poelt & Döbbeler 1977 Vezdaea rheocarpa Poelt & Döbbeler 1977 Xanthoria elegans (Link) Th. Fr. 1860

Xylographa parallela (Ach.) Behlen & Desb. 1835

Xylographa vitiligo (Ach.) Laundon 1963

4.5 Lista Rossa

I criteri usati per stilare le Liste Rosse svizzere sono stati adoperati anche per la determinazione delle categorie di minaccia regionali. Solo l'area di distribuzione è stata tralasciata. Come prevedibile, nelle singole regioni compare un numero di specie leggermente minore rispetto a tutto il territorio svizzero. La regione più ricca di licheni è la regione alpina, nella quale sono presenti più dell'80% di tutte le specie di licheni trovati in Svizzera. Sorprendentemente però anche sull'Altopiano, la regione più povera di specie, è stato trovato circa il 60% di tutte le specie svizzere (tab. 12).

Purtroppo al momento non si può ancora indicare con sicurezza quante specie siano estinte nelle singole regioni. Lo studio dei dati storici non è ancora terminato e i dati presentati devono essere considerati come stime approssimative. Nei casi dove i campioni di erbario dimostrano la presenza di una specie in una data regione dove non è più stata ritrovata durante i rilievi per questa Lista Rossa, nella Lista Rossa regionalizzata (tab. 13) essa è stata indicata come RE. Così, ad es. per l'Altopiano, 18 specie risultano estinte. Questa cifra è però indubbiamente sottostimata. Per questo motivo si è rinunciato a inserire nella tabella 12 il numero di specie RE.

Tab. 12: Numero di specie presenti nelle 5 regioni biogeografiche della Svizzera e classificate per categorie di minaccia.

Categoria di minaccia	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi
CR	35	34	69	49	54
EN	69	67	77	92	49
VU	125	89	120	113	90
NT	63	40	60	61	54
LC	45	76	65	111	27
Numero di specie	337	306	391	427	275

Tab. 13: Lista Rossa regionalizzata dei licheni epifiti della Svizzera. Le categorie di minaccia e i criteri sono indicati per l'insieme della Svizzera e le cinque regioni biogeografiche Giura, Altopiano, Prealpi, Alpi, Sud delle Alpi. Le specie che crescono anche su terra, legno marcescente o roccia, sono state classificate in una categoria inferiore (declassificazione: 🔻)

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi D	Declassifi- cazione
Acrocordia cavata (Ach.) R.C. Harris 1974	NT (A4)	EN (B)	EN (B, C2)	EN (B, C2)	EN (B, C2)	ı	
Acrocordia gemmata (Ach.) A. Massal. 1854	NT (A4)	(d) NA	VU (A4, B, C1, C2, D)	EN (B, C2)	VU (B, D)	EN (B, C2, D)	
Agonimia allobata (Stizenb.) P. James 1992	C	VU (D)	VU (D)	(a) NA	VU (A3, D)	CR (A3, E)	
Agonimia octospora Coppins & P. James 1978	EN (B)	I	EN (B)	I	EN (B)	CR(B)	
Agonimia tristicula (Nyl.) Zahlbr. 1909	C	NT (D)	NT (D)	NT (D)	NT (D)	NT(D)	>
Alectoria sarmentosa (Ach.) Ach. 1810	NT (A4)	EN (A2, C2)	CR (B, C2)	VU (B, D)	VU (D)	1	
Amandinea punctata (Hoffm.) Coppins & Scheid. 1993	C	NT (D)	27	27	C	C	>
Anaptychia ciliaris (L.) A. Massal. 1853	VU (A2, A4)	VU (A4)	VU (A2, A4)	CR (C2, D)	VU (A4, D)	CR (A3, B, D, E)	
Anaptychia crinalis (Schleich.) Vězda 1977	VU (A2, A3, B, C2, D)	ı	RE (A2)	ı	VU (A2, A3, B, C2, D)	1	
Anisomeridium polypori (Ellis & Everhart) M.E. Barr 1996	C	(D)	C	VU (D)	VU (D)	VU (D)	
Arthonia apatetica (A. Massal.) Th. Fr. 1866	EN (B)	1	CR (B, C2)	CR (B)	EN (B)	1	
Arthonia byssacea (Weigel) Almq. 1880	VU (A4, B, C1, C2, D)	EN (B, C2)	VU (A4, B, C1, C2, D)	I	I	ı	
Arthonia cinereopruinosa Schaerer 1850	RE (A2)	1	1	1	I	1	
Arthonia cinnabarina (DC.) Wallr. 1831	NT (A4)	(D)	VU (D)	VU (D)	EN (B, C2, D)	1	
Arthonia didyma Körber 1853	2]	2	OJ	(a) nv	(a) n _A	(D) NA	
Arthonia dispersa (Schrader) Nyl. 1861	EN (A4, B)	ı	EN (A4, B)	CR (B, C2)	CR (B)	I	
Arthonia elegans (Ach.) Almq. 1880	RE (A2)	1	1	1	I	1	
Arthonia faginea Müll. Arg.	CR (B)	ı	I	ı	CR (B)	I	
Arthonia fuliginosa (Turner & Borrer) Flotow 1850	EN (A4, B)	CR (B, C2)	1	EN (A4, B)	CR (B)	1	
Arthonia helvola (Nyl.) Nyl. 1867	RE (A2)	I	I	I	I	I	
Arthonia leucopellaea (Ach.) Almq. 1880	VU (B, C2, D)	EN (B, C2, D)	ı	CR (D)	EN (B, C2)	1	
Arthonia mediella Nyl. 1859	C	VU (D)	I	VU (D)	C	VU (D)	
Arthonia medusula (Pers.) Nyl. 1857	RE (A2)	ı	1	ı	ı	ı	
Arthonia muscigena Th.Fr. 1865	NT (A4)	I	EN (B, C2)	EN (B)	EN (B)	CR(B)	
Arthonia pruinata (Pers.) A.L.Sm. 1911	RE (A2)	ı	RE (A2)	ı	ı	1	
Arthonia radiata (Pers.) Ach. 1808	C	C	C	C	O,	(D) NA	
Arthonia reniformis (Pers.) Nyl. 1813	CR (A3, D, E)	ı	1	ı	CR (A3, D, E)	ı	
Arthonia spadicea Leighton 1854	C	VU (D)	CC	CC	VU (D)	EN (D)	
Arthonia vinosa Leighton 1856	EN (B, C2)	EN (B, C2)	EN (B, C2)	EN (B, C2)	EN (B, C2, D)	1	
Arthothelium ruanum (A. Massal.) Körber 1861	C	VU (D)	CC	VU (D)	VU (D)	VU (D)	
Arthothelium spectabile A. Massal. 1852	RE (A2)	I	1	ı	1	1	
Arthrosporum populorum A. Massal. 1853	EN (A4)	I	1	I	EN (A4, B)	EN (A4, B, C1, C2, D)	<u> </u>
Bacidia absistens (Nyl.) Arnold 1870	NT (A4)	CR (B)	CR (B)	VU (B, D)	EN (B)	CR (B)	
Bacidia arceutina (Ach.) Arnold 1869	C	VU (D)	VU (D)	VU (D)	VU (D)	EN (D)	
Bacidia arnoldiana Körber 1860	C	NT (D)	S	NT (D)	NT (D)	1	>
Bacidia auerswaldii (Stiz.) Migula 1929	RE (A2)	I	1	ı	1	1	
Bacidia beckhausii Körber 1860	NT (A4)	VU (B, D)	EN (B)	EN (B, C2)	VU (D)	CR(B)	
Bacidia biatorina (Körber) Vainio 1922	CR (C2)	I	I	CR (C2)	I	1	
Bacidia chloroticula (Nyl.) A.L.Sm. 1911	C	NT (D)	NT (D)	(a) n.v	NT (D)	1	>
Bacidia circumspecta (Vainio) Malme 1895	EN (A4)	EN (A4, B)	EN (A4, B, C1, C2)	EN (A4)	EN (A4)	1	
Bacidia delicata (Leigthon) Coppins 1980	C	NT (D)	NT (D)	S	NT (D)	VU (D)	>

Spacia	Syizzera	z i i	Altonian	Prealpi	idla	Sud delle Alni Declassifi-
	2007	3			<u>.</u>	
	1					
Bacidia fraxinea Lonnr. 1858	CR (A3, B, C2, D, E)	I	1	I	1	CR (A3, B, C2, D, E)
Bacidia friesiana (Hepp) Körber 1860	RE (A2)	1	1	1	1	1
Bacidia globulosa (Flörke) Hafellner & V. Wirth 1987	NT (A4)	VU (D)	(D) NA	EN (C2)	VU (D)	EN (B)
Bacidia hegetschweileri (Hepp) Vainio 1922	EN (A3, B, C2, D)	I	I	I	EN (A3, B, C2, D)	I
Bacidia incompta (Hooker) Anzi 1860	VU (A4, B)	CR (B)	EN (B, C2, D)	EN (B)	EN (B)	I
Bacidia laurocerasi (Duby) Zahlbr. 1926	EN (A4)	I	EN (A4, B, C1, C2)	EN (A4)	EN (A4)	ı
Bacidia naegelii (Hepp) Zahlbr. 1909	27	VU (D)	VU (D)	S	(D) NA	VU (D)
Bacidia neosquamulosa Aptroot & Herk 1999	C	VU (D)	VU (D)	VU (D)	I	ı
Bacidia phacodes (Körber) Vězda 1860	27	VU (D)	EN (D)	EN (D)	(D) NA	I
Bacidia polychroa (Th.Fr.) Körber 1860	RE (A2)	I	I	I	I	I
Bacidia rosella (Pers.) De Not. 1846	EN (A3, A4, B)	1	EN (A4, B, C1, C2, E)	EN (A4, B)	1	CR (A3, B, D, E)
Bacidia rubella (Hoffm.) A. Massal. 1852	C	CO	C	ST	C	VU (D)
Bacidia sp.1	EN (D)	1	1	1	EN (D)	1
Bacidia subincompta (Nyl.) Arnold 1870	CC	VU (D)	O7	VU (D)	OJ.	VU (D)
Bactrospora dryina (Ach.) A. Massal. 1852	VU (A4)	1	VU (A4)	1	1	I
Biatora chrysantha (Zahlbr.) Printzen 1994	C	VU (D)	VU (D)	VU (D)	C	VU (D)
Biatora efflorescens (Hedl.) Räsänen 1935	2	(D) (D)	VU (D)	VU (D)	(D) NA	VU (D)
Biatora fallax Hepp 1860	NT (A4)	EN (B)	I	EN (B)	VU (D)	EN (B)
Biatora flavopunctata (Tønsberg) Hinteregger & Printzen 1994 LC	4 LC	1	1	NT (D)	27	•
Biatora helvola Hellbom 1867	NT (A4)	VU (B, D)	CR (B)	VU (D)	VU (B, D)	I
Biatora ocelliformis (Nyl.) Arnold 1870	EN (B, C2)	EN (B, C2, D)	1	EN (B, C2)	CR (B)	1
Biatora porphyroplaca Hinteregger & Poelt 1994	NT (D)	I	I	I	NT (D)	•
Biatora rufidula (Graewe) S. Ekman & Printzen 1995	EN (B, C2, D)	1	1	ı	EN (B, C2, D)	1
Biatora subduplex (Nyl.) Printzen 1995	C	I	I	NT (D)	NT (D)	•
Biatora vacciniicola (Tønsberg) Printzen 1995	27	1	1	VU (D)	(D) NA	1
Biatoridium delitescens (Arnold) Hafellner 1994	CR (A3, B, C2, D, E)	I	I	I	CR (A3, B, C2, D, E)	I
Biatoridium monasteriense J. Lahm 1860	27	(D) NA	(D) NA	VU (D)	(a) NV	1
Bryoria bicolor (Ehrh.) Brodo & D. Hawksw. 1977	VU (A2)	EN (A2, D)	RE (A2)	EN (C2, D)	VU (A2)	RE (A2) ▼
Bryoria capillaris (Ach.) Brodo & D. Hawksw. 1977	NT (A4)	(a) NA	EN (A4, B, E)	VU (D)	NT (A4)	VU (D)
Bryoria fuscescens (Gyelnik) Brodo & D. Hawksw. 1977	C	NT (D)	VU (B, C2)	NT (D)	C	NT(D)
Bryoria implexa (Hoffm.) Brodo & D.Hawksw. 1977	NT (A4)	VU (B, D)	1	VU (D)	NT (A4)	VU (B, D)
Bryoria nadvornikiana (Gyelnik) Brodo & D. Hawksw. 1977	EN (A2)	CR (A2, B)	RE (A2)	EN (A2)	VU (A2, D)	I
Bryoria simplicior	RE (A2)	1	1	ı	RE (A2)	1
Bryoria sp. 1	EN (D)	EN (D)	1	I	EN (D)	1
Bryoria subcana (Stizenb.) Brodo & D. Hawksw. 1977	DD	1	1	1	DD	1
Buellia alboatra (Hoffm.) Th. Fr. 1861	EN (A3, D)	EN (C2)	EN (B, C2, D, E)	I	CR (C2)	CR (B, C2)
Buellia arborea Coppins & Tønsberg 1992	C	VU (D)	NT (D)	1	NT (D)	NT(D)
Buellia amoldii Servit 1931	RE (A2)	1	1	1	I	I
Buellia disciformis (Fr.) Mudd 1861	NT (A4)	VU (D)	VU (D)	VU (D)	NT (A4)	(D) (D)
Buellia erubescens Arnold 1873	VU (A4)	EN (B)	EN (B)	EN (B, C2)	VU (A4)	EN (B)
Buellia griseovirens (Sm.) Almb. 1952	C	CC	C	C	C	CC
Buellia poeltii Schauer 1965	NT (A4)	EN (B)	I	EN (B)	EN (B)	EN (B, C2, D)
Buellia schaereri De Not. 1846	S	EN (D)	VU (D)	VU (D)	C	(D)
Buellia triphragmioides Anzi 1868	CR (A3, D, E)	1	I	I	CR (A3, D, E)	I

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi De	Declassifi-
							cazione
Byssoloma marxinatum (Arnold Sánis 1991	FN (B, C9)		EN (B C2)	EN (B C2)	CB (B)	1	
O-11-11-11-11-11-11-11-11-11-11-11-11-11	(c) (c)					Q	•
Calcium adjection Fels. 1191	(C) (C) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	ı	(a) ov	(D) (V) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	(C) (D)	(a) 0v	-
Caliciani adaequatuni Ivyi. 1009				(A), D, D, E)		ı	
Calicium adspersum Pers. 1798	VO (A4)	EN (B, CZ, D)	EN (B, CZ)	VO (A4, D)	EN (B, CZ, U)	ı	•
Calicium glaucellum Acn. 1903	ָּבָּיִבָּיִבָּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְ	(D) IN	(D) 0A	(D) Ov	(a) in	I	>
Calicium lenticulare Ach. 1816	VU (A4)	I	I	EN (B, C2)	EN (B)	I	
Calicium montanum Tibell 1999	CC	(D) NA	EN (D)	VU (D)	VU (D)	VU (D)	
Calicium parvum Tibell 1975	VU (A4)	EN (B, C2, D)	I	VU (A4, D)	CR (B)	1	
Calicium quercinum Pers. 1797	VU (A4, B, C1, C2, D)	1	1	EN (B)	VU (A4, B, C1, C2, D)	1	>
Calicium salicinum Pers. 1794	OT	VU (B, C2)	NT (B, C2, D)	VU (B)	EN (B)	ı	>
Calicium trabinellum (Ach.) Ach. 1803	C	(a) n _A	1	(D) NA	27	NT (D)	>
Calicium viride Pers. 1794	C	NT (D)	ı	NT(D)	27	VU (D)	•
Caloplaca alnetorum Giralt, Nimis & Poelt 1992	VU (A4)	EN (B)	1	CR (B)	VU (A4)	1	
Caloplaca assigena (Arnold) DT. & Sarnth. 1902	VU (B, C2)	I	I	EN (B)	EN (B)	VU (B, C2, D)	•
Caloplaca cerina (Hedwig) Th. Fr. 1860	C	NT (D)	NT (D)	CC	27	27	>
Caloplaca cerinella (Nyl.) Flagey 1896	NT (A4)	(D) NA	NT (A4)	VU (D)	NT (A4)	CR (B)	
Caloplaca cerinelloides (Erichsen) Poelt 1993	NT (A4)	(a) n _A	(D) (V)	VU (B, D)	NT (A4)	CR (C2)	
Caloplaca chlorina (Flotow) Oliv. 1912	OT	NT (D)	NT (D)	NT(D)	27	NT (D)	•
Caloplaca chrysophthalma Degel. 1944	EN (A4, C1)	EN (A4, C1)	EN (A4, B, C1, C2)	CR (C2)	EN (A4, B, C1, C2)	1	
Caloplaca ferruginea aggr.	OT	EN (D)	EN (D)	VU (D)	27	VU (D)	
Caloplaca flavorubescens (Hudson) Laundon 1976	EN (A4, B, C1, C2)	1	1	CR (B)	EN (A4, B, C1, C2)	CR (B)	
Caloplaca herbidella (Hue) H. Magn. 1932	9	VU (D)	VU (D)	VU (D)	27	VU (D)	
Caloplaca holocarpa (Ach.) Wade 1965	27	NT (D)	NT (D)	NT(D)	2	NT (D)	>
Caloplaca isidiigera Vězda 1978	O	NT (D)	NT (D)	NT (D)	NT (D)	VU (D)	>
Caloplaca lobulata (Flörke) Hellbom 1897	RE (A2)	1	1	1	1	1	
Caloplaca lucifuga G. Thor 1988	EN (A4)	EN (A4, C1, C2)	EN (A4)	CR (B)	EN (A4, C1)	EN (A4, B)	
Caloplaca obscurella (Körber) Th. Fr. 1880	VU (A4)	VU (A4, B, C1, C2, D)	EN (B)	EN (B)	EN (B)	EN (B)	
Caloplaca pollinii (A. Massal.) Jatta 1900	EN (B, C2)	I	I	I	I	EN (B, C2)	
Caloplaca sorocarpa (Vain.) Zahlbr. 1932	2	VU (D)	ı	NT (D)	C	ı	>
Caloplaca sp.1	C	VU (D)	VU (D)	VU (D)	VU (D)	VU (D)	
Caloplaca ulcerosa Coppins & P. James 1979	DD	ı	1	ı	I	1	
Candelaria concolor (Dickson) B. Stein 1879	C	VU (D)	C	VU (D)	C	VU (D)	
Candelariella lutella (Vain.) Räsänen 1939	DD	1	1	1	1	DD	
Candelariella reflexa (Nyl.) Lettau 1912	C	C	C	C	C	C	
Candelariella subdeflexa (Nyl.) Lettau 1912	EN (B, C2)	1	CR (B)	EN (B, C2, D)	EN (B, C2)	EN (B, C2, D)	
Candelariella viae-lacteae G. Thor & V. Wirth 1995	VU (A4)	I	CR (C2)	CR (B)	VU (A4, B, D)	EN (B, C2, D)	
Candelariella vitellina (Hoffm.) Müll.Arg. 1894	2	NT (D)	NT (D)	NT (D)	C	NT (D)	>
Candelariella xanthostigma (Ach.) Lettau 1912	C	C	CC	CC	C	VU (D)	
Catapyrenium psoromoides (Borrer) R. Sant. 1980	RE (A2)	I	1	1	ı	ı	
Catillaria alba Coppins & Vězda 1993	EN (A4, B)	I	I	EN (A4, B)	EN (A4, B, C1, C2, D)	EN (A4, B)	
Catillaria nigroclavata (Nyl.) Schuler 1902	OJ.	VU (D)	C	CC	CC	VU (D)	
Catillaria pulverea (Borrer) Lettau 1912	VU (A4)	I	CR (B)	VU (A4, D)	EN (B)	I	
Catinaria atropurpurea (Schaerer) Vězda & Poelt 1981	NT (A4, B)	EN (B)	1	VU (B)	EN (C2)	1	>
Catinaria papillosa Coppins ined.	CR (D)	I	1	I	CR (D)	I	

		ä					
Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi	Declassifi- cazione
Cetraria chlorophylla (Willd.) Vainio 1896	C	VU (D)	1	(a) nv	C	VU (D)	
Cetraria laureri Krempelh. 1851	VU (A4)	1	1	CR (D)	VU (A3, A4, D)	CR(D)	
Cetraria oakesiana Tuck. 1841	EN (A3, A4)	1	1	EN (A4, B, C1, C2)	EN (A4)	1	
Cetraria sepincola (Ehrh.) Ach. 1803	EN (A4)	EN (A4, B, C1, C2)	I	RE (A2)	EN (A2, A4, B)	CR (C2, D)	
Cetrelia cetrarioides (Duby) W. Culb. & C.F. Culb. 1968	NT (A4)	VU (A2, B, C2, D)	VU (A2, A4, B, C1, C2, D)	VU (D)	VU (A2)	VU (B, D)	
Cetrelia chicitae (W.Culb.) W. Culb. & C.F. Culb. 1968	CR (A3, B, C2, D, E)	I	I	I	CR (A3, B, C2, D, E)	ı	
Cetrelia olivetorum (Nyl.) W. Culb. & C.F. Culb. 1968	EN (A2, B)	CR (C2)	EN (A2, B, C2)	CR (D)	CR (A2)	RE (A2)	
Chaenotheca brachypoda (Ach.) Tibell 1987	NT (A4)	CR (C2)	VU (D)	CR (C2, D)	CR (C2)	I	
Chaenotheca brunneola (Ach.) Müll. Arg. 1862	NT (D)	VU (D)	NT (D)	VU (D)	(a) NA	1	>
Chaenotheca chlorella (Ach.) Müll. Arg. 1862	EN (A3, A4, B, C1, C2)	CR (B)	EN (A4, B, C1, C2, D)	CR (C2, D)	CR (C2)	ı	
Chaenotheca chrysocephala (Ach.) Th. Fr. 1860	27	NT (D)	NT (D)	NT (D)	27	NT (D)	>
Chaenotheca cinerea (Pers.) Tibell 1980	RE (A2)	I	I	I	I	I	
Chaenotheca ferruginea (Turner & Borrer) Migula 1930	27	NT (D)	O	NT (D)	NT (D)	NT (D)	>
Chaenotheca furfuracea (L.) Tibell 1984	27	NT (D)	ГС	27	27	NT (D)	>
Chaenotheca gracilenta (Ach.) Mattsson & Middelborg 1987	NT (D)	VU (D)	EN (A3, E)	EN (D)	(a) NA	1	>
Chaenotheca hispidula (Ach.) Zahlbr. 1922	EN (A3, B, C2)	CR (B)	EN (B, C2)	CR (D)	EN (B, C2)	ı	
Chaenotheca laevigata Nadv. 1934	EN (A3, B, C2, D)	EN (B, C2, D)	CR (A3, B, C2, E)	CR (B)	CR (B)	1	
Chaenotheca phaeocephala (Turner) Th. Fr. 1860	VU (A3)	EN (B)	CR (A3, B, C2, E)	VU (A3, D)	VU (B, D)	I	
Chaenotheca stemonea (Ach.) Müll. Arg. 1862	C	NT (D)	27	NT (D)	C	NT (D)	>
Chaenotheca subroscida (Eitner) Zahlbr. 1922	VU (A3, A4)	VU (A4, B, D)	I	CR (D)	EN (B, C2, D)	I	
Chaenotheca trichialis (Ach.) Th. Fr. 1860	C	NT (D)	O ₁	NT (D)	27	NT (D)	>
Cheiromycina flabelliformis B. Sutton 1985	CR (A3, B, C2, D, E)	I	I	I	CR (A3, B, C2, D, E)	I	
Chromatochlamys muscorum (Fr.) H. Mayrhofer & Poelt 1985		1	1	CR (A3, B, C2, D, E)	1	1	
Chrysothrix candelaris (L.) Laundon 1981	C	VU (D)	VU (D)	VU (D)	27	VU (D)	
Cladonia cenotea (Ach.) Schaerer 1823	27	NT (D)	1	NT (D)	2]	NT (D)	>
Cladonia coniocraea auct.	27	27	ГС	27	27	NT (D)	>
Cladonia digitata (L.) Hoffm. 1796	27	NT (D)	27	27	27	NT (D)	>
Cladonia fimbriata (L.) Fr. 1831	27	NT (D)	NT (D)	NT (D)	27	NT (D)	>
Cladonia squamosa (Scop.) Hoffm. 1796	27	NT (D)	NT (D)	NT (D)	NT (D)	NT (D)	>
Cliostomum corrugatum (Ach.) Fr. 1831	NT (A4)	EN (B)	NT (B, C2, D)	NT (A4, B, D)	NT (A4, B, D)	I	>
Cliostomum leprosum (Räsänen) Holien & Tønsberg 1992	EN (D)	1	1	EN (D)	ı	ı	
Cliostomum pallens (Kullh.) S. Ekman 1997	EN (E)	I	I	I	I	EN (E)	
Collema conglomeratum Hoffm. 1796	RE (A2)	1	1	1	1	I	
Collema fasciculare (L.) Wigg. 1780	EN (B, C2)	1	1	1	EN (B, C2)	1	
Collema flaccidum (Ach.) Ach. 1810	C	NT (D)	1	NT (D)	NT (D)	EN (D)	>
Collema fragrans (Sm.) Ach. 1814	CR (D)	I	CR (B)	1	EN (A3, A4, B, C1, C2, D)	1	
Collema furfuraceum (Arnold) Du Rietz 1929	CR (D)	1	1	1	CR (B)	CR(D)	
Collema ligerinum (Hy) Harm. 1905	EN (A3, A4, B, C1, C2, D)	1	1	CR (B)	I	CR (B, D)	
Collema nigrescens (Hudson) DC. 1805	VU (A3)	(D) NA	CR (B)	CR (D)	(a) nx	CR(D)	
Collema occultatum Bagl. 1861	CR (A3, B, C2, D, E)	CR (A3, B, C2, D, E)	I	I	I	I	
Collema subflaccidum Degel. 1974	EN (B, C2)	1	1	1	1	EN (B, C2)	
Cyphelium inquinans (Sm.) Trevisan 1862	NT (A3, A4, B)	EN (B)	1	EN (D)	NT (A4, B, D)	1	•
Cyphelium karelicum (Vainio) Räsänen 1939	VU (A3, A4)	EN (C2)	1	CR (C2, D)	VU (A4, B, D)	I	
Cyphelium lucidum (Th.Fr.) Th. Fr. 1862	EN (A3, B, C2, D)	1	1	EN (B, C2, D)	CR (C2, D)	1	
Cypriellath lacidain (111.Ft.) 111. Ft. 1862	EN (A3, B, C2, U)	I	I	EN (B, CZ, D)	(ס, אס) אס	l	

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi De	Declassifi-
							Cazione
Cvphelium pinicola Tibell 1969	EN (B. C2. D)	ı	ı	ı	EN (B. C2. D)	1	>
Dimerella lutea (Dickson) Travisan 1880	EN (A4)	ı	1	(C) 8(C)	EN (A4 B F)	CB/B)	
Dimerella nineti (Ach) Vězda 1975		2	<u> </u>	(2) (2)	î î î î î î î î î î î î î î î î î î î	(C) (N)	
Footrapile (e.conface (Malls) B.C. Harris 1973	VII (A3)			VI (A3 D)		(B (D)	
Expressional cacophaca (Walls, 11.0. Halls 1919)	NT (A4)	(C) [N	(a) (a)	(2, (2))	NT (A4)	(0) 17	
Everyla mesomorpha Nvi 1861	(t-) (t-)				(5) 17	(5) 64	
Evenila mesomothia nyi: 1801	(+t/) [N]	I <u>-</u>	I <u>-</u>	I <u>-</u>	(a) o ₁	(a, (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Follhanara houteillei (Desm.) Võrda 1986	NT (AA)	(S) a)	9	EN (B. Cs)	(B) NJ		
remianela boutelle (Desni), Vezua 1990	(+t-) INI	On (OZ)	(a) 6 ₀	EIV (B, OZ)	(a) EIA (D)	ı	
reilnanera gyropnorica serus, coppins, Diederich &				í			
Scheid. 2001	VU (A3, A4, B, D)	ı	CR (C2)	EN (B)	I	I	
Fellhanera subtilis (Vězda) Diederich & Sérus. 1991	VU (B, C2)	ı	VU (B, C2)	VU (B, C2)	VU (B, C2, D)	I	>
Fellhanera viridisorediata Aptroot, Brand & Spier 1998	DD	1	I	I	I	I	
Fellhaneropsis myrtillicola (Erichsen) Sérus. & Coppins 1996	; EN (B, C2)	1	CR (C2)	CR (B, C2)	1	1	
Fellhaneropsis vezdae (Coppins & P. James) Sérus. &							
Coppins 1996	VU (A4, B, C1, C2, D)	1	EN (C2)	CR (D)	ı	ı	
Fuscidea arboricola Coppins & Tønsberg 1992	VU (B)	EN (B, C2, D)	CR (B)	EN (B)	ı	ı	
Fuscidea pusilla Tønsberg 1992	QQ		1		1	1	
Graphis elegans (Sm.) Ach. 1814	EN (A4. B. C1. C2. D)	ı	EN (A4. B. C1. C2. D)	CB (B)	CB (B)	ı	
Graphis scripta (L.) Ach. 1809) () () () () () () () () () (Ol	LC LC	rc (1)	rc FC	VU (D)	
Gvalecta flotowii Körber 1855	EN (A4)	CB (C2)	CB (C2)	EN (A4. B)	CR (A3. B. D. E)		
Gyalecta truncigena (Ach.) Hepp 1853	VU (A3)	VU (A3, D)	VU (B, C2, D)	VU (D)	١	CR (B)	
Gvalecta ulmi (Sw.) Zahlbr. 1905	EN (A4, C1)	FN (A4, C1, C2)	EN (A4. B. C1. C2)	CB (D)		CR (B)	ı
Gvalideopsis anastomosans P. James & Vězda 1972	(10, 11, 11, 11, 11, 11, 11, 11, 11, 11,	(E) (C) (E)	(T) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(-) (-)	(C) FIX	EN (D)	
Haematomma ochroleicim (Necker) I aindon 1970	<u>-</u>		(C) EN	(C) LN	(C) LN	(i) (i)	•
Lofocació viridocomo Comaino 9 D. Jones 1000	2 2	(a) (b)				(a) (b)	•
nalecania vindescens Coppins & P. James 1969		(a) (v)	EN (D)	(a) 0v	EN (D)	(a) 0v	
Heterodermia leucomelos (L.) Poelt 1965	RE (A2)	ı	RE (A2)	I	I	I	
Heterodermia obscurata (Nyl.) Trevisan 1869	CR (D)	1	1	CR (D)	1	1	
Heterodermia speciosa (Wulfén) Trevisan 1868		1	RE (A2)	EN (A2, B, C2, D)	CR (A2)	CR (A3, B, D, E)	
Hyperphyscia adglutinata (Flörke) H. Mayrhofer & Poelt 1979	07 6	VU (D)	27	VU (D)	VU (D)	(D) NA	
Hypocenomyce caradocensis (Nyl.) P. James &							
G. Schneider 1980	NT (A3)	NT (A3, D)	VU (D)	NT (D)	(a) NA	1	>
Hypocenomyce friesii (Ach.) P.James & G. Schneider 1980	EN (A3)	NT (D)	I	I	EN (D)	I	>
Hypocenomyce praestabilis (Nyl.) Timdal 1984	VU (D)	1	1	1	VU (D)	1	>
Hypocenomyce scalaris (Lilj.) Choisy 1951	07	NT (D)	NT (D)	EN (D)	2	NT(D)	>
Hypocenomyce sorophora (Vainio) P. James & Poelt 1981	C	NT (D)	NT (D)	NT (D)	2	NT(D)	>
Hypogymnia austerodes (Nyl.) Räsänen 1943	27	I	I	EN (B)	C	EN (B)	•
Hypogymnia bitteri (Lynge) Ahti 1964	C	EN (C2)	VU (B, C2)	VU (C2)	OJ.	NT (B, D)	>
Hypogymnia farinacea Zopf 1907	27	OT	NT (D)	07	27	NT (D)	•
Hypogymnia physodes (L.) Nyl. 1896	ГС	27	ГС	27	2	2	>
Hypogymnia tubulosa (Schaerer) Havaas 1918	27	CO	ГС	07	C	VU (D)	
Hypogymnia vittata (Ach.) Parr. 1906	VU (A4)	VU (A4, B, D)	RE (A2)	VU (A4, D)	VU (A4)	EN (A3, B)	
Imshaugia aleurites (Ach.) S.F. Meyer 1985	C	NT (D)	VU (D)	27	2	NT (D)	•
Japewia subaurifera Muhr & Tønsberg 1990	VU (D)	1	1	I	(D) NA	1	
Japewia tornoensis (Nyl.) Tønsberg 1990	C	ı	I	NT (D)	NT (D)	NT(D)	•

ũ					cazione
û					
5	EN (D)	(D) NA	VU (D)	(D) NA	EN(D)
VU (B, C2, D) EN	EN (B, D)	CR (B)	CR (D)	EN (B, C2)	
T		RE (A2)	1	1	1
M	vu (b)	O	27	C	VU (D)
Ó	EN (A4, B)	EN (A4, B)	CR (B)	EN (A4)	EN (A4, B, C1, C2, D)
CR (B, C2) —		1	I	CR (B, C2)	1
É		VU (D)	VU (D)	VU (D)	1
M		/U (B, D)	VU (D)	VU (D)	EN (B, C2, D)
M		/U (B, C2, D)	VU (D)	NT (A4)	VU (B, C2, D)
I			VU (D)	NT (D)	•
) 		(a) (b)	VU (D)	C	VU (D)
M		/U (D)	VU (D)	VU (D)	VU (D)
			1	NT (D)	NT(D)
I		1	NT (D)	C	NT(D)
)		Q	SI	C	C
Ä		1	NT (D)	NT (D)	NT(D)
		0.	C	C	ГС
EN (A4, B, C1, C2) —		1	EN (A4, B, C1, C2)	1	1
Z		(D)	NT (D)	C	NT(D)
Z		JT (A4, D)	VU (B)	VU (B)	VU (B) ▲
V		IN (C2)	EN (B)	CR (B)	1
Ä	. (D)	1	NT (D)	C	NT (D) ▲
T			DD	1	1
I		/U (D)	I	NT (D)	•
I			1	NT (D)	•
Ä		(D)	NT (D)	NT (D)	•
V		/U (D)	VU (D)	VU (D)	VU (D)
W		(O) (D)	VU (D)	VU (D)	CR (B)
W		IN (B)	VU (B, D)	VU (D)	EN (B, C2, D)
I		1	VU (D)	NT (D)	NT (D)
M		O,	VU (D)	C	VU (D)
I			EN (B)	VU (B, D)	CR (B)
) T		O.	C	C	► rc
I			I	NT (D)	>
Z		O.	NT (D)	C	► rc
N		(O (D)	VU (D)	VU (D)	CR (B)
√		0.	C	C	VU (D)
M		/U (D)	EN (B)	EN (B)	CR (B)
Z		(a) (b)	NT (D)	C	► C
Ä		0	NT (D)	C	NT(D)
		(a) (b)	NT (D)	C	► C
		/U (B, C2)	I	I	•
		(O (D)	VU (D)	C	VU (D)
EN (B, C2, D) CF	. (B)	1	I	CR (B)	I
NT (A4)		(2.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6		VU (B, D) VU (B, D) VU (B, D) VU (B, C2, D)	WU (B, D) WU (B, D) WU (D) L (C) WU (B) WU (D) L (C) WU (D) WU (D) L (C) WU (D) WU (D) L (C) L (C) L (C) L (C) L (C) L (C) <

0,000	O Contraction O	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	: 2000	: <u>- </u>	ימוע טווסד דייט	ijioooloo
בספלס	SVIZZGIA	מַבַּ	Aicopiano	בומש	<u>.</u>		cazione
Lecidea erythrophaea Sommerf. 1826	VU (B)	1	1	EN (B)	EN (B)	EN (B)	
Lecidea hypopta Ach. 1803	NT (D)	I	ı	I	NT (D)	NT (D)	>
Lecidea leprarioides Tønsberg 1992	27	VU (D)	1	EN (D)	(D) NA	1	
Lecidea margaritella Hult. 1910	VU (B, C2)	EN (B)	1	1	VU (B, C2)	I	>
Lecidea nylanderi (Anzi) Th. Fr. 1874	C	VU (D)	VU (D)	VU (D)	C	(D) NA	
Lecidea porphyrospoda (Anzi) Th. Fr. 1874	PC	1	1	VU (D)	VU (D)	VU (D)	
Lecidea turgidula Fr. 1824	27	1	1	(a) NA	NT (D)	VU (D)	>
Lecidella aff. leprothalla (Zahlbr.) Knoph & Leuckert	27	VU (D)	I	VU (D)	VU (D)	EN (D)	
Lecidella aff. prasinula (Wedd.) Hertel 1980	NT (D)	1	VU (D)	1	NT (D)	1	>
Lecidella elaeochroma (Ach.) Choisy 1950	C	2	C	27	C	CC	
Lecidella flavosorediata (Vězda) Hertel & Leuckert 1969	C	2	C	2	CO	(D) NA	
Lecidella laureri (Hepp) Körber 1855	VU (D)	EN (D)	ı	EN (D)	VU (D)	ı	
Lecidella sp.1	27	C	VU (D)	S	(a) na	(a) na	
Lecidella sp.2	C	VU (D)	C	2	C	VU (D)	
Lecidella sp.3	27	VU (D)	EN (D)	(a) NA	VU (D)	EN (D)	
Lepraria eburnea Laundon 1992	C	NT (D)	C	27	C	NT (D)	>
Lepraria elobata Tønsberg 1992	27	2	NT (D)	NT (D)	C	CC	>
Lepraria incana (L.) Ach. 1803	C	NT (D)	C	NT (D)	NT (D)	NT (D)	>
Lepraria jackii Tønsberg 1992	27	NT (D)	OJ.	NT (D)	C	NT (D)	>
Lepraria lobificans Nyl. 1873	C	2	C	27	C	C	>
Lepraria obtusatica Tønsberg 1992	27	NT (D)	VU (D)	NT (D)	VU (D)	1	>
Lepraria rigidula (B. de Lesd.) Tønsberg 1992	27	C	OT.	C	C	CC	>
Leproloma vouauxii (Hue) Laundon 1989	27	NT (D)	OJ.	NT (D)	NT (D)	NT (D)	>
Leptogium burnetiae Dodge 1964	CR (B, C2)	I	ı	CR (B, C2)	I	I	
Leptogium cyanescens (Rabenh.) Körber 1855	VU (B, C2, D)	RE (A2)	1	1	EN (C2)	EN (D)	>
Leptogium hildenbrandii (Garov.) Nyl. 1856	EN (A2, A4, B, C1, C2, D)	RE (A2)	RE (A2)	RE (A2)	EN (A2, A4, B, C1, C2, D)	CR (C2, D)	
Leptogium saturninum (Dickson) Nyl. 1856	NT (A2, A3)	VU (A2)	RE (A2)	NT (D)	C	EN (C2, D)	>
Leptogium teretiusculum (Wallr.) Arnold 1892	EN (B, C2)	CR (B)	1	EN (B, C2)	EN (B, C2)	CR (B)	
Letharia vulpina (L.) Hue 1899	C	1	1	1	C	NT (D)	>
Lobaria amplissima (Scop.) Forss. 1883	EN (A2, A4, C1, D)	RE (A2)	I	CR (D)	CR (D)	RE (A2)	
Lobaria pulmonaria (L.) Hoffm. 1796	VU (A4)	VU (A2,A4,B,C1,C2,D)	EN (A2, A4, C1)	VU (A4, D)	EN (A2)	CR (C2, D)	
Lobaria scrobiculata (Scop.) DC. 1805	EN (D)	RE (A2)	EN (A3, B, C2, D, E)	RE (A2)	EN (A3, B, C2, D, E)	I	•
Lobaria virens (With.) Laundon 1984	RE (A2)	1	1	1	RE (A2)	1	
Lopadium disciforme (Flotow) Kullh. 1870	VU (A4)	EN (B, C2)	ı	VU (A3, A4, D)	EN (B, E)	EN (B)	
Loxospora cismonica (Beltram.) Hafellner 1987	VU (A4, B)	CR (B)	1	EN (B, C2)	EN (B)	1	
Loxospora elatina (Ach.) A. Massal. 1852	rc	VU (D)	VU (D)	CC	C	VU (D)	
Macentina stigonemoides A. Orange 1989	VU (B)	CR (B, C2)	EN (B)	EN (B, C2, D)	1	1	
Maronea constans (Nyl.) Hepp 1860	CR (A2, A3, D, E)	RE (A2)	RE (A2)	1	RE (A2)	CR (A2, A3, D, E)	
Megalospora pachycarpa (Duby) Oliv. 1900	EN (B, C2, D)	1	ı	EN (B, C2, D)	CR (B)	1	
Menegazzia terebrata (Hoffm.) A. Massal. 1854	VU (A2)	CR (A2, D)	EN (A2)	CR (D)	VU (B, C2, D)	EN (B, E)	
Micarea adnata Coppins 1983	VU (A4)	VU (A4, B)	VU (A4, B, C1, C2, D)	EN (A3, B, C2, D, E)	EN (B, C2)	VU (A4, B)	>
Micarea cinerea (Schaerer) Hedl. 1828	NT (A4)	1	EN (B, C2)	VU (D)	EN (B, C2)	CR (B)	
Micarea coppinsii Tønsberg 1992	VU (D)	1	EN (D)	VU (D)	EN (D)	1	
Micarea denigrata (Fr.) Hedl. 1892	27	NT (D)	VU (D)	1	O]	rc	>

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi Declassifi-	
						cazione	
Micarea melaena (Nyl.) Hedl. 1892	O ₁	1	1	VU (D)	NT (D)	NT(D)	
Micarea nitschkeana (Rabenh.) Harm. 1899	27	VU (D)	VU (D)	EN (D)	EN (D)	EN (D)	
Micarea peliocarpa (Anzi) Coppins & R. Sant. 1979	27	NT (D)	NT (D)	NT(D)	NT (D)	NT (D)	
Micarea prasina Fr. 1892	C	CC	CC	27	CC	► P	
Micarea sp.1	VU (D)	1	1	(a) NA	1	1	
Mycobilimbia carneoalbida (Müll.Arg.) V. Wirth 1995	VU (D)	I	I	I	VU (D)	•	
Mycobilimbia epixanthoides (Nyl.) V. Wirth 1995	S	(D) NA	VU (D)	(a) NA	VU (D)	VU (D)	
Mycobilimbia sabuletorum (Schreber) Hafellner 1984	C	NT (D)	NT (D)	NT(D)	NT (D)		
Mycobilimbia sanguineoatra ad int.	C	NT (B, D)	EN (B)	VU (B, C2)	NT (D)	EN (B)	
Mycobilimbia sphaeroides (Dickson) V. Wirth 1995	VU (A3)	CR(D)	EN (B, C2)	EN (B)	CR (C2)	CR (A3, B, D, E)	
Mycoblastus affinis (Schaerer) Schauer 1964	VU (A3)	EN (B)	CR (B, C2)	CR (C2, D)	(a) NA	1	
Mycoblastus alpinus (Fr.) Hellbom 1893	C	ı	1	NT (B, D)	VU (B)	VU (B) ▲	
Mycoblastus caesius (Coppins & P. James) Tønsberg 1992	CR (A3, D, E)	ı	1	CR (A3, D, E)	ı	1	
Mycoblastus fucatus (Stirton) Zahlbr. 1926	C	CC	NT (D)	C	NT (D)	NT (D)	
Mycoblastus sanguinarius (L.) Norman 1853	NT (A4)	EN (D)	ı	CR (C2, D)	EN (B)	1	
Nephroma bellum (Sprengel) Tuck. 1841			I	EN (D)	NT (D)	•	
Nephroma laevigatum Ach. 1814	A3, A4, B, C1, C2,	D) EN(A2,A3,A4,B,C1,C2,I	—(C	I	RE (A2)	1	
Nephroma parile (Ach.) Ach. 1810	NT (A3)	NT (D)	EN (A3, E)	NT (D)	CC	•	
Nephroma resupinatum (L.) Ach. 1810	VU (A2)	VU (A2, C2)	EN (A3, E)	EN (D)	NT (A2, B, C2, D)	RE (A2) ▼	
Normandina pulchella (Borrer) Nyl. 1861	S	NT (D)	C	C	NT (D)	NT (D)	
Ochrolechia alboflavescens (Wulfen) Zahlbr. 1927	C	VU (D)	VU (D)	VU (D)	C	VU (D)	
Ochrolechia androgyna (Hoffm.) Arnold 1885	CC	NT (D)	VU (B, C2, D)	NT (D)	CC	NT (B, D) ◀	
Ochrolechia arborea (Kreyer) Almb. 1952	NT (A4)	VU (D)	VU (D)	(a) n.v.	NT (A4)	VU (D)	
Ochrolechia microstictoides Räsänen 1936	CC	VU (D)	VU (D)	EN (D)	VU (D)	VU (D)	
Ochrolechia pallescens (L.) A. Massal. 1853	EN (A4, B, C1, C2)	CR (C2)	1	CR (C2, D)	EN (A4, B, C1, C2)	CR (B, D)	
Ochrolechia subviridis (Høeg) Erichsen 1930	EN (A4, B, C1, C2, D)	EN (A4, B, C1, C2, D)	1	1	1	1	
Ochrolechia szatalaensis Vers. 1958	VU (A3, A4)	EN (D)	1	VU (A4, D)	VU (A4)	EN (B)	
Ochrolechia turneri (Sm.) Hasselr. 1945	NT (A4)	VU (D)	VU (D)	EN (B, C2, D)	VU (D)	EN (B, C2, D)	
Opegrapha atra Pers. 1794	C	CC	C	27	VU (D)	VU (D)	
Opegrapha ochrocheila Nyl. 1865	CR (A3, D, E)	1	1	CR (A3, D, E)	1	1	
Opegrapha rufescens Pers. 1794	CO	VU (D)	C	CC	VU (D)	VU (D)	
Opegrapha sp. 1	C	(D)	EN (D)	EN (D)	EN (D)	1	
Opegrapha varia Pers. 1794	CO	VU (D)	VU (D)	VU (D)	VU (D)	1	
Opegrapha vermicellifera (Kunze) Laundon 1963	C	(D)	C	(D)	(D)	1	
Opegrapha viridis (Ach.) Behlen & Desberger 1861	C	VU (D)	VU (D)	VU (D)	VU (D)	1	
Opegrapha vulgata Ach. 1803	CC	VU (D)	VU (D)	VU (D)	C	1	
Pachyphiale carneola (Ach.) Arnold 1871	EN (B, C2)	CR (C2)	1	EN (B, C2, D)	CR (B)	1	
Pachyphiale fagicola (Hepp) Zwackh. 1862	VU (A3, A4)	EN (B, C2, D)	CR (A3, E)	EN (B, C2, D)	VU (A4, B, D)	1	
Pachyphiale ophiospora Lettau 1937	CR (D)	ı	1	CR (A3, B, D, E)	CR (B)	1	
Pannaria conoplea (Ach.) Bory 1828	EN (A2)	CR (A2, D)	RE (A2)	VU (A4, D)	EN (A2, B, C2, D)	CR (A3, B, C2, D, E)	
Pannaria rubiginosa (Ach.) Bory 1828	RE (A2)	1	1	1	1	1	
Parmelia acetabulum (Necker) Duby 1830	NT (A4)	NT (A4)	NT (A4)	NT (A4)	CR (D)	1	
Parmelia caperata (L.) Ach. 1803	CC	VU (A2, D)	C	ГС	VU (D)	VU (A2, D)	
<i>Parmelia elegantula (</i> Zahlbr.) Szat. 1930	NT (A4)	VU (B, D)	VU (D)	EN (B, C2)	CR (C2)	CR (B)	

			-	-		Ca	cazione
	:		1		:		
Parmelia exasperata De Not. 1847	NT (A4)	VU (D)	VU (B, D)	VU (D)	NT (A4)	EN (B, C2, D)	
Parmelia exasperatula Nyl. 1873	C	C	LC	C	C	C	
Parmelia flaventior Stirton 1878	NT (A4)	EN (B)	VU (A2, B, C2, D)	NT (A4)	VU (D)	RE (A2)	
Parmelia glabra (Schaerer) Nyl. 1872	NT (A4)	EN (A2)	EN (A2)	VU (A2, D)	NT (A4)	VU (D)	
Parmelia glabratula (Lamy) Nyl. 1883	9	2	S	2	S	27	>
Parmelia laciniatula (Oliv.) Zahlbr. 1916	EN (A4, B, C1, C2, D)	CR (B)	1	I	CR (C2)	1	
Parmelia laevigata (Sm.) Ach. 1814	EN (A4, C1)	1	1	CR (C2, D)	CR (B)	1	
Parmelia minarum Vainio 1890	EN (A3, B, C2, D, E)	1	1	1	1	EN (A3, B, C2, D, E)	•
Parmelia pastillifera (Harm.) Schubert & Klement 1966	NT (A4)	(a) n _A	VU (D)	(a) na	VU (D)	VU (D)	
Parmelia quercina (Willd.) Vainio 1899	NT (A4)	I	EN (B, C2)	CR (B)	EN (B)	EN (B, C2, D)	
Parmelia reticulata Taylor 1836	CR (A3, B, C2, D, E)	1	RE (A2)	1	CR (A3, B, C2, D, E)	RE (A2)	
Parmelia revoluta Flörke 1827	OT	VU (D)	C	27	VU (D)	VU (D)	
Parmelia saxatilis (L.) Ach. 1801	O7	NT (D)	C	2	S	NT(D)	>
Parmelia septentrionalis (Lynge) Ahti 1966	EN (A2, A4, B, C1, C2)	EN (A2, A4, B, C1, C2)	I	I	I	I	
Parmelia sinuosa (Sm.) Ach. 1814	VU (A2, A3, A4, B, C1, C2, I	D) CR (B, D)	RE (A2)	CR (D)	CR (C2)	1	
Parmelia subargentifera Nyl. 1875	9	27	C	2	C	VU (D)	
Parmelia subaurifera Nyl. 1873	9	(a) n,	S	2	S	VU (D)	
Parmelia submontana Hale 1987	9	VU (D)	VU (D)	(D)	VU (D)	(D)	
Parmelia subrudecta aggr.	C	VU (D)	C	CC	VU (D)	VU (D)	
Parmelia sulcata Taylor 1836	C	C	C	C	C	C	•
Parmelia taylorensis Mitch. 1923	VU (A3, A4, B, C1, C2, D)	1	1	CR (D)	EN (B, C2, D)	1	
Parmelia tiliacea (Hoffm.) Ach. 1803	C	C	C	C	C	VU (D)	
Parmeliella triptophylla (Ach.) Müll. Arg.1862	NT (A4)	VU (D)	CR (B, D)	VU (D)	VU (B, C2, D)	1	
Parmeliopsis ambigua (Wulfen) Nyl. 1863	C	C	C	C	CC	CC	•
Parmeliopsis hyperopta (Ach.) Arnold 1880	C	NT (D)	NT (D)	NT (D)	C	CC	>
Parmotrema arnoldii (Du Rietz) Hale 1974	VU (A3, A4, B, C1, C2, D)	1	RE (A2)	CR (D)	EN (B, C2)	CR (A3, B, D, E)	
Parmotrema chinense (Osbeck) Hale & Ahti 1986	VU (A3)	CR (C2)	VU (A2, A4, B, C1, C2, D)	CR (D)	VU (B, D)	CR(D)	
Parmotrema crinitum (Ach.) Choisy 1952	VU (A4)	I	RE (A2)	CR (C2, D)	VU (A3, A4, B, C1, C2, D)	EN (B)	
Parmotrema stuppeum (Taylor) Hale 1974	EN (A4)	CR (C2)	CR (C2)	EN (A4, B, C1, C2, D)	EN (A4, B, C1)	CR(D)	
Peltigera collina (Ach.) Schrader 1801	NT (A4)	VU (D)	EN (B, C2)	VU (D)	(D)	ı	
Pertusaria aff. pulvereo-sulphurata Harmand 1913	C	VU (D)	VU (D)	VU (D)	VU (D)	1	
Pertusaria albescens (Hudson) Choisy & Werner 1932	C	C	C	C	C	VU (D)	
Pertusaria alpina Ahles 1860	VU (A3)	EN (D)	CR (D)	VU (A3, D)	VU (D)	EN (D)	
Pertusaria amara (Ach.) Nyl. 1873	C	CC	C	VU (D)	C	VU (D)	
Pertusaria borealis Erichsen 1938	EN (D)	EN (D)	1	1	EN (D)	1	
Pertusaria coccodes (Ach.) Nyl. 1857	VU (A3)	VU (D)	VU (D)	VU (D)	VU (D)	CR(D)	
Pertusaria constricta Erichsen 1936	VU (D)	EN (D)	1	CR (D)	VU (A3, D)	1	
Pertusaria coronata (Ach.) Th. Fr. 1871	VU (A3)	VU (D)	EN (A3, B, C2, D)	VU (D)	NT (A4)	CR (C2, D)	
Pertusaria flavida (DC.) Laundon 1963	EN (A3, D)	VU (A4, B, C1, C2, D)	CR (B, C2)	1	EN (B, C2, D)	1	
Pertusaria hemisphaerica (Flörke) Erichsen 1932	EN (A4)	EN (A4, B, C1, C2)	I	EN (A4, B, C1, C2)	EN (A4, B)	1	
Pertusaria leioplaca DC. 1815	OJ.	VU (D)	C	VU (D)	VU (D)	CR(D)	
Pertusaria multipuncta (Turner) Nyl. 1861	EN (B)	EN (B)	1	CR (B, C2)	CR (B, C2)	I	
Pertusaria ophthalmiza (Nyl.) Nyl. 1865	VU (A3)	CR (A3, B, D, E)	1	EN (B, C2)	VU (B, D)	1	
Pertusaria pertusa (Weigel) Tuck. 1845	EN (B, C2)	1	EN (B, C2)	CR (D)	1	1	

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi De	Declassifi- cazione
Pertusaria pupillaris (Nyl.) Th. Fr. 1871	NT (A3)	NT (D)	NT (D)	NT (D)	NT (D)	NT(D)	>
Pertusaria pustulata (Ach.) Duby 1830	EN (A4, B, C1, C2, D)	CR (C2)	CR (B, C2)	I	ı	ı	
Pertusaria sommerfeltii (Sommerf.) Fr. 1831	EN (A3, E)	1	1	1	EN (A3, E)	1	
Pertusaria trachythallina Erichsen 1940	RE (A2)	I	ı	I	ı	I	
Phaeophyscia chloantha (Ach.) Moberg 1978	C	EN (D)	(D) NA	VU (D)	(a) NA	VU (D)	
Phaeophyscia ciliata (Hoffm.) Moberg 1977	NT (A4)	I	I	EN (B)	NT (A4)	CR(D)	
Phaeophyscia endophoenicea (Harm.) Moberg 1977	SI	SI	C	S	C	CC	
Phaeophyscia hirsuta (Mereschk.) Moberg 1978	NT (A3)	EN (A3, D, E)	VU (D)	I	NT (D)	EN (D)	>
Phaeophyscia hispidula (Ach.) Moberg 1978	CR (A3, B, C2, D, E)	1	1	1	CR (A3, B, C2, D, E)	1	
Phaeophyscia insignis (Mereschk.) Moberg 1978	EN (B, C2)	I	ı	ı	EN (B, C2, D)	CR (C2, D)	
Phaeophyscia orbicularis (Necker) Moberg 1977	C	S	C	S	2]	NT(D)	>
Phaeophyscia poeltii (Frey) Nimis 1993	VU (A3, A4, B)	ı	ı	CR (B)	VU (A3, A4, B, D)	ı	
Phlyctis agelaea (Ach.) Flotow 1850	NT (A4)	VU (B, D)	(D) NA	CR (C2)	EN (B, E)	CR (B)	
Phlyctis argena (Sprengel) Flotow 1850	C	ST	27	O	27	VU (D)	
Physcia adscendens (Fr.) Oliv. 1882	S	2	PC	C	ST	NT(D)	>
Physcia aipolia (Humb.) Furnr. 1839	SI	ST	VU (D)	C	C	VU (D)	
Physcia clementei (Turner) Maas Geest. 1952	EN (D)	1	ı	CR (A3, B, D, E)	1	CR(D)	
Physcia stellaris (L.) Nyl. 1856	S	VU (D)	27	C	C	VU (D)	
Physcia tenella (Scop.) DC. 1805	C	SI	C	C	O	CC	
Physcia vitii Nadv. 1947	VU (D)	I	EN (D)	CR (D)	EN (A3)	EN (D)	
Physconia distorta (With.) Laundon 1984	CC	CC	CC	CC	27	CC	
Physconia enteroxantha (NyI.) Poelt 1966	NT (A4)	VU (D)	VU (D)	EN (B, C2)	VU (D)	1	
Physconia grisea (Lam.) Poelt 1965	NT (A4)	CR (C2)	NT (A4)	NT (A4)	EN (B, C2)	CR (B)	
Physconia perisidiosa (Erichsen) Moberg 1977	NT (A4)	VU (D)	NT (A4)	NT (A4)	NT (A4)	CR (B)	
Placynthiella dasaea (Stirton) Tønsberg 1992	C	NT (D)	NT (D)	NT (D)	C	NT (D)	>
Placynthiella icmalea (Ach.) Coppins & P. James 1984	C	NT (D)	NT (D)	NT (D)	C	NT (D)	•
Platismatia glauca (L.) W. Culb. & C.F. Culb. 1968	C	NT (D)	C	C	27	NT (D)	>
Porina aenea (Wallr.) Zahlbr. 1922	C	C	C	C	C	VU (D)	
Porina leptalea (Durieu & Mont.) A.L. Sm. 1911	C	VU (D)	C	C	VU (D)	VU (D)	
Protoparmelia hypotremella Herk, Spier & V. Wirth 1997	C	VU (D)	VU (D)	VU (D)	(D)	VU (D)	
Pseudevernia furfuracea (L.) Zopf 1903	C	C	C	C	27	CC	>
Pyrenula laevigata (Pers.) Arnold 1885	NT (A4)	EN (B)	CR (C2)	VU (D)	EN (B, C2)	1	
Pyrenula nitida (Weigel) Ach. 1814	C	VU (D)	C	VU (D)	VU (D)	1	
Pyrenula nitidella (Schaerer) Müll. Arg. 1885	NT (A4)	VU (B, C2, D)	EN (B, C2)	EN (B)	EN (B, C2, D)	I	
Ramalina dilacerata (Hoffm.) Hoffm. 1825	EN (A4, B)	I	I	I	EN (A4, B)	1	
Ramalina farinacea (L.) Ach. 1810	S	27	VU (A4, D)	C	C	EN (D)	
Ramalina fastigiata (Pers.) Ach. 1810	VU (A4)	VU (A4, D)	VU (A4, D)	CR (C2)	1	1	
Ramalina fraxinea (L.) Ach. 1810	NT (A4)	VU (D)	EN (B, C2)	CR (C2, D)	VU (D)	CR (B, D)	
Ramalina obtusata (Arnold) Bitter 1901	VU (A3)	EN (A3, B, C2, D)	CR (A3, B, E)	VU (D)	NT (A4)	CR (B, D)	
Ramalina panizzei De Not. 18461237	EN (B, C2)	CR (B, C2)	I	CR (B)	EN (B, C2, D)	1	
Ramalina pollinaria (Westr.) Ach. 1810	NT (A4)	VU (B, C2, D)	NT (A4)	NT (A4)	NT (A4)	VU (B, D)	
Ramalina roesleri (Schaerer) Hue 1887	EN (A4, B, C1, C2)	CR (C2)	I	CR (B)	EN (A4, B, C1, C2)	1	
Ramalina sinensis Jatta 1902	CR (D)	1	1	1	CR (D)	1	
Ramalina thrausta (Ach.) Nyl. 1860	EN (A2)	EN (A2, B, C2, D)	CR (B, C2)	EN (A2, B, C2)	EN (A2)	RE (A2)	

Reichlingia leopoldii Diederich & Scheid. 1996 LC Rinodina archaea (Ach.) Arnold 1881 Rinodina capensis Hampe 1861 Rinodina colobina (Ach.) Th. Fr. 1871 Rinodina conradii Körber 1855	Q	Č					
eid. 1996	Q	(
		EN (C)	VU (D)	(D) NA	(a) NA	I	
	C	EN (B)	1	VU (B, C2, D)	NT (D)	VU (B, C2, D)	>
	NT (A4)	1	1	(D) (D)	NT (A4)	VU (D)	
	EN (A4, B, C1, C2)	CR (B)	1	CR (B)	EN (A4, B, C1, C2)	I	
	VU (B)	1	1	1	VU (B)	1	>
	VU (A4)	VU (A4, D)	EN (B, C2, D)	CR (B)	EN (B, C2)	I	
Rinodina exigua (Ach.) S. Gray 1821	NT (A4)	EN (C2)	EN (B)	EN (B)	(D) NA	EN (B)	
Rinodina griseosoralifera Coppins 1989	NT (A4)	ı	CR (B)	EN (B, C2)	VU (B, D)	CR (B, C2)	
Rinodina isidioides (Borrer) Olivier 1909	EN (A4)	-	1	1	EN (A4, C1)	EN (A4, B)	
Rinodina malangica (Norman) Arnold 1881	O	I	I	I	C	I	
Rinodina orculata Poelt & M. Steiner 1970	0	NT (D)	NT (D)	(D) TN	C	NT (D)	>
Rinodina plana H. Magn. 1947	EN (D)	I	1	I	I	EN (D)	
Rinodina polyspora Th. Fr. 1861	RE (A2)	1	1	1	I	1	
Mayrhofer 1994	VU (A4)	EN (B)	EN (B, C2, D)	VU (A4, D)	VU (A4, D)	EN (B, C2)	
	NT (A4)	VU (B, D)	VU (D)	VU (B, D)	NT (A4)	1	
Rinodina roboris (Nyl.) Arnold 1881	EN (A4, B, C1, C2, D)	I	1	1	CR (B)	CR(B)	
Rinodina septentrionalis Malme 1913	C	NT (D)	-	VU (D)	C	NT (D)	>
Rinodina sheardii Tønsberg 1992	CR (C2)	I	1	1	CR (C2)	I	
Rinodina sophodes (Ach.) A. Massal. 1852	NT (A4)	EN (B, C2)	EN (B, C2, D)	VU (B, D)	VU (D)	VU (B, D)	
	NT (A4)	1	I	EN (B)	VU (D)	EN (B)	
	CR (D)	-	-	-	CR (D)	-	
	NT (A4)	VU (D)	VU (B, D)	(D)	VU (B, D)	EN (B)	
965	VU (A3, A4, C1, D)	VU (A3, A4, C1, C2, D)	EN (C2)	CR (A3, B, D, E)	CR (A3, B, C2, D, E)	-	
	CR (A3, B, C2, D, E)	1	1	I	CR (A3, B, C2, D, E)	I	
Schismatomma pericleum (Ach.) Branth & Rostrup 1869 NT	NT (A4)	EN (A2, B, C2, D)	EN (A2, B, C2, E)	VU (D)	NT (A4)	VU (B, D)	
Sclerophora nivea (Hoffm.) Tibell 1984	VU (A3, A4)	EN (B)	CR (C2)	CR (C2, D)	EN (B, C2)	I	
Stenh.) Vězda 1978	O	VU (D)	VU (D)	VU (D)	VU (D)	VU (D)	
	VU (B, C2)	EN (C2)	EN (C2)	VU (B, C2, D)	EN (B, C2)	I	>
	C	VU (D)	VU (D)	EN (D)	1	1	
82	EN (B, C2)	EN (B, C2, D)	EN (B, C2, D)	CR (C2)	CR (B, C2)	I	
8	C	C	C	VU (D)	VU (D)	VU (D)	
	C	NT (D)	NT (D)	NT (D)	C	NT (D)	•
3	VU (A4, C1)	VU (A2, A4, B, C1, C2)	-	EN (D)	EN (C2)	RE (A2)	>
DC. 1815	CR (D)	I	I	CR (D)	RE (A2)	I	
Sticta fuliginosa (Hoffm.) Ach. 1803	CR (A2, C2)	RE (A2)	RE (A2)	CR (A2, C2)	RE (A2)	1	
Sticta limbata (Sm.) Ach. 1803	CR (D)	CR (A3, B, D, E)	1	1	CR (A3, B, D, E)	I	
Sticta sylvatica (Huds.) Ach. 1803	VU (A2)	RE (A2)	RE (A2)	NT (A2, A4, D)	EN (C2)	1	>
oux 1985	CR (B, C2)	I	1	CR (B, C2)	I	I	
Strangospora moriformis (Ach.) B. Stein 1879	C	1	1	1	C	NT (D)	>
Strangospora ochrophora (Nyl.) R. Anderson 1975	VU (A4)	VU (A4, B, D)	EN (B)	EN (B, C2, D)	CR (B)	I	
09	VU (B, C2)	VU (B, C2)	VU (B, C2)	VU (B, C2, D)	1	1	>
Strigula glabra (A. Massal.) R.C. Harris 1980	VU (A4)	CR (B, C2)	CR (C2)	CR (B)	VU (A4, B, D)	I	
R.C. Harris 1980	VU (D)	VU (D)	VU (D)	EN (D)	EN (D)	1	
Strigula mediterranea Etayo	CR (A3, D, E)	I	I	I	I	CR (A3, D, E)	

Specie	Svizzera	Giura	Altopiano	Prealpi	Alpi	Sud delle Alpi Declassifi-
						cazione
Strigula stigmatella (Ach.) R.C. Harris 1980	2	VU (D)	VU (D)	VU (D)	VU (D)	ı
Teloschistes chrysophthalmus (L.) Th. Fr. 1860	RE (A2)	RE (A2)	ı	ı	ı	RE (A2)
Tephromela atra (Hudson) Hafeliner 1983	NT (A3, A4)	NT (A4, D)	EN (B)	NT (A4, B, D)	NT (A4, D)	
Thelenella modesta (Nyl.) Nyl. 1855	CR (D)	I	CR (B)	I	I	CR (A3, B, D, E)
Thelopsis flaveola Arnold 1873	EN (D)	1	ı	1	EN (D)	ı
Thelopsis rubella Nyl. 1855	EN (A3, A4)	EN (A4, B, C1, C2)	I	I	EN (A4, B, C1, C2, D)	EN (A4, B, E)
Thelotrema lepadinum (Ach.) Ach. 1803	VU (A2)	VU (A2, A3, B, D)	CR (D)	VU (D)	EN (B, C2, D)	ı
Trapelia corticola Coppins & P. James 1984	VU (A4)	EN (B)	CR (B)	EN (C2)	EN (B)	I
Trapeliopsis flexuosa (Fr.) Coppins & P. James 1984	O	NT (D)	NT (D)	NT (D)	2	► C
Usnea cavernosa Tuck. 1850	NT (A4)	EN (B, C2, D)	I	VU (B, D)	NT (A4)	1
Usnea ceratina Ach. 1810	VU (A2, B, C2, D)	CR (B, C2)	VU (A2, A3, A4, B, C1, C2, D)	CR (D)	CR (C2)	CR (C2, D)
Usnea cornuta Körber 1859	CR (A2, A3, B, C2, D, E)	ı	RE (A2)	CR (A2, A3, B, C2, D, E)		I
Usnea diplotypus Vainio 1934	27	VU (D)	VU (D)	VU (D)	VU (D)	VU (D)
Usnea filipendula Stirton 1881	NT (A4)	EN (B, C2)	EN (B, C2)	VU (D)	NT (A4)	CR (C2)
Usnea florida (L.) Wigg. 1780	EN (A2, A4, B, C1, C2)	RE (A2)	EN (A2, A4, B, C1, C2, D)	RE (A2)	CR (C2)	1
Usnea fulvoreagens (Räsänen) Räsänen 1935	VU (A3, A4, B, C1, C2, D)	CR (B, C2)	VU (A3, A4, B, C1, C2, D)	CR (C2)	1	1
Usnea glabrata (Ach.) Vainio 1915	EN (A2, A4, B, C1, C2)	RE (A2)	EN (A4, B, C1, C2)	RE (A2)	RE (A2)	RE (A2)
Usnea glabrescens (Vainio) Vainio 1925	VU (A4, B, C1, C2, D)	EN (B)	EN (B, C2)	EN (B, C2, D)	EN (B, C2)	I
Usnea hirta (L.) Wigg. 1780	OJ.	NT (D)	NT (D)	NT (D)	2]	NT (D)
Usnea lapponica Vainio 1920	OT	VU (D)	EN (D)	VU (D)	OJ	VU (D)
Usnea longissima Ach. 1810	CR (A2)	1	1	RE (A2)	CR (A2)	1
Usnea madeirensis Motyka 1964	EN (A4, B, C1, C2)	I	CR (B)	EN (A4, B, C1, C2)	I	I
Usnea prostrata Vainio s.l. 1921	27	VU (D)	VU (D)	VU (D)	C	VU (D)
Usnea rigida (Ach.) Motyka s.l. 1936	VU (A4)	EN (B, C2)	CR (C2)	VU (A4, B, C1, C2, D)	VU (A4, D)	EN (C2)
Usnea scabrata Nyl. 1873	2	EN (D)	1	EN (D)	(D) NA	ı
Usnea subfloridana Stirton 1882	C	VU (D)	VU (D)	VU (D)	VU (D)	VU (D)
Usnea substerilis Motyka 1930	27	EN (D)	EN (D)	VU (D)	C	VU (D)
<i>Usnea wasmuthii</i> Räsänen 1932	EN (A3)	CR (A3, B, D, E)	VU (A3, A4, B, C1, C2, D)	I	EN (B, C2, D)	I
Vezdaea aestivalis (Ohl.) TschWoess & Poelt 1976	27	NT (D)	NT (D)	NT (D)	NT (D)	
Vezdaea stipitata Poelt & Döbbeler 1975	VU (D)	I	I	VU (D)	I	
Varicellaria rhodocarpa (Körber) Th. Fr. 1871	NT (D)	1	1	1	NT (D)	
Vulpicida pinastri (Scop.) Mattson & Lai 1993	C	EN (D)	EN (D)	VU (D)	C	ГС
Xanthoria candelaria (L.) Th. Fr. 1861	27	NT (D)	LC	NT (D)	SI	NT (D)
Xanthoria fallax (Hepp) Arnold 1880	C	VU (D)	VU (D)	VU (D)	C	VU (D)
Xanthoria fulva (Hoffm.) Poelt & Petutschnig 1992	NT (A4)	VU (B, D)	EN (B, C2)	VU (D)	NT (A4)	ı
Xanthoria parietina (L.) Th. Fr. 1860	C	C	C	C	OT	NT (D)
Xanthoria polycarpa (Hoffm.) Rieber 1891	27	VU (D)	27	C	C	ı
Xanthoria ulophyllodes Räsänen 1931	NT (A4)	EN (B, C2, D)	EN (B)	VU (B, D)	VU (D)	EN (B, C2)
Xylographa minutula Körber 1861	QQ	1	ı	1	OO	ı
Zamenhofia hibernica (P. James & Swinscow) Clauzade &						
Roux 1985	EN (B, C2)	ı	1	EN (B, C2, D)	CR (C2)	1
aff. Biatora areolata Kreyer 1913	EN (D)	I	I	I	EN (D)	I
aff. Lecania cyrtellina (Nyl.) Sandst. 1912	VU (A4)	EN (B)	CR (C2)	VU (A4, B, D)	VU (A4, B, D)	CR (C2)
aff. Pyrrhospora quernea (Dickson) Körber 1855	VU (D)	1	I	I	1	VU (D)

Percentuale delle specie minacciate

Le categorie di minaccia sono stabilite mediante un sistema abbastanza complicato di criteri, per il quale è necessario calcolare numerosi parametri. Come prevedibile, nei gruppi fortemente minacciati CR e EN si trovano soprattutto specie rare (fig. 5). Tuttavia la larga sovrapposizione tra le categorie di minaccia indica chiaramente che il grado di minaccia non può essere basato solo sulla rarità, ma che il regresso di una popolazione, sia in passato che in futuro, così come la frammentazione degli habitat, rivestono un'importanza pratica nella valutazione delle categorie di minaccia.

La percentuale di specie di licheni epifiti estinti o minacciati (RE, CR, EN, VU; tab. 7) è quasi doppia rispetto a quella delle fanerogame minacciate. La percentuale di specie minacciate o estinte è paragonabile unicamente con i gruppi più che fortemente minacciati delle piante acquatiche e della vegetazione segetale (LANDOLT 1991). È anche leggermente più grande della percentuale di muschi minacciati (UR-MI 1992) o della media dei gruppi di animali elencati finora nelle Liste Rosse in Svizzera (DUELLI 1994).

Significato dei criteri utilizzati

Tutti i criteri utilizzati si sono rivelati adatti per quanto concerne la classificazione delle specie nelle categorie di minaccia (tab. 14).

Nel presente lavoro l'estinzione di una specie è stata dedotta sulla base del criterio A2, dopo la valutazione di fonti storiche (tab. 14, tab. 15). Tutte le altre categorie di minaccia hanno potuto essere attribuite con criteri multipli. In numerosi casi l'attribuzione della categoria di minaccia è stata suffragata dalla convergenza di più criteri. In più casi, però, l'attribuzione della categoria di minaccia è stata eseguita sulla base di un solo criterio. Per 95 specie il criterio A4 si è dimostrato particolarmente utile (tab. 15), anche se non è mai stato decisivo per la classificazione in CR. 63 specie sono però state così classificate come NT, 21 come VU e 11 come EN.

Tab. 14: Numero di specie classificate in una categoria di minaccia secondo uno o più criteri (A2–E).

Categoria di minaccia	A2	A3	A4	В	C1	C2	D	E
RE	22	0	0	0	0	0	0	0
CR	5	19	0	19	0	21	53	18
EN	16	23	65	74	46	60	37	11
VU	11	59	73	35	33	22	89	2
NT	0	0	122	0	25	0	0	0
LC	24	60	262	394	418	419	343	130

Paragone tra i criteri UICN – 2001 ed i criteri delle Liste Rosse tradizionali

Terminati i rilevamenti sul terreno, gli specialisti hanno stilato una Lista Rossa nazionale anche secondo i metodi tradizionali. Solo dopo aver terminato questo lavoro, si sono iniziati i lavori di elaborazione per la Lista Rossa secondo i criteri UICN. Da un paragone di questi due approcci risulta che le specie classificate nella categoria CR sono nettamente più numerose se si utilizza il metodo tradizionale piuttosto che quello prescritto dall'UICN-2001 (tab. 16). I criteri quantitativi delle direttive UICN-2001 sono in effetti molto restrittivi. Il fatto che, utilizzando i criteri l'UICN-2001, relativamente poche specie sono state classificate sotto CR, deve essere interpretato unicamente come valore indicativo per la probabilità di sopravvivenza delle specie. A questo proposito è bene far notare come una categoria di minaccia non possa essere parificata a una priorità di intervento di protezione. Ancor meno lecito è, partendo dalla percentuale di specie minacciate, stabilire la priorità di interventi di protezione per tutto un gruppo di organismi. Nelle altre categorie di minaccia, per contro, i risultati ottenuti non sono molto differenti da un metodo all'altro. La ricorrente critica secondo cui i risultati dei due metodi non siano paragonabili, non è quindi fondata, almeno per questa Lista Rossa dei licheni epifiti in Svizzera.

Tab. 15: Numero di specie classificate in una categoria di minaccia sulla base di un solo criterio (A2–E).

Categoria di minaccia	A2	A3	A4	В	C2	D	Е
RE	22	0	0	0	0	0	0
CR	2	0	0	1	2	10	0
EN	3	1	11	3	0	8	1
VU	5	12	21	4	0	9	0
NT	0	5	63	0	0	9	0

Tab. 16: Percentuale delle specie classificate nelle categorie di minaccia secondo i criteri UICN-2001 o in base al giudizio degli esperti.

Categoria di minaccia	IUCN-2001	Metodo tradizionale	Metodo tradizionale/
			UICN-2001
RE	4,2%	4,2%	100%
CR	6,7%	10,3%	154%
EN	16,7%	14,7%	88%
VU e DD	17,8%	19,7%	111%
NT e LC	54,6%	51,1%	94%

4.6 Conservazione dei licheni epifiti

Nel campo della protezione della natura, è possibile solo limitatamente fornire indicazioni generali sui metodi di conservazione di specie e biocenosi in uno Stato o in uno spazio naturale. Di regola i provvedimenti di tutela vanno fissati per singoli oggetti o popolazioni e non possono quindi essere inclusi in questo progetto. Ciò nonostante vengono qui date alcune direttive, il cui rispetto nella pratica agricola e forestale potrebbe favorire di molto la protezione dei licheni epifiti. Va da sé che la conservazione e la valorizzazione di ambienti ricchi di licheni (v. capitolo 6) sono la base sulla quale si devono costruire misure di protezione specifiche. Per i licheni dei boschi, la pratica di una silvicoltura rispettosa dell'ambiente è una misura indiretta di conservazione della biodiversità applicabile su tutta la superficie forestale. Se vi si aggiungono le riserve forestali, i popolamenti di vecchi alberi e un reticolo di zone protette, disponiamo degli strumenti necessari per proteggere gli habitat di specie minacciate di licheni epifiti.

Influsso della gestione del territorio sulla categoria di minaccia delle specie

In seguito alla durata, in parte molto lunga, del ciclo generazionale dei licheni, le conseguenze di interventi su popolazioni locali sono visibili solo dopo decenni, se non secoli (Rose 1976, 1992, 1993). I licheni epifiti muoiono generalmente nel giro di poche settimane se un albero ospitante viene abbattuto o cade spontaneamente. Specialmente in piccole popolazioni epifite che si limitano a pochi alberi, nella pratica di protezione si deve tener conto anche delle conseguenze a lungo termine, che solo decenni dopo l'evento possono portare allo smembramento della popolazione locale. Con ogni evento si riduce la popolazione epifita locale, diminuendo così la possibilità di produrre sufficienti unità di propagazione che potrebbero raggiungere alberi circostanti non ancora colonizzati. Una volta che le popolazioni scendono sotto una soglia critica, la loro sopravvivenza dipende soprattutto da eventi casuali e le misure di protezione in molti casi non sono più sufficienti per espletare l'effetto desiderato. Il provvedimento di gran lunga più importante per la conservazione dei licheni epifiti deve quindi essere la conservazione degli alberi ospitanti.

Nella determinazione delle categorie di minaccia della Lista Rossa si è poi anche presupposto che tutte le stazioni di specie minacciate siano protette. Anche con uno sfruttamento limitato, che preveda ad esempio il taglio di singoli alberi ospitanti, si deve ritenere che la categoria di minaccia delle specie colpite aumenti di un grado. Lo sfruttamento di tutto il patrimonio boschivo, secondo il principio di abbattimento di singoli alberi con una durata di rotazione di 90 anni, nella maggior parte delle specie classificate in questa lista come minacciate in base al criterio A3 (tab. 17), avrà come conseguenza un loro passaggio alla categoria seriamente minacciate di estinzione (CR).

Quali ulteriori provvedimenti urgono, soprattutto per le specie della categoria di minaccia CR e EN, accorgimenti atti ad ingrandire la popolazione locale. In Svizzera

Tab. 17: Numero di specie nelle diverse categorie di minaccia secondo tre scenari d'utilizzo forestale in zone in cui i licheni sono presenti: riserve naturali, rinuncio parziale allo sfruttamento e utilizzo a lungo termine delle riserve legnose (da Scheideger et al. 2000).

Categoria di minaccia	Riserva naturale	Rinuncia parziale allo sfruttamento	Utilizzo a lungo termine delle riserve legnose
RE	23	23	23
CR	32	44	63
EN	89	95	120
VU	86	88	62
NT	84	69	55
LC	201	196	192

sono numerose le specie la cui presenza è nota soltanto su singoli alberi. In diversi casi, dove le specie sono documentate in raccolte storiche, è possibile dimostrare che in decenni passati questi siti di ritrovamento erano molto più estesi. La causa del regresso di popolazioni oggi di dimensioni vicine al limite critico inferiore non è ricostruibile con precisione nei singoli casi. Per queste specie appare giustificato colonizzare artificialmente alberi ospitanti e aumentare così la loro probabilità di sopravvivenza. Durante questa operazione bisogna badare a non danneggiare gli individui ancora presenti. Negli ultimi anni sono stati sviluppati appositi metodi: per il trapianto si utilizzano in parte unità di propagazione vegetative, evitando così di arrecare danno alle popolazioni naturali (SCHEIDEGGER 1995; SCHEIDEGGER *et al.* 1995; ZOLLER *et al.* 2000). Affinché anche in queste piccole popolazioni non vada persa la diversità genetica in seguito ai trapianti, è consigliabile raccogliere le diaspore da trapiantare sul maggior numero possibile di talli lichenosi.

Zone di protezione della natura e riserve forestali

Le scarse conoscenze finora disponibili sui licheni epifiti non hanno permesso di tenere spesso conto dell'esistenza di licheni minacciati nella pianificazione di aree di protezione. In effetti, varie stazioni di specie seriamente minacciate sono situate al di fuori di aree protette. In parecchi casi, specie fortemente minacciate potrebbero essere preservate con successo allargando l'area protetta. Esistono inoltre specie fortemente minacciate facilmente riconoscibili, che bene si presterebbero quali specieguida per la delimitazione di riserve forestali e aree di protezione. Noi proponiamo che nella preparazione di piani di sviluppo forestale, in futuro, vengano presi in considerazione anche i licheni minacciati.

Protezione nelle aree gestite dall'uomo

Nelle aree gestite dall'uomo, la stragrande maggioranza delle specie può essere conservata con uno sforzo minimo. Determinante è innanzitutto che ci si renda conto della loro presenza. La consapevolezza che i licheni epifiti non sono parassiti dannosi è già di per sé un aspetto fondamentale per la loro conservazione nei frutteti e nei parchi. Chi percepisce la molteplice varietà di colori dei licheni non solo scopre un'ulteriore componente della diversità biologica, ma dispone anche di un caleidoscopio di analisi della qualità dell'aria e una chiave di lettura della storia del paesaggio.

Conservazione di singoli alberi e di gruppi di alberi ricchi di licheni

La protezione degli alberi ricchi di licheni è la misura più semplice da adottare per la conservazione dei licheni epifiti in un'area sfruttata dall'uomo. Nelle zone di pianura si tratta soprattutto delle stazioni di licheni fruticosi e di barbe di bosco giallastri, dei variopinti licheni fogliosi e crostosi situati sui tronchi e sui rami, mentre nei boschi sono le parti di tronco bianche o grigiastre delle querce vecchie e screpolate e i licheni fogliosi grandi come il palmo della mano.

Nelle foreste di montagna, oltre ai licheni fogliosi di grandi dimensioni presenti sulle latifoglie, vanno menzionate come specie-guida soprattutto le lunghe barbe di bosco giallastre presenti sulle conifere. Soltanto un occhio esperto è però in grado di distinguere le singole specie. La determinazione di specie potenzialmente minacciate dovrebbe perciò in generale essere riservata agli specialisti.

Conservazione di paesaggi ad alta continuità ecologica

La maggior parte delle specie di licheni minacciati non è in grado di diffondersi a grandi distanze. Le popolazioni esistenti riescono a mantenersi nell'habitat già colonizzato, ma non ci si può aspettare che queste specie colonizzino aree finora non occupate o habitat creati ex novo. Per i licheni, le misure di protezione devono perciò iniziare da stazioni già esistenti. Per organismi mobili, la rivalorizzazione ecologica degli habitat rappresenta una misura adeguata, anche se le specie devono dapprima colonizzare il luogo. Per i licheni, il successo di simili interventi finora non è mai stato dimostrato. Solo eccezionalmente si realizza un'effettiva protezione dei licheni epifiti quale prodotto secondario di misure protettive focalizzate su altri traguardi. Per riserve forestali e aree di protezione future si dovrebbero includere nella pianificazione le stazioni di licheni epifiti minacciati.

4.7 Ringraziamenti

Per l'effettuazione dei corsi di determinazione ringraziamo di cuore Brian Coppins (Edinburgh), Helmuth Mayrhofer (Graz) e Tor Tønsberg (Bergen). Inoltre si ringraziano i numerosi specialisti che in modo encomiabile hanno determinato campioni critici: Helene e Gerhard Czeika, Stefan Ekman (Bergen), Martin Grube (Graz), Peter James (London), Per-Magnus Jørgensen (Bergen), Roland Moberg (Uppsala), Pier Luigi Nimis (Trieste), Christian Printzen (Bergen), Emmanuël Sérusiaux (Liège), Rolf Santesson (Uppsala), Ulrik Søchting (Copenhagen), Leif Tibell (Uppsala), Einar Timdal (Oslo), Mauro Tretiach (Trieste), Volkmar Wirth (Stuttgart).

Le fasi iniziali del progetto sono state discusse con Klaus Ammann ed Edi Urmi e con un gruppo di lavoro dell'Associazione svizzera di briologia e lichenologia. Il rilevamento è stato discusso con Peter Brassel, Otto Wildi, Michael Köhl, Rita Ghosh e Rodolphe Schlaepfer ed è basato sul reticolo di campionamento dell'Inventario Forestale Nazionale svizzero (IFN). La strutturazione e la gestione della Banca Dati sono state eseguite in modo competente da Johann Wey, Peter Jakob e Flurin Suter. Sin dalle prime fasi del progetto, Martin Hägeli ha sviluppato applicazioni internet e, con l'uso del programma Avenue, Charlotte Steinmeier ha calcolato le aree di distribuzione. I commenti critici di Rolf Holderegger, Pier Luigi Nimis, Norbert Schnyder, Yves Gonseth e Daniel Moser hanno contribuito alla riuscita di questo lavoro.

Grazie alla indefessa e volontaria collaborazione della signora Helen Hilfiker e di Erich Zimmermann, hanno potuto essere cartografate aree floristicamente interessanti inizialmente non previste.

Numerose singole osservazioni sono inoltre state segnalate dal servizio forestale, da membri di società botaniche e da ornitologi. A tutte queste persone giunga un caloroso ringraziamento per le loro segnalazioni. In modo particolare ringraziamo Verena Keller e Niklaus Zbinden, della Stazione Ornitologica Svizzera di Sempach, che hanno sollecitato queste segnalazioni. A Verena Keller un sentito grazie anche per le numerose discussioni sui criteri della Lista Rossa.

5.1 Habitat

Differenti tipi di licheni terricoli

In natura, la maggior parte dei licheni cresce su quattro principali tipi di substrato: piante viventi, di solito alberi (licheni epifiti), legno morto (licheni lignicoli), sassi e roccia (licheni sassicoli) e anche terra (licheni terricoli). A prima vista questa suddivisione ecologica appare chiara. Le difficoltà iniziano se si vuole sapere quali specie appartengono al gruppo dei licheni terricoli:

- 1. Diverse specie crescono perlopiù su un tipo di substrato ben definito, in determinate condizioni possono però crescere anche su altri substrati. Se ad es. in un bosco ci sono superfici di roccia affiorante con caratteristiche microclimatiche adatte, su di esse possono svilupparsi licheni epifiti, apparentemente sfuggiti agli alberi circostanti. Ciò succede in particolare quando le rocce sono al piede del tronco.
- 2. Se i licheni epifiti possono essere semplicemente definiti licheni che crescono su una pianta vivente, di solito sul tronco o sui rami, la definizione ecologica di «terricolo» è più fluida e contemporaneamente più complessa. Questa definizione esprime non solo la conformazione del substrato, ma anche la sua posizione sul terreno «sotto i nostri piedi». Tenendo conto di questi due aspetti, si possono distinguere diversi tipi di licheni terricoli:
 - specie che crescono direttamente su terra, sabbia, humus o torba (ad es. i licheni tra i ciuffi d'erba nei prati secchi dello Xerobrometum del Giura).
 Questi sono da ritenere licheni terricoli in senso stretto;
 - specie che crescono su muschi che a loro volta sono ancorati su terra o sabbia (ad esempio numerosi taxa delle brughiere alpine o delle creste spazzate dal vento). Questi sono definiti licheni muscicolo-terricoli;
 - specie che crescono nella terra accumulatasi nelle fenditure delle rocce (ad es. i licheni nelle fessure delle rocce calcaree del Giura). Questi sono definiti licheni terricolo-rupicoli (il criterio della vicinanza al terreno in questo caso non è sempre rispettato);
 - specie che crescono su muschi ancorati alle rocce (ad es. su grossi massi rocciosi nel bosco o sui tavolati calcarei). Questi licheni sono definiti muscicolo-rupicoli (il criterio della vicinanza al terreno non è sempre soddisfatto);
 - specie che crescono direttamente su detriti vegetali a terra. Questi sono da considerare detriticolo-terricoli (in questo caso determinante è unicamente il criterio della immediata vicinanza al suolo).

Tutte queste specie sono denominate licheni terricoli in senso lato. Colonizzano substrati estremamente diversi e formano così un gruppo ecologico molto ampio.

Stato attuale delle conoscenze

I licheni terricoli vengono trattati solitamente da un punto di vista tassonomico (ad es. Ahti, 1961; Breuss, 1990) o floristico, ma limitatamente ad un determinato tipo di vegetazione (ad es. Bornkamm, 1958; Ahti & Oksanen, 1990; Gilbert, 1993). Da quanto ci risulta, nella letteratura scientifica non esistono lavori lichenologici che trattino a livello regionale o nazionale specificatamente tutta la vegetazione lichenica terricola in senso lato, secondo la definizione data nel capitolo precedente. Il lavoro più recente che maggiormente si avvicina a questo tipo di studio è quello di Paus (1997) sulla vegetazione lichenica terricola nel Nord-Ovest della Germania.

In Svizzera questo tipo di vegetazione è assai poco conosciuto. Eduard Frey ha svolto un lavoro da pioniere nella regione del Grimsel, studiando la successione della vegetazione alpina, soprattutto quella dei banchi di sabbia alluvionali di origine glaciale (Frey, 1922). Ha studiato questo tipo di vegetazione anche nella riserva dell'Aletsch (Frey, 1937). I lavori più dettagliati di Frey sono comunque quelli relativi al Parco nazionale (Frey, 1952, 1959), nei quali egli ha studiato, tra l'altro, lo sviluppo della flora lichenica delle fasce detritiche. Sono stati studiati anche altri habitat terricoli in senso lato, soprattutto le torbiere alte del Giura (Rondon, 1977, 1978), la steppa xerotermica nel Vallese (Buschhardt, 1979) e le garide xerotermiche della regione del Lemano (Röllin, 1996; Turian, 1972, 1975; Turian & Monthoux, 1978). Questi sono praticamente gli unici studi specifici e dettagliati, dal momento che non esiste nessuna sintesi della vegetazione lichenica terricola della Svizzera.

Perché i licheni terricoli?

Contrariamente ai licheni epifiti, che assieme ai muschi dominano incontrastati il loro habitat, i licheni terricoli sono esposti ad una forte concorrenza da parte delle fanerogame. In seguito alle loro dimensioni ridotte ed alla loro crescita molto lenta, i licheni non sono in grado di concorrere con le piante vascolari. In compenso, grazie alle loro caratteristiche fisiologiche, innanzitutto grazie alla poichiloidria (contenuto idrico instabile e variabile) sopportano molto meglio delle fanerogame il secco, il caldo ed il freddo. Possono così imporsi solo negli habitat, nei quali le fanerogame o non possono vivere del tutto oppure crescono male o non sono in grado di coprire tutto il terreno. Rimane così una percentuale variabile di terreno scoperto, che i licheni terricoli possono colonizzare da pionieri. Questi habitat sono caratterizzati da terreno povero in nutrienti (ad es. nelle torbiere alte), da un clima particolarmente rigido (ad es. sulle creste esposte al vento nelle Alpi o nei permafrost della Tundra) o anche da condizioni edafiche o stazionali particolarmente difficili (ad es. sui versanti esposti a Sud delle valli secche intralpine). I licheni terricoli sono specialisti che si sono adattati estremamente bene a questi habitat particolari. Sono quindi organismi importanti e da considerare nella valutazione della diversità, della stabilità e del grado di influsso antropico degli ecosistemi in cui vivono.

In Svizzera, in seguito alla considerevole urbanizzazione, allo sfruttamento agricolo su vasta scala e al fatto che il climax fino al limite delle foreste è dominato dal bosco, ci sono pochi habitat idonei ai licheni terricoli (vedi capitolo seguente). Inoltre, le superfici aperte, povere di nutrimento, ideali allo sviluppo di questo tipo di licheni, sono particolarmente minacciate dagli interventi umani.

In base a tutti questi fattori possiamo avanzare la seguente fondamentale ipotesi: i licheni terricoli sono piuttosto rari e sicuramente minacciati. Per questo motivo sono stati ritenuti prioritari rispetto ai licheni sassicoli ed è stato loro dedicato un capitolo separato nel progetto originale della cartografia dei licheni epifiti.

Habitat caratteristici

I licheni sono la forma di vita dominante su circa l' 8% della superficie terrestre (АНМАДЛАN, 1995). Ad es. licheni terricoli del genere *Cladonia*, sottogenere *Cladina* (licheni delle renne) coprono vaste aree nelle foreste boreali del Nord-America, dell'Europa e della Russia; anche i suoli a permafrost della tundra sono ricoperti da vaste superfici di licheni terricoli. Malgrado il largo spettro di habitat e microhabitat, in Svizzera i licheni terricoli occupano solo raramente superfici estese. Per lo più si ritrovano ai margini della vegetazione dominata dalle fanerogame.

In seguito all'instabilità del terreno, dovuta alla variabilità del livello dell'acqua e alla predominante e forte concorrenza, i licheni terricoli non crescono nelle zone regolarmente inondate. Anche se determinate specie di licheni potrebbero potenzialmente vivere sugli sfagni, nelle stazioni umide i licheni si trovano soprattutto sui cumuli torbosi delle torbiere alte o delle torbiere di alta quota. In questi luoghi estremamente secchi ed esposti, dove la concorrenza con le fanerogame è meno intensa, l'approvvigionamento di acqua da parte del lichene avviene per forza capillare a partire dalla torbiera.

Habitat dominati da sassi e roccia come le aree alluvionali, le morene o le fasce detritiche rappresentano un habitat adatto, purché siano duraturi e poco ricoperti di vegetazione. È questo il caso dei terrazzi alluvionali secchi e caldi, delle morene in via di ricolonizzazione e dei macereti originati da frane su terreni a substrato siliceo. In presenza di vegetazione chiusa, i massi rocciosi o i costoni rocciosi assumono particolare importanza, poiché sono spesso ricoperti di un sottile strato di humus o un tappeto di muschio e diventano quindi zona di transizione per i licheni terricoli in senso lato.

I tappeti erbosi offrono ai licheni terricoli il maggior numero di habitat idonei. Particolarmente importante è un apporto sufficiente di luce, come avviene in una vegetazione non completamente chiusa, ad es. nei prati secchi dei tavolati calcarei ai piedi del Giura e nelle steppe del Vallese centrale. Condizioni di luce favorevoli sono date anche nei prati alpini che sono più o meno esposti e che si insediano spesso a mosaico tra le fasce detritiche e la roccia. Anche i prati grassi sono sovente ricchi di

licheni terricoli che trovano gli habitat favorevoli tra spaccature del terreno, massi detritici o muri a secco.

Orli di bosco erbacei, megaforbieti e cespugli ospitano solo in casi eccezionali licheni terricoli, poiché sono troppo fitti e oscuri. Per contro sono molto idonee per i licheni terricoli le **brughiere alpine**. Queste brughiere di Ericaceae sono sovente molto rade, lasciando così spazio a superfici libere che le fanerogame colonizzano difficilmente a causa dell'acidità del suolo. I licheni terricoli possono così imporsi.

Nei **boschi** solitamente non ci sono licheni terricoli; il soprassuolo ha in gran parte raggiunto il suo climax ed è fitto e molto oscuro. Ciononostante vi si possono trovare situazioni che, in condizioni di luce favorevole, consentono la presenza di determinate specie, come ad esempio le spaccature nel terreno, i massi rocciosi franati e i distacchi di pendio. Più un bosco è secco, meno fitto è il soprassuolo e maggiore è la quantità di luce che vi penetra. Le faggete calde e xerofile, i boschi di roverella e le foreste di cembri e larici possiedono sovente, in ordine crescente, la struttura e la luce necessaria alla presenza di licheni terricoli.

A determinate condizioni, anche habitat antropici possono risultare idonei per i licheni terricoli. Nella maggior parte dei boschi, le scarpate o i bordi rialzati delle strade creano le condizioni di luce e gli habitat da pioniere necessari per la colonizzazione di licheni terricoli. I bordi poco disturbati di sentieri o depositi di ghiaia favoriscono lo sviluppo di alcuni licheni specializzati. Muri a secco e muri di sostegno, mucchi di sassi e crepe tra le pietre di pavimentazione sono nicchie caratteristiche per altri licheni terricoli.

Le minacce per i licheni terricoli

Come detto in precedenza, i licheni terricoli sono organismi pionieri che crescono in habitat poveri di sostanze nutritive. Queste due caratteristiche sono causa delle minacce per questi funghi lichenizzati:

1. Essendo i licheni terricoli organismi pionieri, è connaturato al loro destino lo scomparire nel corso della successione o dopo avvenimenti catastrofici, e il successivo ricomparire in caso di creazione di nuovi siti colonizzabili da organismi pionieri, siano essi di origine naturale o antropica. Questi posti aperti da pioniere, poco adatti alle fanerogame, oggigiorno diventano sempre più rari nelle zone di pianura e in quelle collinari. I maggiori responsabili di tale evoluzione sono la persistente urbanizzazione e la creazione di complessi residenziali o vigneti su pendii soleggiati rivolti a Sud, stazioni che ospitano spesso una vegetazione aperta e quindi idonea ai licheni terricoli. Altri motivi sono il prosciugamento di luoghi umidi, soprattutto delle torbiere alte, poverissime in sostanze nutritive, e l'incanalamento del corso dei fiumi che porta alla scomparsa della loro dinamica naturale, importante per la vegetazione pioniera delle zone golenali. Ad alte quote, habitat adatti ai licheni terricoli possono essere minacciati

ad es. dall'appianamento del terreno per la costruzione di piste da sci. Da ultimo, i licheni terricoli sono minacciati perfino in luoghi antropici dove muri in sasso vengono sostituiti da muri in calcestruzzo, dove scompaiono gli acciottolati lasciando sempre più posto all'asfalto.

2. Coloni di ambienti poveri di sostanze nutritive, i licheni sono minacciati da un lato dalla crescente eutrofizzazione dell'ambiente circostante (eccessivo accumulo di sostanze nutritive), dall'altro anche dall'aumento della concentrazione di CO2 nell'atmosfera. Nell'Altopiano, ad es., le immissioni annuali di azoto dall'aria raggiungono fino a 80 kg/ha (KLAUS et al., 2001). Il suo potere concimante favorisce le fanerogame che preferiscono terreni ricchi di sostanze nutritive e causa così la scomparsa dei licheni terricoli, meno concorrenziali. Parimenti, l'aumento della concentrazione atmosferica di CO2 intensifica la produttività e porta a sua volta ad un aumento della biomassa nel soprassuolo. KLAUS et al. (2001) affermano che questo aumento di concentrazione di CO2 sembra cambiare radicalmente i rapporti di concorrenza nel soprassuolo, a scapito della biodiversità. Molto probabilmente i primi ad essere colpiti da questi profondi cambiamenti saranno i licheni terricoli, essendo poco concorrenziali.

5.2 Materiali e metodi

Specie considerate

Per questo studio sono stati considerati i licheni terricoli in senso lato. Sono quindi inclusi quasi tutti i vari tipi definiti nell'introduzione. Per motivi di praticità abbiamo considerato e raccolto tutte le specie facilmente asportabili dal loro substrato, senza ledere la corteccia degli alberi o spaccare il sasso. In questo modo hanno potuto essere trattati in modo quasi esaustivo generi importanti di licheni terricoli quali *Peltigera* e *Cladonia*, numerose specie dei quali vivono sia direttamente sul suolo che su muschio o al piede dei tronchi. Determinati licheni terricoli in senso stretto crescono inoltre su uno strato sottile di humus, nelle fessure, nelle crepe e negli affossamenti delle rocce, anche se non necessariamente sul suolo o in posizione orizzontale. Anche queste specie hanno potuto essere incluse nella loro quasi totalità tra i terricoli, dal momento che è stata considerata la definizione in senso lato di questa categoria.

Specie non considerate

Nel rilevamento dei dati abbiamo tenuto conto di tutti i licheni trovati su substrato «terricolo». Nell'analisi dei dati sono state invece incluse solamente le specie cresciute prevalentemente su substrato «terricolo». Una specie figurante sia nei ritrovamenti epifiti che in quelli terricoli, è stata assegnata ad una delle due categorie di substrati, a dipendenza della sua maggior frequenza nei ritrovamenti. Essendo

impossibile determinare tutti i campioni, per alcune specie come ad es. *Agonimia tristicula*, il numero di rilevamenti terricoli non era rappresentativo per deciderne la sua assegnazione al substrato terricolo. In tabella 1 sono indicate le specie che sono state trovate su substrato terricolo solamente in modo subordinato e che sono quindi state assegnate alle specie epifite.

Altre specie trovate su substrato «terricolo» colonizzano principalmente rocce o legno morto. Occasionalmente vivono anche come epifiti. Nella Lista Rossa non se ne è tenuto conto. La tabella 2 fornisce l'elenco di queste specie.

Tab. 1: Specie primariamente corticole, ritrovate però anche su «substrati terricoli». Le cifre corrispondono al numero di «rilevamenti terricoli» delle specie.

Agonimia tristicula (Nyl.) Zahlbr.	2	Mycobilimbia carneoalbida (Müll. Arg.)	1
Amandinea punctata (Hoffm.) Coppins & Scheid.	1	Nephroma bellum (Spreng.) Tuck.	2
Anaptychia ciliaris (L.) Körb.	1	Nephroma parile (Ach.) Ach.	39
Anaptychia crinalis (Schleich.) Vězda	1	Nephroma resupinatum (L.) Ach.	5
Biatora subduplex (Nyl.) Printzen	1	Ochrolechia androgyna (Hoffm.) Arnold	6
Biatora vernalis (L.) Fr.	1	Pannaria conoplea (Ach.) Bory	6
Bryoria bicolor (Ehrh.) Brodo & D. Hawksw.	3	Parmelia caperata (L.) Ach.	2
Caloplaca cerina (Hedw.) Th. Fr.	5	Parmelia sulcata Taylor	14
Cetraria sepincola ((Ehrh.) Ach.	1	Parmelia tiliacea (Hoffm.) Ach.	2
Cetraria pinastri (Scop.) Gray	8	Parmeliopsis hyperopta (Ach.) Arnold	1
Chaenotheca furfuracea (L.) Tibell	27	Parmotrema crinitum (Ach.) Choisy	2
Cladonia cenotea (Ach.) Schaer.	21	Peltigera collina (Ach.) Schrad.	13
Cladonia coniocraea (Flörke) Spreng.	62	Pertusaria albescens (Huds.) M. Choisy & Werner	5
Cladonia digitata (L.) Hoffm.	32	Phaeophyscia chloantha (Ach.) Moberg	2
Cladonia fimbriata (L.) Fr.	119	Phaeophyscia hirsuta (Mereschk.) Moberg	2
Cladonia squamosa Hoffm.	36	Phaeophyscia orbicularis (Neck.) Moberg	6
Collema flaccidum (Ach.) Ach.	19	Physcia stellaris (L.) Nyl.	1
Cyphelium pinicola Tibell	1	Physcia tenella (Scop.) DC.	2
Dimerella pineti (Ach.) Vězda	3	Physconia enteroxantha (Nyl.) Poelt	1
Hypogymnia bitteri (Lynge) Ahti	1	Physconia grisea (Lam.) Poelt	1
Hypogymnia physodes (L.) Nyl.	5	Physconia perisidiosa (Erichsen) Moberg	1
Hypogymnia tubulosa (Schaer.) Hav.	4	Placynthiella dasaea (Stirt.) Tønsb.	1
Lecanora hagenii (Ach.) Ach. aggr.	1	Placynthiella icmalea (Ach.) Coppins & P.James	7
Lepraria elobata Tønsberg	1	Pseudevernia furfuracea (L.) Zopf	1
Lepraria rigidula (de Lesd.) Tønsberg	1	Ramalina pollinaria (Westr.) Ach.	1
Leptogium cyanescens (Rabenh.) Körb.	1	Rinodina conradii Körb.	2
Leptogium saturninum (Dicks.) Nyl.	6	Sticta sylvatica (Huds.) Ach.	2
Leptogium teretiusculum (Wallr.) Arnold	2	Xanthoria fallax (Hepp) Arnold	1
Lobaria scrobiculata (Scop.) DC.	3	Xanthoria ulophyllodes Räsänen	1

Tassonomia

Tutte le specie che non hanno potuto essere determinate con sicurezza sul terreno, sono state raccolte e identificate in laboratorio mediante lente binoculare e microscopio. Se necessario, soprattutto per la determinazione dei generi *Cladonia* e *Stereocaulon*, è stata utilizzata la cromatografia su strato sottile (Culberson & Ammann, 1979) per identificarne le sostanze licheniche. Sono state effettuate circa 900 analisi chimiche. La tabella 3 riporta la bibliografia di riferimento che è stata utilizzata per la determinazione dei generi più importanti di licheni terricoli. Altrimenti sono state consultate le seguenti chiavi generali: WIRTH (1980), POELT (1969), POELT & VĚZDA (1977, 1981) e PURVIS *et al.* (1992). Si è inoltre utilizzata la chiave di determinazione di FRYDAY & COPPINS (1997).

Nel caso di alcuni taxa critici, è stato necessario limitarsi alla determinazione di aggregati o gruppi di «sottospecie» difficilmente distinguibili, in quanto:

Tab. 2: Specie primariamente sassicole o lignicole, ritrovate però anche su «substrati terricoli». Le cifre corrispondono al numero di «rilevamenti terricoli» delle specie.

-			
Aspicilia contorta (Hoffm.) Kremp.	1	Parmelia protomatrae (Gyeln.) Hale	6
Brodoa intestiniformis (Vill.) Goward	6	Parmelia pulla Ach.	10
Caloplaca citrina (Hoffm.) ThFr.	1	Parmelia saxatilis (L.) (Ach.)	22
Cetraria hepatizon (Ach.) Vain.	2	Parmelia somloënsis Gyeln.	32
Collema cristatum (L.) F.H.Wigg.	18	Parmelia squarrosa Hale	11
Collema fuscovirens (With.) J.R.Laundon	31	Parmelia tominii Oxner	1
Collema polycarpon Hoffm.	4	Phaeophyscia endococcina (Körb.) Moberg	4
Collema undulatum Flot.	3	Phaeophyscia sciastra (Ach.) Moberg	2
Diploschistes diacapsis (Ach.) Lumbsch	4	Physcia caesia (Hoffm.) Fürnr.	1
Diploschistes gypsaceus (Ach.) Zahlbr.	1	Physcia dimidiata (Arnold) Nyl.	3
Gyalecta jenensis (Batsch) Zahlbr.	1	Physcia dubia (Hoffm) Lettau	1
Icmadophila ericetorum (L.) Zahlbr.	33	Sphaerophorus fragilis (L.) Pers.	1
Lecanora concolor Ramond	1	Stereocaulon dactylophyllum Flörke	1
Lecanora epanora (Ach.) Ach.	1	Toninia candida (Weber) Th. Fr.	13
Lecanora muralis (Schreb.) Rabenh.	21	Toninia cinereovirens (Schaer.) A.Massal.	4
Leptogium plicatile (Ach.) Leight.	11	Toninia diffracta (A.Massal.) Zahlbr.	6
Leptogium schraderi (Bernh.) Nyl.	3	Trapeliopsis granulosa (Flörke) Coppins & P.James	42
Pannaria leucophaea (Vahl) P.M.Jørg.	2	Trapeliopsis viridescens (Schrad.) Coppins & P.James	1
Parmelia conspersa (Ach.) Ach.	13	Xanthoria elegans (Link) Th. Fr.	2
Parmelia omphalodes (L.) Ach.	5		

Tab. 3: Letteratura scientifica usata per la determinazione dei diversi generi di licheni terricoli riscontrati in Svizzera.

Arthrorhaphis	Obermayer (1994)	Leptogium	Jørgensen (1994)
Buellia	Poelt & Sulzer (1974	Peltigera	Vitikainen (1994)
Caloplaca	Clauzade & Roux (1985)	Phaeophyscia	Moberg (1977)
Catapyrenium	Breuss (1990)	Physcia	Moberg (1977)
Cladonia	Ahti (1977)	Placynthiella	Coppins & James (1984)
Collema	Degelius (1954)	Rinodina	Mayrhofer (1999)
Diploschistes	Lumbsch (1989)	Stereocaulon	Poelt & Vězda (1981)
Fulgensia	Poelt & Vězda (1977)	Toninia	Timdal (1991)

Tab. 4: Aggregati considerati in questo lavoro (sinistra) e rispettive specie che li costituiscono (destra).

Cladonia arbuscula aggr.	Cladonia arbuscula (Wallr.) Flot. s. str., C. arbuscula ssp. squarrosa (Wallr.) Ruoss, C. mitis Sandst.
Cladonia chlorophaea aggr.	Cladonia chlorophaea (Sommerf.) Spreng. s. str., C. cryptochlorophaea Asahina, C. grayi Sandst., C. humilis (With.) J.R.Laundon, C. merochlorophaea Asahina
Cladonia coniocraea aggr.	Cladonia coniocraea (Flörke) Spreng. s. str., C. ochrochlora Flörke
Cladonia foliacea aggr.	Cladonia convoluta (Lam.) Cout., C. foliacea (Huds.) Willd. s. str.
Cladonia macilenta aggr.	Cladonia bacillaris (Leight.) Arnold, C. floerkeana (Fr.) Flörke, C. macilenta Hoffm. s. str.,
Cladonia macroceras aggr.	Cladonia gracilis (L.) var. gracilis, C. gracilis var. dilatata auct., C. macroceras (Delise) Hav.
Cetraria aculeata aggr.	Cetraria aculeata (Schreb.) Fr., C. muricata (Ach.) Kärnefelt

Tab. 5: Lista dei licheni terricoli considerati nel rilevamento H (dati storici).

Acarospora schleicheri	Leptogium biatorinum
Buellia asterella	Leptogium byssinum
Catapyrenium michelii	Moelleropsis nebulosa
Catapyrenium tremniacense	Peltigera hymenina
Cladonia cariosa	Peltigera lepidophora
Cladonia cervicornis s. l.	Peltigera malacea
Cladonia foliacea aggr.	Peltigera venosa
Cladonia peziziformis	Psora decipiens
Collema coccophorum	Solorinella asteriscus
Collema limosum	Squamarina lentigera
Fulgensia fulgens	Toninia lutosa
Heppia adglutinata	Toninia physaroides
Heppia lutosa	Toninia sedifolia

1. Le specie dell'aggregato si differenziano unicamente per le loro proprietà chimiche (ad es. le «sottospecie» del gruppo di *Cladonia chlorophaea*). Ogni campione osservato sul terreno avrebbe dovuto essere raccolto e analizzato in laboratorio. Ciò non è stato possibile per motivi di tempo. 2. Le differenze tra le specie di un gruppo erano secondo noi troppo esigue per giustificare una differenziazione chiara e definitiva (ad es. il gruppo di *Cladonia foliacea*). La tabella 4 elenca i gruppi da noi definiti e le specie ivi contenute.

Tutte le specie raccolte sono state depositate nell'erbario del Conservatoire et Jardin botaniques de la Ville de Genève (CJBG).

Metodi di rilevamento

Rilevamento di dati storici (rilevamento H)

Nello stilare una Lista Rossa, soprattutto in base alle nuove direttive UICN, è importante disporre di informazioni concernenti la distribuzione della specie nel passato. Gli erbari costituiscono al riguardo un'importante fonte di dati. Nel rilevamento H sono state analizzate le informazioni ivi contenute. Per 26 specie terricole, selezionate in base a forma di crescita, habitat, tipo di distribuzione e categoria di minaccia in una Lista Rossa provvisoria (CLERC *et al.*, 1992), abbiamo ricercato negli erbari svizzeri più importanti i dati riguardanti la loro distribuzione (tab. 5). La determinazione è stata verificata e le informazioni ricavate dalle rispettive etichette sono state inserite nella Banca Dati «LICHEN». La produzione di carte della distribuzione passata di queste specie, basata su materiale d'erbario, e il raffronto con i dati sulla distribuzione attuale forniscono delle informazioni importanti che permettono di studiare l'evoluzione della distribuzione delle specie fino ad oggi.

Rilevamento di dati recenti

Delle 26 specie terricole della tabella 5, solo 15 (il 6% delle specie terricole della Svizzera) sono state ritrovate nei rilevamenti recenti (vedi sotto).

Per redigere la Lista Rossa dei licheni terricoli in Svizzera sono stati eseguiti, tra il 1996 ed il 1999, due tipi di rilevamento:

- 1. Rilevamento tipo A
- 2. Rilevamento tipo B

In circa 900 stazioni sono state trovate approssimativamente 300 specie. Ben 7000 registrazioni sono state immesse nella Banca Dati.

Rilevamento tipo A: rilevamenti statisticamente rappresentativi.

I licheni terricoli possiedono due caratteristiche importanti, di cui bisogna tener conto nella delimitazione della superficie di rilevamento: 1. In seguito alla rarità degli habitat che essi solitamente colonizzano da pionieri, i licheni terricoli sono decisamente meno frequenti di quelli epifiti (a parte naturalmente oltre il limite della vegetazione arborea). 2. La loro ripartizione sulla superficie totale della Svizzera è molto meno unitaria di quella degli epifiti. Mentre al di sotto del limite del bosco si

trovano alberi quasi ovunque, gli habitat pionieri sono distribuiti in modo assai eterogeneo. Se le superfici scelte a caso sono troppo piccole, la probabilità di incappare in licheni terricoli è ridotta al minimo.

L'unità di superficie da noi scelta è 1 km². La suddivisione in parcelle corrisponde al reticolo chilometrico di coordinate delle carte nazionali in scala 1: 25 000 pubblicate dall'Ufficio federale di topografia.

Parimenti agli epifiti, i licheni terricoli sono sensibili non solo al clima, ma mostrano anche una forte dipendenza dal proprio substrato, il terreno. Di conseguenza, la geologia svolge un ruolo fondamentale nella diffusione di questo tipo di licheni. Pur essendo una piccola nazione, la Svizzera presenta clima e geologia assai variegati. Scegliendo completamente a caso quadrati di 1 km², si corre il pericolo che regioni piccole, con clima e geologia caratteristici, siano sottorappresentati. Abbiamo perciò deciso di stratificare il territorio di studio. Quale unità di stratificazione abbiamo scelto le tipologie vegetazionali come definite in HEGG *et al.* (1993). Queste sono considerate unitarie per quel che concerne la topografia, il clima e la geologia.

La disgregazione della roccia provoca lo sviluppo della stessa successione pedologica su cui si sviluppa la medesima successione di associazioni vegetali fino a raggiungere un unico climax, lo stato di vegetazione in equilibrio. Sono state descritte 31 tipologie vegetazionali. Esse rappresentano un ideale gradino intermedio tra le regioni biogeografiche della Svizzera (Gonseth *et al.*, 2001), che per il nostro studio sono troppo estese, e gli habitat definiti in Delarze *et al.* (1998), che per le nostre esigenze sono troppo ridotti. Si tratta di un concetto concreto e pratico, poiché ogni regione biogeografica comprende molteplici tipologie vegetazionali e ogni tipologia comprende molteplici habitat. Questo concetto di successione dinamica della vegetazione, permette da un lato di salvaguardare il legame biologico tra i diversi parametri, dall'altro di integrare il carattere fugace degli habitat dei licheni terricoli.

In ogni tipologia vegetazionale sono state estratte a sorte 10 superfici di 1 km² ciascuna, per un totale di 310 superfici per tutta la Svizzera. Ciascuna di queste superfici è stata visitata tra il 1996 ed il 1999 e la vegetazione dei licheni terricoli è stata rilevata nel modo più completo possibile (coordinate, quota, esposizione, ambienti naturali, habitat, taxa). Questi rilievi stratificati in modo casuale costituiscono i rilevamenti tipo A e servono per le analisi statistiche. Essi coprono circa lo 0,8% della superficie totale della Svizzera. La distribuzione delle 310 superfici rilevate è rappresentata in figura 1.

Rilevamento tipo B: rilevamenti floristici.

Altri dati provengono da rilievi complementari, dal cosiddetto rilevamento B: in primis da luoghi di ritrovamento noti per la presenza di una flora lichenica terricola particolarmente prospera; secondariamente da rilievi sostitutivi per le aree azonali non contemplate nel rilevamento A. In terzo luogo, da rilievi eseguiti sul tragitto verso le aree di saggio del rilevamento A.

Fig. 1: Distribuzione dei 310 rilevamenti del tipo A dei licheni terricoli (1 km² per rilevamento).

La Banca Dati «LICHEN»

I dati dei rilevamenti A e B sono stati inseriti nella Banca Dati relazionale «LICHEN», sviluppata all'Istituto federale di ricerca WSL. La struttura di questa Banca Dati e ulteriori informazioni si trovano nella sezione «Licheni epifiti in Svizzera» della Lista Rossa (vedi cap. 4.2).

Catalogo bibliografico dei licheni della Svizzera

Una parte importante di un progetto di questo tipo è la stesura di una lista di tutte le specie di licheni finora trovate in Svizzera. L'ultimo catalogo di questo tipo fu redatto da Stizenberger (1882–1883) più di 100 anni fa. Questo lavoro è stato ora ripreso al CJBG. Attualmente è disponibile in forma elettronica, più esattamente in un file formato File Marker Pro (CLERC, 2000). Si tratta di una lista di specie segnalate nella letteratura lichenologica mondiale come ritrovate in Svizzera. Da un lato il lavoro riporta tutti i taxa terricoli trovati finora in Svizzera, dall'altro fornisce i criteri necessari per classificare nelle categorie di minaccia le specie che non sono state trovate sul terreno nell'ambito del progetto.

Procedura seguita nell'allestimento della Lista Rossa

Procedimento UICN per l'attribuzione delle categorie della Lista Rossa Dall'inizio degli anni '90 l'UICN (International Union for Conservation of Nature) lavora ad un sistema il più oggettivo possibile per l'attribuzione delle categorie nella Lista Rossa. I criteri proposti sono tutti quantitativi (criteri da A ad E). Essi presuppongono una buona conoscenza sia delle popolazioni passate che di quelle attuali,

come pure della durata generazionale della specie in questione, per poter valutare innanzitutto l'estensione e le fluttuazioni (un'eventuale diminuzione) della popolazione. Come già descritto nell'introduzione, i licheni terricoli sono ancora molto poco conosciuti sia in Svizzera che altrove. Fatta eccezione per alcune specie, non esistono ancora dati che permettano l'applicazione dei nuovi criteri richiesti dall'UICN. Riassumendo, si può dire che le conoscenze attuali limitate, il particolare metodo di rilevamento (campionamento) dovuto alla bassa densità di questi organismi, i mezzi limitati ed il fatto che si tratta del primo censimento dei licheni terricoli della Svizzera non permettono per questo progetto l'uso dei nuovi criteri quantitativi per l'attribuzione delle categorie della Lista Rossa secondo le direttive UICN (1994). Per quanto concerne invece le diverse categorie di minaccia, sono state seguite in tutto e per tutto le definizioni UICN (1994) e la loro rielaborazione del 2001 (vedi cap. 2).

Attribuzione delle categorie della Lista Rossa Anche se in questo progetto l'impiego dei criteri UICN non è possibile, si devono tuttavia sviluppare altri criteri per una valutazione quanto possibile oggettiva dei taxa trovati e per poter poi procedere alla classificazione nelle diverse categorie della Lista Rossa.

I criteri utilizzati in questo lavoro si basano su:

- 1. i rilevamenti A e B di questo progetto;
- 2. la bibliografia elencata nel Catalogo dei licheni della Svizzera (CLERC, 2000) di cui si è fatto uso soprattutto quando una specie nota per la Svizzera non è stata trovata nei rilevamenti A e B;
- la Lista Rossa degli ambienti della Svizzera (DELARZE, 1998). Essa stima le minacce a cui sono sottoposti gli habitat oggetto dei nostri ritrovamenti di licheni terricoli in Svizzera.

Criteri basati sui rilevamenti A

Il metodo di rilevamento adottato ed il tipo di stratificazione utilizzato ci hanno permesso di applicare i seguenti criteri:

- 1. Il rapporto tra il numero di rilevamenti A oppure il numero di superfici di 1 km², nelle quali compare una data specie ed il totale di 310 rilevamenti di 1 km².
- 2. Le superficie delle diverse tipologie vegetazionali.
- 3. Per ogni tipologia vegetazionale, il rapporto tra la superficie effettivamente colonizzata da licheni terricoli nei 10 rilevamenti di 1 km² e la superficie totale dei 10 campi di rilevamento.

In forma matematica, questo ci fornisce gli indici seguenti:

Per ogni tipologia vegetazionale studiata e per ogni specie considerata può essere calcolato l'indice di presenza Ipv:

$$\text{Ipv } \frac{a_{pv}}{\overline{b}_{pv}}$$

a_{pv} = numero di quadrati di 1 km² nei quali una specie è presente in una determinata tipologia vegetazionale

 b_{pv} = numero di rilevamenti di 1 km² eseguiti in questa tipologia vegetazionale.

Per ogni tipologia vegetazionale può essere calcolato il rapporto tra la sua superficie e la superficie totale Svizzera (Apv):

$$Apv = \frac{s_{pv}}{s_{ch}}$$

 s_{pv} = superficie della tipologia vegetazionale considerata

s_{CH} = superficie totale della Svizzera

Per ogni tipologia vegetazionale studiata può inoltre essere creato il fattore Dpv. Questo esprime la parte di superficie colonizzata da licheni terricoli in rapporto a tutta la superficie studiata all'interno della stessa tipologia vegetazionale.

$$Dpv = \frac{s_{Lpv}}{b_{pv}}$$

 s_{Lpv} = superficie totale colonizzata da licheni terricoli, comprendente tutti i quadrati di 1 km² rilevati nella medesima tipologia vegetazionale.

 b_{pv} = numero di rilevamenti di 1 km² eseguiti in questa tipologia vegetazionale.

L'uso contemporaneo di questi tre parametri consente, per ogni specie studiata, di calcolare un indice della potenziale frequenza in Svizzera (FCH). Questo è proporzionale alla superficie della tipologia vegetazionale nella quale la specie in questione è stata trovata e alla superficie degli habitat idonei ai licheni terricoli della tipologia vegetazionale in questione.

$$FCH = \sum_{pv=1}^{pv=31} \frac{a_{pv}}{b_{pv}} \cdot \frac{s_{pv}}{s_{CH}} \cdot \frac{s_{Lpv}}{b_{pv}}$$

L'indice della frequenza potenziale è compreso tra 0 e 1 ed esprime statisticamente la percentuale in cui è stata trovata una specie. Esso è fortemente influenzato dalla superficie delle tipologie vegetazionali e degli habitat dei licheni terricoli. Esprime anche la situazione potenziale della specie, sia per quanto concerne la superficie della tipologia vegetazionale che per la disponibilità di superfici per i licheni terricoli in ogni singola tipologia vegetazionale, estrapolando i dati rilevati in A e ritenuti rappresentativi. Questo indice permette il confronto tra le specie, la presa in conside-

razione di eventuali connessioni ecologiche con le tipologie vegetazionali, di grandi discrepanze tra la superficie delle tipologie vegetazionali e la superficie degli habitat disponibili per i licheni terricoli all'interno di ogni tipologia vegetazionale. Inoltre, esso rappresenta una base quantitativa di confronto in studi futuri, per evidenziare un eventuale regresso delle popolazioni. L'indice della potenziale frequenza permette di ordinare ogni specie entro una scala da 0 a 1 e, lungo questa scala, di definire diverse classi di potenziale frequenza. Come per la definizione dei criteri quantitativi dell'UICN (1994), anche questo ultimo passo sottostà al giudizio di un esperto. I coefficienti sono stati moltiplicati per 1000 al fine di ottenere cifre più maneggevoli. La figura 2 e la tabella 7 indicano come l'indice della potenziale frequenza basato sulle raccolte A sia stato usato per definire le categorie della Lista Rossa.

Criteri basati sul rilevamento B

L'unico dato ricavato dal rilevamento B è stato il numero di rilievi di una determinata specie. Quando un lichene prevalentemente terricolo è stato registrato anche tra i «licheni epifiti», i rilevamenti epifitici sono stati sommati ai dati dell'inventario terricolo. Ogni presenza epifita è quindi stata trattata come ritrovamento terricolo nell'ambito del rilevamento B. La figura 2 indica come è stato utilizzato il criterio basato sulle raccolte B per definire le categorie della Lista Rossa.

Criteri basati sulla letteratura

Se una specie terricola, nota in Svizzera dalla bibliografia, non è stata trovata nei rilevamenti A e B, è stata inserita in una delle categorie della Lista Rossa sulla base dei dati contenuti nel Catalogo dei licheni della Svizzera (CLERC, 2000). In questo ambito sono stati considerati i seguenti criteri:

- data della raccolta: sono stati distinti i taxa trovati per l'ultima volta dopo il 1960
 (60+) dalle specie il cui ultimo ritrovamento risale a prima del 1960 (60-);
- la vistosità della specie sul terreno: sono state distinte le specie ben visibili, di grandi dimensioni o vistosamente rosse, arancioni, gialle o bianche (VI) dalle specie non appariscenti, piccole oppure di color nero, marrone o grigio oscuro (PVI);
- l'esperienza del lichenologo che pubblica il ritrovamento: se si tratta di uno specialista, in generale di un autore di una monografia o di un sistematico riconosciuto, la fonte è ritenuta sicura (SP+). I dati provenienti da una fonte non specialistica (SP-) non vengono considerati nella nostra Lista Rossa.

La figura 2 mostra come questi criteri basati sulla letteratura scientifica, sono stati utilizzati per definire le categorie della Lista Rossa delle specie non trovate né in A né in B.

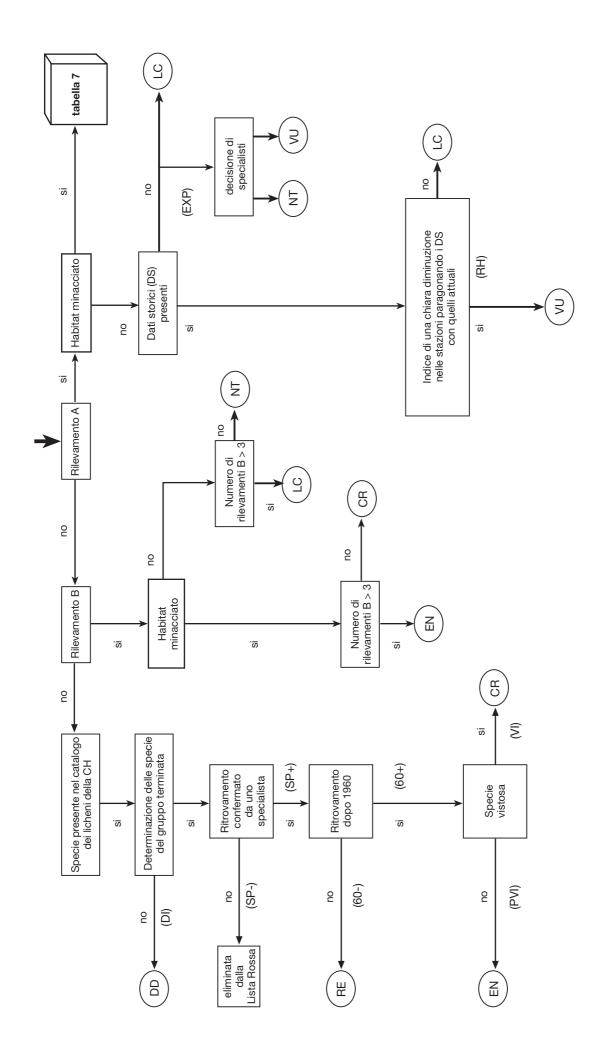


Fig. 2: Attribuzione dei licheni terricoli della Svizzera nelle categorie di minaccia. Le sigle nei riquadri corrispondono alle categorie della Lista Rossa (v. capitolo 2).

Infine, i taxa appartenenti a gruppi o generi di cui non tutti gli esemplari raccolti nei rilevamenti A e B hanno potuto essere determinati (ad es. *Micarea* o *Mycobilimbia*), sono stati assegnati con motivazione DI alla categoria DD («Data deficient»).

Criteri basati sulla Lista Rossa degli habitat della Svizzera

Appare chiaro che la rarità di una specie non è motivo sufficiente per classificarla come minacciata. Affinché la classificazione nelle categorie della Lista Rossa non dipendesse unicamente dall'indice di potenziale frequenza FCH, abbiamo introdotto il criterio della potenziale minaccia. A tal fine abbiamo utilizzato indicazioni contenute nella Lista Rossa degli habitat della Svizzera (DELARZE, 1998). Nella tabella 6 sono elencati gli habitat minacciati (M) e rari (R) nei quali sono stati trovati licheni terricoli (rilevamenti A e B).

Tab. 6: Habitat rari (R) e minacciati (M) in cui sono stati ritrovati licheni terricoli (rilevamento A e B).

Habitat	Associazione vegetale	Categoria di minaccia in Svizzera
Torbiere alte	Sphagnion magellanici	М
Ghiaioni di calcescisti d'altitudine	Drabion hoppeanae	R
Tavolati silicatici di bassa altitudine con copertura vegetale	Sedo-Veronicion	М
Praterie medioeuropee aride a Forasacco	Xerobromion	М
Praterie medioeuropee semiaride a Forasacco	Mesobromion	М
Ontaneti alluvionali a Ontano bianco	Alnion incanae	М
Acerete di forra meso-igrofile (boschi di Acero su suolo detritico, boschi di forra a Lunaria)	Lunario-Acerion	R
Boschi misti termofili su suolo detritico a Tiglio	Tilion platyphylli	R
Quercete a Carpino	Carpinion	М
Quercete a Roverella e Quercia rovere	Quercion pubescenti-petraeae	М
Boschi sudalpini a Carpino nero e Orno (Ostrieto)	Orno-Ostryon	R
Pinete continentali xerofile a Ononide	Ononido-Pinion	R
Pinete mesofile su suolo acido	Dicrano-Pinion	М
Peccete su suolo torboso	Sphagno-Piceetum	М
Luoghi a vegetazione ruderale pluriennale termofila (Onopordo tomentoso)	Onopordion	М

Tab. 7: Attribuzione delle categorie di minaccia (v. fig. 2) per le specie dei rilevamenti A e/o B ritrovate in habitat minacciati. Prima colonna a sinistra, percentuale delle stazioni minacciate in rapporto all'insieme delle stazioni in cui una specie è stata ritrovata; seconda riga in alto, frequenza potenziale (FCH) delle specie considerate.

	FCH x 1000 =	FCH x 1000 =	FCH x 1000	FCH x 1000	FCH x 1000
	0,1–10	11–100	= 101–200	= 201–400	= > 400
50-100%	CR	CR	EN	EN	VU
25–49 %	EN	EN	VU	VU	NT
0–24 %	VU	VU	NT	NT	LC

Per ogni specie trovata almeno una volta in questi habitat abbiamo calcolato la percentuale dei luoghi di ritrovamento situata in habitat minacciati o rari. In rapporto al numero totale dei luoghi di ritrovamento della specie si possono così distinguere le seguenti tre categorie:

- specie i cui luoghi di ritrovamento sono situati per il 50 fino al 100% in habitat minacciati;
- specie i cui luoghi di ritrovamento sono situati per il 25 fino al 49% in habitat minacciati;
- specie i cui luoghi di ritrovamento sono situati per lo 0 fino al 24% in habitat minacciati.

In seguito abbiamo combinato in una tabella (tab. 7) il criterio della potenziale minaccia con l'indice della potenziale frequenza (FCH) e ne abbiamo ricavato per ogni specie trovata nel rilevamento A e/o B la categoria di minaccia.

La figura 2 e la tabella 7 indicano come il criterio «habitat minacciato» sia stato integrato nello schema decisionale per l'assegnazione della categoria della Lista Rossa ad ogni specie registrata nei rilevamenti A e/o B.

5.3 Risultati

In tutto sono state considerate 267 specie di licheni terricoli ritrovati in Svizzera (CLERC, 2000). Sono state escluse le specie il cui ritrovamento in Svizzera, riportato nella bibliografia, non ha potuto essere confermato da uno specialista (vedi fig. 2). La tabella 8 indica, per ogni categoria della Lista Rossa, il numero di specie e la loro percentuale in rapporto al numero totale dei licheni terricoli.

Il 24% delle specie di licheni terricoli della Svizzera si trova nelle categorie di minaccia della Lista Rossa (EX/RE, CR, EN, VU). Questo valore è sicuramente troppo basso e a nostro avviso non corrisponde all'attuale situazione dei licheni terricoli. Due sono i motivi:

1. Un quarto delle specie (25%) rientra nella categoria DD. Ne fanno parte soprattutto i licheni crostosi di cui non tutti i campioni raccolti hanno potuto essere determinati. I mezzi a disposizione per la parte del progetto «licheni terricoli»

Tab. 8: Ripartizione assoluta e percentuale delle specie nelle differenti categorie della Lista Rossa

Categorie della Lista Rossa	Numero di specie	% di tutte le specie	% cumulativa
EX/RE	16	6	6
CR	10	4	10
EN	9	3	13
VU	30	11	24
NT	23	9	33
LC	111	42	75
DD	67	25	100

(il 10% rispetto al progetto «licheni epifiti» per la medesima superficie di rilevamento e con solo la metà in meno di specie) non ci hanno permesso di determinare tutti i campioni di microlicheni crostosi raccolti. Per questo motivo, la presente Lista Rossa è valida soprattutto per i macrolicheni. Solo un numero limitato di generi di licheni crostosi è stato elaborato in modo esaustivo, ad esempio *Caloplaca, Heppia* e *Placynthiella*. Se togliamo dal numero totale delle specie i taxa della categoria DD, la percentuale delle specie minacciate sale al 32%.

2. Se per i medesimi licheni terricoli si allestisse una Lista Rossa basata unicamente sulla potenziale frequenza delle specie (FCH), ne risulterebbe minacciato il 44%. Questo valore è secondo noi più realistico. Per la presente Lista Rossa non abbiamo tenuto conto solo della rarità delle specie ma anche delle minacce cui sono sottoposti gli habitat, utilizzando la Lista Rossa degli habitat della Svizzera (DELARZE, 1998). Abbiamo così tentato di tenere il più possibile in considerazione i criteri delle direttive dell'UICN (1994). Il fatto che un grande

Tab. 9: Lista delle specie regionalmente estinte (RE). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (–); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	Т	NL	s	SK	Specie	Α	D	SF	GB	ı	NL	S	SK
Acarospora nodulosa	-	_	_	_	М	-	_	_	Peltigera hymenina	М	М	_	n	R	М	n	_
Arthrorhaphis vacillans	n	†	-	_	n	-	n	_	Psora vallesiaca	М	_	-	_	R	-	М	-
Buellia asterella	-	М	-	М	-	-	_	_	Rinodina intermedia	-	_	-	_	R	-	_	-
Cladonia peziziformis	М	М	-	М	R	-	М	М	Rinodina laxa	-	_	-	_	-	-	_	-
Cladonia turgida	†	n	n	_	М	-	n	М	Stereocaulon tomentosum	n	n	-	†	n	n	n	-
Cladonia uliginosa	n	-	n	М	R	-	n	М	Thelenidia monosporella	-	_	-	_	-	-	_	-
Gomphillus calycioides	-	-	-	_	М	-	_	_	Thelocarpon imperceptum	-	_	-	_	-	-	_	-
Heppia lutosa	М	М	-	-	n	-	М	М	Toninia lutosa	-	-	-	-	М	-	-	n

Tab. 10: Lista delle specie minacciate di estinzione (CR). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (-); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	I	NL	S	SK	Specie	Α	D	SF	GB	ı	NL	S	SK
Anaptychia bryorum	n	d	-	-	n	-	-	M	Dactylina ramulosa	n	М	М	-	n	-	-	-
Cladonia incrassata	n	М	М	n	М	n	М	†	Massalongia carnosa	n	М	n	n	М	-	n	М
Cladionia polycarpoides	М	М	†	-	R	-	М	n	Pertusaria oculata	n	-	n	n	n	-	n	n
Cladonia portentosa	М	М	n	n	М	-	n	М	Stereocaulon glareosum	М	-	n	n	R	-	n	-
Cladonia stygia	М	М	n	n	-	-	n	n	Stereocaulon incrustatum	†	†	М	-	n	-	М	n

numero di licheni terricoli viva in aree dell'orizzonte alpino e subalpino, in zone quindi che secondo Delarze (1998) non sono minacciate, ha come conseguenza una grande riduzione del numero di specie minacciate, soprattutto in confronto alla Lista Rossa basata unicamente sulla frequenza potenziale. È però chiaro che la frequenza potenziale ha un peso considerevole nell'allestimento di questa Lista Rossa. A noi pare infatti che il criterio della rarità per organismi particolari come i licheni terricoli, sia malgrado tutto determinante per la valutazione delle minacce esistenti:

- i licheni terricoli sono in maggioranza organismi pionieri e vivono pertanto in habitat con elevata dinamica. Ciò significa che, in un dato luogo, essi possono scomparire in seguito a fenomeni di successione o a catastrofi, per poi ricomparire in un altro luogo adatto a specie pioniere. Paragonata a una specie comune, una specie pioniera rara avrà una minore probabilità (espressa in quantità di diaspore) di poter colonizzare un nuovo luogo. Conseguentemente sarà più minacciata.
- KLAUS et al. (2001) hanno dimostrato come l'attuale accumulo di sostanze nutritive nel terreno e l'aumento della concentrazione di CO₂ nell'aria si ripercuotono in modo particolarmente sfavorevole su piante vascolari rare presenti in piccole popolazioni. Attualmente la loro diversità genetica regredisce in continuazione. È molto probabile che, a livello di licheni terricoli, accada lo stesso fenomeno come nelle piante vascolari e che le specie rare siano le più colpite dai profondi cambiamenti del nostro ambiente.

Specie estinte (RE)

16 specie terricole sono da ritenere estinte in Svizzera (tab. 9). Ciò corrisponde al 6% dei licheni terricoli della Svizzera. Queste specie non sono state più trovate dal 1960, molte addirittura da oltre 100 anni. In Svizzera tutti i campioni di erbario sono stati a suo tempo raccolti e determinati da specialisti. Due specie, *Thelenidia monosporella* e *Thelocarpon imperceptum* sono note in Svizzera soltanto dal loro locotipo (locus classicus). Sono scomparse in seguito alla progressiva urbanizzazione dalla città e dal Canton Zurigo.

È chiaro che il termine «estinto» per i licheni significa qualcosa di ben diverso che ad esempio per i mammiferi: della scomparsa di un mammifero (ad es. dell'orso) in un Paese come la Svizzera si può essere quasi certi. Per contro è impossibile affermare con assoluta certezza che un piccolissimo lichene a ecologia altamente specifica sia veramente scomparso da una superficie tanto grande e variegata come la Svizzera.

Specie minacciate di estinzione (CR)

10 specie terricole possono essere ritenute minacciate di estinzione in Svizzera (tab. 10). Ciò corrisponde al 4% della flora lichenica terricola della Svizzera. Tra queste ci sono innanzitutto specie vistose (macrolicheni) che sono documentate nella bibliografia con tanto di ritrovamenti fin dal 1960, ma che non sono più state

Tab. 11: Lista delle specie fortemente minacciate in Svizzera (EN). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (-); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	I	NL	S	SK	Specie	Α	D	SF	GB	I	NL	S	SK
Buellia epigaea	М	М	n	-	n	-	n	_	Fulgensia subbracteata	_	-	-	_	n	_	_	_
Cladonia ciliata	М	М	n	n	М	-	n	n	Gyalecta peziza	М	-	n	-	n	-	n	R
Cladonia furcata ssp.																	
subrangiformis	n	М	n	n	n	n	n	М	Lecanora leptacina	М	-	n	n	М	-	n	
Cladonia rangiformis	n	n	n	n	n	n	n	_	Solorinella asteriscus	М	М	-	-	М	-	-	R
Cladonia strepsilis	n	М	n	n	R	М	n	М									

Tab. 12: Lista delle specie vulnerabili in Svizzera (VU). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (-); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	I	NL	S	SK	Specie	Α	D	SF	GB	I	NL	s	SK
Acarospora schleicheri	-	-	-	-	R	_	-	-	Heppia adglutinata	М	М	-	-	d	_	d	-
Buellia elegans	n	R	-	-	n	_	-	-	Leprocaulon microscopicun	n n	М	n	n	n	_	n	n
Catapyrenium daedaleum	n	n	n	М	n	_	n	n	Leptochidium albociliatum	-	-	n	_	n	_	n	-
Catolechia wahlenbergii	n	М	n	М	R	_	n	М	Moelleropsis nebulosa	М	М	-	n	n	†	†	М
Cladonia acuminata	М	d	n	-	R	_	n	М	Nephroma expallidum	М	†	n	_	М	_	n	М
Cladonia caespiticia	n	n	R	n	R	n	n	n	Peltigera kristinsonii	М	-	n	_	-	_	n	-
Cladonia cariosa	n	М	n	n	R	М	n	n	Polychidium muscicola	М	М	n	n	n	_	n	М
Cladonia cervicornis	n	М	n	n	n	n	n	n	Rinodina mucronatula	†	-	-	_	-	_	-	-
Cladonia decorticata	М	†	n	-	R	_	n	n	Squamarina lentigera	М	М	-	М	n	n	n	n
Cladonia foliacea	М	М	R	М	n	n	n	n	Stereocaulon capitellatum	_	-	n	_	_	_	n	_
Cladonia rei	М	n	n	n	n	n	n	n	Stereocaulon rivulorum	М	-	n	-	R	_	n	-
Cladonia stellaris	n	М	n	†	М	_	n	М	Toninia coelestina	М	-	-	М	М	_	-	n
Fulgensia desertorum	n	_	-	_	R	_	_	-	Toninia opuntioides	М	М	-	n	n	_	n	-
Fulgensia fulgens	М	М	-	n	n	М	n	М	Toninia physaroides	М	М	n	М	n	_	n	-
Gyalecta foveolaris	n	n	n	n	R	_	n	М	Toninia tristis	М	n	-	-	n	_	-	n

ritrovate nell'ambito di questo progetto (60%). I rimanenti taxa di questa lista (40%) sono stati trovati nei rilevamenti A e/o B e vivono in habitat minacciati.

La tabella 10 mostra che la Svizzera porta una responsabilità particolare per la conservazione di più specie. Di queste fanno parte in particolare *Cladonia incrassata*, legata alle torbiere alte, minacciata in numerose nazioni europee, *Cladonia portentosa*, anch'essa legata alle torbiere alte, minacciata ovunque nell'Europa centrale, *Stereocaulon incrustatum*, presente in zone golenali della Svizzera meridionale ma scomparso in Germania ed Austria, e *Stereocaulon glareosum* che vive su terreno alluvionale di origine glaciale.

Specie fortemente minacciate (EN)

In Svizzera 9 specie sono classificate come fortemente minacciate (tab. 11). Ciò corrisponde al 3% della flora lichenica terricola. Si tratta in maggioranza di specie trovate in questo progetto (rilevamenti A e/o B) e viventi in habitat minacciati (73%). I rimanenti taxa di questa categoria di minaccia sono licheni crostosi piccoli, poco appariscenti, che non sono stati trovati nell'ambito del presente progetto, ma sono documentati nella letteratura scientifica dopo il 1960 (27%).

Per due specie la Svizzera ha una particolare responsabilità: *Solorinella asteriscus*, che cresce solamente nell'Europa centrale dove è minacciata ovunque (tab. 11) e *Fulgensia subbracteata*, un lichene a distribuzione da submediterranea a mediterranea che si trova nelle vallate interalpine xerotermiche dell'Europa centrale, dove è minacciato al suo limite settentrionale di distribuzione.

Specie vulnerabili (VU)

30 specie sono ritenute vulnerabili (tab. 12). Ciò corrisponde all'11% della flora lichenica terricola della Svizzera. Il 52% di queste specie è stato trovato durante i rilevamenti A e /o B in habitat non minacciati. Gli esperti li hanno attribuiti alla categoria VU, basandosi soprattutto sulla loro assai bassa frequenza potenziale e sulla loro grande rarità.

Il 31% delle specie è stato trovato nei rilevamenti A e/o B e vivono in habitat minacciati. In base a dati storici si è inoltre potuto dimostrare che tre specie (10%) sono regredite fortemente dalla fine dell'ultimo secolo.

Alcune specie riportate nella tabella 12 sono particolarmente interessanti: così ad es. *Acarospora schleicheri*, una specie generalmente rara in Europa. È limitata alle regioni mediterranee e all'Europa centrale, dove sembra regredire fortemente, e colonizza unicamente avamposti isolati nelle valli interalpine xerotermiche (NIMIS, 1993). Il Vallese ospita probabilmente gli ultimi individui dell'Europa centrale. *Nephroma expallidum*, una specie delle brughiere e dei prati alpini di cui si conoscono solo un ritrovamento in Italia e due in Svizzera, è una specie estremamente rara. La specie artico-alpina *Stereocaulon capitellatum* è conosciuta nelle Alpi sola-

mente in alcune località in Svizzera, dove è legata ai margini proglaciali. *Squamarina lentigera* vive sui prati secchi (Xerobromion). In Svizzera è in forte regressione, soprattutto nell'Altopiano e nel Giura. Nell'Europa centrale la specie è minacciata.

Specie potenzialmente minacciate (NT)

23 specie appartengono alla categoria delle specie potenzialmente minacciate (tab. 13). Ciò corrisponde al 9% della flora lichenica terricola della Svizzera. Il 50% delle specie è stato trovato solo molto raramente ed esclusivamente in habitat non minacciati durante il rilevamento B. L'altra metà delle specie di questa categoria è stata registrata durante i rilevamenti A e B e vive in habitat minacciati.

Santessoniella arctophila è una specie nordica trovata recentemente per la prima volta nelle Alpi (JØRGENSEN, 2000), dove, secondo JØRGENSEN, non dovrebbe essere molto rara. Fino ad oggi si conoscono due luoghi di ritrovamento, ambedue in Svizzera. Il nostro Paese porta perciò una responsabilità del tutto particolare per questo taxon.

Specie non minacciate (LC)

Al momento, 112 specie non sono minacciate in Svizzera (tab. 14). Ciò corrisponde al 42% della flora lichenica terricola della Svizzera. Queste specie sono state trovate regolarmente durante i rilevamenti A e/o B e vivono in habitat non minacciati. Le specie con una parte di individui che vive in habitat minacciati, dispongono in compenso di una frequenza potenziale più alta.

Tab. 13: Lista delle specie potenzialmente minacciate in Svizzera (NT). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (–); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	1	NL	S	SK	Specie	Α	D	SF	GB	ı	NL	S	SK
Acarospora schleicheri	-	-	-	-	R	-	-	-	Heppia adglutinata	М	М	-	-	d	-	d	-
Caloplaca aurea	n	n	-	-	n	-	-	R	Peltigera lepidophora	n	М	n	М	R	-	n	М
Caloplaca epiphyta	n	n	-	-	R	-	n	R	Peltigera membranacea	n	М	n	n	n	М	n	n
Caloplaca jungermanniae	М	n	n	-	n	-	n	-	Placynthiella oligotropha	n	М	n	n		n	n	n
Caloplaca tetraspora	n	М	n	-	n	-	n	n	Protoblastenia terricola	-	†	-	-	n	-	n	М
Cetraria tubulosa	n	n	n	-	n	-	n	n	Psora globifera	n	d	М	М	R	-	М	n
Cladonia dahliana	-	-	-	-	-	-	d	-	Rinodina mniarea s. l.	n	n	n	М	n	-	n	М
Collema ceraniscum	М	-	n	М	R	_	n	_	Rinodina olivaceobrunnea	n	М	n	-	n	_	n	n
Endocarpon adscendens	М	d	М	М	n	-	n	n	Rinodina roscida	n	n	n	-	n	-	n	М
Endocarpon pusillum	n	М	М	М	n	М	n	n	Santessoniella arctophila	_	-	n	-	_	-	n	_
Lecidea lurida	n	-	М	-	n	-	n	n	Squamarina cartilaginea	М	М	-	d	n	М	n	М
Leptogium intermedium	-	М	n	n	n	М	n	-	Toninia taurica	М	М	-	-	R	-	_	_
Peltigera horizontalis	n	М	n	n	n	†	n	n									

Tab. 14: Lista delle specie non minacciate in Svizzera (LC). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (–); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	ı	NL	S	SK	Specie	Α	D	SF	GB	ı	NL	S	SK
Alectoria nigricans	n	_	n	n	n	_	n	М	Cladonia pyxidata								
Alectoria ochroleuca	n	n	n	М	n	_	n	М	ssp. pocillum	n	n	n	n	n	_	n	n
Arthrorhaphis alpina	n	d	n	n	n	_	n	М	Cladonia rangiferina	n	n	n	n	n	†	n	n
Arthrorhaphis citrinella	n	М	n	n	n	_	n	n	Cladonia subulata	n	n	n	n	R	n	n	n
Aspicilia verrucosa	n	М	n	n	n	_	n	М	Cladonia sulphurina	n	М	n	n	n	М	n	М
Baeomyces placophyllus	n	М	n	n	R	†	n	_	Cladonia symphycarpa	n	М	n	n	n	М	n	n
Baeomyces rufus	n	n	n	n	n	n	n	n	Cladonia trassii	_	_	_	_	_	_	n	_
Caloplaca amniospila	n	n	n	-	n	_	n	М	Cladonia uncialis s. l.	n	n	n	М	n	n	n	n
Caloplaca livida	М	_	-	_	n	_	n	_	Collema auriforme	n	n	_	n	n	_	n	n
Caloplaca saxifragarum	n	n	-	_	n	_	_	R	Collema coccophorum	n	d	_	_	М	_	n	М
Caloplaca sinapisperma	n	М	n	_	n	-	n	М	Collema crispum	n	n	_	n	n	n	n	М
Caloplaca tiroliensis	n	n	n	_	n	_	n	М	Collema limosum	М	М	n	n	n	n	n	М
Catapyrenium cinereum	n	М	n	n	n	-	n	n	Collema tenax s. l.	n	n	R	n	n	n	n	n
Cetraria aculeata aggr.	М	М	n	n	n	n	n	n	Collema tenax var. ceranoides	s d	d	d	R	d	d	n	d
Cetraria cucullata	n	n	n	-	n	-	n	n	Dactylina madreporiformis	n	R	-	-	М	-	-	М
Cetraria ericetorum	n	М	n	n	n	-	n	М	Dibaeis baeomyces	n	М	n	n	n	n	n	n
Cetraria islandica	n	М	n	n	n	М	n	М	Diploschistes muscorum	n	М	n	n	n	М	n	n
Cetraria nivalis	n	n	n	-	n	†	n	n	Epilichen scabrosus	n	М	n	n	n	-	n	n
Cladonia amaurocraea	n	М	n	-	n	-	n	М	Evernia perfragilis	-	-	-	-	-	-	-	-
Cladonia arbuscula aggr.	n	М	n	n	n	М	n	n	Fulgensia bracteata	n	М	R	М	n	-	n	n
Cladonia bellidiflora	n	n	n	n	n	-	n	n	Fulgensia schistidii	n	n	-	-	n	-	М	М
Cladonia borealis	М	М	n	n	d	-	n	-	Fuscopannaria praetermissa	n	М	n	n	n	-	n	R
Cladonia carneola	n	М	n	n	n	-	n	М	Lecanora epibryon	n	М	n	М	n	-	n	М
Cladonia chlorophaea aggr.	n	n	n	n	n	n	n	n	Lecidoma demissum	n	n	n	n	n	_	n	n
Cladonia coccifera	n	n	n	n	n	n	n	n	Leptogium gelatinosum	n	М	n	n	n	n	М	М
Cladonia cornuta	n	М	n	n	n	М	n	М	Leptogium imbricatum	М	-	n	n	-	_	n	-
Cladonia crispata	n	М	n	n	n	n	n	М	Leptogium lichenoides	n	М	n	n	n	n	n	n
Cladonia cyanipes	М	d	n	-	R	-	n	М	Leptogium subtile	n	М	М	n	n	-	n	n
Cladonia deformis	n	М	n	n	n	†	n	n	Leptogium turgidum	-	n	-	n	n	_	-	-
Cladonia ecmocyna	n	_	n	_	n	_	n	М	Lobaria linita	n	†	n	_	n	_	n	-
Cladonia furcata ssp. furcata	a n	n	n	n	n	n	n	n	Lopadium pezizoideum	n	n	n	n	n	-	n	М
Cladonia macilenta aggr.	n	n	n	n	n	n	n	n	Mycobilimbia hypnorum	n	d	n	_	n	_	n	М
Cladonia macroceras aggr.	n	n	n	_	n	_	n	n	Ochrolechia upsaliensis	n	n	n	_	n	_	n	М
Cladonia macrophylla	М	М	n	n	R	_	n	М	Peltigera aphthosa	n	М	n	_	n	_	n	М
Cladonia macrophyllodes	n	R	n	_	R	_	n	М	Peltigera canina	n	М	n	n	n	М	n	n
Cladonia phyllophora	n	n	n	n	n	†	n	n	Peltigera degenii	n	М	n	n	n	_	n	М
Cladonia pleurota	n		n	n	n	-	n	n	Peltigera didactyla	n	n	n	n	n	n	n	n
Cladonia pseudopityrea	-	-	-	-	n	-	-	-	Peltigera elisabethae	М	R	R	n	R	-	n	-
Cladonia pyxidata	n	n	n	n	n	n	n	n	Peltigera leucophlebia	n	М	n	n	n	-	n	М

Tab. 14: Continuazione

Specie	Α	D	SF	GB	I	NL	S	SK	Specie	Α	D	SF	GB	ı	NL	S	SK
Peltigera malacea	n	М	n	М	n	n	n	М	Pycnothelia papillaria	n	М	n	n	n	М	n	n
Peltigera monticola	М	-	-	-	-	-	-	-	Rinodina turfacea	n	n	n	-	n	-	n	n
Peltigera neckeri	n	М	n	n	n	М	n	_	Solorina bispora s. l.	n	n	n	n	n	-	n	М
Peltigera neopolydactyla	М	М	n	-	n	-	n	-	Solorina crocea	n	†	n	n	n	-	n	М
Peltigera polydactyla	n	М	n	n	n	-	n	n	Solorina octospora	М	n	R	-	n	-	-	-
Peltigera ponojensis	М	М	n	n	n	-	n	_	Solorina saccata	n	М	n	n	n	n	n	n
Peltigera praetextata	n	М	n	n	n	†	n	n	Solorina spongiosa	n	n	n	n	n	-	n	М
Peltigera rufescens	n	М	n	n	n	М	n	n	Stereocaulon alpinum s. l.	n	М	n	n	n	-	n	М
Peltigera venosa	n	М	n	М	n	-	n	М	Thamnolia vermicularis s. l.	n	n	n	n	n	-	n	n
Pertusaria geminipara	n	n	n	n	n	-	n	М	Toninia albilabra	М	_	-	_	n	-	_	-
Phaeophyscia constipata	n	n	n	-	n	-	n	n	Toninia lobulata	n	n	n	n	n	†	n	n
Phaeorrhiza nimbosa	n	n	n	-	n	-	n	М	Toninia rosulata	n	n	n	М	n	-	n	n
Physconia muscigena	n	n	n	-	n	-	n	n	Toninia sedifolia	n	М	-	n	n	М	n	n
Placynthiella uliginosa	n	d	n	n	n	n	n	n	Toninia squalida	n	n	n	n	n	-	n	n
Protopannaria pezizoides	n	М	n	n	n	-	n	М	Trapeliopsis gelatinosa	n	n	n	n	n	n	n	-
Psora decipiens	n	М	n	n	n	†	n	n	Trapeliopsis pseudo-								
Psora testacea	М	n	-	-	n	-	М	-	granulosa	n	n	n	n	R	n	n	-
Psoroma hypnorum	n	n	n	n	n	-	n	М									

Tab. 15: Lista delle specie con dati insufficienti in Svizzera (DD). I simboli indicano in quale Paese le specie elencate sono da considerare estinte (†), minacciate (M), rare (R), presenti ma né minacciate né rare (n), o assenti (-); d significa che i dati sono lacunosi: Austria (A) (TÜRK & HAFELLNER, 1999; TÜRK & POELT, 1993), Germania (D) (SCHOLZ, 2000; WIRTH et al., 1996), Finlandia (SF) (VITIKAINEN et al., 1997), Gran Bretagna (GB) (CHURCH et al., 1996; PURVIS et al., 1994); Italia (I) (NIMIS, 1993, 2000); Olanda (NL) (APTROOT et al., 1998); Svezia (S) (MATTSSON, 1995; SANTESSON, 1993) e Slovacchia (SK) (PISUT et al., 1993).

Specie	Α	D	SF	GB	I	NL	S	SK	Specie	Α	D	SF	GB	I	NL	S	SK
Agonimia gelatinosa	n	-	-	n	-	n	n	-	Lecidea alpestris	М	-	n	-	n	-	n	-
Agonimia opuntiella	n	-	-	-	n	-	-	-	Lecidea diapensiae	_	-	n	-	-	-	n	-
Agonimia vouauxii	-	-	-	-	-	n	-	-	Lecidea ileiformis	_	-	-	-	-	-	-	n
Aphanopsis coenosa	М	†	n	n	-	-	-	-	Lecidea limosa	n	d	n	n	n	-	n	М
Bacidia bagliettoana	n	М	n	n	n	М	n	n	Lecidella wulfenii	n	n	n	n	n	-	n	n
Bacidia herbarum	М	М	n	n	n	-	n	n	Lempholemma chalazanum	М	М	n	n	n	М	n	n
Bacidia illudens	М	-	n	-	-	-	n	n	Lempholemma polyanthes	n	М	n	n	n	-	n	-
Bacidia microcarpa	n	n	n	-	n	_	n	n	Micarea crassipes	_	-	-	М	-	-	-	М
Biatorella hemisphaerica	n	М	-	М	n	_	n	R	Moelleropsis humida	n	-	†	n	-	-	n	-
Bryonora castanea	n	-	-	-	n	_	n	R	Mycobilimbia berengeriana	n	n	n	n	n	-	n	М
Bryonora curvescens	n	-	n	М	n	-	n	n	Mycobilimbia tetramera	n	М	n	n	n	-	n	n
Bryonora pruinosa	n	-	n	-	-	-	n	-	Pertusaria glomerata	n	d	-	М	n	-	n	М
Bryonora rhypariza	n	-	-	-	n	-	n	R	Pertusaria trochiscea	-	-	-	-	-	-	n	-
Buellia geophila	n	n	n	-	R	_	n	n	Placidiopsis cartilaginea	_	М	n	n	n	-	-	-
Buellia hypophana	М	-	-	-	-	-	-	-	Placidiopsis oreades	-	n	-	_	-	-	-	n
Buellia insignis	n	М	n	М	n	-	n	М	Placidiopsis pseudocinerea	М	-	-	n	n	-	n	-
Buellia papillata	n	n	-	-	n	-	n	М	Polyblastia epigaea	М	n	-	_	-	-	-	-
Catapyrenium lachneum	n	n	n	n	R	n	n	n	Polyblastia sendtneri	n	n	n	М	n	-	n	М
Catapyrenium lacinulatum	М	-	-	-	n	-	n	-	Protothelenella petri	n	М	-	_	-	-	n	-
Catapyrenium michelii	-	†	-	М	n	n	n	R	Protothelenella polytrichi	М	-	-	-	-	-	n	-
Catapyrenium norvegicum	М	-	-	-	-	_	n	-	Protothelenella sphinctrinoidella	М	n	n	n	n	-	n	n
Catapyrenium pilosellum	М	М	-	n	n	_	n	-	Protothelenella sphinctrinoides	n	n	n	n	n	-	n	n
Catapyrenium radicescens	-	-	-	-	R	-	-	-	Pyrenocollema minutulum	М	М	-	-	-	-	R	-
Catapyrenium rufescens	n	n	n	n	n	_	n	n	Sarcosagium campestre	М	М	n	n	n	n	n	R
Catapyrenium squamulosum	n n	М	М	n	n	М	n	n	Schadonia fecunda	М	d	-	М	М	-	n	n
Catapyrenium tremniacense	-	М	-	-	n	_	-	-	Staurothele geoica	_	-	-	n	R	-	-	-
Catapyrenium waltheri	М	n	-	n	R	_	n	n	Strigula sychnogonoides	_	М	-	-	-	-	-	-
Chromatochlamys muscorur	пM	М	n	n	n	М	n	n	Thelidium zwackii	М	n	-	n	n	n	n	-
Didymella bryopsila	-	-	-	-	-	-	n	-	Thelopsis melathelia	n	n	n	n	n	-	n	n
Diplotomma sp.1	_	_	-	_	_	-	-	-	Thrombium epigaeum	n	М	n	n	n	n	n	n
Frutidella caesioatra	М	n	n	n	n	-	n	n	Thrombium smaragdulum	n	n	-	-	-	-	-	-
Gyalecta geoica	М	n	М	n	n	-	n	R	Toninia alutacea	n	†	n	-	n	-	n	n
Halecania lecanorina	М	n	_	-	n	-	_	n	Vezdaea retigera	М	d	-	n	-	n	-	-
Lecanora leptacinella	_	_	n	_	_	_	_	_									

Specie con dati insufficienti (DD)

67 specie (il 25% di tutte le specie) sono considerate come insufficientemente documentate in Svizzera (tab. 15). È così impossibile l'esatta attribuzione in una categoria di minaccia. Nella maggior parte di queste specie (86%) si tratta di piccoli licheni crostosi, dei quali non è ancora stato possibile determinare tutti i campioni.

5.4 Lista Rossa

Il significato delle categorie della Lista Rossa è spiegato nel capitolo 2 (fig. 1). L'attribuzione a una categoria della Lista Rossa è avvenuta in funzione di: A = Rilevamento di tipo A; B = Rilevamento di tipo B; R0 = rilevamento né A né B; SP+ = specie storica la cui presenza è stata accertata da uno specialista; SP- = specie storica la cui presenza non è stata accertata da uno specialista; 60+ = specie storica ritrovata in Svizzera dopo il 1960; 60- = specie storica non più ritrovata in Svizzera dopo il 1960; VI = specie vistosa; PVI = specie non vistosa; MM = specie il cui habitat è potenzialmente minacciato; DI = specie di cui non tutti i campioni sono stati determinati o che appartengono ad un gruppo del quale non sono stati determinati tutti gli esemplari; EXP = decisione degli specialisti: (+) classificazione in una categoria di minaccia superiore, (-) classificazione in una categoria di minaccia inferiore. I taxa contrassegnati con un asterisco * nella colonna «motivi», sono noti solo in Svizzera. Se il nome del genere è posto tra virgolette, non è ancora ben stabilita l'appartenenza della specie al genere.

Specie	Categorie della	Motivazione
	Lista Rossa	
Acarospora nodulosa (Duf.) Hue	RE	R0, SP+, 60-
Acarospora schleicheri (Ach.) A. Massal.	VU	B, EXP(+)
Agonimia gelatinosa (Ach.) Brand & Diederich	DD	DI
Agonimia opuntiella (Buschardt & Poelt) Vězda	DD	60+, SP+, DI
Agonimia vouauxii (de Lesd.) Brand & Diederich	DD	DI
Alectoria nigricans (Ach.) Nyl.	LC	AB
Alectoria ochroleuca (Hoffm.) A. Massal.	LC	AB
Anaptychia bryorum Poelt	CR	R0, SP+, 60+, VI
Aphanopsis coenosa (Ach.) Coppins & N. James	DD	DI
Arthrorhaphis alpina (Schaer.) R. Sant.	LC	Α
Arthrorhaphis citrinella (Ach.) Poelt	LC	AB, MM
Arthrorhaphis vacillans Th. Fr.	RE	R0, SP+, 60-
Aspicilia verrucosa (Ach.) Körb.	LC	AB, MM
Bacidia bagliettoana (A. Massal. & De Not.) Jatta	DD	A, MM, DI
Bacidia herbarum (Stizenb.) Arnold	DD	DI
Bacidia illudens (Nyl.) Lange	DD	DI
Bacidia microcarpa (Th. Fr.) Lettau	DD	DI
Baeomyces placophyllus Ach.	LC	AB
Baeomyces rufus (Huds.) Rebent.	LC	AB, MM
Biatorella hemisphaerica Anzi	DD	DI
Bryonora castanea (Hepp) Poelt	DD	DI
Bryonora curvescens (Mudd) Poelt	DD	SP+, 60-, DI

Specie	Categorie della Lista Rossa	Motivazione
Bryonora pruinosa (Th. Fr.) HoltHartw.	DD	SP+, 60-, DI
Bryonora rhypariza (Nyl.) Poelt	DD	SP+, 60+, DI
Buellia asterella Poelt & Sulzer	RE	R0, SP+, 60-
Buellia elegans Poelt	VU	B, EXP(+)
Buellia epigaea (Pers.) Tuck.	EN	AB, MM
Buellia geophila (Sommerf.) Lynge	DD	DI
Buellia hypophana (Nyl.) Zahlbr.	DD	DI
Buellia insignis (Hepp) Th. Fr.	DD	DI
Buellia papillata (Sommerf.) Tuck.	DD	A, DI
Caloplaca ammiospila (Wahlenb.) H. Olivier	LC	AB
Caloplaca aurea (Schaer.) Zahlbr.	NT	В
Caloplaca epiphyta Lynge	NT	В
Caloplaca jungermanniae (Vahl) Th. Fr.	NT	В
Caloplaca livida (Hepp) Jatta	LC	AB
Caloplaca saxifragarum Poelt	LC	AB
Caloplaca sinapisperma (Lam & DC.) Maheu & Gillet	LC	AB, MM
Caloplaca tetraspora (Nyl.) H. Olivier	NT	В
Caloplaca tiroliensis Zahlbr.	LC	В
Catapyrenium cinereum (Pers.) Körb.	LC	AB
Catapyrenium daedaleum (Kremp.) Stein	VU	AB, MM
Catapyrenium lachneum (Ach.) R. Sant.	DD	DI
Catapyrenium lacinulatum (Ach.) Breuss	DD	DI
Catapyrenium michelii (A.Massal.) R. Sant.	DD	DI
Catapyrenium norvegicum Breuss	DD	DI
Catapyrenium pilosellum Breuss	DD	DI
Catapyrenium radicescens (Nyl.) Breuss	DD	DI
Catapyrenium rufescens (Ach.) Breuss	DD	DI
Catapyrenium squamulosum (Ach.) Breuss	DD	A, DI
Catapyrenium tremniascense A. Massal.	DD	DI
Catapyrenium waltheri (Kremp.) Körb.	DD	DI
Catolechia wahlenbergii (Ach.) Körb.	۷U	AB, EXP(+)
	LC	AB, MM
Cetraria aculeata aggr.	LC	AB, IVIIVI
Cetraria cucullata (Bellardi) Ach. Cetraria ericetorum Opiz	LC	AB, MM
Cetraria islandica (L.) Ach.	LC	AB, MM
Cetraria nivalis (L.) Ach.	LC	AB, MM
Cetraria tubulosa (Schaer.) Zopf	NT	AB, MM
Chromatochlamys muscorum (Fr.) H. Mayrhofer & Poelt	DD	AB, DI
Cladonia acuminata (Ach.) Norrl.	VU	AB, EXP(+)
Cladonia amaurocraea (Flörke) Schaer.	LC	AB MM
Cladonia arbuscula aggr.	LC	AB, MM
Cladonia bellidiflora (Ach.) Schaer.	LC	AB MM
Cladonia borealis S.Stenroos	LC	AB, MM
Cladonia caespiticia (Pers.) Flörke	VU	AB, MM
Cladonia cariosa (Ach.) Spreng	VU	AB, RH
Cladonia carneola (Fr.) Fr.	LC	AB, MM
Cladonia cervicornis (Ach.) Flot.	VU	AB, MM
Cladonia chlorophaea aggr.	LC	AB
Cladonia ciliata Stirt.	EN	B, MM

Specie	Categorie della Lista Rossa	Motivazione
Cladonia coccifera (L.) Willd.	LC	AB, MM
Cladonia cornuta (L.) Hoffm.	LC	AB, MM
Cladonia crispata (Ach.) Flot.	LC	AB
Cladonia cyanipes (Sommerf.) Nyl.	LC	A
Cladonia dahliana Kristinsson	NT	AB, MM
Cladonia decorticata (Flörke) Spreng.	VU	AB, MM
Cladonia deformis (L.) Hoffm.	LC	AB, MM
Cladonia ecmocyna Leight.	LC	AB
Cladonia foliacea aggr.	VU	AB, RH
Cladonia furcata (Huds.) Schrad. ssp. furcata	LC	AB, MM
Cladonia furcata ssp. subrangiformis (Sandst.) Abbayes	EN	AB, MM
Cladonia incrassata Flörke	CR	R0, SP+, 60+, VI, MM
Cladonia macilenta aggr.	LC	AB, MM
Cladonia macroceras aggr.	LC	AB, MM
Cladonia macrophylla (Schaer.) Stenh.	LC	AB
Cladonia macrophyllodes Nyl.	LC	AB, MM
Cladonia peziziformis (With.) J.R. Laundon	RE	R0, SP+, 60-
Cladonia phyllophora Hoffm.	LC	AB, MM
Cladonia pleurota (Flörke) Schaer.	LC	AB, MM
Cladonia polycarpoides Nyl.	CR	AB, MM
Cladonia portentosa (Dufour) Coem.	CR	R0, SP+, 60+, VI, MM
Cladonia pseudopityrea Vain.	LC	Α
Cladonia pyxidata (L.) Hoffm. s. str.	LC	AB, MM
Cladonia pyxidata ssp. pocillum (Ach.) Flot.	LC	AB
Cladonia rangiferina (L.) Wigg.	LC	AB, MM
Cladonia rangiformis Hoffm.	EN	AB, MM
Cladonia rei Schaer.	VU	AB, MM
Cladonia stellaris (Opiz) Pouzar & Vězda	VU	A, EXP(+)
Cladonia strepsilis (Ach.) Vain.	EN	AB, MM
Cladonia stygia (Fr.) Ruoss	CR	R0, SP+, 60+, VI, MM
Cladonia subulata (L.) Wigg.	LC	AB, MM
Cladonia sulphurina (Michx.) Fr.	LC	AB, WIWI
Cladonia symphycarpa (Flörke) Fr.	LC	AB, MM
Cladonia trassii Ahti	LC	AB, WIWI
Cladonia turgida Hoffm.	RE	D0 0D 00
Cladonia uliginosa (Ahti) Ahti	RE	R0, SP+, 60-
Cladonia uncialis (L.) Wigg. s. l.	LC	AB, MM
Collema auriforme (With.) Coppins & Laundon	LC	AB, MM
Collema ceraniscum Nyl.	NT	B
Collema coccophorum Tuck.		
	LC	AB MM EVD()
Collema crispum (Hudson) Wigg.	LC	AB, MM, EXP(-)
Collema limosum (Ach.) Ach.	LC	AD MAN EVO()
Collema tenax (Sw.) Ach.	LC	AB, MM, EXP(-)
Collema tenax var. ceranoides (Borr.) Degel.	LC	AB
Dactylina madreporiformis (Ach.) Tuck.	LC	B
Dactylina ramulosa (Hooker) Tuck.	CR	R0, SP+, 60+, VI
Dibaeis baeomyces (L. fil.) Rambold & Hertel	LC	AB, MM
"Didymella" bryopsila (Nyl.) H. Magn.	DD	DI
Diploschistes muscorum (Scop.) R. Sant.	LC	AB, MM

Specie	Categorie della Lista Rossa	Motivazione
Diplotomma sp. 1	DD	B, DI
Endocarpon adscendens (Anzi) Müll. Arg.	NT	AB, MM
Endocarpon pusillum Hedwig	NT	AB, MM
Epilichen scabrosus (Ach.) Clements	LC	A
Evernia perfragilis Llano	LC	AB
Frutidella caesioatra (Schaer.) Kalb.	DD	DI
Fulgensia bracteata (Hoffm.) Räsänen s.l.	LC	AB, MM
Fulgensia desertorum (Tomin) Poelt	VU	B, EXP(+)
Fulgensia fulgens (Swartz) Elenkin	VU	AB, MM
Fulgensia schistidii (Anzi) Poelt	LC	AB
Fulgensia subbracteata (Nyl.) Poelt	EN	AB, MM
Fuscopannaria praetermissa (Nyl.) M. Jørg.	LC	AB, MM
Gomphillus calycioides (Duby) Nyl.	RE	R0, SP+, 60-
Gyalecta foveolaris (Ach.) Schaer.	VU	B, EXP(+)
Gyalecta geoica (Wahlenb.) Ach.	DD	R0, SP-
Gyalecta peziza (Mont.) Anzi	EN	RO, SP+, 60+, PVI
Halecania lecanorina (Anzi) M. Mayrhofer & Poelt	DD	DI
Heppia adglutinata (Kremp.) A. Massal.	VU	AB, EXP(+)
Heppia lutosa (Ach.) Nyl.	RE	R0, SP+, 60-
ecanora epibryon (Ach.) Ach.	LC	AB
Lecanora leptacina Sommerf.	EN	R0, 60+, SP+, PVI
ecanora leptacinella Harm.	DD	DI
¿Lecidea» alpestris Sommerf.	DD	DI
¿Lecidea» diapensiae Th. Fr.	DD	DI
¿Lecidea» ileiformis Fr.	DD	DI
¿Lecidea» limosa Ach.	DD	DI
¿Lecidea» Ilmosa Ach.	NT	
	DD	AB, MM DI
Lecidella wulfenii (Hepp) Körb.		
Lecidoma demissum (Rutström) Goth.Schneider & Hertel	LC	AB, MM
Lempholemma chalazanum (Ach.) de Lesd.	DD	DI
Lempholemma polyanthes (Bernh.) Malme	DD	DI
Leprocaulon microscopicum (Vill.) Gams	VU	AB, MM
Leptochidium albociliatum (Desm.) M. Choisy	VU	AB, MM
Leptogium gelatinosum (With.) J.R. Laundon	LC	AB
Leptogium imbricatum M. Jørg.	LC	AB
Leptogium intermedium (Arnold) Arnold	NT	AB, MM
Leptogium lichenoides (L.) Zahlbr.	LC	AB, MM
Leptogium subtile (Schrad.) Torss.	LC	AB
eptogium turgidum (Ach.) Crombie	LC	Α
obaria linita (Ach.) Rabenh.	LC	AB
opadium pezizoideum (Ach.) Körb.	LC	Α
Massalongia carnosa (Dicks.) Körb.	CR	AB, MM
Micarea crassipes (Th.Fr.) Coppins	DD	DI
Moelleropsis humida (Kullh.) Coppins & M. Jørg.	DD	DI
Moelleropsis nebulosa (Hoffm.) Gyeln.	VU	AB, EXP(+)
Mycobilimbia» berengeriana (A. Massal.) Haffelner & V. Wirth		DI
Mycobilimbia» hypnorum (Lib.) Kalb & Haffelner	LC	AB
Mycobilimbia» tetramera (De Not.) Hafellner & Türk	DD	DI
Nephroma expallidum (Nyl.) Nyl.	VU	B, EXP(+)

Specie	Categorie della Lista Rossa	Motivazione
Ochvelenkia unasliansia (L.) A. Massal	LC LC	AB
Ochrolechia upsaliensis (L.) A. Massal.	LC	AB, MM
Peltigera aphthosa (L.) Willd.	LC	AB, MM
Peltigera canina (L.) Willd.	LC	
Peltigera digest le Mith \ LB Launden	LC	AB MM
Peltigera didactyla (With.) J.R. Laundon		AB, MM
Peltigera elisabethae Gyeln.	LC	AB, MM
Peltigera horizontalis (Huds.) Baumg.	NT	AB, MM
Peltigera hymenina (Ach.) Duby	RE	R0, SP+, 60-
Peltigera kristinsonii Vitik.	VU	A, EXP(+)
Peltigera lepidophora (Nyl.) Bitter	NT	AB, MM
Peltigera leucophlebia (Nyl.) Gyeln.	LC	AB, MM
Peltigera malacea (Ach.) Funck	LC	AB, MM
Peltigera membranacea (Ach.) Nyl.	NT	AB, MM
Peltigera monticola Vitik.	LC	AB
Peltigera neckeri Müll. Arg.	LC	AB, MM
Peltigera neopolydactyla (Gyeln.) Gyeln.	LC	AB
Peltigera polydactyla (Neck.) Hoffm.	LC	AB, MM
Peltigera ponojensis Gyeln.	LC	AB
Peltigera praetextata (Sommerf.) Zopf	LC	AB, MM
Peltigera rufescens (Weiss) Humb.	LC	AB, MM
Peltigera venosa (L.) Hoffm.	LC	AB, MM
Pertusaria geminipara (Th.Fr.) Brodo	LC	Α
Pertusaria glomerata (Ach.) Schaer.	DD	DI
Pertusaria oculata (Dicks.) Th. Fr.	CR	A, MM
Pertusaria trochiscea Norm.	DD	DI
Phaeophyscia constipata (Norrl. & Nyl.) Moberg	LC	AB
Phaeorrhiza nimbosa (Fr.) H. Mayrhofer & Poelt	LC	AB
Physconia muscigena (Ach.) Poelt	LC	AB, MM
Placidiopsis cartilaginea (Nyl.) Vain.	DD	B, DI
Placidiopsis oreades Breuss	DD	B, DI
Placidiopsis pseudocinerea Breuss	DD	B, DI
Placynthiella oligotropha (J.R.Laundon) Coppins & N.James	NT	AB, MM
Placynthiella uliginosa (Schrad.) Coppins & N. James	LC	AB
Polyblastia epigaea A. Massal.	DD	DI
Polyblastia sendtneri Kremp.	DD	DI
Polychidium muscicola (Swartz) Gray	VU	B, EXP(+)
Protoblastenia terricola (Anzi) Lynge	NT	В
Protopannaria pezizoides (Weber) M. Jørg. & S. Ekman	LC	AB, MM
Protothelenella petri H.Mayrhofer & Poelt	DD	DI
Protothelenella polytrichi Döbbeler & H. Mayrhofer	DD	DI
Protothelenella sphinctrinoidella (Nyl.) H. Mayrhofer & Poelt	DD	DI
Protothelenella sphinctrinoides (Nyl.) H. Mayrhofer & Poelt	DD	DI
Psora decipiens (Hedw.) Hoffm.	LC	AB, MM
Psora globifera (Ach.) A. Massal.	NT	AB, MM
Psora testacea Hoffm.	LC	AB
Psora vallesiaca (Schaer.) Timdal	RE	R0, SP+, 60-
Psoroma hypnorum (Vahl) Gray	LC	AB
Pycnothelia papillaria (Ehrh.) Dufour	LC	AB
Pyrenocollema minutulum (Born) Puym.	DD	
ryrenocollema minutulum (Dom) Puym.	טט	A, MM, DI

Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	RE RE NT VU NT NT LC NT DD DD LC LC LC LC LC LC LC LC LC EN	R0, SP+, 60- R0, SP+, 60- AB, MM A B B AB DI DI AB, MM AB AB
Rinodina laxa H.Magn. Rinodina mniarea (Ach.) Körb. s.l. Rinodina mucronatula H.Magn. Rinodina olivaceobrunnea Dodge & Baker Rinodina roscida (Sommerf.) Arnold Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	RE NT VU NT NT LC NT DD LC LC LC LC LC LC	R0, SP+, 60- AB, MM A B B AB DI DI AB, MM AB AB AB
Rinodina mniarea (Ach.) Körb. s.l. Rinodina mucronatula H.Magn. Rinodina olivaceobrunnea Dodge & Baker Rinodina roscida (Sommerf.) Arnold Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	NT VU NT NT LC NT DD LC LC LC LC LC LC LC	AB, MM A B B AB B DI DI AB, MM AB AB
Rinodina mucronatula H.Magn. Rinodina olivaceobrunnea Dodge & Baker Rinodina roscida (Sommerf.) Arnold Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	VU NT NT LC NT DD LC LC LC LC LC LC LC	A B B AB B DI DI AB, MM AB AB
Rinodina olivaceobrunnea Dodge & Baker Rinodina roscida (Sommerf.) Arnold Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	NT NT LC NT DD DD LC LC LC LC LC	B B AB B DI DI AB, MM AB AB
Rinodina roscida (Sommerf.) Arnold Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	NT LC NT DD CD LC LC LC LC LC	B AB B DI DI AB, MM AB AB
Rinodina turfacea (Wahlenb.) Körb. Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	LC NT DD DD LC LC LC LC	AB B DI DI AB, MM AB AB
Santessoniella arctophila (Th. Fr.) Henssen Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinala asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	NT DD DD LC LC LC LC	B DI DI AB, MM AB
Sarcosagium campestre (Fr.) Poetsch & Schied. Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	DD DD LC LC LC LC LC	DI DI AB, MM AB
Schadonia fecunda (Th.Fr.) Vězda & Poelt Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon incrustatum Flörke	DD LC LC LC LC LC	DI AB, MM AB AB
Solorina bispora Nyl. Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon incrustatum Flörke	LC LC LC LC	AB, MM AB AB
Solorina crocea (L.) Ach. Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon incrustatum Flörke	LC LC LC	AB AB
Solorina octospora (Arnold) Arnold Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	LC LC LC	AB
Solorina saccata (L.) Ach. Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	LC LC	
Solorina spongiosa (Ach.) Anzi Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	LC	AB. MM
Solorinella asteriscus Anzi Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon incrustatum Flörke		,
Squamarina cartilaginea (With.) N. James Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	EN	AB
Squamarina lentigera (Weber) Poelt Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke		AB, MM
Staurothele geoica Zschacke Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	NT	AB, MM
Stereocaulon alpinum Laurer Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	VU	AB, RH
Stereocaulon capitellatum H. Magn. Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	DD	DI
Stereocaulon glareosum (Savicz) H. Magn. Stereocaulon incrustatum Flörke	LC	AB, MM
Stereocaulon incrustatum Flörke	VU	B, EXP(+)
	CR	RO, SP+, 60+, VI
	CR	AB, MM
Stereocaulon rivulorum H. Magn.	VU	AB, EXP(+)
Stereocaulon tomentosum Fr.	RE	RO, SP+, 60-
Strigula sychnogonoides (Nitschke) R.C. Harris	DD	DI
Thamnolia vermicularis (Swartz) Schaer. s. l.	LC	AB, MM
Thelenidia monosporella Nyl.	RE	A0B0, SP+, 60-
Thelidium zwackhii (Hepp) A. Massal.	DD	B, DI
Thelocarpon imperceptum (Nyl.) Mig.	RE	A0B0, SP+, 60-
Thelopsis melathelia Nyl.	DD	DI
Thrombium epigaeum (Pers.) Wallr.	DD	AB, MM, DI
Thrombium smaragdulum Körb.	DD	60-, SP+, DI
Toninia albilabra (Dufour) H. Olivier	LC	AB
Toninia alutacea (Anzi) Jatta	DD	DI
	VU	B, EXP
"Toninia" lobulata (Sommerf.) Lynge	LC	AB
Toninia lutosa (Ach.) Timdal	RE	R0, SP+, 60-
Toninia opuntioides (Vill.) Timdal	VU	RO, EXP(+)
Toninia opunuolees (Viii.) Tiridai Toninia physaroides (Opiz) Zahlbr.	VU	AB, MM
Toninia priysaroides (Opiz) Zariibi. Toninia rosulata (Anzi) H. Olivier	LC	AB, IVIIVI
,	LC	AB, MM
,		·
Toninia squalida (Ach.) A. Massal.	LC	AB MM
,	NT	AB, MM
Toninia tristis (Th.Fr.) Th.Fr. s. l.	VU	RO, EXP(+)
, , , , , , , , , , , , , , , , , , , ,	LC	AB
Trapeliopsis pseudogranulosa Coppins & N. James Vezdaea retigera Poelt & Döbbeler	LC	Α

5.5 Misure di protezione e conservazione dei licheni terricoli

Paragonati ai licheni epifiti, i licheni terricoli (in particolar modo quelli terricoli in senso stretto) hanno una caratteristica evidente: sono organismi pionieri in concorrenza con le piante vascolari nello sfruttamento delle risorse del loro habitat. Se il carattere pionieristico dell'habitat scompare (aumento delle sostanze nutritive nel terreno, diminuzione della luce, aumento della capacità di riserva idrica del terreno), le fanerogame prendono il sopravvento: nella nuova situazione esse sono molto più competitive dei licheni e quest'ultimi scompaiono. I licheni terricoli, spesso tipici pionieri di stadi di successione della vegetazione, per natura sono destinati a scomparire quando la vegetazione si sviluppa verso il proprio climax. Per assicurare l'esistenza di queste specie pioniere, è indispensabile che si sviluppino in continuazione nuovi habitat pionieristici nei quali i licheni possano compensare la loro ineluttabile scomparsa nel quadro dei fenomeni di successione.

Per la conservazione dei licheni terricoli pionieri esistono essenzialmente due modi di procedere: a) favorire la dinamica naturale degli ecosistemi che garantisce la continua creazione di habitat pionieri. b) Creare artificiosamente habitat pionieri e mantenerli tali.

a) Favorire o ricreare la dinamica naturale degli ecosistemi che garantisce la creazione di nuovi habitat pionieri

La dinamica alluvionale è un esempio classico per l'incessante creazione di nuove superfici pioniere. Il corso naturale dei fiumi forma tra l'altro (ad es. con meandri) estesi banchi di sabbia e terrazze alluvionali. Se il fiume scava più in profondità oppure cambia il suo corso, i terrazzi emergono dalla zona inondata. In seguito, questi terreni estremamente permeabili formati da sedimenti fluvio-glaciali, vengono colonizzati da una vegetazione pioniera adattata ad ambienti secchi. È composta da licheni terricoli, muschi, funghi e fanerogame caratteristiche. L'uomo, specialmente nella prima metà del XX secolo, ha modificato il corso dei fiumi, sopprimendo la loro naturale dinamica e impedendo così il rinnovamento della flora pioniera legata a questi habitat. Attualmente gli ultimi rappresentanti di questa flora tipica vivono a stento su vecchie terrazze alluvionali e, come il Moulin-de-Vert nel Canton Ginevra (BOUJON *et al.*, 1999), sono minacciati dall'imboschimento.

La rivitalizzazione dei corsi d'acqua è la soluzione a lungo termine. Si tenta così di ripristinare la dinamica alluvionale che è la sola in grado di mantenere habitat pionieri anche senza l'intervento dell'uomo. Ne è un esempio il progetto «Risanamento del delta dell'Allondon» nel Canton Ginevra (RAUSCHENBACH, 1999). A breve termine su queste terrazze alluvionali si deve evitare l'imboschimento, mantenendo lo status quo mediante sfalcio e decespugliamento. L'apertura di queste superfici al pascolo bovino estensivo è un ulteriore provvedimento possibile. Determinate superfici devono essere protette dall'invasione domenicale di turisti, istituendo zone protette alle quali è vietato l'accesso.

b) Creare artificialmente e mantenere nuovi habitat pionieri

I prati magri, solitamente situati su pendii molto esposti al sole su terreno calcareo, sono un buon esempio per un habitat interamente creato dall'uomo, idoneo per specie pioniere. A causa della loro esposizione e del terreno relativamente permeabile, sono habitat poveri in sostanze nutritive e xerotermi. Essendo questi ambienti non ottimali per le fanerogame, si formano superfici aperte, habitat idonei per numerosi licheni terricoli e altri organismi rari e interessanti. Se questi prati non venissero più mantenuti e sfalciati, scomparirebbero. Nella seconda metà del XX secolo parecchie di queste superfici sono state concimate per aumentarne la resa o sono state abbandonate all'imboschimento in seguito alla loro difficile gestione (pendenze troppo forti).

A breve termine è quindi importante mantenere (sfalcio) e proteggere (aree di protezione) gli ultimi appezzamenti di prati magri. A lungo termine, bisogna ricreare questi habitat mediante disboscamento e gestione estensiva (soprattutto pascolo) di determinate superfici accuratamente scelte. Si ricreano così le condizioni idonee per specie pioniere.

Determinati habitat pionieri evolvono solo molto lentamente verso il climax boschivo a causa delle condizioni climatiche, edafiche o stazionali estreme. È questo il caso ad es. dei prati secchi su calcare esposti a Sud, con strato di terreno molto sottile e scheletrico (Xerobromion), o dei luoghi umidi come le torbiere alte, che riescono anche senza l'intervento dell'uomo a mantenere molto a lungo la loro posizione di habitat pionieri. Questi habitat devono essere protetti soprattutto da un calpestio troppo intenso, come pure da alterazioni artificiali delle condizioni locali. La legge federale sulla protezione delle torbiere alte rappresenta un passo deciso in questa direzione.

Devono inoltre essere presi tutti i provvedimenti necessari per ridurre l'inquinamento atmosferico. In particolare deve essere ridotta l'immissione di azoto atmosferico proveniente da attività umane nelle torbiere alte nelle Prealpi (Dussex & Held, 1990) e nell'Altopiano (Klaus *et al.*, 2001). In generale i licheni reagiscono infatti in modo molto sensibile all'inquinamento atmosferico. Inoltre l'accumulo di azoto nel terreno attraverso le immissioni atmosferiche, stimola la crescita delle fanerogame e porta quindi alla scomparsa di organismi pionieri a crescita lenta come i licheni.

I seguenti habitat possono essere ritenuti idonei per i licheni terricoli e degni di protezione (nomenclatura in parte da DELARZE *et al.*, 1998):

- vecchie terrazze alluvionali; cumuli torbosi;
- terreni con torba in torbiere alte alterate, sottoposte a irregolari periodi di siccità;
- pareti torbose ai margini di torbiere alte;
- spaccature del terreno in tavolati calcarei e silicei (Alysso-Sedion albi, Sedo albi-Veronicion dillenii);
- praterie steppiche (Stipo-Poion);

- praterie aride con vegetazione rada (Xerobromion);
- prati magri su suolo acido della zona alpina e subalpina (Nardion strictae);
- pascoli dell'orizzonte alpino superiore su suolo acido (Caricion curvulae);
- vallette nivali a suolo acido e calcareo (Arabidion caeruleae, Salicion herbaceae);
- prati delle creste e dei dossi battuti dal vento (Elynion myosuroides);
- brughiere subalpine aride, su terreno povero in nutrienti (Juniperion nanae, Rhododendro-Vaccinion);
- brughiere alpine ventose (Loisleurio-Vaccinion);
- pinete mesofile su suolo acido (Dicrano-Pinion);
- boschi luminosi di Larice comune e Pino cembro (Larici-Pinetum cembrae);
- rovine e vecchi muri a secco;
- selciati (Saginion procumbentis);
- vecchi cimiteri gestiti in modo estensivo;
- scarpate di strade e sentieri con vegetazione rada.

5.6 Ringraziamenti

Ringraziamo tutti coloro che ci hanno aiutato nella determinazione di campioni critici, in particolare O. Vitikainen (Peltigera) e T. Ahti (Cladonia) dell'Università di Helsinki, H. Mayrhofer (Rinodina) dell'Università di Graz und R. Moberg (Phaeophyscia) dell'Università di Uppsala. Ringraziamo di cuore Francis Cordillot (UFAFP), Yves Gonseth (CSCF), Daniel Jeanmonod (CJBG), Pier Luigi Nimis (Università di Trieste) e Christoph Scheidegger (WSL) per la revisione critica del manoscritto. Stefan Lussi e Francis Cordillot (UFAFP) hanno seguito e sostenuto il progetto dall'inizio alla fine e per questo li ringraziamo molto. Ringraziamo pure Mariette Beroud e André Valley (CJBG) che ci hanno aiutato nella preparazione dei campioni e nella registrazione dei dati nella Banca Dati. Infine ringraziamo anche Monique Graf dell'Ufficio federale di statistica (Neuchâtel) per il suo competente aiuto.

6 Misure di protezione

Obblighi legali

La Svizzera ha il dovere di conservare la molteplicità delle specie di tutti i gruppi di organismi per le generazioni future e porta una responsabilità a livello internazionale per la salvaguardia di parecchie specie di licheni molto rari e minacciati nei Paesi limitrofi, e di rigogliose associazioni di licheni presenti specialmente nelle Prealpi settentrionali. La legge federale per la protezione della natura e del paesaggio è la base giuridica per la protezione dei licheni. La relativa ordinanza (OPN) ne regola l'esecuzione ed in particolare le domande inerenti la compensazione ed il risarcimento. Dall'agosto 2000 anche parecchie specie di licheni sono elencate nelle liste delle specie da proteggere (allegato OPN).

Piano di protezione

Habitat ottimali per i licheni non corrispondono necessariamente ad habitat ottimali per altri organismi. Perciò, attuando misure generali di protezione della natura, non necessariamente si garantisce una protezione efficace delle specie di licheni minacciate. In linea di massima, tutti i provvedimenti atti alla conservazione degli habitat naturali, della molteplicità delle specie e della continuità ecologica, valgono anche per i licheni. Il modo di vita particolare dei licheni (simbiosi), la lunga durata del ciclo generativo, le difficoltà di colonizzazione di nuovi habitat, la loro grande sensibilità ai cambiamenti dell'habitat, all'apporto di sostanze nutritive e all'inquinamento rendono necessaria l'adozione di un piano di protezione specifico. Nei licheni epifiti un ruolo decisivo lo assume la limitata durata di vita del substrato (albero o arbusto). A differenza di altri oggetti da proteggere «classici» (ad es. luoghi umidi, siepi, prati secchi), per i licheni sono spesso importanti anche altre caratteristiche degli habitat, come ad es. la struttura d'età del soprassuolo o le condizioni microclimatiche.

Protezione dei licheni

La protezione dei licheni si attua a diversi livelli: interventi sul piano locale devono essere affiancati da accordi a livello interregionale e internazionale (si veda ad es. la politica agraria e la protezione dell'aria). Nella pratica, la misura più efficace per proteggere i licheni è rappresentata dalla salvaguardia dei loro habitat. Si devono in primo luogo poter proteggere gli habitat delle specie minacciate, ad es. i boschi di faggio e abete bianco dell'orizzonte montano, un viale alberato o una prateria steppica. Solo in un secondo tempo si dovrebbe vagliare la possibilità di proteggere i microhabitat (singoli alberi, superfici limitate). Ciò potrebbe in alcuni casi essere decisivo per la sopravvivenza di una specie rara. A lungo termine sono necessari interventi per indirizzare correttamente lo sviluppo di un habitat (ad es. rinaturalizzazione delle torbiere). Dal 1996 esistono fogli informativi intitolati «Schutz stark gefährdeter Flechten der Schweiz» (CAMENZIND-WILDI & WILDI CAMENZIND 1996), che segnano un importante passo in direzione della conservazione delle specie rare.

Habitat

Particolarmente degni di protezione per i licheni sono habitat a elevata continuità ecologica, con differenti condizioni di luce e umidità e a gestione di tipo esclusivamente estensivo. Habitat di questo tipo sono ad esempio:

6 Misure di protezione 107

Per i licheni epifiti:

- boschi luminosi prossimi allo stato naturale e soprassuoli vecchi, soprattutto soprassuoli in cui le passate generazioni arboree non hanno subito disturbi su vasta scala (continuità ecologica);
- luminosi cedui composti di guercia, querce maestose nelle foreste o ai bordi del
- vecchi soprassuoli a struttura aperta, pascoli alberati, selve castanili;
- siepi rade, cumuli torbosi, fronti di estrazione in torbiere alte;
- alberi di viali, singoli alberi isolati;
- siepi tradizionali e cespugli;
- alberi da frutta ad alto fusto, non trattati con pesticidi e concimi;
- piante di noce, specialmente in ambienti caldi e con elevata umidità dell'aria.

Per i licheni terricoli:

- prati aridi su suolo calcareo con chiazze di terra nuda;
- prati aridi su suolo acido;
- terrazze alluvionali e banchi di ghiaia con vegetazione rada;
- praterie alpine rade;
- brughiere di arbusti nani.

Aspetti pratici della protezione dei licheni

In Svizzera, la protezione della natura e la sua messa in atto sono compito dei Cantoni. Quale aiuto all'attuazione delle misure di protezione, gli uffici cantonali competenti ricevono le liste aggiornate e le carte di distribuzione delle specie licheniche minacciate. I provvedimenti generali qui elencati valgono come mezzi per la conservazione di habitat tipici, mentre per specie minacciate in luoghi di ritrovamento noti sono da adottare provvedimenti specifici.

Provvedimenti generali:

Nel bosco

- incentivazione di un soprassuolo luminoso, mantenendo vecchi alberi:
- dilazionamento dei cicli di utilizzazione;
- creazione di foreste disetanee, utilizzazione di singoli alberi;
- incremento della massa di legname vecchio e/o morto;
- scelta delle specie compatibile con la stazione.

- Negli spazi aperti conservazione e incentivazione di colture ad alto fusto, viali, alberi singoli;
 - conservazione e incentivazione di prati secchi e pascoli a tappeto vegetale discontinuo, conservazione di forme tradizionali di colture estensive.

Misure specifiche:

Nel bosco

- presa in considerazione degli habitat adatti nei piani di gestione: limitazione o abbandono dell'utilizzo (pianta ospitante, suolo o ambiente circostante);
- messa sotto protezione di alberi ospitanti o della superficie di terreno;
- rinnnovazione della specie arborea ospitante.

Negli spazi aperti – conservazione di superfici libere;

- presa in considerazione dei siti di ritrovamento nella pianificazione del paesaggio: protezione dell'albero ospitante,
- protezione della parcella;
- limitazione dello sfruttamento, divieto di concimazione e di impiego di pesticidi;
- rinnnovazione della specie arborea ospitante.

Nel caso di eventi catastrofici, sfruttamenti forzati, progetti di costruzione ecc. in regioni con specie di licheni fortemente minacciate si consiglia caldamente una rapida presa di contatto con gli specialisti del settore.

Ulteriori misure specifiche sono discusse nei capitoli 4.6 e 5.5.

6 Misure di protezione 109

7 Bibliografia

- Анмарлан, V. (1995). Lichens are more important than you think. BioScience 45: 124. Ahti, T. (1961). Taxonomic studies on reindeer lichens (*Cladonia*, subgenus *Cladina*). Ann. Soc. Zool. Bot. Fenn. Vanamo 32: 1–160.
- AHTI, T. (1977). *Cladonia* subgen. *Cladonia*. In: POELT, J.; VĚZDA, A. Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft I. Biblioth. Lichenol. 9: 53–84.
- AHTI, T.; LOMMI, S.; HALONEN, P.; KOTLOVL, Y.; FADEEVA, M.; ANTONOVA, I.; DUDO-REVA, T. (1998). Lichens. In: KOTIRANTA, H.; UOTILA, P.; SULKAVA, V.; PELTONEN, S.-L. (eds.) Red Data Book of East Fennoscandia. Ministry of the environment, Finnish Environment Institute, Botanical Museum of Natural Histori, Helsinki. 157–170.
- AHTI, T; OKSANEN, J. (1990). Epigeic lichen communities of taiga and tundra regions. Vegetatio 86: 39–70.
- APTROOT, A.; VAN HERK, C.; VAN DOBBEN, H.; VAN DEN BOOM, P.; BRAND, A.; SPIER, L. (1998). Bedreigde en kwetsbare korstmossen in Nederland: basisrapport met voorstel voor de Rode Lijst. Buxbaumiella 46: 1–101.
- BORNKAMM, R. (1958). Die Bunte-Erdflechten-Gesellschaft im südwestlichen Harzvorland. Ber. Deutsch. Bot. Gesell. 71: 253–270.
- BOUJON, C.; RÖLLIN, O.; CLERC, P. (1999). Les zones xériques de la région genevoise: des milieux d'un grand intérêt mycologique et floristique en voie de disparition? Saussurea 30: 79–89.
- Brassel, P.; Brändli, U.-B. (1999). Schweizerisches Landesforstinventar. Ergebnisse der Zweitaufnahme 1993–1995. Bern, Haupt. 442 S.
- Breuss, O. (1990). Die Flechtengattung *Catapyrenium (Verrucariaceae*) in Europa. Stapfia 23: 1–153.
- Buschardt, A. (1979). Zur Flechtenflora der inneralpinen Trockentäler unter besonderer Berücksichtigung des Vinschgaus. Biblioth. Lichenol. 10: 419 p.
- BUWAL (1994). Natur- und Landschaftsschutz. Bern, BUWAL.
- CAMENZIND-WILDI, R; WILDI CAMENZIND, E. (1996). Schutz stark gefährdeter Flechten der Schweiz. Merkblätter Vollzug Umwelt. Bern, BUWAL.
- Church, J. M.; Coppins, B. J.; Gilbert, O. L.; James, P. W.; Stewart, N. F. (1996). Red data books of Britain and Ireland: lichens vol. 1: Britain. Peterboroug, Joint Nature Conservation Committee.
- CLAUZADE, G.; ROUX, C. (1985). Likenoj de Okcidenta Europo. Ilustrita Determinlibro. Bull. Soc. Bot. Centre-Ouest, n. s., nr. spéc. 7: 893 p.
- CLERC, P. (1998). Les années 80–90, une période faste pour la lichénologie suisse. Meylania 14: 14–19.
- CLERC, P. (1999). Les lichens bioindicateurs de la pollution de l'air dans le bassin lémanique. In: Bertola C.; Goumand C.; Rubin J.-F. (eds.) Découvrir le Léman 100 ans après François-Alphonse Forel. Genève, Editions Slatkine. 123–138.
- CLERC, P. (2000). Catalogue bibliographique des lichens de Suisse. Banque de données File Maker Pro. CJB. Genève. Inedito.
- CLERC, P.; SCHEIDEGGER, C.; AMMANN, K. (1992). Liste rouge des macrolichens de la Suisse. Bot. Helv. 102: 71–83.
- COPPINS, B. J.; JAMES, P. W. (1984). New or interesting British lichens. V. Lichenologist 16: 241–264.
- CULBERSON, C.F.; AMMANN, K. (1979). Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 1–24.

7 Bibliografia 111

- CULBERSON, C.F.; JOHNSON, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in standarzided thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 438–487.
- Degelius, G. (1954). The lichen genus *Collema* in Europe, morphology, taxonomy and ecology. Symb. Bot. Upsal. 13: 1–499.
- DELARZE, R. (1998). Matériaux pour une liste rouge des habitats en Suisse. OFEFP. Berne, Dattiloscritto inedito.
- DELARZE, R.; GONSETH, Y.; GALLAND, P. (1998). Guide des milieux naturels de Suisse. Delachaux et Niestlé, Lausanne, 413 p.
- DIETRICH, M. (1990). Die epiphytische Flechtenflora und -vegetation des Merliwaldes, Giswil (OW, Schweiz), Lizentiatsarbeit am Systematisch-Geobotanischen Institut Universität Bern.
- DIETRICH, M.; SCHEIDEGGER, C. (1997a). Frequency, diversity and ecological strategies of epiphytic lichens in the Swiss Central Plateau and the Pre-Alps. Lichenologist 29: 237–258.
- DIETRICH, M.; SCHEIDEGGER, C. (1997b). A representative survey of frequency of epiphytic lichens at the regional and national levels and its use for the red list of Switzerland. In: TÜRK, R.; ZORER R. (eds.) Progress and Problems in Lichenology in the Nineties IAL 3, Bibl. Lichenol. 68: 145–154.
- DIETRICH, M.; STOFER, S.; SCHEIDEGGER, C.; FREI, M.; GRONER, U.; KELLER, C.; ROTH, I.; STEINMEIER, C. (2000). Data sampling of rare and common species for compiling a Red List of epiphytic lichens. Forest, Snow and Landscape Research 75: 369–380.
- DUELLI, P. (1994). Lista Rossa degli animali minacciati della Svizzera, Berna. UFAFP.
- Dussex, N.; Held, T. (1990). Atmosphärischer Nährstoffeintrag in voralpine Hochmoore. Lizentiatsarbeit am Systematisch-Geobotanischen Institut der Universität Bern.
- FIORE-DONNO, A.-M. (1997). Les lichens épiphytes comme bioindicateurs de la pollution atmosphérique genevoise. Saussurea 28: 189–218.
- Frey, E. (1922). Die Vegetationsverhältnisse der Grimselgegend im Gebiet der zukünftigen Stauseen. Mitteilungen der Naturforschenden Gesellschaft in Bern 1921: 87–260.
- FREY, E. (1937). Die Flechtenvegetation des Aletschreservates und seiner näheren Umgebung. Bull. Murith. Soc. Valais. Sci. Nat. 54: 55–93.
- FREY, E. (1952). Die Flechtenflora und -Vegetation des Nationalparks im Unterengadin. I Teil: Die diskokarpen Blatt- und Strauchflechten. Ergebn. Wiss. Untersuch. Schweiz. Nationalparkes. N. F. 3: 361–503.
- FREY, E. (1958). Die anthropogenen Einflüsse auf die Flechtenflora und -vegetation in verschiedenen Gebieten der Schweiz. Ein Beitrag zum Problem der Ausbreitung und Wanderung der Flechten. Veröffentlichung des Geobotanischen Institutes Rübel in Zürich 33: 91–107.
- Frey, E. (1959). Die Flechtenflora und -Vegetation des Nationalparks im Unterengadin. II. Teil: Die Entwicklung der Flechtenvegetation auf photogrammetrisch kontrollierten Dauerflächen. Ergebn. Wiss. Untersuch. Schweiz. Nationalparkes. N. F. 6: 241–319.
- FRYDAY, A.; COPPINS, B. (1997). Keys to sterile, crustose saxicolous and terricolous lichens occurring in the British Isles. Lichenologist 29: 301–332.
- GALLOWAY, D. J. (1994). Biogeography and ancestry of lichens and other ascomycetes. In: HAWKSWORTH, D.L. (ed.) Ascomycete Systematics. Problems and Perspectives in the Nineties. New York, NATO Advanced Science Institutes Series, Plenum Press. 175–184.

- GÄRDENFORS, U. (1996). Application of IUCN red list categories on a regional scale. In: BAILLIE, J.; GROOMBRIDGE, B. (eds.) 1996 IUCN red list of threatened animals. Gland, IUCN. 63–66.
- GÄRDENFORS, U. (2000). Rödlistade arter i Sverige the 2000 Red List of Swedish Species., vol. 2000. ArtDatabanken SLU Uppsala.
- GÄRDENFORS, U.; RODRIGUEZ, J. P.; HILTON-TAYLOR, C.; HYSLOP, C.; MACE, G.; MOLUR, S.; Poss, S. (1999). Draft guidelines for the application of IUCN Red List criteria at national and regional levels. Species 31/32: 58–70.
- GILBERT, O. L. (1993). The lichens of chalk grassland. Lichenologist 25: 379-414.
- HEGG, O.; BEGUIN, C.; ZOLLER, H. (1993). Atlas de la végétation à protéger en Suisse. Office fédéral de l'environnement, des forêts et du paysage, Berne, 160 p.
- HERZIG, R.; Urech, M. (1991). Flechten als Bioindikatoren. Integriertes biologisches Messsystem der Luftverschmutzung für das Schweizer Mittelland. Berlin, J. Cramer.
- IUCN (1994). IUCN red list categories. As approved by the 40th meeting of the IUCN council. Gland, IUCN.
- IUCN (2001). IUCN red list categories. Prepared by the IUCN species survival commission. As approved by the 51th meeting of the IUCN council. Gland, IUCN.
- JØRGENSEN, P. M. (1994). Further notes on european taxa of the lichen genus *Leptogium*, with emphasis on the small species. Lichenologist 26: 1–29.
- JØRGENSEN, P. M. (2000). Die Flechte *Santessoniella arctophila* (Th. Fr.) Henssen, neu für die Alpen. Meylania 18: 14.
- KÄSERMANN, C.; MOSER, D. M. (1999). Merkblätter Artenschutz: Blütenpflanzen und Farne. Bern, Bundesamt für Umwelt, Wald und Landschaft (disponibile anche in francese).
- Keller, V.; Zbinden, N.; Schmid, H.; Volet, B. (2001). Lista degli uccelli nidificanti minacciati in Svizzera. Lista Rossa CH 2001. Sempach. Stazione ornitologica.
- KIRSCHBAUM, U.; WIRTH, V. (1995). Flechten erkennen, Luftgüte bestimmen. Stuttgart, Eugen Ulmer.
- KLAUS, G.; SCHMILL, J.; SCHMID, B.; EDWARDS, P. J. (2001). Diversité biologique Les perspectives du siècle naissant. Birkhäuser, Bâle.
- LANDOLT, E. (1991). Gefährdung der Farn- und Blütenpflanzen in der Schweiz. Bern, BUWAL.
- LUMBSCH, H. T. (1989). Die holarktischen Vertreter der Flechtengattung *Diploschistes* (*Thelotremataceae*). J. Hattori Bot. Lab. 66: 133–196.
- MATTSSON, J. E. (1995). Lavar. In: Aronsson, M.; HALLINGBÄCK, T.; MATTSSON, J. E. (eds.) 1995. Rødlistade växter i Sverige 1995 [Swedish Red Data Book of Plants 1995]. Art Databanken, Uppsala, 141–176.
- MAYRHOFER, H. (1999). *Rinodina* (excl. saxicole Arten), nach dem Schlüssel von Mayrhofer in Wirth 1995 und Angaben von H. Mayrhofer, Graz. Dattiloscritto inedito.
- MOBERG, R. (1977). The lichen genus *Physcia* and allied genera in Fennoscandia. Symbolae Botanicae Upsalienses 22, 1: 108 p.
- NADOLNY, S. (1999): Die Entdeckung der Langsamkeit. München, Piper.
- NIMIS, P. L. (1993). The Lichens of Italy An annotated catalogue. Museo Regionale di Scienze Naturali, Monografie 12. Torino.
- NIMIS, P. L. (2000). Checklist of Italian Lichens 2.0 Material for Red Lists. http://dbiodbs.univ.trieste.it/.
- OBERMAYER, W. (1994). Die Flechtengattung *Arthrorhaphis (Arthrorhaphidaceae, Ascomycotina*) in Europa und Grönland. Nova Hedwigia 58: 275–333.

7 Bibliografia 113

- OLDFIELD, S.; LUSTY, C.; MACKINVEN, A. (1998). The world list of threatened trees. Cambridge, World Conservation Press.
- Paus, S. (1997). Die Erdflechtenvegetation Nordwestdeutschlands und einiger Randgebiete. Biblioth. Lichenol. 66: 222 p.
- POELT, J. (1969). Bestimmungsschlüssel europäischer Flechten. Cramer. Lehre, 757 p.
- PIŠUT, I.; LACKOVICOVA, A.; LIŠICKA, E. (1993). Supis lisajnikov Slovenska. Biologia, Bratislava. 48/suppl. 1: 53–98.
- POELT, J.; SULZER, M. (1974). Die Erdflechte *Buellia epigaea*, eine Sammelart. Nova Hedwigia 25: 173–194.
- POELT, J.; VEZDA, A. (1977). Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft I. Biblioth. Lichenol. 9: 258 p.
- POELT, J.; VĔZDA, A. (1981). Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft II. Biblioth. Lichenol. 16: 390 p.
- Purvis, O. W.; Coppins, B. J.; Hawksworth, D. L.; James, P. W.; Moore, D. M. (1992). The lichen flora of Great Britain and Ireland. Natural History Museum Publications in association with The British Lichen Society. London.
- Purvis, O. W.; Coppins, B. J.; James, P. W. (1994). Checklist of Lichens of Great Britain and Ireland. London.
- RAUSCHENBACH, L. (1999). Verbois, un coup de main à la nature. Saussurea 30: 27–34.
- RICHARDSON, D. (1974). The vanishing lichens. Their history, biology and importance. New York, Macmillan.
- RICHARDSON, D.H.S. (1992). Pollution monitoring with lichens. Slough, Richmond.
- RONDON, Y. (1977). Les lichens de la tourbière du Bois des Lattes (Jura de Neuchâtel). Rev. Bryolo. Lichénol. 43: 489–494.
- RONDON, Y. (1978). La végétation lichénique de trois tourbières franco-suisses. Colloq. Phytosoc. 7: 287–294.
- ROSE, F. (1976). Lichenological indicators of age and environmental continuity in woodlands. In: Brown, D.H.; HAWKSWORTH, D. L.; BAILEY, R.H. (eds.) Lichenology: progress and problems. London, Academic Press. 279–307.
- Rose, F. (1992): Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates, J.W.; Farmer, A. (eds.) Bryophytes and lichens in a changing environment. Oxford, Clarendon Press. 211–233.
- Rose, F. (1993): Ancient British woodlands and their epiphytes. British Wildlife 5: 83–94.
- ROTH, I.; SCHEIDEGGER, C.; LUSSI, S. (1997). Rote Liste der Flechten: auf Bäumen leben 700 Arten wieviele sind bedroht? BUWAL-Bulletin 4/97: 35–38.
- Ruoss, E.; Clerc, P. (1987). Bedrohte Flechtenrefugien im Alpenraum. Verhandlungen der Gesellschaft für Ökologie 15: 121–128.
- Santesson, R. (1993). The lichens and lichenicolous fungi of Sweden and Norway. Lund. Scheideger, C. (1995). Early development of transplanted isidioid soredia of *Lobaria pulmonaria* in an endangered population. Lichenologist 27: 361–374.
- SCHEIDEGGER, C. (2001). Bioindikator auf dem landwirtschaftlichen Betrieb. UFA-Revue 3/01: 44–46.
- Scheidegger, C.; Clerc, P.; Dietrich, M.; Fiore, A.-M.; Frei, M.; Groner, U.; Keller, C.; Roth, I.; Stofer, S.; Wildi, E. (in prep.): Reduction in national populations of epiphytic lichens assessed from herbarium observations and a national surveillance.

- Scheideger, C.; Dietrich, M.; Frei, M.; Keller, C.; Kuhn, N.; Wildi, E. (1991). Zur Waldflechtenflora des westlichen Aargauer Mittellandes und ihrem Wandel seit 1960. Mitteilungen der Aargauischen Naturforschenden Gesellschaft 33: 175–192.
- Scheideger, C.; Frey, B.; Walser, J.-C. (1998). Reintroduction and augmentation of populations of the endangered *Lobaria pulmonaria*: methods and concepts. In: Kondratyuk, S.; Coppins, B.J. (eds.) Lobarion lichens as indicators of the primeval forests of the eastern Carpathians. Kiev, Phytosociocentre. 33–52.
- Scheideger, C.; Frey, B.; Zoller, S. (1995). Transplantation of symbiotic propagules and thallus fragments: methods for the conservation of threatened epiphytic lichen populations. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70: 41–62.
- Scheideger, C.; Goward, T. (2002). Monitoring Lichens for conservation: Red Lists and conservation action plans. In: Nimis, P.L.; Scheideger, C.; Wolseley, P.A. (eds.) Monitoring with lichens monitoring lichens. New York, Kluwer. 163–181.
- Scheideger, C.; Schroeter, B. (1995). Effects of ozone fumigation on epiphytic macrolichens: ultrastructure, CO₂ gas exchange and chlorophyll fluorescence. Environmental Pollution 88: 345–354.
- Scheideger, C.; Stofer, S.; Dietrich, M.; Groner, U.; Keller, C.; Roth, I. (2000). Estimating regional extinction probabilities and reduction in populations of rare epiphytic lichen-forming fungi. Forest Snow and Landscape Research 75: 415–433.
- Schöller, H. (1997). Flechten. Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung. Frankfurt am Main, Waldemar Kramer.
- Scholz, P. (2000). Katalog der Flechten und flechtenbewohnenden Pilze Deutschlands. Schriftenreihe für Vegetationskunde 31: 1–298.
- Soulé, M. E. (1987). Viable populations for conservation. Cambridge, Cambridge University Press.
- TIMDAL, E. (1991). A monograph of the genus *Toninia* (*Lecideaceae*, Ascomycetes). Opera Bot. 110: 1–137.
- TÜRK, R.; HAFELLNER, J. (1999). Flechten. Rote Liste gefährdeter Flechten (Lichenes) Österreichs. 2. Fassung. In: NIKLFELD, H. (ed.) Rote Listen gefährdeter Pflanzen Österreichs. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie 187–228.
- TÜRK, R.; POELT, J. (1993). Bibliographie der Flechten und flechtenbewohnenden Pilze in Österreich. Biosystematics and Ecology Series 3: 1–168.
- Turian, G. (1972). Observations sur des composants fongiques et lichéniques de la steppe-garide du vallon de l'Allondon (Genève). Saussurea 3: 33–36.
- TURIAN, G. (1975). L'association lichénique *Fulgensietum fulgentis* des garides de la région genevoise. Saussurea 6: 313–316.
- Turian, G.; Monthoux, O. (1978). Lichens et champignons des garides. In: Géroudet, P. (Réd.) Le vallon de l'Allondon Nature et protection. Association genevoise pour la protection de la nature, Genève. 45–46.
- UFAFP (1999). Bosco e legno in Svizzera. Berna, UFAFP.
- URMI, E. (1992). Die gefährdeten und seltenen Moose der Schweiz. Berna, EDMZ. VAN HERK, C. (1999). Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 9–20.
- VITIKAINEN, O. (1994). Taxonomic revision of *Peltigera* (lichenized Ascomycotina) in Europe. Acta Bot. Fenn. 152: 1–96.

7 Bibliografia 115

- VITIKAINEN, O.; AHTI, T.; KUUSINEN, M.; LOMMI, S.; ULVINEN, T. (1997). Checklist of lichens and allied fungi of Finnland. Norrlinia 6: 3–123.
- WILDI, E.; CAMENZIND, R. (1990). Die epiphytischen Flechten des Gurnigel-Gantrischgebietes, Lizentiatsarbeit Systematisch-Geobotanisches Institut Universität Bern.
- WIRTH, V. (1980). Flechtenflora. Stuttgart, Ulmer 552 p.
- WIRTH, V. (1995). Die Flechten Baden-Württembergs, 1+2. Stuttgart, Eugen Ulmer.
- Wirth, V.; Schöller, H.; Scholz, P.; Ernst, G.; Feuerer, T.; Gnuchtel, A.; Hauck, M.; Jacobsen, P.; John, V; Litterski, B. (1996). Rote Liste der Flechten (Lichenes) der Bundesrepublik Deutschland. Schriftenreihe für Vegetationskunde 28: 307–368.
- WOLSELEY, P.A. (1995). A global perspective on the status of lichens and their conservation. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70: 11–27.
- ZINGG, A.; BACHOFEN, H. (1988). Schweizerisches Landesforstinventar Anleitung für die Erstaufnahmen 1982–1986. Berichte Eidgenössische Anstalt für das forstliche Versuchswesen 304: 1–134.
- ZOLLER, S. (1995). Jugendentwicklung bei *Parmelina dissecta, P. tiliacea* und *P. pastillifera* sowie bei *Parmotrema crinitum*, Lizentiatsarbeit Institut für Systematische Botanik, Universität Zürich.
- ZOLLER, S.; FREY, B.; SCHEIDEGGER, C. (2000). Juvenile development and diaspore survival in the three threatened epiphytic lichen species *Sticta fuliginosa*, *Leptogium saturninum* and *Menegazzia terebrata*: conclusions for in-situ conservation. Plant Biology 2: 496–504.

Allegati

Allegato 1: Caratterizzazione delle specie di licheni epifiti non identificabili

Specie	Descrizione
Bryoria sp. 1	Contrariamente alle altre specie del genere Bryoria, non possiede sostanze licheniche.
Lecidella sp.1	Crostoso, da sottile a spesso, giallo-verde, formante macchie \pm evidenti, di dimensioni ridotte; protallo evidente, bianco, da filamentoso a membranoso; parti sorediate del tallo mai ben delimitate, soredi da irregolari a confluenti, o tallo totalmente soredioso; soredi da verde-giallognoli a verde-grigi a verdi, finemente granulati, da 20–50 μ m
	Atranorin, Thiophan, «expallens unknown» (= Xanthon 3/4/3, costante, tracce), Arthothelin (?, traccia); UV+ marrone-arancio
	Generalmente su corteccia grossolana di conifere o Fagus sylvatica; alla base del tronco, a metà tronco e sui rami
Lecidella sp.2	Crostoso, da sottile a spesso, da verde giallastro, verde grigiastro fino a crema, spesso a forma di macchia, \pm distintamente delimitato, \pm di superficie ridotta; protallo distinto, bianco, da fibrilloso a membranoso, le parti del tallo con soredi mai chiaramente delimitate, erompenti dal protallo con un tipico aspetto squamoso; soredi da irregolari a confluenti, da polverosi a granulosi, o tallo interamente sorediato; soredi finemente granulati, da 20 a 50 μ m.
	Atranorin, Capistraton, Thiophan, Isoarthothelin (?, traccia); UV+ marrone-arancio; raramente senza Capistraton
	Di solito su latifoglie a corteccia liscia, raramente ruvida, ad una altezza centrale del tronco.
Lecidella sp.3	Crostoso, epifloedico, sottile, soredi di colore da verde-giallastro a grigio-verde, di forma irregolare, superficie \pm ridotta; protallo ben visibile, da bianco a grigio-nero, da finemente fibrilloso a membranoso; le parti del tallo sorediate mai chiaramente delimitate, emergenti dal protallo o dalle parti del tallo senza soredi; soredi da irregolari a confluenti, da polverosi a granulosi o tallo interamente sorediato; soredi finemente granulati, 20-50 μ m
	Xanthon 5–6/5–6/5–6 UV366 rosso scuro non identificato, Xanthon 5/5–6/5 UV366 arancione non identificato, Xanthon 4/5/4–5 UV366 rosso scuro (costante, traccia) ± Atranorin (un'unica traccia); UV+ da arancio a arancio-marrone.
Micarea sp.1	Crostoso, epifloedico, relativamente ispessito, da biancastro a verde-blu, formante macchie irregolari, non chiaramente delimitato, di dimensioni ridotte, protallo poco significativo, biancastro, tallo non sorediato irriconoscibile; parti del tallo sorediate raramente ben delimitate, soredi 25–50 µm, irregolarmente sorediato fino al tallo completamente leproso; soredi più profondamente ancorati nel tallo spesso bianco-verdastri, altrimenti blu-verdi, soredi superiori blu verdi, finemente granulati, ife K-, N-, alghe micareoidi.
	Gyrophor, UV-
	Finora su <i>Picea abies</i>
Opegrapha sp. 1	
Rinodina sp. 1	Morfologicamente vicina a <i>R. albana</i> , ma secondo H. Mayrhofer (comunicazione personale) si tratta di una specie a se stante.

Allegati 117

Allegato 2: Lista delle specie di licheni epifiti raggruppate in gruppi di specie nell'ambito della Lista Rossa

Gruppi di specie	altre specie che vi appartengono
Caloplaca ferruginea aggr.	Caloplaca hungarica H.Magn.
	Caloplaca ferruginea (Hudson) Laundon
Caloplaca herbidella aggr.	Caloplaca furfuracea H. Magn.
	Caloplaca herbidella sensu Tønsberg
Collema nigrescens aggr.	Collema subnigrescens Degel.
	C. nigrescens (Hudson) DC
Haematomma ochroleucum (Necker) Laundon	Haematomma aff. ochroleucum
Lecanora argentata aggr.	Lecanora argentata (Ach.) Malme
	Lecanora subrugosa Nyl.
Lecanora chlarotera aggr.	Lecanora chlarotera Nyl.
	Lecanora rugosella Zahlbr.
	Lecanora meridionalis H.Magn.
Lecanora hagenii aggr.	Lecanora hagenii (Ach.) Ach.
-	Lecanora umbrina auct.
Lecanora horiza aggr.	Lecanora horiza (Ach.) Lindsay
	Lecanora glabrata (Ach.) Malme
Lecanora cf. phaeostigma (Körber) Almborn	Lecanora phaeostigma (Körber) Almborn
Lecanora strobilina aggr.	Lecanora strobilina (Sprengel) Kieffer
	Lecanora sp.3
	Lecanora sp.4
	Lecanora sp.5
Lecanora symmicta aggr.	Lecanora symmicta (Ach.) Ach.
	Lecanora sp.1 (Diss. M. Dietrich)
Mycobilimbia sabuletorum aggr.	M. sabuletorum
	Mycobilimbia accedens (Arnold) V.Wirth & Haf.
Parmelia subrudecta aggr.	Parmelia ulophyllodes (Ach.) Wilson
	Parmelia subrudecta Nyl.
	Parmelia borreri (Sm.) Turner
Ramalina obtusata aggr.	Ramalina baltica Lettau
	R. obtusata (Arnold) Bitter

Allegato 3: Presunta diminuzione costante di licheni epifiti durante gli ultimi e i prossimi 50 anni. Stima fondata su un previsto peggioramento della qualità degli habitat (stima di specialisti). 1: declino del 25% nel corso di una generazione; 2: declino del 20% nel corso di due generazioni; 3: declino del 10% nel corso di tre generazioni; 4: declino indefinibile; 5: non è da prevedere nessun declino; 0: nessuna stima possibile.

Specie	Altopiano	Resto della	Specie	Altopi	ano	Resto della	Specie	Altopiano	Resto della
		Svizzera				Svizzera			Svizzera
Acrocordia cavata	3	3	Bacidia	hegetschweileri	2	2	Calicium adspersum	2	2
Acrocordia gemmata	2	3	Bacidia	incompta	2	2	Calicium glaucellum	5	5
Agonimia allobata	3	5	Bacidia	laurocerasi	1	1	Calicium lenticulare	2	2
Agonimia octospora	3	3	Bacidia	naegelii	5	5	Calicium montanum	5	5
Agonimia tristicula	5	5	Bacidia	neosquamulosa	5	5	Calicium parvum	2	2
Alectoria sarmentosa	3	3	Bacidia	phacodes	5	5	Calicium quercinum	1	1
Amandinea punctata	5	5	Bacidia	polychroa	0	0	Calicium salicinum	3	3
Anaptychia ciliaris	2	2	Bacidia	rosella	1	1	Calicium trabinellum	5	5
Anaptychia crinalis	3	3	Bacidia	rubella	5	5	Calicium viride	5	5
Anisomeridium polypori	5	5	Bacidia	sp.1	5	5	Caloplaca alnetorum	2	2
Arthonia apatetica	4	4	Bacidia	subincompta	5	5	Caloplaca assigena	4	4
Arthonia byssacea	2	2	Bactrosp	oora dryina	2	2	Caloplaca cerina	5	5
Arthonia cinereopruinos	sa 0	0	Biatora	chrysantha	5	5	Caloplaca cerinella	3	3
Arthonia cinnabarina	3	3	Biatora	efflorescens	5	5	Caloplaca cerinelloid	les 3	3
Arthonia didyma	5	5	Biatora	fallax	3	3	Caloplaca chlorina	5	5
Arthonia dispersa	1	1	Biatora	flavopunctata	5	5	Caloplaca chrysophth	alma 1	1
Arthonia elegans	0	0	Biatora	helvola	3	3	Caloplaca ferruginea	5	5
Arthonia faginea	4	4	Biatora	ocelliformis	3	3	Caloplaca flavorubes	cens 1	1
Arthonia fuliginosa	1	1	Biatora	porphyroplaca	5	5	Caloplaca herbidella	3	5
Arthonia helvola	0	0	Biatora		3	3	Caloplaca holocarpa	5	5
Arthonia leucopellaea	3	3	Biatora	subduplex	5	5	Caloplaca isidiigera	5	5
Arthonia mediella	5	5	Biatora	vacciniicola	5	5	Caloplaca lobulata	0	0
Arthonia medusula	0	0	Biatorid	ium delitescens	1	1	Caloplaca lucifuga	1	1
Arthonia muscigena	3	3	Biatorid	ium monasteriense	5	5	Caloplaca obscurella	2	2
Arthonia pruinata	0	0	Bryoria	bicolor	3	3	Caloplaca pollinii	2	2
Arthonia radiata	5	5		capillaris	1	3	Caloplaca sorocarpa	5	5
Arthonia reniformis	5	5		fuscescens	2	3	Caloplaca sp.1	5	5
Arthonia spadicea	5	5	Bryoria		2	3	Caloplaca ulcerosa	5	5
Arthonia vinosa	3	3		nadvornikiana	3	3	Candelaria concolor	5	5
Arthothelium ruanum	5	5		simplicior	0	0	Candelariella lutella	2	2
Arthothelium spectabile	0	0	Bryoria	*	5	5	Candelariella reflexa	5	5
Arthrosporum populorum		1		subcana	3	3	Candelariella subdefl	exa 2	2
Bacidia absistens	3	3		alboatra	2	2	Candelariella viae-la		2
Bacidia arceutina	5	5	Buellia	arborea	5	5	Candelariella vitelline	a 5	5
Bacidia arnoldiana	5	5	Buellia		0	0	Candelariella xanthos		
Bacidia auerswaldii	0	0		disciformis	3	3	Catapyrenium psorom		0
Bacidia beckhausii	3	3		erubescens	2	2	Catillaria alba	1	1
Bacidia biatorina	1	1		griseovirens	5	5	Catillaria nigroclavat		
Bacidia chloroticula	5	5	Buellia	_	3	3	Catillaria pulverea	5	
Bacidia circumspecta	1	1		schaereri	5	5	Catinaria atropurpure		
Bacidia delicata	5	5		triphragmioides	5	5	Catinaria papillosa	5	
Bacidia fraxinea	4	4		na marginatum	2	2	Cetraria chlorophylla		
Bacidia friesiana	0	0		na marginaiam n abietinum	5	5	Cetraria laureri	2	
Bacidia globulosa	3	3		ı adaequatum	3	3	Cetraria oakesiana	1	
Dacinia giodinosa	3	3	. Canciun	. ишисунинин	5	3	1 Contanta Ouncommu	1	1

Allegati 119

Specie A	Itopiano	Resto della	Specie Altop	iano	Resto della	Specie	Altopiano	Resto della
•		Svizzera			Svizzera			Svizzera
Cetraria sepincola	1	1	Fellhanera bouteillei	3	3	Lecanora cf.	5	5
Cetrelia cetrarioides	2	3	Fellhanera gyrophorica	2	2	Lecanora chlarotera	5	
Cetrelia chicitae	1	1	Fellhanera subtilis	3	3	Lecanora cinereofusc		
Cetrelia olivetorum	2	3	Fellhanera viridisorediata	5	5	Lecanora circumbore		
Chaenotheca brachypoda		3	Fellhaneropsis myrtillicola	3	3	Lecanora conizaeoide		
Chaenotheca brunneola	5	5	Fellhaneropsis vezdae	2	2	Lecanora expallens	3	
Chaenotheca chlorella	1	1	Fuscidea arboricola	3	3	Lecanora expersa	5	
Chaenotheca chrysocepha		5	Fuscidea pusilla	5	3	Lecanora flavolepros		
Chaenotheca cinerea	5	5	Graphis elegans	1	1	Lecanora fuscescens	. 5	
Chaenotheca ferruginea	5	5	Graphis scripta	5	5	Lecanora gisleri	5	
Chaenotheca furfuracea	5	5	Gyalecta flotowii	1	1	Lecanora hagenii	5	
Chaenotheca gracilenta	5	5	Gyalecta truncigena	3	3	Lecanora horiza	5	
Chaenotheca hispidula	2	2	Gyalecta ulmi	1	1	Lecanora intumescen	_	_
Chaenotheca laevigata	2	2	Gyalideopsis anastomosans	5	5	Lecanora leptyrodes	3	
Chaenotheca phaeocepha		3	Haematomma ochroleucum	5	5	Lecanora mughicola	5	
Chaenotheca stemonea	14 Z	5	Halecania viridescens	5	5	Lecanora mugnicola Lecanora persimilis	5	
Chaenotheca subroscida	2	2	Heterodermia leucomelos	0	0	Lecanora praesistens		
Chaenotheca trichialis	3	5	Heterodermia obscurata	1	1	Lecanora pulicaris	5	
Cheiromycina flabelliforn		3	Heterodermia speciosa	2	2	Lecanora salicicola	5	
, , ,		1	=	5	5		5	
Chromatochlamys muscon			Hyperphyscia adglutinata			Lecanora saligna		
Chrysothrix candelaris	3	5	Hypocenomyce caradocensis	5	5	Lecanora sambuci	3	
Cladonia cenotea	5	5	Hypocenomyce friesii	5	5	Lecanora strobilina	5	_
Cladonia coniocraea	5	5	Hypocenomyce praestabilis	5	5	Lecanora subcarpine		
Cladonia digitata	5	5	Hypocenomyce scalaris	5	5	Lecanora subintricat		
Cladonia fimbriata	5	5	Hypocenomyce sorophora	5	5	Lecanora symmicta	5	
Cladonia pyxidata	5	5	Hypogymnia austerodes	3	3	Lecanora varia	5	_
Cladonia squamosa	5	5	Hypogymnia bitteri	3	3	Lecanora vinetorum	2	
Cliostomum corrugatum	5	2	Hypogymnia farinacea	5	5	Lecidea amaurospode		
Cliostomum leprosum	5	5	Hypogymnia physodes	5	5	Lecidea betulicola	0	_
Cliostomum pallens	5	5	Hypogymnia tubulosa	5	5	Lecidea erythrophaea		
Collema conglomeratum	0	0	Hypogymnia vittata	2	2	Lecidea hypopta	5	
Collema fasciculare	2	2	Imshaugia aleurites	5	5	Lecidea leprarioides	5	
Collema flaccidum	5	5	Japewia subaurifera	5	5	Lecidea margaritella	3	
Collema fragrans	1	1	Japewia tornoensis	5	5	Lecidea nylanderi	5	5
Collema furfuraceum	1	1	Lauderlindsaya acroglypta	5	5	Lecidea porphyrospo		5
Collema ligerinum	1	1	Lecanactis abietina	3	3	Lecidea turgidula	5	
Collema nigrescens	1	3	Lecanactis amylacea	3	3	Lecidella aff. leprothe		
Collema occultatum	1	1	Lecania cyrtella	5	5	Lecidella aff. prasinu		
Collema subflaccidum	3	3	Lecania fuscella	1	1	Lecidella elaeochrom		
Cyphelium inquinans	2	2	Lecania koerberiana	1	1	Lecidella flavosoredi		
Cyphelium karelicum	2	2	Lecanora aff. expallens	5	5	Lecidella laureri	5	
Cyphelium lucidum	2	2	Lecanora albella	3	3	Lecidella sp.1	5	
Cyphelium pinicola	2	2	Lecanora allophana	3	3	Lecidella sp.2	5	
Dimerella lutea	1	1	Lecanora anopta	5	5	Lecidella sp.3	5	
Dimerella pineti	5	5	Lecanora argentata	5	5	Lepraria eburnea	5	
Eopyrenula leucoplaca	5	5	Lecanora barkmaneana	5	5	Lepraria elobata	5	
Evernia divaricata	3	3	Lecanora boligera	5	5	Lepraria incana	5	
Evernia mesomorpha	3	3	Lecanora cadubriae	5	5	Lepraria jackii	5	
Evernia prunastri	5	5	Lecanora carpinea	5	5	Lepraria lobificans	5	5

Specie	Altopiano	Resto della	Specie	Altopiano	Resto della	Specie A	Altopiano	Resto della
		Svizzera			Svizzera			Svizzera
Lepraria obtusatica	5	5	Ochrolechia subviridis	1	1	Pertusaria aff. pulvereo-	5	5
Lepraria rigidula	5	5	Ochrolechia szatalaensis	2	2	sulphurata		
Leproloma vouauxii	5	5	Ochrolechia turneri	3	3	Pertusaria albescens	5	5
Leptogium burnetiae	1	3	Opegrapha atra	5	5	Pertusaria alpina	5	5
Leptogium cyanescens	5	3	Opegrapha ochrocheila	5	5	Pertusaria amara	5	5
Leptogium hildenbrand	ii 1	1	Opegrapha rufescens	5	5	Pertusaria borealis	5	5
Leptogium saturninum	2	3	Opegrapha sp.	5	5	Pertusaria coccodes	3	3
Leptogium teretiuscului	<i>n</i> 3	3	Opegrapha varia	5	5	Pertusaria constricta	5	5
Letharia vulpina	5	5	Opegrapha vermicellifer	ra 5	5	Pertusaria coronata	3	3
Lobaria amplissima	1	1	Opegrapha viridis	5	5	Pertusaria flavida	2	2
Lobaria pulmonaria	1	2	Opegrapha vulgata	5	5	Pertusaria hemisphaerica	<i>i</i> 1	1
Lobaria scrobiculata	1	2	Pachyphiale carneola	2	2	Pertusaria leioplaca	5	5
Lobaria virens	0	0	Pachyphiale fagicola	2	2	Pertusaria multipuncta	3	3
Lopadium disciforme	2	2	Pachyphiale ophiospora	2	2	Pertusaria ophthalmiza	3	3
Loxospora cismonica	2	2	Pannaria conoplea	2	2	Pertusaria pertusa	2	2
Loxospora elatina	5	5	Pannaria rubiginosa	0	0	Pertusaria pupillaris	5	5
Macentina stigonemoid	les 3	3	Parmelia acetabulum	3	3	Pertusaria pustulata	1	1
Maronea constans	4	4	Parmelia caperata	5	5	Pertusaria sommerfeltii	5	5
Megalospora pachycar	pa 2	2	Parmelia elegantula	3	3	Pertusaria trachythallina	0	0
Menegazzia terebrata	2	3	Parmelia exasperata	3	3	Phaeophyscia chloantha	5	5
Micarea adnata	1	1	Parmelia exasperatula	5	5	Phaeophyscia ciliata	3	3
Micarea cinerea	3	3	Parmelia flaventior	3	3	Phaeophyscia endophoen		
Micarea coppinsii	5	5	Parmelia glabra	3	3	Phaeophyscia hirsuta	5	
Micarea denigrata	5	5	Parmelia glabratula	5	5	Phaeophyscia hispidula	1	
Micarea melaena	5	5	Parmelia laciniatula	1	1	Phaeophyscia insignis	3	
Micarea nitschkeana	5	5	Parmelia laevigata	1	1	Phaeophyscia orbicularis		
Micarea peliocarpa	5	5	Parmelia minarum	5	2	Phaeophyscia poeltii	2	
Micarea prasina	5	5	Parmelia pastillifera	3	3	Phlyctis agelaea	3	
Micarea sp.1	5	5	Parmelia quercina	3	3	Phlyctis argena	5	
Mycobilimbia carneoal		5	Parmelia reticulata	1	1	Physcia adscendens	5	
Mycobilimbia epixanthe		5	Parmelia revoluta	5	5	Physcia aipolia	5	
Mycobilimbia sabuleton		5	Parmelia saxatilis	5	5	Physcia clementei	3	
Mycobilimbia sanguine		3			1	Physcia stellaris	5	
Mycobilimbia sphaeroid		3	Parmelia septentrionalis Parmelia sinuosa	2	2	Physcia tenella	5	
Mycoblastus affinis			Parmelia subargentifera			Physcia vitii	5	
	3	3		5	5	Physconia distorta	5	
Mycoblastus alpinus	3	3	Parmelia subaurifera		5	*		
Mycoblastus caesius	5	5	Parmelia submontana	3	5	Physconia enteroxantha	3	
Mycoblastus fucatus	5	5	Parmelia subrudecta	5	5	Physconia grisea	3	
Mycoblastus sanguinar		3	Parmelia sulcata	5	5	Physconia perisidiosa	3	
Nephroma bellum	3	3	Parmelia taylorensis	2	2	Placynthiella dasaea	5	
Nephroma laevigatum	1	1	Parmelia tiliacea	5	5	Placynthiella icmalea	5	
Nephroma parile	5	5	Parmeliella triptophylla		3	Platismatia glauca	5	
Nephroma resupinatum		3	Parmeliopsis ambigua	5	5	Porina aenea	5	
Normandina pulchella	5	5	Parmeliopsis hyperopta	5	5	Porina leptalea	5	
Ochrolechia alboflaves		5	Parmotrema arnoldii	2	2	Protoparmelia hypotreme		
Ochrolechia androgyna		3	Parmotrema chinense	2	3	Pseudevernia furfuracea	5	
Ochrolechia arborea	3	3	Parmotrema crinitum	2	2	Pyrenula laevigata	3	
Ochrolechia microsticto		5	Parmotrema stuppeum	1	1	Pyrenula nitida	5	
Ochrolechia pallescens	1	1	Peltigera collina	3	3	Pyrenula nitidella	3	3

Allegati 121

Specie A	Altopiano	Resto della	Specie Altopia	no	Resto della	Specie	Altopiano	Resto della
		Svizzera			Svizzera			Svizzera
Ramalina dilacerata	1	1	Schismatomma graphidioides	1	1	Usnea diplotypus	5	5
Ramalina farinacea	2	5	Schismatomma pericleum	3	3	Usnea filipendula	2	3
Ramalina fastigiata	2	2	Sclerophora nivea	2	2	Usnea florida	1	1
Ramalina fraxinea	2	3	Scoliciosporum chlorococcum	5	5	Usnea fulvoreagens	2	2
Ramalina obtusata	3	3	Scoliciosporum curvatum	3	3	Usnea glabrata	1	1
Ramalina panizzei	2	2	Scoliciosporum gallurae	5	5	Usnea glabrescens	2	2
Ramalina pollinaria	3	3	Scoliciosporum pruinosum	3	3	Usnea hirta	5	5
Ramalina roesleri	1	1	Scoliciosporum sarothamni	5	5	Usnea lapponica	5	5
Ramalina sinensis	1	1	Scoliciosporum umbrinum	5	5	Usnea longissima	1	1
Ramalina thrausta	1	2	Sphaerophorus globosus	1	1	Usnea madeirensis	1	1
Reichlingia leopoldii	5	5	Sphaerophorus melanocarpus	1	1	Usnea prostrata	5	5
Rinodina archaea	3	3	Sticta fuliginosa	1	1	Usnea rigida	2	2
Rinodina capensis	2	3	Sticta limbata	1	1	Usnea scabrata	5	5
Rinodina colobina	1	1	Sticta sylvatica	2	2	Usnea subfloridana	5	5
Rinodina conradii	2	2	Strangospora deplanata	1	1	Usnea substerilis	5	5
Rinodina efflorescens	2	2	Strangospora moriformis	5	5	Usnea wasmuthii	2	2
Rinodina exigua	3	3	Strangospora ochrophora	2	2	Varicellaria rhodocarpa	. 5	5
Rinodina griseosoralifera	. 3	3	Strangospora pinicola	3	3	Vezdaea aestivalis	5	5
Rinodina isidioides	1	1	Strigula glabra	2	2	Vezdaea stipitata	5	5
Rinodina malangica	5	5	Strigula jamesii	5	5	Vulpicida pinastri	5	5
Rinodina orculata	5	5	Strigula mediterranea	5	5	Xanthoria candelaria	5	5
Rinodina plana	5	5	Strigula stigmatella	5	5	Xanthoria fallax	5	5
Rinodina polyspora	1	1	Teloschistes chrysophthalmus	0	0	Xanthoria fulva	3	3
Rinodina polysporoides	2	2	Tephromela atra	2	2	Xanthoria parietina	5	5
Rinodina pyrina	3	3	Thelenella modesta	1	1	Xanthoria polycarpa	5	5
Rinodina roboris	1	1	Thelopsis flaveola	5	5	Xanthoria ulophyllodes	3	3
Rinodina septentrionalis	5	5	Thelopsis rubella	1	1	Xylographa minutula	5	5
Rinodina sheardii	1	1	Thelotrema lepadinum	3	3	Zamenhofia hibernica	2	2
Rinodina sophodes	3	3	Trapelia corticola	2	2	aff. Biatora areolata	5	5
Rinodina sp.	3	3	Trapeliopsis flexuosa	5	5	aff. Lecania cyrtellina	2	2
Rinodina ventricosa	5	5	Usnea cavernosa	3	3	aff. Pyrrhospora querne	a 5	5
Ropalospora viridis	3	3	Usnea ceratina	2	3			
Schismatomma decolorar	s 2	2	Usnea cornuta	1	1			